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Abstract

In Spain, as in other developed countries, there have been significant changes

in mortality patterns during the 20th and 21st centuries. One reflection of these

changes is life expectancy, which has improved in this period, though the robustness

of this indicator prevents these changes from being of the same order as those for the

probability of death, qxt. If, moreover, we bear in mind that life expectancy offers no

information as to whether this improvement is the same for different age groups, it is

important and necessary to turn to other mortality indicators whose past and future

evolution in Spain we are going to study.

These indicators are applied to Spanish mortality data for the period 1981-2008,

for the age range 0 to 99. To study its future evolution, the mortality ratios have to

be projected using an adequate methodology, namely the Lee-Carter model (Lee and

Carter, 1992; Brouhns et al., 2002; Debón et al., 2008b). With the aim of incorporating

the uncertainty measures suggested by Pedroza (2006) into predictions, confidence

intervals are obtained for these predictions. These intervals can be calculated using the



methodology which Lee and Carter apply in their original article for expected lifetime

confidence intervals, but they only take into account the error in the prediction of the

mortality index kt obtained from the ARIMA model adjusted to its temporal series,

excluding other sources of error such as that introduced by estimations of the other

parameters in the model. That is why bootstrap procedures are preferred, as used in

Koissi et al. (2006), permitting the combination of all sources of uncertainty.
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1 Introduction

Important changes in mortality pattern have taken place in the last decades. Olivieri (2001)

and Pitacco (2004) point out the existence of two types of process: that of expansion, which

consists of the movement of the survivors curve towards older age groups, which in turn

becomes a movement of the mode of the deaths curve towards those same age groups, and

that of rectangularization, which is a reference to the rectangular form the survivors curve

takes as a consequence of the increase in the concentration of deaths around the mode.

Another concept related to rectangularization is the compression of mortality, which means

a state in which mortality from exogenous causes is eliminated and the remaining variability

in the age at death is caused by genetic factors (Fries, 1980). More recently, Canudas-Romo

(2008) studied the shifting mortality hypothesis by assessing the changes in the late modal

age at death. The study of modal age at death provides a different perspective of the changes

in the distribution of deaths and an explanation for the change in mortality at older ages

(Cheung et al., 2005).

Regarding evolution of mortality in Spain during the period 1981-2008, Debón et al.

(2009) show that, as in other developed countries, infant mortality has undergone a dramatic

reduction, mortality for the middle-aged has increased in the last decade and mortality for

the higher age groups has stabilized, or shows a slight increase, due to the growth in the

ageing population which occurred in recent years (Horiuchi and Wilmoth, 1998).

Life expectancy reflects these changes but its effects are diminished due to its robustness.

If, moreover, we bear in mind that life expectancy offers no information as to whether this

improvement is the same for different age groups, it is important and necessary to turn to

other mortality indicators whose past and future evolution in Spain we are going to study.

An appropriate set of indicators for the study of all these phenomena should include

an indicator of infant mortality, the Lorenz curve, the Gini index, the Interquartile range

and the modal age at death. All these indicators can be projected using the projections

of qxt, obtained from an adequate methodology, in our study the Lee-Carter model (Lee
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and Carter, 1992; Brouhns et al., 2002; Debón et al., 2008b). The errors associated with

these estimations can be calculated by means of a bootstrap methodology (Renshaw and

Haberman, 2007) and a confidence interval can be provided.

The aim of this paper is the study of Spanish mortality data for the period 1981-2008 and

for the age range 0 to 99, by means of a descriptive analysis of the evolution of life expectancy

and other indicators. The paper is structured as follows: Section 2 presents the definition

and properties of the indicators of mortality used in the analysis: life expectancy, Lorenz

curve, Gini index, modal age at death, standard deviation above modal age and shortest

age interval for the 50% of deaths; and it introduces a brief summary of Lee-Carter´s model

and the bootstrap techniques for building confidence intervals. Section 3 is devoted to the

results of the analysis of Spanish mortality data by means of the above indicators. Finally,

Section 4 establishes the conclusions to be drawn from the results in the previous section.

2 Description and Prediction of Mortality Rates with

Time

We consider a set of crude mortality rates q̇xt, for age x ∈ [x1, xk] and calendar year

t ∈ [t1, tn], which we use to produce smoother estimates, q̂xt, of the true but unknown

mortality probabilities qxt. A crude rate at age x and time t is typically based on the

corresponding number of deaths recorded, dxt, relative to those initially exposed to risk, Ext.

According to Arias (2010), there are two types of life tables: the cohort (or generation)

and the period (or current). The cohort life table presents the mortality experience of a

particular birth cohort, it reflects the mortality experience of an actual cohort from birth

until no lives remain in the group table. Therefore it requires data over many years so,

instead, normally we use the period life table. The period life table presents what would

happen to a hypothetical (or synthetic) cohort if it experienced the mortality conditions of

a particular time period throughout its entire life.

6



A dynamic life table is a rectangular mortality data array (qxt), where x denotes age and

t denotes calendar time. Each column of this array represents the period life table for a year

t.

2.1 Life expectancy

Life expectancy at different ages can be calculated from a dynamic life table. For a year t,

the hypothetical number of people alive at the beginning of each age interval [x, x + 1) is

given by the iterative formula l(x+1)t = lxt(1−qxt), with an arbitrary value l0t = 100000. This

allows us to calculate the number of deaths dxt = lxt− l(x+1)t, and the corresponding number

of person-years Lxt = l(x+1)t + axtdxt, where axt is the average time in years that people

dying at age x live in [x, x + 1) (Chiang, 1960, 1968, 1972). When micro data of mortality

are not available axt = 1/2. The total number of person-years that would be lived after the

beginning of the age interval x to x + 1 by the synthetic life table cohort is Txt =
∑

i≥x Lit

(Anderson, 1999). The life expectancy for individuals with age x is given by

ext =
Txt

lxt
.

A tool to measure mortality improvement is the temporary life expectancy from age x to

age x+ n, next, defined as person-years lived within a specific age interval, per person alive

at the start of the interval (Arriaga, 1984). The expression for next is,

next =

∑x+n

i=x+1Lit

lxt
.

2.2 Modal age at death

The modal age at death is the age associated with the maximum frequency of death. In

industrialized countries where infant mortality has decreased dramatically, the modal age of

the distribution of deaths is found at older ages. This shift to the advanced ages has been
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denoted as expansion and has a collateral effect on the survival curve which adopts the form

of a rectangle, a phenomenon that has been denoted as rectangularization, which is related

to an increase in life expectancy.

Additionally, high and dispersed mortality rates are also present in young and

intermediate ages, particularly for men. This phenomenon is known as the accident hump

as some authors associate it with traffic accidents.

The choice of this measurement is justified by two points outlined by Canudas-Romo

(2008),

1. the modal age at death is strongly dependent on the force of mortality which rate of

change over age prevailing at older ages, and

2. changes in infant mortality are indirectly related to the modal age at death, by having

an effect in the modal number of deaths. Improvement of infant survival increase the

life expectancy at age 0.

It follows that modal age at death may be less robust than life expectancy and therefore can

reflect changes in the probability of death, qxt which are not detected with life expectancy.

Life expectancy calculated in Section 3 refers to expected life time at birth, actually e0t.

2.3 Gini index and Lorenz curve

The increase in life expectancy is a consequence of the improved living conditions of

individuals, perhaps being the most important improvement achieved in health. However,

life expectancy does not provide any information about whether the improvement applies

equally to different age groups.

The Gini index is the most common statistical index used in social science for measuring

inequality or diversity. It has also been used to measure the contribution of different ages

to mortality over time (Llorca et al., 1998). The Gini index is related to the Lorenz curve,

which is the curve obtained when we represent the cumulative proportion of population on
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the x-axis and the cumulative proportion of years lived by this population on the y-axis.

The curve is obtained joining these points and it is always below the diagonal. The index is

twice the area that lies between the diagonal and Lorenz curve, its value varies between 0

(perfect equality) to 1 (perfect inequality). The value 0 is obtained when all individuals die

at the same age, while the value 1 is achieved if the entire population die at 0 years and one

individual dies at an infinite age.

In practice, actuaries work with discrete data from a life table, thus approximate

expressions for the abscissas and ordinates of the Lorenz curve can be obtained by means of

fxt =
l0t − lxt

l0t
= 1−

lxt
l0t

, (1)

and

gxt =
T0t − Txt − xlxt

T0t

, (2)

respectively. The situation of perfect equality takes place if all individuals die at the same

age e0t. In this case, the line consists of only two end-points: fxt = 0, gxt = 0, ∀x 6= e0t and

fxt = 1, gxt = 1, for x = e0t.

One of the most widely used approaches for the Gini index is (Mart́ın-Pliego, 1994),

IGt
=

(ω−1)
∑

x=0

(gxt − fxt)

(ω−1)
∑

x=0

fxt

,

where w is the last age observed.

The Gini index summarizes the degree of concentration collected by the Lorenz curve

in a single value. This is certainly an advantage, but has the disadvantage that different

concentration configurations, equivalent to different Lorenz curves, can provide the same

index value. Hence the need to use, both, the Lorenz curve and Gini index to adequately

describe the inequality in length of life.
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Other indices such as the Interquartile range (IQR), which also allow the measurement of

this unequal contribution, do not have the three desirable basic properties for any measure

of inequality (Shkolnikov et al., 2003):

1. population-size independence, the index does not change if the overall number of

individuals changes with no change in proportions of years lived,

2. mean and scale independence, the index does not change if everyone’s years lived

changes by the same proportion, and

3. Pigou-Dalton condition, any transfer from a older to a younger individual that does

not reverse their relative ranks reduces the value of the index.

2.4 Compression of mortality

In this section we outline some of the compression of mortality measures which are proposed

by Kannisto (2000). Specifically:

1. standard deviation of the age at death above de mode, sd(m+), and

2. the shortest age interval in which the 50% of deaths take place C50.

Detailed information about these indicators are available in the above mentioned paper by

Kannisto. Wilmoth and Horiuchi (2003) suggest the use of the Interquartile range, but “C50

is a better compression indicator than IQR because it consistently points out a narrower

age interval for the same number of deaths - in other words, greater compression. IQR is

particularly ill suited to measure compression in high-mortality populations. C50 has the

additional advantage that it can be supplemented by other C-indicators which together give

a more complete and many-sided picture of compression” (Kannisto, 2000).
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2.5 Lee-Carter model and bootstrap confidence intervals

The Lee-Carter Model, developed in Lee and Carter (1992), consists in adjusting the

following function to the central mortality rates,

mxt = exp(ax + bxkt + ǫxt)

or, its equivalent

ln (mxt) = ax + bxkt + ǫxt. (3)

In the previous two expressions, the double subscript refers to the age, x, and to the year

or unit of time, t. ax and bx are age-dependent parameters and kt is a specific mortality

index for each year or unit of time. The errors ǫxt, with 0 mean and variance σ2
ǫ , reflect the

historical influences of each specific age that are not captured by the model.

Problems with the estimations of qxt (Lee, 2000) can be avoided by modelling the logit

death rates. It is for that reason that we apply this model to logit death probability qxt,

ln

(

qxt
1− qxt

)

= ax + bxkt + ǫxt. (4)

The model is sufficiently well known and will not be considered further in this presentation.

A detailed description of the model and its adjustment by different methods can be found

in Debón et al. (2008b).

Forecasts for qxt with the Lee-Carter model are generated by first modelling k̂t as a time

series by using the Box-Jenkins methodology. Usually, in many of these applications, a good

model for the kt is an ARIMA(0, 1, 0),

k̂t = c+ k̂t−1 + ut,

where c a is constant and ut is white noise. With this model, the prediction of kt varies in a

linear way and each death rate predicted varies at a constant exponential rate.

11



Mortality predictions are not normally accompanied by measures of sensitivity and

uncertainty. Some authors, Pedroza (2006) among others, argue that such measures are

necessary and suggest the construction of confidence intervals for the estimations obtained.

A way to combine all these sources of uncertainty is to use bootstrapping procedures as

Brouhns et al. (2005) and Koissi et al. (2006) do. In the case of Spain this methodology was

used by Debón et al. (2008b), who obtained confidence intervals for the predictions provided

by the Lee-Carter model with one or two terms. Parametric and non-parametric bootstrap

techniques are used, in both cases turning to the binomial distribution, as distinct from the

work by Brouhns et al. (2005) and Koissi et al. (2006) who employ the Poisson distribution.

Another difference to point out are the residuals sampled in the non-parametric case, while

Debón et al. (2008b) sample over the residuals given by expression (5), Koissi et al. (2006)

do so over the deviance.

The procedure used is the following. Starting from the logit residuals, ǫ̂xt, obtained by

the original data,

ǫ̂xt = logit(q̇xt)− ̂logit(qxt), (5)

a bootstrap sample is drawn, estimated logit rates, ̂logit(qxt), are set and the observed logit

rates, for the n− th element of the sample, are obtained from the inverse expression

logit(q̇xt)
n = ̂logit(qxt)− ǫ̂nxt.

With these new sampled logit rates, a new adjustment of the model is obtained which

provides new estimations of the parameters. The process is repeated for the N bootstrap

samples, which in turn provides a sample of size N for the set of model parameters, and the

kt’s are then projected on the basis of an ARIMA model, obtaining predictions for mortality

ratio and the corresponding life expectancy and mortality indicators for the desired future

years. The confidence intervals are obtained from the percentiles, IC95 = [p0.025, p0.975].
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3 Analysis of Mortality Data from Spain

The data used in this analysis come from the Spanish National Institute of Statistics (INE)

(see their official web site at http://www.ine.es). In particular, we have worked with micro

mortality data reporting individual dates of birth and dates of death. The crude estimates of

qxt, necessary for the models under study, were obtained with the new methodology recently

proposed by the Spanish National Institute of Statistics (INE) (2009) based on Elandt-

Johnson and Johnson (1980), who explain that given complete, continuous-time observations

of all births and deaths for all people in a population exposed to the risk of mortality, it is

possible to produce direct estimates of the central mortality rates, mxt, by means of

ṁxt =
dxt

1/2Pxt + 1/2Px(t+1) +
∑

i δxti
, (6)

where dxt are deaths in the year t at age x, and Pxt and Px(t+1) are the population that are x

years old on December 31st of year t and year t+1, respectively. Finally, δxt is defined as the

difference, in years, between the date of death and the birthday in year t, of each individual

i who dies in year t with age x. We can obtain q̇xt from (6),

q̇xt =
mxt

1 + (1− axt)mxt

, (7)

where axt is the average number of years that people dying in year t have lived between ages

x and x+ 1,

axt =

dxt
∑

i=1

axti

dxt
,

where axti is the time in years that individual i, dying in year t with age x, have lived between

ages x and x+ 1.
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Figure 1: Logit of probabilities of death for men (left) and women (right).

3.1 Period 1981-2008

Figure 1 shows the surface of the logit of the Spanish crude mortality rates for ages from 0

to 99 and period from 1981 to 2008, for men and women.

The mortality indicators presented in the above sections will be used to describe the

temporal evolution of mortality in Spain for the age and period ranges mentioned above.

The analysis has been done separately for women and men. Tables 1 and 2 summarize these

indicators, and Figure 2 (first row) shows the Lorenz curve for 1981 and 2008 and (second

row) the difference between the increments of proportions of years lived and population for

each age, obtained from (1) and (2) by the following expression,

dxt = ∆gxt −∆fxt = [gxt − g(x−1)t]− [fxt − f(x−1)t], x = 1, . . . , 99.

All indicators in Tables 1 and 2 show an improvement in mortality over the period

studied, behavior which is consistent with that of other countries in the socio-geographical
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Figure 2: Evolution of Lorenz curve for men (left) and women (right).

environment. This affirmation is partially true for temporary life expectancy, given that the

improvement is only seen in the intervals for old ages (66-84) and very old (over 85).

The evolution of Lorenz curves in Figure 2 show a slight trend toward the diagonal,

which together with the low values of the Gini index reflects a relative equality between the

different ages. In order to appreciate the contribution of each age to the life expectancy at

birth we can consider the graphs in the second row. Advanced ages show positive values

indicating that the difference between the proportion of deaths and the proportion of years

lived by individuals in this age group is in favor of the latter and, therefore, their contribution

is greater than could be expected in a completely balanced distribution. It is interesting to

note the different behavior of men and women, the maximum positive contributions occur at

older ages in women than in men (vertical lines), this fact is consistent with their greater life

expectancy. Another interesting aspect is the greater deficits that men show, particularly

around 60 years, an age that health experts say is dangerous for men.
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Gini
year e0t 19e1t 44e21t 18e65t 14e85t mode sd(m+) C50 Index
1981 72.49 19,90 42.37 12.71 4.77 80 7.70 16 0.1565
1982 73.12 19.91 42.46 12.94 4.95 81 7.51 16 0.1546
1983 72.88 19.90 42.41 12.85 4.73 80 7.71 16 0.1519
1984 73.12 19.91 42.40 12.97 4.94 79 8.38 16 0.1523
1985 73.05 19.91 42.37 12.92 4.77 80 7.77 16 0.1483
1986 73.33 19.91 42.39 13.09 4.92 80 8.02 17 0.1528
1987 73.44 19.92 42.33 13.19 5.08 80 8.15 17 0.1566
1988 73.41 19.92 42.24 13.21 4.94 80 8.09 17 0.1546
1989 73.33 19.92 42.14 13.24 4.97 82 7.24 17 0.1579
1990 73.32 19.92 42.12 13.23 4.87 82 7.12 17 0.1578
1991 73.40 19.92 42.06 13.30 4.95 82 7.19 17 0.1584
1992 73.78 19.93 42.10 13.46 5.12 83 6.88 17 0.1593
1993 73.97 19.93 42.18 13.44 5.03 81 7.71 17 0.1550
1994 74.30 19.94 42.19 13.59 5.10 83 6.92 17 0.1549
1995 74.34 19.94 42.17 13.61 5.07 81 7.79 16 0.1522
1996 74.46 19.94 42.24 13.64 5.07 82 7.38 16 0.1531
1997 75.08 19.94 42.50 13.73 5.11 82 7.44 16 0.1462
1998 75.20 19.94 42.61 13.69 5.05 83 6.90 16 0.1419
1999 75.23 19.95 42.63 13.68 5.00 84 6.41 16 0.1396
2000 75.75 19.95 42.69 13.92 5.25 82 7.55 16 0.1435
2001 76.10 19.95 42.78 14.02 5.33 84 6.68 16 0.1417
2002 76.21 19.95 42.82 14.05 5.32 84 6.67 16 0.1416
2003 76.25 19.95 42.85 14.06 5.23 81 8.00 15 0.1397
2004 76.82 19.96 42.94 14.25 5.51 83 7.25 15 0.1413
2005 76.86 19.96 43.01 14.26 5.42 83 7.19 15 0.1379
2006 77.55 19.96 43.10 14.53 5.72 84 6.97 15 0.1408
2007 77.60 19.96 43.15 14.48 5.62 85 6.47 15 0.1370
2008 78.01 19.96 43.23 14.66 5.69 86 6.07 15 0.1373

Table 1: Evolution of mortality indicators in Spain for men during the period 1980-2008.
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Gini
year e0t 19e1t 44e21t 18e65t 14e85t mode sd(m+) C50 Index
1981 78.68 19.93 43.78 14.87 5.29 84 6.51 13 0.1505
1982 79.24 19.94 43.83 15.02 5.56 86 5.91 13 0.1514
1983 79.01 19.93 43.82 14.95 5.29 86 5.73 13 0.1472
1984 79.55 19.94 43.87 15.15 5.52 83 7.21 13 0.1468
1985 79.55 19.94 43.88 15.11 5.31 84 6.61 13 0.1401
1986 79.75 19.94 43.87 15.21 5.43 85 6.31 13 0.1443
1987 80.06 19.95 43.85 15.35 5.59 86 6.00 13 0.1465
1988 80.11 19.94 43.85 15.39 5.53 87 5.56 13 0.1459
1989 80.32 19.94 43.87 15.46 5.56 88 5.17 13 0.1451
1990 80.39 19.94 43.88 15.50 5.57 86 5.99 13 0.1457
1991 80.58 19.95 43.87 15.57 5.61 85 6.45 12 0.1442
1992 81.06 19.95 43.91 15.73 5.79 86 6.12 12 0.1464
1993 81.13 19.95 43.92 15.75 5.74 87 5.61 12 0.1438
1994 81.47 19.95 43.92 15.86 5.87 87 5.70 12 0.1428
1995 81.59 19.95 43.93 15.90 5.85 86 6.18 12 0.1425
1996 81.74 19.95 43.94 15.95 5.87 88 5.28 12 0.1415
1997 82.07 19.96 44.03 16.02 5.94 87 5.79 12 0.1387
1998 82.15 19.96 44.07 16.02 5.89 87 5.75 12 0.1348
1999 82.18 19.96 44.07 16.04 5.86 86 6.23 12 0.1329
2000 82.59 19.96 44.10 16.15 6.10 87 5.87 12 0.1362
2001 82.92 19.97 44.10 16.24 6.24 88 5.47 12 0.1358
2002 82.99 19.97 44.13 16.30 6.19 87 5.88 12 0.1346
2003 82.87 19.96 44.12 16.28 6.05 88 5.33 11 0.1335
2004 83.45 19.97 44.16 16.42 6.38 89 5.05 12 0.1355
2005 83.42 19.97 44.18 16.43 6.27 87 5.93 11 0.1309
2006 84.00 19.97 44.21 16.59 6.60 88 5.60 11 0.1349
2007 83.97 19.97 44.22 16.60 6.51 89 5.09 11 0.1343
2008 84.13 19.97 44.23 16.67 6.53 88 5.57 11 0.1336

Table 2: Evolution of mortality indicators in Spain for women during the period 1980-2008.

17



3.2 Period 2009-2028

3.2.1 Model adjustment

The high number of parameters estimated in the Lee-Carter model, 100× 2 + 28 = 228 for

men and women are presented in the form of a graph in Figure 3.

The comparison of parameter ax for both sexes shows that mortality for women is lower

than for men. The hump in Figure 3(a) reveals an increase of mortality in the range of ages

from 11 to 40 for men that some authors (Guillen and Vidiella-i-Anguera, 2005) attribute

to accidental mortality (accident hump). The positive values of parameter bx for all ages,

Figure 3(b), indicate that mortality decreases with time. In Figure 3(c), time parameter kt

shows a clearly decreasing trend for both sexes.
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Figure 3: Estimated parameters for the Lee-Carter model.

Renshaw and Haberman (2006) suggest carrying out diagnostic checks on the fitted model

by plotting residuals which has been done in Figure 4 with logit residuals.

3.2.2 Bootstrap confidence intervals for mortality indicators

As seen in Tables 1 and 2, all the measurements behave in a similar way, which makes

choosing some over others dificult. The Gini index satisfies the basic properties mentioned

in Section 2.3 and is an intuitively meaningful measure, for that reason and for the sake of
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Figure 4: Logit residuals for the Lee-Carter model for men (left) and women (right).

simplicity we have chosen it over compression measures. The other two forecasted indicators

are measures of central tendency, life expectancy and modal age of death.

Forecasted mortality indicators for the period 2009-2028 were carried out using the

bootstrap technique described in Section 2.5. Table 3 shows the estimations and the

corresponding confidence intervals for both sexes. Life expectancy and the modal age at

death continue to increase, though more slowly than they did in the previous period.

With regard to the width of the confidence intervals for life expectancy, the first feature

to highlight is its narrowness, this fact has attracted the attention of other authors (Lee and

Carter, 1992; Lee, 2000; Booth et al., 2002; Koissi et al., 2006) who offer different explanations

for it. In the paper by Li et al. (2006) the phenomenon is attributed to the rigidity of the

Lee-Carter model structure and to avoid it they relax the structure by incorporating the

heterogeneity from each age-period cell. This comment is also valid for the other indicators.

The intervals obtained for modal age at death show wider and more irregular intervals.

When compared with similar studies carried out using Spanish mortality data, our results

on life expectancy are slightly higher than those obtained by Guillen and Vidiella-i-Anguera

(2005), Debón et al. (2008b) and Debón et al. (2008a). No comparison is possible for other

indicators, because as we point out in the Introduction, we have not found similar studies
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for these indicators.
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Figure 5: Evolution and bootstrap interval for life expectancy (left) and Gini index (right).

4 Conclusions

Life expectancy remains the most familiar measure of longevity among demographers, and although

it reflects the changes in mortality with time, it does it in a smooth way due to its robustness. This

is the reason why in the present work other indicators were studied: modal age at death, Lorenz

curve and Gini index. Tables 1, 2 and 3 and Figure 2 and 5 summarize their behavior. We can

conclude from them,

- mortality in Spain improved in both the observed period, 1981-2008, and the forecast period,

2009-2028,

- the future improvement is more sustained than that experienced during the period observed,

- the evolution of the modal age at death, the Lorenz curve and Gini index also confirmed

that Spanish mortality tends to the expansion and rectangularization mentioned in the

Introduction,

- the mortality of women is better than men, meaning longer life expectancy and modal age

at death, and lower Gini index,
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MEN WOMEN
life expectancy modal age at death Gini index life expectancy modal age at death Gini index

year p0,025 mean p0,975 p0,025 mean p0,975 p0,025 mean p0,975 p0,025 mean p0,975 p0,025 mean p0,975 p0,025 mean p0,975

2009 77.54 77.86 78.23 82 85 88 0.1371 0.1392 0.1416 83.98 84.28 84.53 87 89 91 0.1314 0.1333 0.1355
2010 77.74 78.07 78.52 82 85 88 0.1366 0.1388 0.1413 84.20 84.44 84.70 87 89 91 0.1309 0.1330 0.1352
2011 77.89 78.22 78.62 82 85 88 0.1363 0.1386 0.1411 84.37 84.61 84.85 87 89 91 0.1307 0.1327 0.1351
2012 78.07 78.40 78.85 82 85 88 0.1359 0.1383 0.1410 84.54 84.78 85.01 87 89 91 0.1302 0.1323 0.1348
2013 78.21 78.56 78.98 82 85 88 0.1356 0.1380 0.1408 84.67 84.92 85.17 87 90 92 0.1298 0.1321 0.1346
2014 78.37 78.73 79.17 82 85 88 0.1353 0.1378 0.1406 84.84 85.09 85.34 87 90 92 0.1294 0.1317 0.1344
2015 78.53 78.88 79.32 82 85 89 0.1349 0.1376 0.1404 84.99 85.24 85.50 87 90 92 0.1291 0.1315 0.1342
2016 78.68 79.05 79.50 82 86 89 0.1346 0.1373 0.1403 85.14 85.40 85.66 87 90 92 0.1287 0.1312 0.1340
2017 78.83 79.20 79.65 82 86 90 0.1344 0.1371 0.1402 85.28 85.54 85.82 87 90 93 0.1283 0.1309 0.1338
2018 78.99 79.36 79.83 82 86 90 0.1341 0.1369 0.1401 85.44 85.70 85.98 87 90 93 0.1279 0.1306 0.1336
2019 79.13 79.51 79.99 82 86 90 0.1338 0.1367 0.1400 85.58 85.85 86.13 87 91 93 0.1276 0.1303 0.1334
2020 79.29 79.67 80.15 82 86 90 0.1335 0.1365 0.1399 85.73 85.99 86.28 88 91 93 0.1272 0.1301 0.1333
2021 79.43 79.82 80.31 82 86 91 0.1332 0.1364 0.1398 85.86 86.14 86.43 88 91 93 0.1268 0.1298 0.1331
2022 79.59 79.97 80.48 82 86 91 0.1330 0.1362 0.1397 86.00 86.28 86.58 88 91 93 0.1265 0.1295 0.1329
2023 79.72 80.12 80.63 82 87 91 0.1327 0.1361 0.1396 86.14 86.42 86.73 88 91 93 0.1262 0.1293 0.1328
2024 79.88 80.27 80.80 82 87 91 0.1325 0.1359 0.1396 86.27 86.56 86.88 88 91 93 0.1259 0.1290 0.1326
2025 80.01 80.41 80.94 82 87 91 0.1323 0.1358 0.1395 86.40 86.70 87.02 88 91 93 0.1256 0.1288 0.1325
2026 80.15 80.56 81.12 82 87 92 0.1321 0.1357 0.1395 86.53 86.84 87.16 88 91 93 0.1252 0.1286 0.1324
2027 80.29 80.70 81.25 82 87 92 0.1319 0.1355 0.1395 86.66 86.97 87.30 88 91 93 0.1248 0.1283 0.1322
2028 80.43 80.85 81.42 83 88 92 0.1317 0.1354 0.1395 86.79 87.10 87.44 89 91 94 0.1245 0.1281 0.1321

Table 3: Confidence intervals for forecasted Spanish mortality indicators for the period 2009-2028.
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- the contribution of different ages to life expectancy is unbalanced, with contributions

proportionately larger for older ages, drawing attention to the deficit experienced by men

around 60 years.

As a final a comment, it should be noted that the asymmetry of confidence interval is due to the

use of logit residuals. According to Renshaw and Haberman (2007), the problem can be partially

overcome using deviance residuals as these residuals allow the maintenance of the hypothesis of the

initial distribution of mortality measurement.
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valència.

Debón, A., Montes, F., Mateu, J., Porcu, E., and Bevilacqua, M. (2008a). Modelling residuals

dependence in dymanic life tables. Computational Statistics and Data Analysis, 52(3):3128–

3147.

Debón, A., Montes, F., and Puig, F. (2008b). Modelling and forecasting mortality in Spain.

European Journal of Operation Research, 189(3):624–637.

Elandt-Johnson, R. and Johnson, N. (1980). Survival Models and Data Analysis. Wiley, New York.

Fries, J.F. (1980). Aging, natural death and the compression of morbidity. New England Journal

of Medicine, 303:130-135.

Guillen, M. and Vidiella-i-Anguera, A. (2005). Forecasting Spanish natural life expectancy. Risk

Analysis, 25(5):1161–1170.

Horiuchi, S. and Wilmoth, J. (1998). Decelaration in the age pattern of mortality at older ages.

Demography, 35:391–412.

23



Kannisto, V. (2000). Measuring the compression of mortality. Demographic Research , 3(6).
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