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Abstract 
The article applies a back-testing validation methodology of economic scenario–generating 

models and introduces a new D statistic to evaluate the robustness of the underlying model during 

a specified validation period. The statistic presented here can be used to identify the optimal 

model by repeating calibrations with changing initial parameters. It can compare calibration 

methods, be used to rank models, and provide a single concise reporting metric for ongoing model 

monitoring. To illustrate this methodology and ranking of models, the closed-form bond-pricing 

solutions of the Cox, Ingersoll, Ross (CIR) one- and two-factor models are used. CIR model 

parameters were estimated using Matlab’s built-in least squares minimization routine. At each 

observation date during the validation period, a time-weighted point estimate of the error between 

the model and actual market term structure is calculated. Finally, the maximum of these time-

weighted points across the validation duration is introduced as the D statistic. The robustness of 

the D statistic is improved by implementing a first-order autoregressive sampling bootstrapping 

algorithm, which generates an empirical distribution for calculating the standard error of the D 

statistic.  

 

 

1. Introduction 

If we cannot trust doctors when it comes to matters of health,3 then the validation of economic models 

becomes that much more important for matters of solvency capital. As European life insurance companies 

adopt risk-related models for Solvency II regulatory requirements, economic scenario-generating models 

have gained traction within the industry as a market-consistent methodology for asset and liability valuation. 

By generating market-efficient stochastic scenarios, an institution can demonstrate its solvency under 
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worst-case tail scenarios to regulators. Continuous-time short-rate interest rate models provide the most 

efficient way to generate sufficient stochastic interest rate paths to fairly evaluate economic scenarios.  

How can a risk manager who faces 20 stochastic interest rate models and 10 interest rate markets 

validate all 200 possible combinations of these candidate models and interest rate markets? According to 

CEIOPS’ Advice for Level 2 Implementing Measures on Solvency II, in Article 120, risk managers are 

responsible for ensuring the ongoing appropriateness of the design and operations of the internal model. 

Furthermore, Article 116 of CEIOP 2009 also requires a robust governance system of the internal model 

operating properly on a continuous basis. Moreover, requirements described in Article 44 make the regular 

review or decision from various models and markets too time-consuming and exhaustive; adding to the 

difficulty is informing administration, management, or supervisory officials about the performance of the 

internal model. 

Many concerns arise when trying to determine the most efficient set of model parameters for a 

particular type of model. Most calibration methods involve local minimization of model-to-market spot 

values at a specific point in time. Many authors discuss calibration methods that attempt to return the most 

optimal set of model parameters. However, in practice it is impossible to determine whether the calibrated 

parameters found a global minimum market-to-model error. Once the parameters are determined, applying 

constant parameters to a model results in continuously changing modeling errors due to dynamically 

changing markets. With poorly calibrated results, these errors increase. 

In this article we introduce a validation methodology that back-tests the calibrated parameters 

before extending the application of locally calibrated models for macrorisk management. In particular, we 

introduce this metric as the D statistic, calculated as the maximum of the time-weighted term structure 

market-to-model error from each date during the validation period. This D statistic is similar to the 

Kolmogorov-Smirnov statistic and provides a monitoring metric to efficiently communicate model 

consistency. As an additional advantage, the quantitative essence of an interest rate model, whether 

parametric or not, can easily be explained by this metric. Each application of the algorithm discussed in 



 

 

Section 4 returns a unique D statistic. Ranking the D statistics will aid in identifying an optimal set of 

calibrated parameters between calibrations under different initial parameters, and serve as tool to compare 

and rank conservatism between models. 

To illustrate the validation approach we consider the classical Cox, Ingersoll, and Ross (1985) (CIR) 

continuous-time short-rate interest rate model. The model’s preclusion to negative interest rates and mean 

reversion makes it an excellent model for generating several idealistic stochastic interest rate scenarios. We 

exploit the known model-to-market calibration error to emphasize the efficacy of the validation 

methodology introduced.  

 

2. The Cox, Ingersoll, and Ross (CIR) Model 

This article assumes the interest rate process can be represented as a diffusion process through time. The 

advantage of such a representation is that the entire zero-coupon bond curve can be conveniently described 

by the distributional properties of the instantaneous short-rate. The price at time	ݐ, of a unit amount of 

currency at time	ܶ ൐   :can be expressed as the expected present value of the interest rate diffusion ,ݐ

ܲሺݐ, ܶሻ ൌ ௧ܧ ቄ݁
׬ି ௥ሺ௦ሻௗ௦

೅
೟ ቅ. 

The disadvantage of a continuous-time representation implies that a poor model of the instantaneous short 

rate will also produce a poor evolution of the term structure. It is assumed that, by increasing the flexibility 

of a model with more factors, we may improve a model’s accuracy to real-world observations.  

 

2.1 CIR One-Factor Model 

We consider the short-rate process solution to the following CIR instantaneous short-rate diffusion model, 

under the risk-neutral measure ܳ as 

 

ሻݐሺݎ݀ ൌ ݇൫ߠ െ ݐሻ൯݀ݐሺݎ ൅  	,ሻݐሻܹ݀ሺݐሺݎඥߪ

ሺ0ሻݎ ൌ  ,଴ݎ



 

 

 

with ݎ଴, ݇, ,ߠ ߪ  as positive constants. The condition 2݇ߠ ൐ ଶߪ  is imposed to ensure that the origin is 

inaccessible to the process so that instantaneous short-rate ݎ remains positive. By change of measure from 

the risk-neutral	ܳ to the objective real-world measure	ܳை, the CIR model allows us to discount analytically 

at time	ݐ a unit amount of currency at time	ܶ ൐  as ݐ

 

ܲሺݐ, ܶሻ ൌ ,ݐሺܣ ܶሻ݁ି஻ሺ௧,்ሻ௥ሺ௧ሻ, 

 

where the derivation details of ܣሺݐ, ܶሻ	and	ܤሺݐ, ܶሻ for the affine CIR model is concisely presented in Brigo 

and Mercurio (2006). For brevity, the rigorous detailed derivations of the CIR model are omitted and only 

the model’s analytical results are reported.  

The CIR model is widely known for precluding negative interest rates, offering a mean reverting 

expression of the short-rate process to mean ߠ at speed	݇, and being analytically tractable with many well-

established closed-form interest rate derivative formulas. These model advantages are not the reason for 

selecting this model, but rather to illustrate its shortcomings—namely, the model produces an endogenous 

term structure that does not match the real world, no matter how well the parameters are chosen. The 

problems are further amplified under poor calibration, rendering it pointless for longer term pricing. Later 

sections will demonstrate the modeling error and the difference between the actual and calibrated term 

structures. The preclusion of negative interest rates and mean reversion makes the CIR one-factor a 

powerful risk management modeling tool for generating stochastic interest rate scenarios.  

 

2.2 CIR Two-Factor Model 

A one-factor model assumes that at every instant all maturities along the curve are perfectly correlated, so 

that a shock is equally transmitted across the curve. However, this is not empirically observed. A two-factor 

model is justified based on principal component analysis, since two factors can explain more than 95% of 



 

 

the total interest rate variation. The additional factor increases model flexibility by relaxing perfect 

correlation, so that the joint dynamics depends on the instantaneous correlation function	ߩ. For the CIR 

two-factor model, however, we assume no correlation,	ߩ ൌ 0, since the square root noncentral χ2 process 

cannot maintain analytical tractability with nonzero instantaneous correlations.  

The CIR two-factor model is then defined as 

 

ሻݐሺݎ ൌ ሻݐଵሺݔ ൅ ,ሻݐଶሺݔ where	ݔଵሺ0ሻ ൌ ଶሺ0ሻݔ ൌ 0, 

ሻݐଵሺݔ݀ ൌ 	݇ଵ൫ߠଵ െ ݐሻ൯݀ݐଵሺݔ ൅ ሻ݀ݐଵሺݔଵඥߪ ଵܹሺݐሻ, 

ሻݐଶሺݔ݀ ൌ 	݇ଶ൫ߠଶ െ ݐሻ൯݀ݐଶሺݔ ൅ ሻ݀ݐଶሺݔଶඥߪ ଶܹሺݐሻ, 

 

with instantaneous-correlated sources of randomness, ݀ ଵܹ݀ ଶܹ ൌ 0. Now the price at time	ݐ, of a unit 

amount of currency at time	ܶ ൐  :can be expressed as a generalization of the one-factor ,ݐ

 

ܲሺݐ, ܶሻ ൌ ∏ ,ݐ௜ሺܣ ܶሻ
ଶ
௜ୀଵ ݁ି∑ ஻ೕሺ௧,்ሻ௫ೕሺ௧ሻ

మ
ೕసభ , 

where the well-known expressions for ܣሺݐ, ܶሻ	ܽ݊݀	ܤሺݐ, ܶሻ for the affine CIR model is presented in Brigo 

and Mercurio (2006). 

 

3. Data 

The observation period for this article is two years from June 1, 2007, to June 6, 2009. For the purpose of 

analyzing the period during the financial crisis, the data are split into two sets: validation and monitoring. 

The validation data are from June 1, 2007, to June 6, 2008, and the monitoring data are from June 13, 2008, 

to June 5, 2009. The term structure data for this article are the middle of the week LIBOR and swap rates 

provided by Datastream, where one-, three-, and six-month rates are LIBOR, while years 1 through 10, 12, 

15, 20, 25, and 30 years are the reported swap rates. The annualized overnight rate, used as the instantaneous 



 

 

short-rate for CIR modeling and calibration, is imputed from the one-month LIBOR rate by the following 

identity:  

 

൬1 ൅
݁ݐܴܽݐ݄݃݅݊ݎ݁ݒܱ

365
൰
ଷ଺ହ

ൌ ൬1 ൅
݁ݐܴܽݎ݋ܾ݅ܮ݄ݐ݊݋ܯ1

12
൰
ଵଶ

. 

 

 

Table 1 

Overnight Rate Summary Statistics and Principal Component Analysis4 

 

 
Validation Data 

Monitoring Data  

Date June 1, 2007–June 6, 2008 June 13, 2008–June 5, 2009 Difference 

Number of observations 54 52 −2.00 

Min 2.38% 0.31% −2.07% 

Max 5.81% 4.58% −1.23% 

Average 4.25% 1.54% −2.71% 

Standard deviation 1.17% 1.23% 0.06% 

First principal component 97.03% 90.50% −6.53% 

Second principal 

component 1.99% 7.76% 

5.77% 

Third principal 

component 0.83% 0.95% 

0.12% 

 

                                                            
4 Principal component analysis is based on the following subset of yield rates from each data set: one‐, three‐, and 
six‐month LIBOR rates, and 1‐, 2‐, 3‐, 5‐, 7‐, 10‐, 20‐, and 30‐year swap rates.  



 

 

Principal component analysis and some observations between validation and monitoring periods are as 

follows: 

 The average short-rate between periods dropped by 2.71% from 4.251% to 1.543%, while the short-

rate standard deviation remained relatively stable, increasing slightly by 0.06%. 

 From the first principal component the one-factor model explanatory power decreased by 6.53%, but 

still explained over 90% of the term structure variation during the monitoring period. 

 From the second principal component the tilt variation of the yield curve increased by 5.77%. 

 From the third principal component the convexity of the yield curve increased in variation by 0.12%.  

 

4. Model Selection and Validation Methodology 

4.1 Step1: Model Selection 

From principal component analysis of the validation data, a one-factor model can capture over 90% of the 

data’s interest rate variation, a two-factor over 98%. Based on these results, we consider a CIR one- and 

two-factor model to illustrate the methodology of validating models.  

 

4.2 Step 2: Calibration 

Our calibration employs least squares error minimization to midweek maturity date data. Based on the 

initial set of parameters, it continues to change the parameter vector, ߠ, to minimize the error between 

model and market price for a given date, of the following objective function:  

ሻߠሺ݊݋݅ݐܿ݊ݑܨ݁ݒ݅ݐ݆ܾܱܿ݁ ൌ ݉݅݊ ቯ ෍ ቆ
ሻߠ௧ሺ݁ܿ݅ݎ݈ܲ݁݀݋ܯ െ ௧݁ܿ݅ݎܲݐ݁݇ݎܽܯ

ሻߠ௧ሺ݁ܿ݅ݎ݈ܲ݁݀݋ܯ
ቇ

ଷ଴

௧ୀଵ/ଵଶ

ቯ 

 

where the term structure maturity dates, ݐ ൌ
ଵ

ଵଶ
,
ଷ

ଵଶ
,
଺

ଵଶ
, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, and	30.  

For illustration throughout this article we consider the midweek term structure data of date June 6, 

2008, for calibration; for this date the CIR one- and two-factor model yields the following 



 

 

parameters: ,෠ଵሺ݇ߠ ,ߴ ,ߪ ሻߛ ൌ ሺ0.0585, 0.1378	, 0.2419,െ0.0998ሻ  and ,෠ଶ൫݇ଵߠ	 ݇ଶ, ,ଵߴ ,ଶߴ ,ଵߪ ,ଶߪ ଶ൯ߛ,ଵߛ ൌ

ሺ0.1671, 0.9436, 0.1039, 0.0010, 0.0081, 0.8958, 0.1593, 0.9826ሻ, respectively. Based on the calibrated 

results Table 2 reports the error between the model price and market price for the selected maturities for 

June 6, 2008. 

 

Table 2 

Comparing Selected Modeling Errors between Models for Calibration Date June 6 

 CIR One-Factor CIR Two-Factor 

1 month 0.004% 0.191% 

2 year 0.186 1.070 

5 year 0.103 0.392 

10 year 0.036 0.148 

20 year 0.552 0.661 

30 year 0.427 0.599 

Overall time-weighted average model errora 0.26 0.40 

a. ݁݃ܽݎ݁ݒܣ ൌ 	
∑ ௧∙ெ௢ௗ௘௟ா௥௥௢௥೟
యబ
೟సభ/భమ

∑ ௧యబ
೟సభ/భమ

 

 

On this particular date, June 6, 2008, the one-factor overall time-weighted average modeling error 

of 0.26% is less than 0.40% of the two-factor model. 

 

4.3 Step 3: Model Validation 

Based on the calibration parameters estimated in step 2, these calibrated parameters are used to calculate 

the modeling error between the model and market prices to each historical data during the validation period. 

At each date there are several maturities. The modeling error differs for each point on the yield curve; this 

error often increases with the yield to maturity. To circumvent this multidimensional modeling error 



 

 

problem, a time series is generated by calculating the time-weighted average modeling error, as in Table 2 

for each date in the validation period. Assuming a fixed set of model parameters from calibration, Figure 1 

illustrates how this time-weighted average modeling error changes with weekly changes of the short-term 

interest rate. The maximum modeling error is defined as the D statistic to mimic the Kolmogorov-Smirnov 

statistic. This D statistic improves the vetting of risk models by comparing the maximum historical 

modeling error, similar to how the Kolmogorov-Smirnov statistic is used to compare the maximum 

difference between distributions. Calculating the D statistic and back-testing the model steps away from a 

snap shot of current model error analysis at calibration and moves toward a more macrolevel model 

efficiency for risk management. Furthermore, the D statistic illustrates how well the modeling error behaved 

with validation data without the need to fully understand the esoteric rigor of the underlying models. 

Moreover, bootstrapping of the modeling error time series provides an empirical distribution, which 

improves the robustness of the D statistic.  

 

 

 

4.4 Step 4: Model Evaluation 
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Table 3 highlights the key modeling error statistic information, which can be used as a model evaluation 

criterion. By evaluating D—the maximum error over the model validation period, the statistic can be used 

to address the following modeling concerns. 

 

 The statistic provides a quantitative point estimate to compare the trade-off between modeling error 

and model complexity. In our illustration the lower modeling error (D = 10.45% with standard error 

1.24%) of the two-factor model is too small to justify its complexity over the simpler one-factor 

model (D = 10.54% with standard error 1.58%).  

 The statistic also provides a ranking between model calibration methods, for example, between 

least squares minimization versus Kalman filtering. Since both methods are likely to calculate 

different sets of parameters, the D statistic can be used for comparing. 

 A more optimal set of parameters will be selected by recalculating the D statistic for each 

calibration trial that uses a different set of initial parameters. The trail with the smallest D statistic 

then provides additional robustness for the final estimated parameters selected.  

 Finally, the D statistic can highlight differences between similar and different models to different 

market data, for example, comparing5 between models with monthly, weekly, and daily calibration.  

 

Table 3 

Comparing Models 

 

Model Date of Maximum Model Error D: Maximum Modeling 

Error 

Standard Error (D)a 

CIR one-

factor 

July 6, 2007 10.54% 1.58% 

                                                            
5 Caution must be exercised using this statistic to compare different models calibrated to different markets. 



 

 

CIR two-

factor 

March 31, 2008 10.45 1.24 

a. See Appendix for more detail: bootstrapped 200 samples assuming modeling error time series is 

AR(1). 

 

5. Model Monitoring 

Due to the difficulty in frequently recalculating economic capital based on the scenarios generated from the 

underlying model, the D statistic can provide ongoing support to the reported economic capital by actively 

reporting the modeling error associated between the models and market. A hedging policy can be 

implemented and monitored to enforce capital solvency based on the observed modeling error. Going 

forward with this methodology, the modeling error can be actively monitored to changing market data, 

which can be used to ensure adequacy of the hedging policy.  

 

 

 

Figure 2 illustrates monitoring the evolution of the modeling error relative to the D statistic. A 

negative ratio between current time-weighted modeling error and the D statistic implies that current 
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modeling error is below the maximum error observed during validation. During the financial crisis, changes 

in the weekly short-rate dramatically increased; this increased volatility is also captured by the gradual 

increase from negative to positive of the modeling error relative to the D statistic. Although the modeling 

error of the two-factor CIR model is consistently less, both models have relatively the same time-weighted 

modeling error throughout the financial crisis monitoring period. Initially the time-weighted modeling 

errors of both models were below their respective D statistics, but as the financial crisis approached, the 

time-weighted average modeling error increased. During the crisis, both model errors breached their 

respective D statistic errors of approximately 10% to almost an additional 20%. This implies that during 

the financial crisis economic capital calculated using these calibrated parameters was subject not only to a 

maximum of approximately 10% modeling error, but also an additional error of almost 20%.  

The CIR one- and two-factor models in this situation illustrate a gradual increase in modeling error, 

allowing time for reevaluation of the solvency hedging policy without having to reupdate economic capital 

calculations. A lower value for the D statistic corresponds to greater accuracy of the model during validation. 

Future studies will explore whether there is a tradeoff between model accuracy during validation and the 

response time during the monitoring period.  

 

6. Conclusion 

This article presents a simple and concise validation methodology for monitoring the efficacy of economic 

scenario–generating models used to generate multiple scenarios for solvency capital requirements. For a 

particular point in time, each currency has many interest rates depending on duration. Here the 

multidimensional model-to-market error of the term structure is collapsed to a concise time-weighted 

estimate, and the maximum estimate across the validation data is defined as the D statistic. By applying the 

closed form analytical bond pricing solutions to the CIR one- and two-factor models, this article illustrates 

the application of the validation methodology introduced and uses the 2008 financial crisis period to 

demonstrate the effectiveness of the D statistic as a monitoring metric. The D statistic introduced here is 



 

 

very similar in application with the well-known Kolmogorov-Smirnov statistic. The methodology first 

involved calibrating the model parameters, and then a time-series of the modeling error was generated by 

calculating the time-weighted modeling error for each term structure in the validation data. The maximum 

of the time-weighted modeling error across the validation period was defined the D statistic, and finally an 

AR(1) bootstrapping algorithm improved the robustness by generating an empirical distribution to calculate 

the standard error for the D statistic. By introducing this metric, the D statistic serves as a basis with which 

to compare regular monitoring of current model-to-market error. A complete breakdown of model efficacy 

can be detected in advance when the modeling error from unexpected market behavior exceeds the D 

statistic threshold. The D statistic can be used to improve analysis of finding an optimal set of model 

parameters, compare between calibration algorithms, and succinctly rank between different models.  
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Appendix 

AR(1) Bootstrapping Algorithm: 

The following bootstrap algorithm is taken from Efron and Tibshirani (1993) for determining the standard error of the 

linear coefficient. This methodology is extended here to also produce an empirical distribution of the D statistic for 

determining its standard error.  

Let ݐ௜ ൌ ,ଵݐ௜ be from the modeling error time-series data ሼ݁ݐܽ݀ ,ଶݐ … ,  .௡ሽ with n observationsݐ

(1) The model parameters θ෠ are estimated by least squares calibration. At time ݐ௜, for each bond there is error between 

the model and market price. For each ݐ௜, let ݕ be the weighted average model error between model and market prices 

for all quoted maturities, so that ݕ௧ is the weighted average model error time series. The Kolmogorov-Smirnov–like 

statistic is	ܦ෡ ൌ ,ଵݕሺݔܽܯ ,ଶݕ … ,  .୬ሻݕ

(2) Define	ݖ୲ ൌ ୲ݕ	 െ ௧ሿݖEሾ	 have expectation	୲ݖ	as the centered measurements, then all of the	ߤ	 ൌ  is estimated ߤ .0

by the observed average ݕത. 

(3A) Assume ݖ௧ is an AR(1) process, ݖ௧ ൌ βݖ௧ିଵ ൅  ௧ߝ

(4A) Estimate β෠ , then calculate ε௧ෝ ൌ ௧ݖ െ	β෠ݖ௧ିଵ. Generate empirical error distribution F → ሼεଶෝ , εଷෝ ,… , ε௡ෞሽ where each 

ε௧ෝ  has probability 1/(n−1). 

(5A) Bootstrap Algorithm 

i. Generate F෠ → ሼεଶ
∗ , εଷ

∗ , … , ε௡∗ ሽ by sampling with replacement from F 

ii. ݖଵ∗ ൌ  ଵݖ

iii. Compute ݖ௧∗ ൌ β෠	ݖ௧ିଵ∗ ൅ ε௧∗, for t = 2, 3, … , n 

iv. Estimate ܦ෡∗ ൌ Maxሺݕଵ∗ ൌ ∗ଵݖ െ ,ߤ ଶݕ
∗ ൌ 	 ଶݖ

∗ െ …,ߤ , y௡∗ ൌ ∗௡ݖ െ  ∗ሻ and β෠ݑ

v. Repeat 200 times. 

 

(6A) Algorithm generates empirical distribution for ܦ෡ and β෠  with 200 samples; the specific results are summarized 

below:  

 



 

 

Underlying Model CIR One-Factor CIR Two-Factor 

Samples 200 200 

β෠  0.7131 0.6422 

Standard error (β෠ሻ 0.1016 0.1076 

 ෡ 10.54% 10.45%ܦ

Standard error (ܦ෡ሻ 1.58% 1.24% 
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