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ON THE LARGE SAMPLE DISTRIBUTION OF MORTALITY 
RATES BASED ON STATISTICALLY 

INDEPENDENT LIVES 

JOHN E. WALSH 

INTRODUCTION 

I 
N DERIVING the large sample distribution of an observed mortality 
rate based on lives, it is often assumed that 

(a) the probability of death within the time interval considered is 
the same for each person of the investigation, 

(b) the individuals of the investigation represent statistically in- 
dependent observations. 

Then it is easily shown that for l a rge ,  the distribution of 

(q,_q) / ~ q '  (1-q')~ (1) 

is nearly standard normal (zero mean, unit standard deviation) ; i.e., for 
large n the distribution of q' is approximately normal with mean q and 
standard deviation x/q'(1 -- q')/n. Here n is the number of persons un- 
der observation; q' is the observed rate of mortality (number of deaths 
divided by n); and q is the true value of the rate of mortality (expected 
value of q'). 

For practical cases, however, assumption (a) is often of doubtful valid- 
ity, even in the sense of being a rough approximation to the true situation. 
This raises the question of how much the large sample distribution of ex- 
pression (i) depends on (a). This note shows that ordinarily the distribu- 
tion of (1) is nearly standard normal for large n if only assumption (b) is 
satisfied; i.e., violation of (a) has little effect on the large sample distribu- 
tion of q' when (b) holds. By definition, q is the average probability of 
death for the individuals of the investigation when (a) is not satisfied. 

ANALYSIS 

The analysis presented is based on several standard but nonelementary 
theorems of mathematical statistics. For convenience of reference, the 
theorems used are stated in the Appendix. The derivations for these 
theorems are not presented in this note. Instead, the reader is referred to 
these derivations in a textbook on mathematical statistics (i.e., refer- 
ence [11). 
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Let the n persons of the investigation be observed throughout some 
specified interval of time. These individuals are assumed to represent 
statistically independent observations for this period of time. Denote the 
(unknown) probability of death during this time interval for the ith 
person by q~, (i = 1, . . . , n). Then the rate of mortality q is given by 

q = 2 q . / n .  
1 

I t  is assumed that  the qi do not tend to either zero or unity as n increases; 
i.e., that the value of 

~ q i  (1 -- qi) In  
1 

does not tend to zero as n--~ o~. This seems to be a reasonable assump- 
tion for the usual type of practical situation. 

First let us consider the asymptotic (n--* ¢o) distribution of the sta- 
tistic q'. The random variable associated with the ith individual, (i = 1, 
• . . ,  n), is denoted by x~ and can only take on the values 0 and 1. The 
value of xi is 1 if the ith person dies during the observation period and is 0 
otherwise. Actually, x~ is a sample of size 1 from a binomial population 
for which q~ is the probability of a "success." Thus the mean m~ and vari- 
ance ~ of the random variable x~ are given by 

2 m~ = q~ ,  ~ = q~(1  - -  q~) ,  ( i =  1,  . . .  , n ) ,  

while the third absolute moment of x~ about mi (i.e., the expected value 
of l xi - me] 3) has the value 

3 o , =  q~(1  - -  q~) [ q ~ +  (1 - -  q~)2] < q~(1  - -  q i ) .  

From this it follows that  

Hence, since the q~ do not tend to zero or unity as n increases, 

.-.o _")/(No,) = 0  

This result, combined with the independence of the x~, shows that  the 
Central Limit Theorem stated in the Appendix is applicable to 

, t  

q' = x , / n .  
1 
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Thus,  as n ~ ~ the distribution of 

( ~ x i / n  - ~ m i / n )  q' - q 
v ' ~ / n  - V~-q~ (1 - q , ) / n  ~- 

approaches the s tandard normal  distribution; i.e., the asymptot ic  distri- 
bution of q' is normal  with mean q and variance Zqi(1 -- q i ) / n  ~. 

Next  let us consider some asymptot ic  properties of the stat is t ic  

~d'q'(1 Z q ') .  Writing q' in the form X x i / n ,  after some tedious but  
straightforward calculations it is found tha t  the expected value of 
q'(1 - -  q') equals 

± q , / n -  q , / n  - -  q,  (1 - q,) / n  ~ (2) 
1 1 

and tha t  the s tandard  deviation of q'(1 - q') tends to zero as n--~ ao. 
Now q'(1 - -  q') is a random variable which depends on n, say y . ;  i .e.,  

1 1 

Since the s tandard  deviation of y .  tends to zero as n --~ o~, Tchebycheff 's  
Theorem (see Appendix) shows that  q'(1 -- q') converges in probabi l i ty  
to (2) as n ~ ~ .  From this it follows tha t  x/q ' (1  -- q') converges in 
probabil i ty to 

as n - +  co, since the term ~q;(1 - q~)/n  ~ can be neglected for large n. 
Now let us combine the above results and find the asymptot ic  distri- 

bution of (1). Expression (1) can be writ ten in the form 

z .  = ~ . / ~ . ,  
where 

~, = x ~ / n  - q ~ / n  q ,  (1 - q~) / n  2 
1 
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As n ~ ¢o, the distribution of ~. tends to the standard normal while 77. 
converges in probability to the constant 

qi/n-- ~ q~/n 

n 

1 1 

Using Cram~r's Convergence Theorem (see Appendix), the asymptotic 
distribution of (1) is seen to be normal with zero mean and standard de- 
viation 

. (3) 

Let us examine the value of (3) for the practically important situations 
where the q~ are small (say, less than .2). Then Z, qdn is noticeably greater 
than either of Y.q~/n and (Zq~/n) ~. Moreover, the average of the squares, 
X~/n,  should have a value somewhere near that of the square of the 
averages, (Xq~/n) ~. Consequently the value of 

Y, qi/n --Xq~/n 
Y~q,/n -- (Y.qJn) 2 (4) 

should be near unity. Taking the square root of this quantity to obtain 
(3) brings the value nearer to unity. For example, if the value of (4) lies 
in the interval .9 to 1.1, the value of (3) lies in the interval .95 to 1.05. 
Thus, for the usual practical situation, the value of (3) is very near to 
unity. This verifies the statement in the Introduction. 

I t  should be pointed out that requiring the persons to be observed 
throughout a specified time interval is not necessary for the results of the 
Analysis to hold. The large sample distribution of (1) is nearly standard 
normal under much more general conditions. I t  is sufficient that the ob- 
servations be statistically independent and that the ql are small and do 
not converge to zero. Each person could be observed during a different 
interval of time. 

APPENDIX 

This section contains a statement of the three theorems used in the 
Analysis. These theorems (in slightly different forms) are contained in 
reference [1]. Page references to [1] are presented with each theorem. 
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CENTRAL LIMIT T~EOREM (LIM'OIYNOFF). Let xz, x2, . . . , x~ be inde- 

pendent random variables, and denote by mi and ~ the mean and variance 

of xi, (i = 1 , . . . ,  n). Suppose that p~, the third absolute moment of xi 

about its mean (i.e., the expected value of Ix~ - m~13), is f ini te  for  all i. I f  
the condition 

lim ( ~ - 1 / 3 - - ~  , 2.~z/2 

is satisfied, then the asymptotic distribution of  

1 1 

1 

is standard normal. 

This version of the Central Limi t  Theorem is presented and verified on 
pp. 215-17 of [1]. 

TCHEBYCHEF•'S THEOREM. Let  Yb y2, • • • be random variables, and let m ,  

and tr, denote the mean and standard deviation of yr. I f  tr, --~ 0 as n --~ ~ , 
then y ,  -- m ,  converges in probability to zero. 

Tchebycheff 's  Theorem is s ta ted  and proved on p. 253 of reference [1]. 
CRAMER'$ CONVERGENCE THEOREM. Let ~ ,  ~ ,  . . . be a sequence of ran- 

dom variables with the distribution funct ions Fz, F2, . . . • Suppose  that F~(x) 
tends to a distribution funct ion F(x) as n--~ ~ .  

Let nl, n2, • • • be another sequence of  random variables, and suppose that 

~ converges in probability to a positive constant c. Pu t  

z .  = ~ . / , 7 .  . 

Then the distribution function of Z .  tends to F(cx) as n ~ oo. 

This convergence theorem is presented and proved on pp. 254--55 
of [1]. 

REFERENCE 
[1] Harold Cram6r, Mathematical Methods of Statistics, Princeton Univ. Press, 

1946. 



DISCUSSION OF PRECEDING PAPER 

ADITYA PRAKASH: 

This is an interesting paper. Part  of the result obtained by Mr. Walsh 
can be anticipated by general reasoning. The arithmetic mean of a popu- 
lation, however diverse its elements, is a definite though often indetermin- 
able quantity. The larger a sample gets in size, the smaller is the range 
of possible differences between the population mean and the sample 
mean. That  this distribution of sample means tends to the "normal 
distribution" has been frequently observed and commonly assumed by 
statisticians. Mr. Walsh, however, takes this out of the field of expert 
guesses to the domain of a mathematically justifiable assumption, in so 
far as the distribution of sample mortality rates for small q > 0 is con- 
cerned. 

The upper limit of q as .2, mentioned purely as an example in the 
paper, is sufficiently large to cover most of the mortality table of standard 
lives and quite a few of the insurable substandard mortality group. Since 
p is always a complement of q, it follows that if the assumption of a normal 
distribution is good for 0 < a ~< q < a, then it is also good for 1 -- a < 
p ~< 1 -- a < 1. Hence the approximation is good not only for small 
values of q > 0 but also for sufficiently large values of q < 1. 

Underlying the two assumptions of homogeneity and of statistical 
independence of the occurrences, specifically mentioned in the first para- 
graph of the paper, is the assumption of a random sample, and Mr. 
Walsh, with good justification, takes this for granted in all his derivations. 
This is mentioned because the usual methods employed for getting a 
sample of mortality experience from insured lives do not give a random 
sample when condition of homogeneity is relaxed. If a sample of, say, 
100,000 lives is taken for the Combined experience of calendar years 1900, 
1910, and 1920 and if the number of individuals exposed in each calendar 
year was greater than 100,000, then it should be possible, in a random 
process of obtaining a sample, to get an entire sample from the year 1900, 
or 1910, or 1920, comprising not a single case from the other years. This 
is not true in the usual procedures 1 of taking as sample the entire ex- 
perience of a few years or of taking every tenth or twentieth policy. Here 
our basic data are already arranged by policy numbers, that is, for the 
most part,  by time at issue. If the experience extends over any period dur- 
ing which there have been some basic changes in mortality and not mere 
chance fluctuations, then as the data are already ordered our methods 
give us a stratified and not a random sample. Thus we find that, even 

, In practice, amounts or policies are considered instead of lives. These problems 
are not considered here, as they are not covered by the paper. 
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though the variance formulae are derived without assuming homogeneity, 
in practice we would not be justified in applying these formulae to samples 
derived according to the methods in common use if no thought is given to 
the time interval and to consequent changes in mortality experience. 

I t  is quite possible that the variance for stratified sample means may 
be smaller than the one obtained on assumption of a random sample, but 
that is a different point. 

For the benefit of fellow students it may be recalled that, even if homo- 
geneity be not necessary for a proper estimate of the variance, it is essen- 
tial for a proper interpretation of the estimated mortality rate and is a 
valuable safeguard against spurious results. Otherwise there may be 
some point in modifying our sample designs sufficiently so as to eliminate 
the aforesaid objections. 

Though Mr. Walsh may not have saved the actuarial investigators 
problems arising from the need for homogeneity, he has broken fresh 
ground in an interesting direction. 

(AUTHOR'S REVIEW O~' DISCUSSION) 

JOHN E. WALSH: 

Mr. Prakash's discussion touches upon several basic points which are 
only mentioned in the paper. I am grateful for the opportunity of dis- 
cussing some of these points in more detail. 

The problem posed in the paper assumes that certain quantities are 
given. These include the n persons of the investigation and the time inter- 
vals during which these persons are exposed. The procedure which yielded 
this particular combination of persons and time intervals is not consid- 
ered; it is not pertinent to the analysis if the conditions specified in the 
paper are satisfied. As Mr. Prakash points out, however, this procedure 
can be important in applications. The reason is that the average probabil- 
ity of death for the n individuals may not be the quantity of interest if the 
individuals and their intervals of exposure are not selected in a suitable 
fashion. If the results of the paper are to be valuable, it is important to 
use a procedure for selecting the persons and time intervals which as- 
sures that Zqdn is the quantity of interest. 

I t  might be worth while to emphasize the generality of the results of 
the paper. The people considered may be exposed to entirely different 
conditions. Some may be exposed for longer time intervals than others. 
They may be of widely varying ages. They may even be born several 
hundred years apart. If the persons are statistically independent and the 
probabilities of death are not too large, however, the results of the paper 
can be used to obtain probability information about F, qi/n. 


