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Abstract

Reinsurance reduces the required capital of the primary insurer but in-

creases that of the reinsurer. Capital is costly. All capital costs, including

that of the insurer and the reinsurer, are ultimately borne by primary poli-

cyholders. Reducing the total capital of insurers and reinsurers brings down

the total capital cost and the total primary policy premium. A reinsurance

arrangement is considered optimal if it minimizes the total required capital.

This optimal reinsurance is an attracting equilibrium under price competi-

tion. Evidence suggests an inverse relationship between the total required

capital and the correlation between the losses held by different insurers and

reinsurers. Examples are constructed to examine this and other properties of

the optimal reinsurance.
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1 Introduction

A new kind of optimal reinsurance is introduced in this paper. Reinsurance serves

many purposes, one of which is to reduce the required capital by lessening the

volatility of losses. From the shareholder point of view, capital is costly because

of income taxes and agency costs. Shareholders pay income taxes two times on

their capital investment, first at the corporate level and then at the personal level

when they sell the stock. They would not owe the first tax if they invested directly

in the securities market. Agency costs exist because of the separation of ownership

and control. They include monitoring and bonding expenditures and other losses
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in profits due to a misalignment of managers’ decisions and shareholders’ welfare.

Taxes and agency costs, altogether called capital costs, are generally directly re-

lated to the amount of capital (Jensen and Meckling 1976, Perold 2005, Chandra

and Sherris 2006, Zhang 2008). Thus carrying less capital is desirable.

Reinsurance transfers losses from a ceding company to a reinsurer. Such losses

are often highly volatile. So this transfer of losses increases the capital requirement

of a reinsurer while reducing that of a ceding company. Consequently, capital

costs of the reinsurer increase and those of the ceding company decrease. The

total capital cost, the sum of that of both companies, may go either way. I

will examine an ideal insurance market where all insurance policies are fairly

priced. Primary policy premiums include exact amounts to cover primary insurers’

capital costs; reinsurance premiums include exact amounts to cover reinsurers’

capital costs. But reinsurance premiums are funded through premiums of primary

policies. Therefore, the total capital costs of primary insurers and reinsurers are

ultimately borne by primary policyholders. If a treaty reduces a ceding company’s

capital costs more than it increases the reinsurer’s, the total capital cost is reduced,

which benefits primary policyholders. A treaty, or a set of treaties, is optimal, if it

minimizes the total capital cost. Such optimal reinsurance arrangements are the

subject of this paper.

Under simplifying assumptions, minimization of the total capital cost is equiv-

alent to minimization of the total amount of capital carried by all companies. This

latter problem may be directly solved by simulating loss scenarios. Suppose (1)

a capital requirement is defined using a statistical risk measure (the tail value at

risk [TVaR] will be the preferred one in this paper), (2) the joint distribution of

all losses involved (losses of primary insurers and reinsurers) is known, and (3) a

set of permissible reinsurance treaties (types of treaties and lines of business to

be covered) is given. Then, for each of the treaties, the total required capital can

be calculated. By comparing the total capital across treaties, the optimal treaty

is easily found.1

The risk measure TVaR belongs to a desirable class called the coherent risk

measures, defined in Artzner et al. (1999). For such a risk measure, there is an

absolute lower bound for the total capitals, regardless of reinsurance arrangements,

the total capital must be greater than this lower bound. It can be shown that if

the losses of the insurers have a certain correlation called comonotonicity, then the

1 In a real-world situation, usually only a finite number of treaty options are practically

available, e.g., a few quota share treaties with certain ceding percentages or a few excess-of-loss

treaties with certain retentions and limits.
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total capital attains the lower bound. This observation leads to a discussion of the

relationship between optimal reinsurance and correlated losses. Evidence suggests

that an optimal reinsurance is one that makes the losses of insurers and reinsurers

as correlated as possible. (Such correlation needs only occur at the tail.)

Numerous authors have written about optimal reinsurance and have given

various criteria of optimality. Our criterion is noticeably different. Usually an

optimal reinsurance is defined from the ceding company’s point of view. The

ceding insurer seeks a treaty to maximize the risk-adjusted return (Lampaert

and Walhin 2005, Fu and Khury 2010), to minimize the variance of the net loss

(Kaluszka 2001, Lampaert and Walhin 2005), or to minimize the tail risk of the

net loss (Gajek and Zagrodny 2004, Cai and Tan 2007), under the constraint of a

given premium principle that links the ceded premium to the ceded loss. This line

of reserach is valuable. However, it does not pay enough attention to the interest

of the reinsurer. Although the premium principles include risk margins that reflect

the volatility of the ceded loss, they generally ignore the fact that the reinsurer

needs to put up more capital thus incurring greater capital costs. Our approach

gives the ceding insurer and the reinsurer equal footing and addresses capital costs

directly. A reinsurance arrangement that minimizes the total capital is the best

deal for the combined welfare of primary insurers, reinsurers and policyholders.

It is an attracting equilibrium under market forces. Competition among insurers

and reinsurers tends to produce reinsurance contracts generating less total capital.

The main part of the paper is organized as follows. Section 2 shows that

minimization of the total primary insurance premium leads to minimization of

the total capital. In Section 3, a lower bound of the total required capital is

introduced and an inverse relationship between the total capital and the correlation

between losses is observed. Examples are given in Section 4 to illustrate interesting

properties of the optimal reinsurance and to further examine the relationship

between the total capital and the correlation.

2 Why Minimize the Total Required Capital

2.1 Lower total capital means lower premiums for policyholders

Policyholders purchase insurance to protect themselves against potential losses.

At the same time, they also provide funds to cover all operating costs of the

insurance company, including underwriting and claim expenses, income taxes,

agency costs and reinsurance costs. The reinsurance costs, in turn, cover the

reinsurer’s expenses, taxes and agency costs, and its reinsurance costs (costs of
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retrocession), if there are retrocessions. Ultimately, it is the primary insurance

policyholders that bear the operating costs of primary insurers and reinsurers.

For the insurance/reinsurance market as a whole, reinsurance treaties rearrange

these costs among all insurers and reinsurers. Some reinsurance arrangements

result in lower total costs than others. A reinsurance arrangement is optimal if

the total cost is minimized, in which case the primary policyholders pay the lowest

aggregate premium.

This paper focuses on minimizing the total capital cost, consisting of income

taxes and agency costs. To cleanly study the capital cost, we assume that the

aggregate underwriting and claim expenses remain constant under all reinsurance

arrangements. Therefore, these expenses can be excluded from consideration.

The gross insurance premium of a policy can be decomposed into the following

components

p = PV(Loss) + PV(Tax) + PV(Agency Cost) + Reinsurance Premium. (2.1)

The p in (2.1) represents the fair premium, which is the exact amount to fund all in-

surer’s costs related to the policy. Equation (2.1) is a form of the net present value

principle. Some slightly different formulas for the fair premium have appeared in

the literature (Myers and Cohn 1987, Taylor 1994, Vaughn 1998). Each term on

the right-hand side of (2.1) provides the exact amount to cover that specific type

of cost. The present values are risk adjusted. The loss in the first term is the net

loss. It is assumed here that the present value of insured loss satisfies the follow-

ing two basic requirements of the fair value accounting: (1) The value PV(Loss)

is independent of the carrier of the insurance policy.2 (2) The function PV(·) is

additive. The two conditions together eliminate the possibility of arbitrage. In

particular, they imply that PV(Gross Loss) = PV(Net Loss) + PV(Ceded Loss).

I now examine the relationship between the gross fair premium and the total

amount of capital held by insurers and reinsurers. Consider a one-year model

containing only one loss to be shared between a primary insurer and a reinsurer.

Let p be the gross premium charged by the primary insurer at the beginning of

the year and L the random gross loss paid at the end of the year. The primary

insurer collects the premium p then cedes an amount pc to the reinsurer, retaining

pn = p− pc. Denote by Lc the ceded loss and Ln the net loss. Then Ln +Lc = L.

2 The risk-adjusted PV can be viewed as the risk-free discounted expected cash flow plus a

risk margin, where the risk margin reflects the market, or systematic risk of the cash flow. It

is sometimes argued that the fair value of losses should be affected by its carrier’s default risk.

In this paper, we only consider insurance firms that hold the required level of capital and whose

risk of default is negligible.
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The income tax is the sum of two charges, one on the income generated by

premiums, which equals the underwriting profit plus the investment income on

premiums, and the other on the investment income generated by capital. Let ePr

and eRe be the capital amounts carried by the primary insurer and the reinsurer,

respectively. Then the present value of tax for the primary insurer is of the form

tPr(pn−PV(Ln))+uPrePr, and that for the reinsurer is tRe(pc−PV(Lc))+uReeRe.

The t’s are the average tax rates for the corresponding incomes, and the u’s are

the average tax rates on the corresponding capital investments times a constant

rf/(1 + rf ), where rf is the risk-free rate. (A derivation of this constant can be

found in Cummins 1990). The agency cost in equation (2.1) consists of various

costs related to the insurer’s holding capital, including monitoring and bonding

expenditures and other losses in profits due to misalignment of managers’ decisions

and shareholders’ welfare (Perold 2005, Chandra and Sherris 2006, Zhang 2008).

Agency costs generally increase with the amount of capital.3 Assume there are

constants sPr and sRe such that the present value of agency cost is sPrePr for the

primary company and sReeRe for the reinsurer.

Following (2.1), for the primary insurer, we have

p = PV(Ln) + tPr(pn − PV(Ln)) + uPrePr + sPrePr + pc (2.2)

and, for the reinsurer (if there is no retrocession),

pc = PV(Lc) + tRe(pc − PV(Lc)) + uReeRe + sReeRe. (2.3)

A formula for the fair gross premium p can be obtained by substituting (2.3) into

(2.2). It is composed of the following four terms.

1. The present value of loss: PV(Ln) + PV(Lc) = PV(L), which does not vary

with reinsurance.

2. The tax on the incomes generated by premium: tPr(pn−PV(Ln))+ tRe(pc−
PV(Lc)). On the condition that the tax rates are equal, tPr = tRe = t, this

term is t(p− PV(L)), which decreases as p decreases.

3. The tax on the incomes generated by capital: uPrePr + uReeRe. If the

applicable tax rates are the same, then uPr = uRe = u, and the term equals

u(ePr + eRe), which decreases if a reinsurance contract lowers the sum of

capitals, ePr + eRe.

3 An important type of capital cost is the cost of financial distress, which increases as cap-

ital becomes more insufficient. But all firms considered in this paper satisfy a given capital

requirement. So the cost of financial distress is ignored.
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4. The agency cost: sPrePr +sReeRe. If the cost factors are equal, sPr = sRe =

s, then the term equals s(ePr + eRe), again a direct function of the total

capital ePr + eRe.

To sum up, as the reinsurance varies, the loss component PV(L) remains constant,

while the fair premium p varies because taxes and agency costs vary. (These costs

are all called capital costs.) p is lower if the present values of taxes and agency

costs are lower. Under the above assumptions, this is equivalent to a smaller

amount of total capital, ePr + eRe. The optimal reinsurance is then defined as

the one that minimizes ePr + eRe. An optimal reinsurance creates the least gross

premium, so is best for the policyholder.

This definition can be generalized to an insurance market with many primary

insurers and reinsurers, and many primary policyholders. Assume each primary

insurer covers a given set of policyholders. There are a great number of ways in

which each insurer buys reinsurance and each reinsurer enters retrocession agree-

ments. A set of reinsurance/retrocession arrangements is called optimal if it min-

imizes the total capital cost of the insurers and reinsurers. With the condition

that all companies have identical tax rates and agency cost factors, this criterion

is equivalent to minimizing the total amount of capital.4

2.2 Price competition leads to optimal reinsurance

Minimization of the total capital cost is a new optimality criterion. Criteria in the

existing literature are very different; see Kaluszka (2001), Gajek and Zagrodny

(2004), Lampaert and Walhin (2005), Cai and Tan (2007) and Fu and Khury

(2010) for a sample of recent papers. In these papers, a reinsurance is considered

optimal if it minimizes the risk of the net loss under a given constraint on the

reinsurance cost (or the ceded premium). This line of research is valuable for

reinsurance purchase decisions but is incomplete. A major concern of reinsurance

has been missing. The reinsurer needs additional capital to accommodate the in-

creased risk from the assumed loss, which increases its capital cost. This cost is

transferred to the ceding company through the reinsurance premium. To the ced-

ing company, if this extra cost is not offset by the reduction of its own capital cost,

the deal is not acceptable. Our method treats the ceding insurer and the reinsurer

equally. The optimal treaty is fair to both firms and is the most beneficial to the

primary policyholder. Obviously, an optimal reinsurance so defined cannot be cal-

4 If tax rates or agency cost factors are not all equal, or the costs are not all linear to the

capital, then the optimal reinsurance is one that minimizes an increasing function of the capitals.
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culated by either company since one company cannot model the other company’s

aggregate loss distribution. Fortunately, as explained in the following examples,

it is not necessary to explicitly calculate the optimal treaty terms. As long as

each company correctly prices its own policies, the optimal treaty is automatically

attained through price competition.

Let us begin with a simple scenario. Assume a primary insurer has written a

line of business and would like to purchase reinsurance to reduce risk. Denote by

fPr the amount of capital cost saved by a reinsurance. The reinsurer incurs extra

capital costs associated with the assumed loss. It charges the primary insurer

an additional premium, denoted by fRe, to cover these costs.5 So the primary

insurer would pay an amount of premium fRe to save an amount of cost fPr. The

reinsurance only makes sense if fRe ≤ fPr, which means the sum of the capital

costs of both companies must decrease.

Assume further that there are two competing reinsurers; a treaty placed with

reinsurer 1 would cost the primary insurer a premium fRe,1 to save a capital cost

fPr,1, and one placed with reinsurer 2 would cost fRe,2 to save a capital cost fPr,2.

The immediate (present value) benefits from the treaties are fPr,1 − fRe,1 and

fPr,2−fRe,2, respectively. The insurer would choose the reinsurer with the greater

benefit, which is the one producing the lower total capital cost.

Now look at an example where primary insurers choose reinsurance to compete

with each other for business. Suppose that a line of business is on the market and

two insurers are bidding. Suppose each insurer has a set of available reinsurance

options. As proved in Section 2.1, the gross fair premium includes a capital cost

component that equals the present value of the total capital cost of the insurer

and the reinsurer. To win the bid, an insurer looks for a reinsurance with as low

a total capital cost as possible. Eventually, the business will go to the insurer

able to secure a reinsurance with so low a total capital cost that the other cannot

match. Obviously, an insurer’s ability to get a more competitive reinsurance deal

depends on its existing business and capital structure.

The above analysis shows that market competition always favors a reinsur-

ance structure that produces less total capital cost. Consequently, a reinsurance

structure with the least total capital cost is an attracting equilibrium.

5 Rigorously, fPr and fRe represent risk-adjusted present values of the corresponding capital

cost cash flows.
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3 A Lower Bound of Total Required Capital

3.1 Capital requirements by coherent risk measures

Suppose a uniform capital requirement is imposed on all insurers by regulation.

We will only deal with the loss risk, that is, the risk that L will become very large.

The required capital can be defined by a risk measure on the loss distribution. A

class of risk measures often considered desirable are the coherent risk measures.

According to Artzner et al. (1999), risk measure ρ is called coherent if it satisfies

the following conditions:

• Monotonicity: For any two losses, L1 and L2, if L1 ≤ L2, then ρ(L1) ≤ ρ(L2)

• Positive homogeneity: For any loss L and a constant a > 0, ρ(aL) = aρ(L)

• Translation invariance: For any loss L and a constant b, ρ(L+ b) = ρ(L) + b

• Subadditivity: For any two losses, L1 and L2, ρ(L1 + L2) ≤ ρ(L1) + ρ(L2)

All these properties have simple intuitive meanings. Most important to our study

is subadditivity. Subadditivity implies diversification: When two risks are pooled

together, the required capital of the pool is less than the sum of the required

capitals of each risk.

A typical property/casualty loss is a continuous random variable, that is, its

cumulative distribution function FL(x) is continuous. The p-quantile of L is de-

fined by

Qp(L) = min{x|FL(x) ≥ p}, p ∈ (0, 1), (3.1)

and the tail value at risk (TVaR) at level p is

TVaRp(L) = E[L|L ≥ Qp(L)], p ∈ (0, 1). (3.2)

The TVaR is the most well-known coherent risk measure for continuous risks. (The

quantile, also called the value at risk, does not always respect subadditivity.) The

TVaR will be used in our illustrative examples.

Suppose a coherent risk measure ρ is selected by the regulator. Then ρ(L) is

the amount of assets a company is required to hold. In a one-year model, the

premium provides part of the assets at the beginning of the year; the required

capital thus equals the required assets minus the premium. Following Section 2,

we want to examine reinsurance structures that minimize the sum of the required

capitals of the insurer and the reinsurer. This is equivalent to the problem of
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minimizing the sum of their required assets,6 i.e., minimizing the sum of their

risk measures. Note that the required assets should be calculated from the loss

distribution at the end of the year and discounted back to the beginning of the

year. I will ignore the discounting for simplicity.

3.2 Lower bound and comonotonicity

Reconsider the simplified model with a single loss L, one primary insurer and

one reinsurer. The primary insurer issues a policy to cover the entire loss L

and cedes part of it to the reinsurer. Thus, L is split between the two insurers,

L = LPr +LRe. For a given coherent risk measure ρ, by the rule of subadditivity,

ρ(L) ≤ ρ(LPr) + ρ(LRe). This inequality provides an absolute lower bound for

the sum of capitals: however L is split between the two insurers, the sum of their

required assets is no less than ρ(L). To minimize the total required capital is to

get the sum ρ(L) ≤ ρ(LPr) + ρ(LRe) as close to ρ(L) as possible.

The lower bound can be attained by many reinsurance arrangements. One

trivial case is that LPr = L and LRe = 0, or LPr = 0 and LRe = L, that is, only

one insurer holds all of L. This fact is no surprise, for if there is only one insurer

and all losses are insured with it, the effect of diversification is maximized, and the

least amount of capital is required. An extension of this fact is that an insurance

market with few insurers requires less total amount of capital than a market with

many insurers. But few insurers means less competition, and insurers have less

incentive to price policies fairly.

The lower bound is also reached by the quota share reinsurance. If a is the

quota share ceding fraction (0 < a < 1), then LPr = (1− a)L and LRe = aL. The

equality ρ(L) = ρ(LPr) + ρ(LRe) follows from the rule of positive homogeneity

of ρ. More generally, if two losses L1 and L2 are perfectly linearly correlated,

that is, their linear (Pearson) correlation coefficient equals 1, then ρ(L1 + L2) =

ρ(L1)+ρ(L2). Therefore, if a reinsurance treaty splits L into two linearly correlated

parts, then the sum of their required capitals is minimized. The condition of

perfect linear correlation can rarely be fulfilled. Fortunately, it can be much

relaxed in the following two steps. First, although some kind of perfect correlation

has to exist between two losses, L1 and L2, for their risk measures to add up, the

6 This can be explained using equations (2.2) and (2.3). The assets for the insurer are pn+ePr,

and that for the reinsurer are pc + eRe. It is proved in Section 2.1 that the total (gross) fair

premium pn + pc decreases as the total capital ePr + eRe decreases. If a reinsurance treaty

minimizes the total required assets, it must simultaneously minimizes the total required capital

and the total fair premium.
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correlation does not have to be linear—any monotonic and increasing relationship

suffices. Second, a perfect correlation only needs to exist at the tail, for large

values of L1 and L2. Mathematically, both these issues have been well treated in

the literature, as explained below.

A set in the n-dimensional space Rn is called comonotonic, if, for any two

points in the set, (x1, . . . , xn) and (y1, . . . , yn), xi < yi for some i implies xj ≤ yj

for all j. A vector of n random variables X1, . . . , Xn are called comonotonic, if

its support in Rn (that is, the set of all possible values of the random vector) is

a comonotonic set. A good overview of comonotonicity and its application in risk

theory is Dhaene et al. (2006). The support of a random vector can be visualized

by drawing a scatter plot (in Rn). A scatter plot of a random vector is merely a

small, randomly selected subset of its support. For a comonotonic random vector,

the support is essentially a one-dimensional curve (or a subset of a curve) in Rn.

When a point moves along such a set, all its coordinates move simultaneously

up or down (some coordinates may remain constant). If n random variables are

perfectly linearly correlated, the support lies in a straight line. Thus the perfect

linear correlation is a special case of comonotonicity. Comonotonicity is a much

more general relationship. For example, if X is any positive random variable, then

X and X2 are comonotonic but not linearly correlated. The support of (X,X2)

is contained in the parabola y = x2. The Spearman rank correlation coefficient is

a more meaningful measure than the linear correlation coefficient to characterize

such a nonlinear relationship. The rank correlation coefficient of two comonotonic

random variables equals 1 (see Wang 1998), while their linear correlation coefficient

is typically less than 1.

The TVaR is a coherent risk measure and is also additive for comonotonic risks:

If two losses L1 and L2 are comonotonic, then TVaRp(L1 + L2) = TVaRp(L1) +

TVaRp(L2) for any p (Dhaene et al. 2006).7 In our one-insurer-one-reinsurer

model, assume the required asset is determined by a risk measure ρ that is coherent

and additive for comonotonic risks. If L is split in such a way that LPr and LRe

are comonotonic, then ρ(LPr) + ρ(LRe) reaches its lower bound ρ(L). We have

seen that the quota share reinsurance splits the loss this way. Another example is

the stop-loss reinsurance, which is defined by

LPr = min(L, k), LRe = max(L− k, 0), (3.3)

where k > 0 is the attachment point. It is easy to check that the three variables

7 There are other risk measures that are coherent and additive for comonotonic risks, e.g., the

concave distortion risk measures. The VaR is additive for comonotonic risks but is not coherent

(Dhaene et al. 2006).
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L, LPr and LRe are comonotonic, and ρ(L) = ρ(LPr) + ρ(LRe).

Risk measures like Qp(L) and TVaRp(L) are determined by large values of L.

When considering how to split L into LPr and LRe to minimize the total capital,

one should focus on large losses. The condition of comonotonicity requires the

entire support of the random vector to be a comonotonic set. This condition

is too strong. Cheung (2009) introduces the concept of upper comonotonicity,

only requiring the upper tail of the support to be comonotonic. If LPr and LRe

are upper comonotonic, then ρ(L) = ρ(LPr) + ρ(LRe), where ρ is either Qp or

TVaRp and p is sufficiently close to 1. In general, the amount of total capital

corresponding to a reinsurance structure is determined by large losses only.

3.3 Optimal reinsurance in a general setting

I now apply the concepts developed so far to formulate a general problem about

optimal reinsurance. In the real world, a primary insurer does not have the option

or the intension to buy reinsurance on its entire book of business. It only seeks

coverages for lines or accounts that have the potential of generating very undesir-

able results. On the other hand, a reinsurer assumes losses from many insurers

and reinsurers. For the primary insurer, the correlation between the retained loss

and the ceded loss determines how much capital can be shed. For the reinsurer,

the correlation between the newly assumed loss and the existing loss determines

how much additional capital is needed. A treaty is beneficial from the capital

cost point of view if the deduction of capital from the primary insurer exceeds the

addition of capital to the reinsurer.8

Assume the primary insurer initially carries losses X + Z, where X will be

entirely retained and Z may be partially ceded. The reinsurer holds a loss Y

before assuming a part of Z. A reinsurance treaty splits Z into a net and a ceded

part, Z = Zn + Zc. Without reinsurance, the total required asset of the insurer

and the reinsurer is ρ(X+Z)+ρ(Y ). After a reinsurance, the total required asset

is ρ(X + Zn) + ρ(Y + Zc). A treaty is optimal if the latter sum is minimized.

If ρ is a coherent risk measure, an absolute lower bound for ρ(X+Zn)+ρ(Y +

Zc) is ρ(X+Y +Z). In general, the distributions of the losses and the correlations

between them are complex. Even the optimal ceding arrangement may not take

8 Note that the “correlation” here is used in a broad sense. A precise measure of the correlation

is yet to be found. It will be clear from later discussions that the familiar linear correlation

coefficient and rank correlation coefficient are not proper measures in the study of capital. One

reason is that these correlation coefficients encompass all ranges of losses but capital is only

associated with large losses.
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down the value of the sum ρ(X + Zn) + ρ(Y + Zc) to anywhere near this lower

bound. Moreover, in the reinsurance market, only a few types of treaties are

commonly placed, including quota share, excess of loss, catastrophe and stop loss.

Minimizing the sum ρ(X + Zn) + ρ(Y + Zc) for a given set of available treaties is

mathematically a conditional optimization problem.

From the preceding section, we see that if a ceding arrangement makes X+Zn

and Y +Zc comonotonic (upper comonotonicity suffices), then the sum of required

capitals attains its minimum value ρ(X+Y +Z). In other words, the minimum sum

of capitals corresponds to the maximum correlation between the losses (their rank

correlation equals 1). This suggests that the value of ρ(X +Zn) + ρ(Y +Zc) may

be inversely related to the correlation between X +Zn and Y +Zc. A reinsurance

that makes the total capital small must make the correlation large. This intuition

is important in understanding the optimal reinsurance. In the appendix, I will

provide a graphic reasoning to further support this linkage between the total

capital and the correlation.

4 Optimal Reinsurance by Examples

In the following examples, I will describe the loss model, solve for the optimal

reinsurance and then discuss the result. In particular, I will examine whether

minimization of the total capital is closely related to maximization of the correla-

tion between the losses.

4.1 A multivariate normal example

Let X, Y and Z be three jointly normally distributed variables. X and Z are

losses written by the primary insurer, X will be retained and Z may be partially

ceded; Y is the existing loss of the reinsurer. Suppose only quota share treaties

may be placed on Z. Although this is not a realistic situation (actual losses do not

take negative values as the normal distribution does), discussion of this tractable

example can provide us valuable insights.

Let X, Y and Z have the following parameters: means µx, µy and µz, standard

deviations σx, σy and σz, and pairwise correlation coefficients γxz, γyz and γxy.

If a quota share treaty is placed and a is the ceding fraction, then the primary

company’s net loss is LPr = X + (1− a)Z, and the reinsurer’s total loss is LRe =

Y + aZ. These two losses are also normal random variables. Their means and
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standard deviations are as follows.

µPr = E(LPr) = µx + (1− a)µz

σ2Pr = Var(LPr) = σ2x + (1− a)2σ2z + 2(1− a)γxzσxσz

µRe = E(LRe) = µy + aµz

σ2Re = Var(LRe) = σ2y + a2σ2z + 2aγyzσyσz

For a given confidence level p, the risk measuresQp and TVaRp of a normal random

variable can be easily obtained. In fact, they can be written as Qp = µ + hpσ

and TVaRp = µ + kpσ, where hp and kp are constants independent of µ and σ.

For example, Q0.99 = µ+ 2.33σ and TVaR0.99 = µ+ 2.67σ. Therefore, if the risk

measure ρ is of the quantile or the TVaR type, minimizing the sum ρ(LPr)+ρ(LRe)

is equivalent to minimizing the sum σPr + σRe. The latter problem will be solved

below.

The variances of the insurer and the reinsurer can be written in a simpler form

σ2Pr = σ2z((a−APr)
2 +B2

Pr)

σ2Re = σ2z((a+ARe)
2 +B2

Re),
(4.1)

where

APr = 1 + γxzσx/σz, B2
Pr = (1− γ2xz)σ2x/σ2z

ARe = γyzσy/σz, B2
Re = (1− γ2yz)σ2y/σ2z .

(4.2)

The sum of standard deviations is thus

σPr + σRe = σz

(
((a−APr)

2 +B2
Pr)

1/2 + ((a+ARe)
2 +B2

Re)
1/2

)
.

To minimize this sum is to minimize the following function f(a)

f(a) = ((a−APr)
2 +B2

Pr)
1/2 + ((a+ARe)

2 +B2
Re)

1/2,

where the ceding fraction a is between 0 and 1. The derivative of f(a) is

f ′(a) =
a−APr

((a−APr)2 +B2
Pr)

1/2
+

a+ARe

((a+ARe)2 +B2
Re)

1/2
.

Setting the right-hand side of the equation equal to zero, moving one of the terms

to the other side and squaring the terms, we have

(APr − a)2

(a−APr)2 +B2
Pr

=
(a+ARe)

2

(a+ARe)2 +B2
Re

.

Simplifying this gives

(APr − a)2B2
Re = (a+ARe)

2B2
Pr.

13



We make the assumption that γxz ≥ 0 and γyz ≥ 0, meaning that the losses

X, Y and Z are not negatively correlated, a condition likely to be true in the

real world. Mathematically, this implies APr ≥ 1 and ARe ≥ 0. If we assume

−ARe ≤ a ≤ APr, then APr − a ≥ 0 and a+ ARe ≥ 0. Taking the square root in

the above equation, we get the solution

a∗ =
APrBRe −AReBPr

BPr +BRe
. (4.3)

This is the unique zero of f ′(a) between −ARe and APr and the unique minimum

point of f(a). The function f(a) strictly decreases from −ARe to a∗ and strictly

increases from a∗ to APr. Note that the optimal ceding fraction does not depend on

how X and Y are correlated. This statement is obviously true for any distributions

of X, Y and Z.

Now we examine a few special cases. First, suppose Z is uncorrelated with

both X and Y , that is, γxz = γyz = 0. From the equations (4.2), APr = 1,

BPr = σx/σz, ARe = 0 and BRe = σy/σz. Using (4.3), we obtain the optimal

ceding fraction a∗ = σy/(σx + σy). So, in this case, to minimize σPr + σRe, Z

should be shared between the primary insurer and the reinsurer in proportion to

the standard deviations of their “fixed” losses, σx and σy.

Another interesting case is when Z is highly correlated to X but almost un-

correlated to Y . Then γxz ≈ 1 and γyz ≈ 0. These imply that APr ≈ 1 + σy/σz,

BPr ≈ 0, ARe ≈ 0 and BRe ≈ σy/σz. By (4.3), a∗ ≈ 1 + σx/σz. This a∗ is greater

than 1. Thus, to minimize σPr+σRe, Z should be 100 percent ceded. On the other

hand, since Z and X are highly correlated, the more Z is ceded to the reinsurer,

the greater is the (linear) correlation between X+(1−a)Z and Y +aZ. This cor-

relation is maximized at a = 100%. In this example, the reinsurance is optimized

at the same ceded ratio where the correlation between the losses is maximized.

A parallel result is that, if Z is highly correlated to Y but almost uncorrelated

to X, then the optimal ceded ratio is 0 percent. At this ceded ratio, the correlation

between the losses is again maximized.

Now we plug in some numerical values. Assume σx = 300, σy = 500 and

σz = 100; γxz = 0.4, γyz = 0.4 and γxy = 0.2. Using (4.2), we compute APr = 2.20,

BPr = 2.75, ARe = 2.00 and BRe = 4.58. Substituting these into (4.3), we obtain

the optimal ceding fraction a∗ = 62.5%. However, this a∗ does not provide the

maximum correlation between X + (1 − a)Z and Y + aZ. Using simulation, we

get that the maximum linear correlation coefficient is 0.290 and is reached at the

ceded ratio of 30.5 percent. Therefore, the minimum total capital does not always

correspond to the maximum correlation. As mentioned before, this result is not
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really a surprise because the capital is determined by large losses, while the linear

or rank correlation coefficient does not distinguish between large and small losses

(or even negative losses, in this example).

4.2 A numerical example

If the joint distribution of losses X, Y and Z is known, and a set of available

reinsurance treaties is given, the optimal treaty can be found by simulation. To

have an easy control on correlations between the losses, I will assume the losses

are jointly lognormal. I will look at two common types of treaties, the quota share

and the stop loss.

Let the variables X, Y and Z be jointly lognormal, in the sense that ln(X),

ln(Y ) and ln(Z) are jointly normal. The mean µ0 and the standard deviation σ0

of these normal variables are as follows.

ln(X) ln(Y ) ln(Z)

µ0 19.5 20.0 17.0

σ0 0.16 0.25 1.10

The mean, the standard deviation and quantiles of X, Y and Z can be com-

puted from above with simple formulas. I will denote a parameter for a normal ran-

dom variable with a superscript 0, and the same parameter for the corresponding

lognormal variable without the superscript. For example, µ0x is the mean of ln(X)

and µx the mean of X. These formulas are well known: µx = exp(µ0x + (σ0x)2/2),

and σx = exp(µ0x + (σ0x)2/2)(exp((σ0x)2) − 1)1/2. The p-quantile of X can be

written as Qp(X) = exp(µ0x + hpσ
0
x), where hp is the p-quantile of the standard

normal distribution. More complex measures of the lognormals, like TVaRp(X)

or the standard deviation of X + Y + Z, are more easily estimated using simula-

tion. Some useful statistics for X, Y and Z are shown in the following table (loss

amounts are in millions).

X Y Z

µ 298 501 44

σ 48 127 68

CV 0.16 0.25 1.53

Q0.99 427 868 312

TVaR0.99 451 941 477
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I will choose ρ = TVaR0.99 as the risk measure. In addition to the known µ

and σ, if the linear correlation coefficients γxz, γyz and γxy are also given, then

the distribution of the triplet (X,Y, Z) is completely determined. Following our

naming convention, γ0xz is the linear correlation coefficient between ln(X) and

ln(Z). γ0xz determines γxz, and vise versa. A greater γ0xz corresponds to a greater

γxz. The strongest correlation between X and Z is attained when ln(X) is a linear

function of ln(Z) with a positive slope. In this case, γ0xz = 1 but γxz is generally

less than 1.9

A straightforward sampling method is used to find the optimal ceding term.

For µ and σ in the above table and known γxz, γyz and γxy, a large random

sample of (X,Y, Z) is drawn (using Excel with the @RISK add-in or with a macro

performing the Cholesky decomposition). Applying a given reinsurance treaty on

the sample data, we get samples of losses of the primary insurer and the reinsurer,

from which the TVaR of the losses can be estimated. Table 1 displays results for

quota share treaties. Five scenarios of different γ0xz, γ
0
yz and γ0xy are analyzed.

For each scenario, a sample of 20,000 points of the triplet (X,Y, Z) is drawn; 101

quota share fractions, a, ranging from 0 to 100 percent with 1 percent increments,

are applied; the measures ρ(X + (1− a)Z) and ρ(Y + aZ) are estimated; and the

least sum of them is found by comparison, which gives the optimal quota share

term. (Loss amounts in Table 1 are in millions.)

Table 1: Optimal Quota Share Fractions

(1) (2) (3) (4) (5)

γ0xz 0.9 0.9 0 0.1 0

γ0yz 0 0.1 0.99 0.9 0

γ0xy 0 0 0 0 0

ρ(X + Y + Z) 1,540 1,570 1,764 1,721 1,422

a∗ (optimal ceding) 100% 100% 0% 36% 75%

ρ(X + (1− a∗)Z) + ρ(Y + a∗z) 1,596 1,624 1,771 1,756 1,529

In the table, ρ(X + Y + Z) is the absolute lower bound of the total required

asset, for any type of reinsurance. In scenario (3), the optimal total asset ρ(X +

(1− a∗)Z) + ρ(Y + a∗Z) is close to ρ(X + Y +Z). But, in general, the difference

9 The exact formula is γxz = [exp(σ0
xσ

0
zγ

0
xz) − 1]/[(exp((σ0

x)2) − 1)(exp((σ0
z)2) − 1)]1/2. If

γ0
xz = 1, γxz is generally less than 1, but the Spearman rank correlation coefficient between X

and Z equals 1.
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between the two is sizable. In scenarios (1) and (2), Z is strongly correlated to

X but weakly correlated Y . Ceding out the entire Z (a = 100%) would maximize

the correlation between X+ (1−a)Z and Y +aZ.10 This supports the claim that

the optimal treaty is the one that creates the strongest correlation between the

insurer’s and the reinsurer’s losses. A similar relationship holds in scenario (3),

where Z is strongly correlated to Y but weakly correlated to X. The optimal term

is to cede nothing, which again corresponds to the strongest correlation between

the two losses. However, in scenario (5), the optimal ceding ratio is 75 percent,

while, as can be shown, the maximum correlation is reached at a = 55%. The two

ratios are different.

I now consider the same five correlation scenarios and perform a similar analysis

for stop-loss treaties. In each scenario, let the primary insurer’s retention, k, vary

from 20 million to 250 million, with 5 million increments. The ceded loss is

Zc = max(Z − k, 0), and the retained Zn = Z − Zc = min(Z, k). Comparing the

total asset ρ(X +Zn) + ρ(Y +Zc) for all these k, we get the optimal retention k∗.

The results are summarized in Table 2 (loss amounts are in millions).

Table 2: Optimal Stop-Loss Retentions

(1) (2) (3) (4) (5)

γ0xz 0.9 0.9 0 0.1 0

γ0yz 0 0.1 0.99 0.9 0

γ0xy 0 0 0 0 0

ρ(X + Y + Z) 1,540 1,570 1,764 1,721 1,422

k∗ (optimal retention) 20 20 250 250 85

ρ(X + Z∗n) + ρ(Y + Z∗c ) 1,598 1,625 1,804 1,770 1,557

Z∗
n = min(Z, k∗), Z∗

c = max(Z − k∗, 0)

In the first two scenarios, Z is highly correlated to X; in the next two scenarios,

it is highly correlated to Y . Thus, intuitively, in the first two scenarios, the

correlation (at the right tail) between X + Zn and Y + Zc increases as more of Z

is ceded. In fact, the sample linear correlation is indeed the highest at k = 20.

This again supports the claim that the optimal treaty maximizes the correlation.

This statement holds true in the next two scenarios, where the optimal treaty is

10 It can be proved mathematically that, if γxz is very close to 1, then the greater the ceded

ratio a, the greater the linear correlation between X+(1−a)Z and Y +aZ. The intuition behind

this result is that, if Z behaves very similarly to X, then adding Z to any variable Y makes it

behave more similarly to X (and to Z), that is, Y + Z is more correlated to X than Y is.
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to cede the least of Z. However, in scenario (5), the maximum linear correlation

is attained at the retention k = 115, which is different from the optimal retention

k∗ = 85.

Finally, let us look at scenario (5) and compare the two types of treaties. The

optimal total required asset for the stop-loss treaties is 1,557, and for the quota

share treaties it is 1,529. So the quota share is more effective in cutting the total

capital.11 This appears to contradict the general belief that a stop-loss treaty

reduces volatility more effectively than a quota share treaty. The fact is, however,

although the stop-loss treaty cuts more capital from the primary insurer, it adds

even more to the reinsurer, which results in an increase in the total required

capital.

5 Conclusions

I have proposed to call a reinsurance arrangement optimal if it minimizes the

total capital of the primary insurer and the reinsurer. This optimal reinsurance

produces the cheapest price for primary insurance policies, so is an attracting

equilibrium under market competition. An interesting relationship is observed

between the total capital and the tail correlation between the losses of the insurer

and the reinsurer. A multivariate normal model and a numerical example are

analyzed to get some insight into the nature of an optimal treaty.

This paper fills a gap in the existing literature on optimal reinsurance, in

which the capital cost of the reinsurer has not been adequately addressed. Our

approach establishes a close link between reinsurance and pricing of insurance

and reinsurance policies. In a competitive market, reinsurance not only provides

the ceding insurer a tool of risk transfer, but also satisfies the reinsurer with a

fair amount of profit and benefits primary policyholders by reducing the cost of

insurance.

Tail correlation between losses has been widely discussed in relation to risk

measurement and management. In this paper, it is linked to the size of the total

capital. This should continue to be an important area of research.

11 The quota share structure is better in the other four scenarios as well, but those results are

of no surprise. As the stop-loss retention is limited to between 20 and 250, ceding the whole of

Z and ceding none of Z are excluded, yet the optimal quota share terms in these scenarios fall

into these extremes.
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Appendix. More on the Linkage Between the Total

Capital and Correlation

We have shown that the TVaR is a subadditive risk measure: If ρ = TVaRp, then

ρ(X) + ρ(Y ) ≥ ρ(X + Y ), and the equality holds if X and Y (representing the

losses of a primary insurer and a reinsurer) are comonotonic. Following this fact,

we propose that a linkage exists between the total asset ρ(X) + ρ(Y ) and the

correlation between X and Y , that is, the greater the tail correlation, the closer is

ρ(X) + ρ(Y ) to ρ(X + Y ). In this appendix, I will use the scatter plot to further

explain why there should be such a link.

Figures 1 through 3 provide scatter plots of a pair of losses X and Y cor-

reponding to three different correlation scenarios. (The correlations are actually

only different at the right tail.) Each loss is in the range [0, 100). In Figure 1,

X and Y are comonotonic at the tail. In Figure 2, they are not comonotonic but

are still highly correlated at the tail: as X moves up from about 80, Y generally

moves up as well, although it sometimes moves in the opposite direction (down)

slightly. In Figure 3, X and Y have little correlation at the tail.

Let the risk measure be ρ = TVaR0.9. There are 100 points in each figure.

The point labeled A has the 11th largest x coordinate, and the one labeled B has

the 11th largest y coordinate. The quantile Q0.99(X) is the x coordinate of A, and

Q0.99(Y ) the y coordinate of B. ρ(X) is the average of the x coordinates of the
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points to the right of A, and ρ(Y ) the average of the y coordinates of the points

higher than B. ρ(X + Y ) is the average of the largest 10 x+ y of all points.

In Figure 1, A and B are actually the same point (78, 76) (coordinates are

rounded), and the points to the right of A are the same as those higher than A,

which are also the 10 points with the largest x+ y. Thus, Q0.99(X) +Q0.99(Y ) =

Q0.99(X+Y ) = 78+76 = 154, and ρ(X)+ρ(Y ) = ρ(X+Y ) (= 178). This explains

that if X and Y are perfectly correlated at the tail, then ρ(X)+ρ(Y ) = ρ(X+Y ).

In Figure 2, the upper-right tail is a rather “thin” set. Thus the two points

A and B are close to each other. Further, the following three sets of points are

similar (contain mostly the same points): those to the right of A, those higher

than B, and the ten points with the largest x+y. This implies that ρ(X)+ρ(Y ) is

close to ρ(X + Y ). (Here ρ(X) = 95.3, ρ(Y ) = 88.8 and ρ(X + Y ) = 183.9.) This

example shows that if X and Y are highly correlated at the tail, then ρ(X)+ρ(Y )

is (greater than but) close to ρ(X + Y ).

The upper-right tail in Figure 3 is not a thin set, and the two points A and

B are generally far apart. Also, it is likely that the three sets—the one to the

right of A, the one higher than B and the one with the largest x + y—contain

very different points. So ρ(X) + ρ(Y ) can be much larger than ρ(X + Y ). (Here

ρ(X) = 95.3, ρ(Y ) = 82.4 and ρ(X+Y ) = 174.1.) This is what normally happens

when X and Y are not correlated at the tail.
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Figure 1: X and Y are comonotonic at the tail; ρ(X) + ρ(Y ) = ρ(X + Y )

Figure 2: X and Y are highly correlated at the tail; ρ(X) + ρ(Y ) is close to (but

greater than) ρ(X + Y )

22



Figure 3: X and Y are not correlated at the tail; ρ(X) + ρ(Y ) is generally much

greater than ρ(X + Y )
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