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Practical Methods for Aggregating Banks’ Economic Capital  

Yimin Yang* 

Abstract 

This paper describes new procedures to aggregate banks’ economic capital for 

commercial, retail, and market portfolios. It generalizes a result by calibrating the 

Gumbel copula through polynomials and provides a formula for estimating a three-

dimensional copula. Consequently, two methods for aggregating risks are 

demonstrated and compared. 

 

1. What Is Economic Capital?  

Financial losses are not uncommon to banks. They are expected and, to certain extend, 

priced into the services. However, severe losses beyond the expectation (the “surprises”) 

will pose direct threats to banks’ survivability. Banks often ask: What is the worst excessive 

loss the company can tolerate today? Banks’ risk management often asks: What is the 

likelihood of such loss events in the future? Regulators put together both questions and 

ask: To ensure a high survivability (say, 99.9%) in the future, where should the bank set its 

loss tolerance level? This excessive loss level, and its associated survivability probability, 

is called economic capital (EC). 

 Technically EC is defined as follows: Suppose LT is the total financial loss at time T. 

The time T is a prespecified time horizon (one year from today, for example). LT is 
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uncertain today and can represent any losses, ranging from the mildest to the most severe 

one. When a confidence level α is considered (say, α = 99.9%), EC is the loss level such 

that 

Prob{ LT ≤ EC} = α, or equivalently, 

Prob{ LT > EC} = 1 − α (which is 
1

1000
	when α = 99.9%) 

In other words, EC is the capital level to absorb (up to) the worst yearly loss in 1,000 years. 

 

2. Calculation of Economic Capital  

Before explaining the ideas and methodologies, we start with a few challenges that make 

calculation of EC an unenjoyable and even frustrating process. The first is its all-

inclusiveness. All risks, including credit risk, market risk, and operational risk, can threaten 

banks’ survivability and therefore have to be included in the calculation. These risks are, 

however, not equally understood or managed by financial institutions. To assess their 

financial impacts with the same accuracy and the same confidence is very appealing but 

also thrilling. Because EC deals with rare loss events, to create severe event scenarios and 

to capture loss behaviors with little or no historical data is sometimes frustrating. With the 

numerous financial products a bank typically offers today, to develop distinctive 

techniques for risk evaluation at the product level is a daunting task. Even when all 

individual components are properly developed, putting all the pieces together to form a 

holistic view is no less complex. In fact, risk aggregation determines one of the biggest EC 

benefits: the diversification benefit for financial institutions. It is this benefit that drives 

banks’ decision in adopting an EC approach. 



 

 

The risk-based nature makes EC calculations performed mostly by risk types: credit 

risk, market risk and operational risk. Within credit risk, banks commonly build separate 

EC processes for a retail credit portfolio and a commercial credit portfolio because they 

exhibit distinctive risk behaviors and require different modeling techniques. The most 

common method for a commercial portfolio is to use a bottom-up approach where each 

obligor is modeled individually, and its risk parameters such as probability of default, loss 

given default, and exposure at default are estimated based on simulated economic 

scenarios. One key in this approach is the pairwise default correlation among different 

obligors. For retail portfolios, banks typically bucket the exposures based on risk characters 

such as FICO, coupon, maturity, collaterals, etc., and perform calculations at the bucket 

level. Market risk requires a price calculation for every instrument in the portfolio, and a 

multifactor modeling approach is standard because the prices are driven by market factors 

such as interest rates, volatilities, and credit spreads.  

After losses are individually estimated for all risks, consolidating the outcomes in a 

coherent manner requires comprehensive understanding of risk interactions and 

development of necessary calibration techniques. In other words, knowing individual risks 

completely would not suffice to determine the loss at the enterprise level. Risk aggregation 

becomes the next challenge. 

 

3. Approaches for Risk Aggregation  

The ideal method is a direct simulation of all risks and their drivers including all the 

correlations. But this can hardly be practical because risks are driven by many different 

factors, and their relationship is difficult to be reliably captured and modeled. Another 



 

 

method is to make direct distributional assumptions about the aggregated loss based on 

statistical limiting properties or historical loss experience. This approach is often criticized 

for being too judgmental because the statistical conditions are difficult to verify and 

historical experiences are generally not sufficiently severe. Banks sometimes try 

approximation methods such as Delta-Gamma, Cornish-Fisher, or Saddle Point. However, 

given the long time horizon (one year in general) considered by EC, such approximations 

can produce results that sometimes are less justifiable. 

The most feasible and flexible approach seems to be the copula method. It separates 

the aggregation process from the risk-modeling process so that the underlying calculations 

can be performed independently. The method becomes particularly attractive when 

external data and experience have to be used as proxies. 

 

4. Using a Copula for Risk Aggregation  

The copula method is popular but not without concerns. It is fairly judgmental in the 

selection of the right copula, and its calibration method is generally complicated. We will 

explain at a later time our selection criteria and provide a simpler calibration method for 

the Gumbel copula based on the roots of polynomials. Our method will be demonstrated 

for aggregate retail, commercial, and market risks and compared with the sophisticated 

“Nested copula” approach. 



 

 

 

4.1. Definition of Copula  

A copula is a function that expresses a joint probability function as a function of marginal 

distributions: 

A k-dimensional copula among random variables X1 , … , Xk is a function C(u1, …, uk) from 

[0,1]k → [0,1] such that 

 Prob{ X1 ≤ x1, … , Xk ≤ xk} = C(F1(x1), … , Fk(xk)), 

where Fi(x) = Prob{Xi≤xi } is the cumulative distribution function for Xi . 

 A copula can capture any relationship among any random variables; this is 

demonstrated by the following powerful theorem of Sklar’s. 

4.1.1. Theorem (Sklar 1959) (See Nelsen, R.B.2006)  

Let F be a k-dimensional cumulative distribution function with marginal distributions F1, 

…, Fk. Then there is a copula function C such that 

 

Prob{ X1 ≤ x1, … , Xk ≤ xk} = C(F1(x1), … , Fk(xk)). 

 

4.2. Selection of Copulae 

There are many types of copulae, including the popular Gaussian and Student’s t copula, 

the elliptical, and the Archimedean copulae. 

The Gaussian copula has been widely used for its intuitive concept and easy 

calibration. It was introduced to price collateralized debt obligations and, unfortunately, 



 

 

led to catastrophic consequences during the global financial crisis of 2008–2009. It is most 

commonly criticized for its lack of sensitivity to stressed situations.  

The Archimedean copulae is a rich and well-understood class whose members 

include the Clayton, Gumbel, and Frank families. Each Archimedean copula is generated 

by a single “generator,” which makes it somewhat manageable, but the choice of the 

generators is nearly endless, as was demonstrated by this author’s published research in 

1996 (Sungur and Yang 1996). 

4.2.1. Definition 

Let ϕ be a continuous, strictly decreasing, convex function from [0, 1] to [0, ∞) such that 

ϕ(1) = 0, and let ϕ-1 be its pseudo-inverse, then C(u1 ,…, uk) = ϕ-1(ϕ(u1) +…+ ϕ(uk)) is a k-

dimensional Archimedean copula. 

1) For the Clayton family, the generator is of the form 



 1

)



u
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with .0  

3) For the Gumbel family, the generator is given by   u(u ln)  with .1  

In order to aggregate losses, one needs to select an appropriate copula. Our selection is 

based on the following criteria: (1) It is sensitive to tail losses; that is, it has a so-called “fat 

tail.” (2) Ideally it should be more sensitive to large losses and less sensitive to small 

losses—in other words, its tail is one-sided. (3) Its parameter can be easily calibrated. (4) 

Finally, the implementation is simple. 



 

 

4.2.2. Tails of Archimedean Copulae 

Let C be the copula between random variables X and Y. Then its tail dependence is defined 

as 

1) Upper tail dependence: 
 

.
1

,1
lim2

1 t

ttC
t

U 





  

2) Lower tail dependence: 
 

.
,

lim
0 t

ttC
t

L 
  

4.2.3. Proposition 

1) For the Gaussian copula: .0 and ,0  UL   

2)  For the Clayton copula: .0 and ,2
1




UL    The copula has only a left tail. 

3) For the Frank copula: .0  and  ,0  UL   The copula has no tails. 

4) For the Gumbel copula: .22 and ,0
1

  UL  The copula has only a right tail. 

It appears that among the aforementioned copulae, only the Gumbel family has a 

one-sided right tail. This can be seen from the following simulated graphs for Gaussian 

and Gumbel copulae (Figs. 1 and 2). 

 

Figure 1: Gaussian Copula 



 

 

 

Figure 2: Gumbel Copula 

 

 

In both figures, the x and y axes exhibit the loss severity percentiles for the two random 

variables (the higher, the worse) with the diagonal line representing the correlation. For the 

Gaussian copula, both ends display similar patterns. But for the Gumbel copula, the sharper 

upper-right corner indicates a higher correlation. This justifies our use of the Gumbel 

copula for EC aggregation. 

 

5. Results  

Before we state our results, we introduce a few statistical concepts. 



 

 

5.1. Definition (Cumulative K-function): 

Suppose U1 , … , Uk are uniform variables whose joint distribution is given by a k-

dimensional Archimedean copula C. Let W = C(U1 , … , Uk) and define the cumulative K 

function as K(t) = Prob{W ≤ t}. 

5.1.1. Proposition 

Let ϕ be the generator of Archimedean copula C, then 

        txi

iiik

i

x
dx

d

i

t
ttK 







  1

1

1 !
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5.1.2. Empirical Estimation of the K Function 

If we have empirically observed the random vector U = (U1 , … , Uk), then the K function 

can be estimated through the following procedure: 

Let    nikiii UUU ,,11 ,,


  be n independent observations. Define: 

 
  1 1 1

1
1 1

Number  of , , such that , ,1
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i i ki i j ki kj
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where  
kjkiji

UUUU  ,,
11

1


 is the indicating function. Let 

 1

1ˆ ( ) .1
n

i i

i
i

Number of  W  such that W t
K t

n W t n


 

  

Then )(ˆ tK is an empirical estimation for K(t). 

Now we can summarize our results below. The proof is provided in the Appendix. 



 

 

 

5.2. Proposition (Gumbel Copula Parameter Estimation) 

Suppose C is a k-dimensional Gumbel copula with parameter θ and 

1

z . Assume

 
njjW
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1) K(t) is a polynomial of degree k − 1 in 

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z . In fact, the terms in K(t) can be 

calculated using the following recursive formula: 
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4) For k = 3,   dttKtK
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We will see examples of EC calculations using these estimations. 

 

6. Economic Capital Calculation (Example I) 

One advantage of using a copula is that it can be calibrated utilizing external data resources. 

Suppose we have three portfolios: a commercial credit portfolio, a retail credit portfolio 

(without credit card), and an investment portfolio. Without sufficient historical loss data, 

we will demonstrate how to use Fed data and the S&P500 index for its calibration. 

 

6.1. Our Portfolios  

Assume for the selected portfolios that we have already obtained their loss distributions 

through other processes. In fact, their EC values at various confidence levels are given as 

shown in Table 1. 

 

 

 



 

 

Table 1 

Portfolio EC/Loss Distribution 

 

 

6.2. Fed Data  

The Federal Reserve publishes bank loan loss data on a quarterly basis. Charge-off rates 

are available for both  Commercial & Industry (C&I) loans and consumer loans. These loss 

experiences may quite different from our credit portfolios. However, the relationship and 

the risk interaction between C&I loans and consumer loans implied by the data can be 

adopted to fit our portfolios because the Fed’s data was pulled from all banks. In fact, we 

will see that only the risk interaction (the copula), not the actual charge-offs, will be used 

in our calibration. 

 We use the following (partially listed) Fed quarterly charge-off data for 1985 to 2012. 

 

  

$mm

Confidence Commercial Retail Investment Total Credit ALL

99.00% 726 482 349 1,208 1,557

99.90% 1,179 741 464 1,920 2,383

99.99% 1,672 1,003 558 2,674 3,232

Total (Undiversified) ECEconomic Capital



 

 

Table 2 

Fed Data 

 

 

6.3. Standard & Poor’s 500 Index  

Assume that our investment portfolio is sufficiently diversified. We do not have to 

assume that our portfolio follows the S&P500 index faithfully. Rather, we assume only 

that our investment portfolio resembles similar risk characteristics, so its relationship 

with the credit portfolios can be assessed. 

To be consistent with the Fed data, we use the index’s quarterly data. In fact, we 

will use index losses instead of returns. Taking the historical return average as the 

baseline (the choice of the baseline will not affect the fitting of the copula), we calculate 

losses below it.  

ResidentiaCommerci

Farmlan
d

2012:02 1.14 1.35 0.74 0.78 2.71 4.26 0.96 0.32 0.47 0.77 1.21 

2012:01 1.29 1.55 0.80 0.37 2.82 4.38 1.05 0.11 0.48 0.39 1.32 

2011:04 1.36 1.49 1.15 0.58 3.09 4.54 1.40 0.32 0.66 0.28 1.47 

2011:03 1.51 1.66 1.29 0.60 3.68 5.67 1.34 0.17 0.68 0.28 1.66 

2011:02 1.70 1.83 1.50 0.83 3.66 5.60 1.37 0.10 0.74 0.52 1.79 

2011:01 1.77 1.88 1.64 1.08 4.68 6.99 1.84 0.16 1.08 1.06 2.14 

2010:04 2.28 2.17 2.68 1.02 5.10 7.72 2.01 0.72 1.34 2.11 2.56 

2010:03 2.28 2.12 2.80 0.83 5.56 8.59 1.94 0.47 1.74 1.98 2.78 

2010:02 2.43 2.37 2.72 0.94 7.06 11.05 2.22 0.69 1.80 1.19 3.19 

2010:01 2.65 2.75 2.50 0.77 6.94 10.20 2.65 0.82 2.00 2.86 3.36 

2009:04 3.15 3.16 3.37 0.66 6.06 10.16 3.25 1.35 2.61 1.13 3.38 

2009:03 2.66 2.72 2.74 0.63 6.12 10.32 3.33 1.36 2.65 0.96 3.14 

2009:02 2.48 2.66 2.30 0.29 6.05 9.87 3.38 1.29 2.34 0.61 2.91 

2009:01 1.81 2.06 1.44 0.16 5.11 7.65 3.25 0.71 1.81 0.50 2.28 

2008:04 1.96 1.80 2.43 0.33 4.44 6.19 3.24 0.71 1.52 0.33 2.17 

2008:03 1.49 1.66 1.28 0.06 3.69 5.55 2.52 0.52 0.97 0.28 1.65 

2008:02 1.22 1.32 1.12 0.17 3.38 5.38 2.17 0.27 0.80 0.22 1.38 

2008:01 0.80 0.96 0.52 0.09 3.09 4.63 2.08 0.31 0.64 0.08 1.09 

All

Booked in domestic offices

All Credit 
cards Other

Total loans 
and leasesCharge Off

Real estate loans Consumer loans

Leases C&I 
loans

Agricultural 
loans



 

 

It is known that credit loss is a lagging event following the market, and the data 

do indicate a five-quarter lag behind the S&P500 index. In Table 3 the lag is 

appropriately incorporated. 

 

Table 3  

S&P500 Index and Fed Data 

 

 

6.4. Fitting the Copula  

To fit the copula, we use the following procedure: 

1) Generate uniform distributions from Fed and S&P500 data through percentile 

ranking 

2) Calculate the parameter θ using Proposition 5.2 

3) Simulate the joint copula 

4) Apply the simulated copula to our portfolio loss distributions to calculate 

aggregated (diversified) EC. 

Following the procedure, we obtain the uniform distributions shown in Table 4. 

SP500 Loss % Retail CO C&I CO

2012:02 -3.19 0.96 0.47 

2012:01 -7.97 1.05 0.48 

2011:04 -8.49 1.40 0.66 

2011:03 14.09 1.34 0.68 

2011:02 -2.64 1.37 0.74 

2011:01 -3.26 1.84 1.08 

2010:04 -12.75 2.01 1.34 

2010:03 -12.99 1.94 1.74 

2010:02 13.90 2.22 1.80 

2010:01 24.79 2.65 2.00 

2009:04 11.11 3.25 2.61 

2009:03 5.46 3.33 2.65 

2009:02 12.15 3.38 2.34 

2009:01 6.05 3.25 1.81 

2008:04 0.67 3.24 1.52 

2008:03 -3.58 2.52 0.97 

2008:02 2.05 2.17 0.80 

2008:01 -3.94 2.08 0.64 



 

 

 

Table 4 

Uniform Distributions 

 

 

Figure 3: Three-Dimensional Fitting with Parameter θ =1.247829641 

 

 

Several available algorithms can be used to simulate a three-dimensional Gumbel 

copula. Based on our simulation and the portfolio loss distributions, the diversified EC is 

calculated as shown in Table 5. 

 

PCT Ranking SP500 Retail C&I

2012:02 0.339 0.284 0.302

2012:01 0.128 0.339 0.311

2011:04 0.110 0.688 0.403

2011:03 0.935 0.633 0.422

2011:02 0.385 0.651 0.477

2011:01 0.330 0.853 0.642

2010:04 0.045 0.880 0.770

2010:03 0.036 0.871 0.871

2010:02 0.926 0.917 0.880

2010:01 0.990 0.954 0.935

2009:04 0.899 0.972 0.990

2009:03 0.798 0.990 1.000

2009:02 0.908 1.000 0.972

2009:01 0.844 0.972 0.889

2008:04 0.605 0.963 0.834

2008:03 0.302 0.944 0.614

2008:02 0.669 0.899 0.522

2008:01 0.284 0.889 0.385

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fitted Fed/SP500



 

 

Table 5 

Total (Aggregated) EC 

 

 

The diversification benefits are calculated by comparing the diversified with the 

undiversified EC. 

 

7. Benchmark with Other Approaches (Example II)  

We now benchmark our calculations with some other approaches. 

 

7.1. Kendall’s Tau  

Kendall’s tau can be used to estimate θ. It is defined for any two random variables X and 

Y (and their independent copy (X* , Y* )) as 

τ (X, Y ) = Prob{(X – X* )(Y – Y* ) > 0} − P{(X − X* )(Y − Y* ) < 0}. 

We estimate θ between the Fed’s C&I and retail charge-offs through our formula 

(Proposition 5.2) and Kendall’s tau (see Table 6). 

 

Table 6 

Benchmark θ 

 

$mm Total Diversified EC Diversification

Confidence Commercial Retail Investment Total Credit All All Benefit

99.00% 726 482 349 1,208 1,557 1,370 12%

99.90% 1,179 741 464 1,920 2,383 2,156 10%

99.99% 1,672 1,003 558 2,674 3,232 2,971 8%

Total (Undiversified) ECEconomic Capital

Fed C&I and Retail CO Estimation of θ

Ours 1.4068

Kendall's tau 1.4541



 

 

   

7.2. EC under the Nested Copula Method 

The Nested Copula approach breaks the calculation of a multidimensional copula into a 

series of two-dimensional fittings. In our three-portfolio case, we choose to first 

aggregate two credit portfolios, and the outcome is then aggregated with the investment 

portfolio. Here is the procedure: 

1) Generate uniform distributions from Fed and S&P500 data through percentile 

ranking 

2) Calculate the interim parameter θ between C&I and retail portfolios using either 

Kendall’s tau or Proposition 5.2 

3) Simulate the interim copula to aggregate credit portfolio losses 

4) Generate a uniform distribution for the interim copula; to be able to incorporate 

the historical data, the interim copula has to be generated in a way that is consistent 

with the observed percentile ranks 

5) Calculate the final parameter θ between the interim copula and the investment 

portfolio using either Kendall’s tau or Proposition 5.2 

6) Simulate the final copula 

7) Apply the simulated copula to the simulated interim loss distribution and the 

investment portfolio loss distribution to derive the aggregated (diversified) EC. 

Table 7 summarizes our benchmarking results. 

 

  



 

 

Table 7 

Nested Copula Approach 

 

 

The results are compared with our calculations in Example I in Table 8. 

 

Table 8  

Benchmark EC 

 

 

8. Closing Notes  

The parameter θ of a multidimensional Gumbel copula can be estimated directly through 

the roots of a polynomial. We demonstrated its application in aggregating the EC of 

typical bank portfolios. When benchmarked with the Nested Copula approach, it avoids 

all interim calibrations and calculations that have to be performed using sophisticated 

techniques to maintain consistency with the observed data.  

 

Nested Copula

Interim  θ Undiversified Diversified Diversification

1.4068 Credit Portfolio EC Interim Portfolio EC Benefit

99.00% 1,208 1,084 10%

99.90% 1,920 1,776 8%

99.99% 2,674 2,506 6%

Nested Copula

Final  θ Undiversified Diversified Diversification

1.1772 Total  EC Total EC Benefit

99.00% 1,557 1,347 13%

99.90% 2,383 2,138 10%

99.99% 3,232 2,922 10%

$mm Undiversified Our Approach Nested Copula

Confidence Total  EC Total EC Total EC

99.00% 1,557 1,370 1,347

99.90% 2,383 2,156 2,138

99.99% 3,232 2,971 2,922



 

 

Appendix A: Proof of Our Results  

In the appendix we provide a proof for our formulae in Proposition 5.2.  

1. K(t) is a polynomial of degree k − 1 in z for 

1

z . 
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This is a polynomial of degree 4. Its minimal will be reached at the roots of its derivative 
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