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ABSTRACT 

Policyholder behavior risk should be treated as a long-term strategic risk not only because its trend 
emerges slowly and its impact can only be recognized far in the future. More importantly, failing to 
recognize a change in trend can lead to inadequate capitalization or missed opportunities of strategic 
importance. Actuaries and risk officers have an obligation to employ more forward-looking techniques 
to better understand and mitigate this risk. This paper demonstrates that extreme value theory (EVT) 
can be used as such a tool to model policyholder behavior in the extreme tail, an area where judgment 
has been constantly applied. EVT is a mathematical theory that explores the relationship of random 
variables in the extremes. It is capable of predicting behavior in the extremes based on data in the not-
so-extreme portions of the distribution. This paper applies EVT to the study of variable annuity dynamic 
lapse behavior in the extreme tail. It illustrates a process whereby a company can fully model 
policyholder behavior, including the extreme tail, with existing data. No judgment about the extremal 
behavior is necessary. To this end, a variety of copulas are fitted to find the best model that describes 
the extremal dependency between in the moneyness (ITM) and lapse rate. The actual data combined 
with data simulated by the model in the extreme tail is then used to fit a dynamic lapse formula that 
displays different characteristics compared to the traditional methods.  

1 Introduction 
Firms face both short-term and long-term risks. During a time of uncertainty, business leaders will 
naturally focus more on immediate threats: perhaps the loss of certain investments in the eurozone, the 
weakened market demand in a recession or the urgent capital need in a volatile environment. Whatever 
the challenges may be, thanks to sound risk management, companies are able to adapt quickly and steer 
away from the many hazards. But is merely tactically managing short-term risks enough to ensure long-
term sustainable success? The answer is clearly no. Of the companies that ultimately failed, the root 
cause was often not a failure to mitigate a short-term threat. It was failing to identify a long-term 
strategic risk, which might be a change in customer behavior or a margin squeeze that threatens the 
whole industry.  
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According to an online survey conducted by the Economist Intelligence Unit in 2011 on how companies 
are managing long-term strategic risks, although more companies are now recognizing the importance 
of long-term risk management, few claimed to be good at it. This is not at all surprising. Long-term risk is 
inherently unknown and slow emerging, and does not easily lend itself to available analytical tools. For 
life insurance companies, one such long-term risk is how policyholders will ultimately behave in extreme 
market conditions.  

For years, actuaries have observed that policyholders behave differently in different markets. Holders of 
variable annuity policies, for example, tend to surrender less frequently in a prolonged down market 
than they would in a normal market. To account for this, dynamic behavior is assumed in a range of 
applications such as pricing, valuation, hedging and capital determination, where an inverse link is 
established between a market indicator, i.e., in the moneyness (ITM), and a behavior indicator, i.e., full 
lapse rate. However, this link is only established based on past experience; in many cases, a block of 
business either has never been in a severe market or there is not enough data in a severe market to 
draw any credible conclusions. In other words, how policyholders would behave under extreme market 
conditions is largely unknown at this point. Nevertheless, assumptions about it are made everywhere, 
from pricing and reserving to economic and regulatory capital.  

Assumptions or opinions differ widely from company to company in terms of how efficient policyholders 
would eventually be in severe markets. The price of new products and the amount of reserve and capital 
companies hold are, to some extent, reflections of their opinions about the behavior in the extremes. 
Needless to say, getting it right in the long run is of strategic importance to companies, regulators and 
the industry as a whole. According to the same survey, one of the most important roles that the risk 
function should play is to question strategic assumptions and challenge management’s entrenched view 
about the future. For actuaries and risk officers, what can we do to fulfill this important obligation with 
respect to setting policyholder behavior assumptions?  

Thanks to the recent market volatility, some behavior data under stressed market conditions is 
beginning to emerge. In terms of existing analytical tools, however, we still don’t have enough data to 
conclude anything about the behavior under extreme conditions. But is the newly collected data in the 
past few years dropping hints toward the extremes? Can we apply other tools to gain more insights? The 
answer is a definite yes. In this paper, we will illustrate how to apply extreme value theory (EVT) to shed 
some light onto policyholder behavior in the extremes. 

Distributions in the tail are of strong interest to people not only because of the significant economic 
consequences that tail events can inflict on financial institutions and society as a whole, but also 
because random events tend to correlate with each other very differently in the tail than in the normal 
range of distribution, which can greatly soften or exacerbate the financial impact. Understanding tail 
distribution seems like a daunting task since there is only limited data in the tail and even fewer or none 
in the extreme tail. However, mathematicians have discovered an interesting fact: For all random 
variables, as long as they satisfy certain conditions, the conditional distribution beyond a large threshold 
can be approximated by a family of parametric distributions. The dependence structure of two or more 
random variables once they are all above a large threshold can also be approximated by a family of 
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copulas. This is EVT. It suggests that if you can define a large enough threshold and still have enough 
data to find a good fit for a distribution of the EVT family, then the extreme tail can be described by the 
fitted distribution. In other words, EVT has the power of predicting the extreme tail based on 
observations in the not-so-extreme range.  

Researchers started to apply EVT to solving insurance problems two decades ago. Embrechts, Resnick 
and Samorodnitsky (1999) introduced the basic EVT theory with examples of industrial fire insurance. 
Frees, Carriere and Valdez (1996) studied dependence of human mortality between the two lives of a 
joint annuity policy. Dupuis and Jones (2006) explored the dependence structures in the extreme tail, 
including large P&C losses and expenses, hurricane losses in two different regions and sharp declines of 
two stocks.  

In this paper, we will illustrate a process of using EVT to study the behavior data by exploring the 
relationship of ITM and lapse rate of a block of variable annuity business when ITM is extremely large, or 
in the extreme tail. By fitting a bivariate distribution only to the data that is large enough, we will take 
advantage of the predictive power of EVT and gain understanding of the lapse experience in the 
extremes.  

The paper is organized as follows. Section 2 gives a brief introduction to copulas and EVT. Section 3 
discusses the raw data used in this analysis. Section 4 presents the result of the EVT analysis including 
the fitted marginal distributions, the fitted copula that described the dependence structure, the 
simulated data and the regression analysis. Finally, concluding remarks are made in section 5. All data 
analysis in this paper is performed using the R statistical language. 

2 Introduction to Copulas and EVT 
We present only the foundations of the theories here, which are sufficient for the subsequent analysis. 
Readers can refer to Dupuis and Jones (2006) and Nelsen (1999) for more details. 

2.1 Introduction to Copulas 
A copula is defined to be a joint distribution function of standard uniform random variables: 

 

where , i = 1, . . . , p is uniformly distributed random variables and  is a real number between 0 and 
1.  

For any p random variables and their distribution functions , we can 

construct a multivariate distribution F by the following: 

. 

Sklar (1959) showed that the inverse is true also. For any multivariate distribution function F, there 
exists a copula function C, such that the above formula holds.  
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Resulting from Sklar’s theory, for any multivariate distribution, we now can write it in the form of their 
marginal distributions and a copula. In other words, the dependence structure of the multivariate 
distribution is fully captured in the copula and independent of the marginal distributions. 

2.2 Extreme Value Theory 
When studying the distribution of univariate large values, Pickands (1975) suggested using the 
generalized Pareto distribution (GPD) to approximate the conditional distribution of excesses above a 
sufficiently large threshold. That is, the distribution of Pr(X > u + y | X > u), where y > 0 and u is 
sufficiently large, can be modeled by  

 

where µ is called the location parameter, σ is called the scale parameter and ε is called the shape 
parameter.  

A similar result can be extended to the multivariate case whereby the joint excesses can be 
approximated by a combination of GPDs for their marginals and a copula that belongs to the extreme 
value family.  

One important consideration of applying EVT is the choice of the threshold. It should be sufficiently large 
so that the EVT distribution and copula converge to the real multivariate distribution. But it cannot be so 
large either that there is not enough data to provide a good fit. A reasonable choice of the threshold is a 
tradeoff between these two conflicting requirements. 

In practice, three families of copulas— Gumbel (1960), Frank (1979) and Clayton (1978)—are commonly 
used when studying extremal dependence. Even though they don’t belong to the EVT copula family, for 
dealing with very large but finite data, these copulas provide a good representation of the range of 
possible dependence structures. They are also easier to fit as they are represented by only one 
dependence parameter.  

An interesting fact about extremal dependence is that it can disappear when the threshold goes to 
infinity. This is called asymptotic independence. The Frank and Clayton copulas both exhibit this 
characteristic but the Gumbel copula does not, meaning it still has strong dependence even when all 
random variables exceed huge numbers.  

Table 1 summarizes the three copulas. 

Family Dependence 
parameter α 

Mathematical representation Asymptotic 
independence 

Gumbel α > 1  No 

Frank α ≥ 1 
 

Yes 

Clayton -∞ < α < ∞ 

 

Yes 

 
Table 1. Summary of copulas commonly used in extremal dependence studies 
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3 Raw Data 
The author constructed a hypothetical in-force block of lifetime guaranteed minimum withdrawal 
benefit (GMWB) business. Although it is not based on real company data, it resembles common product 
designs as well as general patterns of ITM and lapse experience observed by many industry surveys and 
studies.  

The block consists of mostly L-share lifetime GMWB business issued from January 1999 to June 2006. 
The observation period is the five years from January 2006 to December 2011. For simplicity, we 
observe only the lapse behavior in the first year after the surrender charge period, or the shock lapse 
behavior.  

There are two variations of the product designs. The first offers only annual ratchet on the lifetime 
withdrawal guarantee, while the second also has a roll-up rate of 6 percent guaranteed for 10 years. ITM 

is defined to be . 

Based on the product type and their issue week, we subdivide the block into 1,452 distinct cohorts. We 
observe the ITM and lapse rate in the shock lapse period for every cohort. The result is 1,452 distinct 
pairs of ITM and lapse rate data. To better analyze the data using EVT, we further process the data pair 
by converting the lapse rate to 1/lapse rate. For example, 10 percent lapse rate would be converted to 
10. The ending data set is plotted in figure 1.  

The Pearson’s correlation is 0.7 and the Kendall’s correlation is 0.5, both suggesting strong correlation 
between ITM and lapse rate. This is consistent with the visual in figure 1.  

However, our data is concentrated in the +/- 20 percent ITM range. It turns sparse when ITM goes 
beyond 20 percent. Perhaps it is warranted to look at data in the upper tail alone. We ranked the ITM 
and the reciprocal of lapse rate independently and plotted the observations when both variables are 
beyond their 85th and 90th percentile in figure 2. Interestingly, correlation is less obvious when it is 
beyond these thresholds.  
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The distributions of ITM and lapse rate, or the marginal distributions, are also important. In figure 3, we 
plotted histograms of the two variables. 

Figure 1. Scatter plot of raw data 

Figure 2. Scatter plot of reciprocal of lapse rate and ITM 
Left: both exceed 85th percentile; right: both exceed 90th percentile 
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4 Result of EVT analysis 
The purpose of this section is to illustrate the process of using EVT to model and explore the potential 
dependencies in the extremes between policyholder behavior and economic indicators such as ITM. We 
use shock lapse data from the hypothetical variable annuity block as an example. The goal is not to draw 
any definitive conclusions about the dependency. Rather, we will demonstrate the process by which one 
can model and discover insights into one’s own data. 

The process generally works as follows. We first analyze the marginal empirical distributions and define 
a threshold usually in terms of percentiles of the empirical marginals. Normally, we would want to select 
a few such thresholds to find the largest that still leaves enough data for a good fit. We fit GPD only to 
the marginal data that exceeds the threshold. Then, using the same thresholds, we fit a number of 
copulas to the data exceeding the thresholds. Hopefully after this step, we can find a threshold and 
copula combination that provides a good fit to the tail. Now with the tail completely specified by the 
GPD marginals and the copula, we can simulate the extreme tail data using the Monte Carlo method. 
With the simulated data, we can perform analysis familiar to actuaries such as regression and stochastic 
calculation. 

 

4.1 Marginal fitting 
Here we fit GPD to the excesses of ITM and the reciprocal of lapse rate data using the 55th, 85th and 90th 
percentile of their empirical distribution respectively as the threshold. Table 2 summarizes the result. 

The fits were very good judging by the closeness to the empirical distributions. Figure 4 overlays the 
empirical density with the fitted GPD density at the 55th percentile threshold. 

 

Figure 3. Left: histogram of reciprocal of lapse rate; right: histogram of ITM 
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Threshold Variable Location Scale Shape 
55th ITM -0.005 0.197 -0.193 

1/lapse 3.448 0.282 1.387 
85th ITM 0.161 0.259 -0.446 

1/lapse 4.545 1.986 -0.156 
90th ITM 0.223 0.245 -0.476 

1/lapse 5.000 2.222 -0.217 
 

 

 

 

4.2 Copula fitting 
Now that the marginal distributions are fully specified with the three thresholds, we turn to model the 
dependence structure between ITM and lapse rate in the tail. We fit the Gumbel, Frank and Clayton 
copulas to data exceeding the thresholds. Other copulas are also possible, but these three capture a 
range of dependencies and are sufficient for our purpose. 

The method of fitting is canonical maximum likelihood (CML). This approach uses the empirical marginal 
distributions instead of the fitted marginal GPDs in the fitting process. It estimates the copula 
dependence parameter more consistently without depending on the fitted marginal distributions. Table 
3 shows the results. 

At the 55th percentile threshold, the Gumbel copula provides the best fit. However, at the 85th 
percentile, the Clayton copula fits better. At the 90th percentile, there are less than 100 data points, 
which is not enough to fit the copulas properly. Therefore, we chose the 85th percentile as our threshold 

  
Figure 4. Density functions of fitted GPD (red) vs. empirical (black) with data exceeding 55th percentile  

Left: ITM density; right: reciprocal of lapse rate density 

Table 2. Result of fitting GPD to the excess of ITM and reciprocal of lapse 
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and the Clayton copula to model the tail. The distribution of ITM and lapse is fully specified using the 
fitted Clayton copula and the GPD fitted marginals for ITM and lapse exceeding the 85th percentile. 

Threshold 55th 85th 90th 
Number of 
data pairs 

560 145 95 

Copula Parameter Pseudo max 
loglikelihood 

Parameter Pseudo max 
loglikelihood 

Parameter Pseudo max 
loglikelihood 

Gumbel 1.715 140.869 1.278 8.893 1.106 1.236 
Frank 4.736 134.379 2.420 10.678 0.912 1.043 

Clayton 0.801 69.952 0.601 10.881 0.148 0.531 
 

 

4.3 Simulation 
With the bivariate distribution fully specified above the 85th percentile, we performed a Monte Carlo 
simulation and generated 500 ITM and lapse data pairs. We also did the same using the fitted Gumbel 
copula as a comparison. Figure 5 shows the scatter plots of the simulated data. 

  
 

 

The plot on the left (Clayton) is more scattered than the one on the right (Gumbel). This is consistent 
with the asymptotic dependence characteristics of the two copulas. Recall that Clayton is asymptotically 
independent, which means the dependency of the two random variables will become weaker in the 
extreme tail. Gumbel, on the contrary, will show dependency in the extreme tail. 

Figure 5. Simulated data above joint threshold at 85th percentile by fitted bivariate distribution  
Left: data simulated by fitted Clayton copula; right: data simulated by fitted Gumbel copula 

Table 3. Result of fitting copula to the empirical data 
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4.4 Regression analysis 
Of all the statistical techniques that actuaries use, regression is one of the favorites. It explains 
dependence between variables reasonably well when enough data is distributed around the mean. It 
breaks down where data is sparse or randomness is too high. Nonetheless, the regressed function offers 
a very simple way of describing a dependence structure. In fact, it is commonly used in actuarial 
modeling such as in deriving dynamic lapse functions used to link a market variable to a multiplicative 
factor of the lapse rate.  

We applied a common regression technique called generalized linear models (GLM) to regress the 
combined simulated data above the 85th percentile threshold and the raw data. We did the same for the 
raw data alone as a comparison.  

For the GLM regression, we chose the Poisson link function so that the resulting regressed function 

takes the form of  where α and β are parameters to estimate, the 

multiplicative factor is used to multiply the base lapse rate, and the AV/Guar is the ratio of account 
value over the perceived guarantee value defined to be the present value of all future payments. The 
regressed functions are plotted in figure 6. 

 

 

When the raw data is combined with the simulated data generated by our chosen Clayton copula, the 
resulting dynamic lapse function has the highest value, suggesting it will reduce the base lapse rate the 
least. This implies, for example, when the account value is only 25 percent of the guaranteed value, the 
lapse rate would be about 25 percent of the base. Repeating the same for the combined raw and 
Gumbel copula simulated data results in a slightly lower dynamic lapse function. This is consistent with 
the asymptotic dependence characteristic of the two copulas: the Clayton copula is predicting less 
dependence between ITM and lapse rate in the extreme tail.  

Figure 6. Regression analysis using simulated data 
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If we analyze only the raw data, a dynamic lapse function that produces a lower multiplier would 
emerge. Because the data in the extreme tail is scarce, the regression relies on the data in the +/- 20 
percent ITM range to define the influence of ITM over the lapse rate. The low dynamic lapse function in 
the extreme tail is just an extension of that strong dependence observed in the +/- 20 percent ITM data 
range. However, our modeling using EVT suggests the dependence is not necessarily that strong in the 
extreme tail. Perhaps it is consistent with the belief that no matter how great the perceived value of the 
guarantee, there will always be some policyholders who elect to surrender the policy due to other 
considerations.  

Using the simulated data, a more accurate approach would be to model lapse stochastically. Interested 
readers can test if that will yield materially different results than the regression approach.  

5 Summary and conclusion 
To the insurance industry, how policyholders behave under extreme market conditions has remained 
largely unknown. Yet companies have to make assumptions about this behavior in order to price 
products and determine reserves and capital. These assumptions vary widely from company to company 
depending on how efficient they believe their policyholders would eventually be in prolonged severe 
markets. In the end, only one future will emerge and getting it wrong can hurt a company’s ability to 
execute its business strategy. A long-term risk such as this one often emerges very slowly, which means 
if we just monitor it in the rear view mirror, by the time we noticed a changing trend, it may already be 
too late. 

Actuaries and risk officers have an obligation to not only monitor the experience as it happens, but also 
to employ forward-looking tools to gain insight into an emerging trend and, more importantly, to advise 
business leaders on how to mitigate the risk. This paper explores the extremal relationship of the 
variable annuity lapse rate and ITM as an example to illustrate the process of applying EVT to model the 
extremal dependency between policyholder behavior and market variables. It also demonstrates the 
predictive power of EVT by simulating the dependency in the extreme tail. The example suggests that 
the dependency between ITM and lapse rate may not be as strong in the extreme tail as people might 
expect. Although the conclusion of this analysis should not be generalized as it can be highly data 
dependent, this paper shows EVT could reveal a different dynamic in the extreme tail than traditional 
techniques.  

With the newly collected data through the recent market cycles, the industry is in a position to re-
examine its understanding of extremal policyholder behavior. There could be profound implications to a 
wide range of applications ranging from capital determination to pricing. This process need not be 
limited to variable annuity dynamic lapse study; it can be used in other studies such as exploring VA 
withdrawal behavior. However, as illustrated in section 4, the choice of the threshold is an important 
consideration. One should exercise caution when applying EVT if the underlying data does not allow for 
a good threshold selection. 
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