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Exam MFE/3F 
 

Additional Sample Questions and Solutions  
 
 
 
 
 
 
 
 
 
 
 

The difference between this version and the September 21 version is the correction of a 
typo in the last line of the solution on page 3.
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21.  The Cox-Ingersoll-Ross (CIR) interest-rate model has the short-rate process: 

 d ( ) [ ( )]d ( ) d ( )r t a b r t t r t Z tσ= − + , 
 where {Z(t)} is a standard Brownian motion. 

 
For t T≤ , let ( , , )P r t T  be the price at time t of a zero-coupon bond that pays $1 at 
time T, if the short-rate at time t is r.  The price of each zero-coupon bond in the 
CIR model follows an Itô process: 

 

d [ ( ), , ] [ ( ), , ]d [ ( ), , ]d ( )
[ ( ), , ]

P r t t T r t t T t q r t t T Z t
P r t t T

α= −  .t T≤  

 
 You are given (0.05, 7, 9) 0.06.α =  
 
 Calculate (0.04,11,13)α . 
 
 

(A) 0.042 
 

(B) 0.045 
 

(C) 0.048 
 

(D) 0.050 
 

(E) 0.052 
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Solution to (21)  Answer: (C) 
 
As pointed out on pages 782 and 783 of McDonald (2006), the condition of no riskless 
arbitrages implies that the Sharpe ratio does not depend on T, 

( , , ) ( , ).
( , , )
r t T r r t

q r t T
α φ−

=       (24.17) 

(Also see Section 20.4.)  This result may not seem applicable because we are given an α 
for t = 7 while asked to find an α for t = 11. 
 
Now, equation (24.12) in McDonald (2006) is 

 ( , , ) ( ) ( , , ) / ( , , ) ( ) ln[ ( , , )],rq r t T r P r t T P r t T r P r t T
r

σ σ ∂
= − = −

∂
 

the substitution of which in (24.17) yields 

 ( , , ) ( , ) ( ) ln[ ( , , )]r t T r r t r P r t T
r

α φ σ ∂
− = −

∂
. 

In the CIR model (McDonald 2006, p. 787),  ( )r rσ σ= , ( , )r t rφφ
σ

=  with φ  being 

a constant, and  ln[ ( , , )] ( , ).P r t T B t T
r

∂
= −

∂
  Thus, 

 ( , , )r t T rα −  =  ( , ) ( ) ln[ ( , , )]r t r P r t T
r

φ σ ∂
−

∂
 

   =  rφ
σ

− rσ× [ ]( , )B t T× −  

   =  ( , )rB t Tφ , 
or  

( , , ) 1 ( , )r t T B t T
r

α φ= + . 

Because ( , )B t T  depends on t and T through the difference ,T t−  we have, for 

1 1 2 2 ,T t T t− = −  

  1 1 1 2 2 2

1 2

( , , ) ( , , ) .r t T r t T
r r

α α
=  

Hence, 

 0.04(0.04,11,13) (0.05, 7, 9) 0.8 0.06 0.048.
0.05

α α= = × =  

 
Remarks:  (i) In earlier printings of McDonald (2006), the minus sign in (24.1) was 
given as a plus sign.  Hence, there was no minus sign in (24.12) and φ  would be a 
negative constant.  However, these changes would not affect the answer to this question. 
(ii) What McDonald calls Brownian motion is usually called standard Brownian motion 
by other authors.
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22.  You are given: 
 

(i) The short-rate r(t) follows the Itô process: 
 [ ]d ( ) 0.09 0.5 ( ) d 0.3d ( )r t r t t Z t= − + , 

where {Z(t)} is a standard Brownian motion.   
 

(ii) The risk-neutral process of the short-rate is given by 
[ ]d ( ) 0.15 0.5 ( ) d ( ( ))d ( )r t r t t r t Z tσ= − + % , 

where { ( )Z t% } is a standard Brownian motion under the risk-neutral 
measure. 
 

(iii) g(r, t) denotes the price of an interest-rate derivative at time t, if the short-
rate at that time is r.   
 

(iv) g(r(t), t) satisfies 
d ( ( ), ) μ( ( ), ( ( ), ))d 0.4 ( ( ), )d ( )g r t t r t g r t t t g r t t Z t= − . 
 

Determine μ(r, g). 
 
 

(A) (r − 0.09)g 
 

(B) (r − 0.08)g 
 

(C) (r − 0.03)g 
 

(D) (r + 0.08)g 
 

(E) (r + 0.09)g 
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Solution to (22) Answer: (D) 
 
Formula (24.2) of McDonald (2006), 
  d ( ) ( ( ))d ( ( ))d ( )r t a r t t r t Z tσ= + , 
is the stochastic differential equation for r(t) under the actual probability measure, while 
formula (24.19), 
  [ ]d ( ) ( ( )) ( ( )) ( ( ), ) d ( ( ))d ( )r t a r t r t r t t t r t Z tσ φ σ= + + % , 

is the stochastic differential equation for r(t) under the risk-neutral probability measure, 
where φ(r, t) is the Sharpe ratio.  Hence,   

  σ(r)  =  0.3,  
and 
      0.15 – 0.5r =  a(r) + σ(r)φ(r, t)    

=  [0.09 – 0.5r] + σ(r)φ(r, t) 
=  [0.09 – 0.5r] + 0.3φ(r, t). 

Thus, φ(r, t) = 0.2. 
 
Now, for the model to be arbitrage free, the Sharpe ratio of the interest-rate derivative 
should also be given by φ(r, t).  Rewriting (iv) as 

d ( ( ), ) μ( ( ), ( ( ), )) d 0.4d ( )
( ( ), ) ( ( ), )

g r t t r t g r t t t Z t
g r t t g r t t

= −    [cf. equation (24.13)] 

we see that 

        
4.0
),(

)),(,( r
trg

trgr
−

μ

 =  φ(r, t)   [cf. equation (24.17)] 

= 0.2. 
Thus, 
  μ(r, g)  =  (r + 0.08)g. 

 
 
 Remark:  d ( ) d ( ) ( ( ), )dZ t Z t r t t tφ= −%  
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23.  Consider a European call option on a nondividend-paying stock with exercise date 
T, T > 0.   Let ( )S t  be the price of one share of the stock at time , 0t t ≥ .  For 
0 ,t T≤ ≤  let ( , )C s t  be the price of one unit of the call option at time t, if the stock 
price is s at that time.  You are given: 

 

(i) d ( ) 0.1d d ( )
( )

S t t Z t
S t

σ= + , where σ  is a positive constant and {Z(t)} is a 

Brownian motion. 
 

(ii) d ( ( ), ) ( ( ), )d ( ( ), )d ( ),        0
( ( ), ) C

C S t t S t t t S t t Z t t T
C S t t

γ σ= + ≤ ≤  

 
(iii) ( (0),0) 6C S =  

 
(iv) At time 0t = , the cost of shares required to delta-hedge one unit of the call 

option is 9. 
 

(v) The continuously compounded risk-free interest rate is 4%. 
 

 
Determine ( (0),0)Sγ . 

 
 

(A) 0.10 
 

(B) 0.12 
 

(C) 0.13 
 

(D) 0.15 
 

(E) 0.16 
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Solution to (23)  Answer: (C) 
 
As explained in Section 20.4 of McDonald (2006), the no-arbitrage condition implies 

that, at each instant in time, the assets have the same Sharpe ratio.  Equating the Sharpe 

ratio of the stock with that of the option at time t yields 

 0.1 0.04 ( ( ), ) 0.04 ,
( ( ), )C

S t t
S t t

γ
σ σ
− −

=  

or 

 
( ( ), )( ( ), ) 0.04 0.06.C S t tS t t σγ
σ

= + ×       (1) 

 

By (12.9) [or by (21.20)], 
( ( ), ) ( ( ), ) . C S t t S t tσ
σ

= Ω  

By (12.8), ( ) ( ( ), )( ( ), ) .
( ( ), )

S t S t tS t t
C S t t

× Δ
Ω =   Thus, 

 (0) ( (0),0) 9( (0),0) 1.5.
( (0),0) 6

S SS
C S

× Δ
Ω = = =  

 

By (1), the option’s expected instantaneous rate of return at time 0 is 

 ( (0),0) 0.04 1.5 0.06 0.13.Sγ = + × =  
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24.  Consider the stochastic differential equation: 

dX(t)  =  λ[α – X(t)]dt + σ dZ(t), t ≥ 0, 

where λ, α and σ  are positive constants, and {Z(t)} is a standard Brownian motion.  The 

value of X(0) is known. 

 

Find a solution. 

 
 
 
(A)  X(t)  =  X(0) e−λt   +  α(1 – e−λt)   

(B) X(t)  =  X(0)  +  ∫ α
t

s
0

d    +  ∫ σ
t

sZ
0

)(d
 

(C) X(t)  =  X(0)  +  ∫ α
t

ssX
0

d)(   +  ∫ σ
t

sZsX
0

)(d)(  

(D) X(t)  =  X(0)  +  α(eλt
  – 1)  + )(d 

0
sZe

t s∫ λσ  

(E) X(t)  =  X(0) e−λt   +  α(1 – e−λt)  + ∫ −λ−σ
t st sZe
0

)( )(d  
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Solution to (24)    Answer: (E) 

The given stochastic differential equation is (20.9) in McDonald (2006). 

Rewrite the equation as 

dX(t)  +  λ X(t)dt  =  λαdt + σ dZ(t).    

If this were an ordinary differential equation, we would solve it by the method of 

integrating factors.  (Students of life contingencies have seen the method of integrating 

factors in Exercise 4.22 on page 129 and Exercise 5.5 on page 158 of Actuarial 

Mathematics, 2nd edition.)  Let us give this a try.  Multiply the equation by the integrating 

factor eλt, we have 

 eλt dX(t)  +  eλtλX(t)dt  =  eλtλαdt  +  eλtσ dZ(t). (*) 

We hope that the left-hand side is exactly d[eλtX(t)].  To check this, consider f(x, t) = eλtx, 

whose relevant derivatives are fx(x, t) = eλt,  fxx(x, t) = 0, and ft(x, t) = λeλtx.  By Itô’s 

Lemma, 

       df(X(t), t)  =  eλt dX(t)  +  0  +  λeλt X(t)dt, 

which is indeed the left-hand side of (*).  Now, (*) can be written as 

           d[eλsX(s)]  =  λαeλsds + σeλsdZ(s). 

Integrating both sides from s = 0 to s = t, we have 

)(d )1()(d d )0()(
000

0 sZeesZeseXetXe
t stt st st ∫∫∫ λλλλλλ σ+−α=σ+λα=− , 

or  

eλtX(t)  =  X(0)  +  α(eλt
  – 1)  + )(d 

0
sZe

t s∫ λσ . 

Multiplying both sides by e−λt and rearranging yields 

    X(t) =  X(0)e−λt + α(1 – e−λt)  +  )(d 
0

sZee
t st ∫ λλ−σ  

=  X(0)e−λt + α(1 – e−λt)  + )(d 
0

)( sZe
t st∫ −λ−σ , 

which is (E).  
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Remarks:  This question is the same as Exercise 20.9 on page 674.  In the above, the 

solution is derived by solving the stochastic differential equation, while in Exercise 20.9, 

you are asked to use Itô’s Lemma to verify that (E) satisfies the stochastic differential 

equation. 

 

If t = 0, then the right-hand side of (E) is X(0).  

 

If t > 0, we differentiate (E).  The first and second terms on the right-hand side are not 

random and have derivatives −λX(0)e−λt and αλe−λt, respectively.  To differentiate the 

stochastic integral in (E), we write 

  )(d 
0

)( sZe
t st∫ −λ−  =  )(d 

0
sZee

t st ∫ λλ− , 

which is a product of a deterministic factor and a stochastic factor.  Then, 

).(dd )(d                                 

)](d[)(d )d(                                

)(d d)(d )d()(d d

0

0

000

tZtsZee

tZeesZee

sZeesZeesZee

t st

ttt st

t stt stt st

+⎟
⎠
⎞

⎜
⎝
⎛λ−=

+=

+=⎟
⎠
⎞

⎜
⎝
⎛

∫

∫

∫∫∫

λλ−

λλ−λλ−

λλ−λλ−λλ−

 

Thus, 

),(dd])([
)(ddd)]1()([

)(ddd)(d )0(

)(dd )(d dd)0()(d

0

0

tZttX
tZtetetX

tZtetsZeeeX

tZtsZeeteteXtX

tt

tt stt

t sttt

σ+α−λ−=
σ+αλ+−α−λ−=

σ+αλ+⎥⎦
⎤

⎢⎣
⎡ σ+λ−=

σ+⎟
⎠
⎞

⎜
⎝
⎛λσ−αλ+λ−=

λ−λ−

λ−λλ−λ−

λλ−λ−λ−

∫

∫

 

which is the same as the given stochastic differential equation. 

 



 

11 October 5, 2008 
 

 
25.   Consider a chooser option (also known as an as-you-like-it option) on a 

nondividend-paying stock.  At time 1, its holder will choose whether it becomes a 
European call option or a European put option, each of which will expire at time 3 
with a strike price of $100.   

 
The chooser option price is $20 at time t = 0. 
 
The stock price is $95 at time t = 0.  Let ( )C T  denote the price of a European call 
option at time t = 0 on the stock expiring at time , 0T T > , with a strike price of 
$100.   
 
You are given: 

 
(i) The risk-free interest rate is 0. 
 
(ii) (1) $4C = . 
 
 
Determine (3)C . 

 
 

(A) $  9 
 
(B) $11 
 
(C) $13 
 
(D) $15 
 
(E) $17 
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Solution to (25)  Answer: (B) 
 
Let ( ( ), , )C S t t T  denote the price at time-t of a European call option on the stock, with 
exercise date T and exercise price 100.K =   So, 
 ( ) (95, 0, ).C T C T=  
Similarly, let ( ( ), , )P S t t T  denote the time-t put option price. 
 
At the choice date 1t = , the value of the chooser option is 
 Max[ ( (1),1, 3), ( (1),1, 3)]C S P S , 
which can expressed as 
 ( (1),1, 3)C S  +  Max[0, ( (1),1, 3) ( (1),1, 3)]P S C S− .   (1) 
Because the stock pays no dividends and the interest rate is zero, 
      ( (1),1, 3) ( (1),1, 3)P S C S−  =  (1)K S−  
by put-call parity.  Thus, the second term of (1) simplifies as 
  Max[0, (1)],K S−  
which is the payoff of a European put option.  As the time-1 value of the chooser option 
is 
  ( (1),1, 3) Max[0, (1)]C S K S+ − , 
its time-0 price must be  
  ( (0), 0, 3) ( (0), 0,1)C S P S+ ,  
which, by put-call parity, is 

 
( (0), 0, 3) [ ( (0), 0,1) (0)]

(3) [ (1) 100 95] (3) (1) 5.
C S C S K S

C C C C
+ + −

= + + − = + +
 

 
Thus, 
 (3) 20 (4 5) 11.C = − + =  
 
Remark:  The problem is a modification of Exercise 14.20.b. 
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26. Consider European and American options on a nondividend-paying stock.  You 
are given: 
 
(i) All options have the same strike price of 100. 

 
(ii) All options expire in six months.  

 
(iii) The continuously compounded risk-free interest rate is 10%. 
 
You are interested in the graph for the price of an option as a function of the current stock 
price.  In each of the following four charts I−IV, the horizontal axis, S, represents the 
current stock price, and the vertical axis, ,π  represents the price of an option.   
 
I. II. 

 
 

 
III. 

 
IV. 
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26. Continued 
 
Match the option with the shaded region in which its graph lies.  If there are two or more 
possibilities, choose the chart with the smallest shaded region. 
 
 
 
 
 European 

Call 
American 

Call 
European 

Put 
American 

Put 
 

(A) 
 

I 
 

I 
 

III 
 

III 
 

(B) 
 

II 
 

I 
 

IV 
 

III 
 

(C) 
 

II 
 

I 
 

III 
 

III 
 

(D) 
 

II 
 

II 
 

IV 
 

III 
 

(E) 
 

II 
 

II 
 

IV 
 

IV 
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Solution to (26)    Answer: (D) 
 

0.1/ 2 0.051
2 0,; PV ( ) 100 100 95.1229 95.12.rT

TT K Ke e e− − −= = = = = ≈  
 
By (9.9) on page 293 of McDonald (2006), we have 

0, 0,(0) Max[0, ( ) PV ( )]P
Am Eu T TS C C F S K≥ ≥ ≥ − .  

Because the stock pays no dividends, the above becomes 
  0,(0) Max[0, (0) PV ( )]Am Eu TS C C S K≥ = ≥ − . 
Thus, the shaded region in II contains CAm and CEu.  (The shaded region in I also does, 
but it is a larger region.) 
 
By (9.10) on page 294 of McDonald (2006), we have 

0, 0,Max[0,PV ( ) ( )]P
Am Eu T TK P P K F S≥ ≥ ≥ −  

           0,Max[0,PV ( ) (0)]T K S= −  
because the stock pays no dividends.  However, the region bounded above by π = K and 
bounded below by π 0,Max[0,PV ( ) ]T K S= −  is not given by III or IV. 
 
Because an American option can be exercised immediately, we have a tighter lower 
bound for an American put, 
  Max[0, (0)]AmP K S≥ − . 
Thus, 
  Max[0, (0)]AmK P K S≥ ≥ −  , 
showing that the shaded region in III contains PAm. 
 
For a European put, we can use put-call parity and the inequality (0) EuS C≥  to get a 
tighter upper bound, 
   0,PV ( )T EuK P≥ . 
Thus, 
  0, 0,PV ( ) Max[0,PV ( ) (0)]T Eu TK P K S≥ ≥ − , 
showing that the shaded region in IV contains PEu. 
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Remarks:   
(i)  It turns out that II and IV can be found on page 156 of Capiński and Zastawniak 

(2003) Mathematics for Finance: An Introduction to Financial Engineering, 
Springer Undergraduate Mathematics Series.   

 
(ii)   The last inequality in (9.9) can be derived as follows.  By put-call parity, 
         CEu =  PEu + 0, ( )P rT

TF S e K−−  

  ≥ 0, ( )P rT
TF S e K−−    because PEu ≥ 0. 

 We also have  
       CEu  ≥ 0. 
 Thus, 
       CEu  0,Max(0, ( ) )P rT

TF S e K−≥ − . 
 
(iii)  An alternative derivation of the inequality above is to use Jensen’s Inequality (see, 

in particular, page 883). 
          CEu E* Max(0, ( ) )rTe S T K−⎡ ⎤= −⎣ ⎦  

[ ]Max(0, E* ( ) )rTe S T K−≥ −  because of Jensen’s Inequality 

                Max(0, E* ( ) )rT rTe S T e K− −⎡ ⎤= −⎣ ⎦  

              0,Max(0, ( ) )P rT
TF S e K−= − . 

 Here, E* signifies risk-neutral expectation. 
 
(iv)  The fact that CEu = CAm for nondividend-paying stocks can also be seen as a 

consequence of Jensen’s Inequality. 
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27.   You are given the following information about a securities market: 
 

(i) There are two nondividend-paying stocks, X and Y. 
 

(ii) The current prices for X and Y are both $100.  
 

(iii) The continuously compounded risk-free interest rate is 10%. 
 

(iv) There are three possible outcomes for the prices of X and Y one year from 
now: 

 
Outcome X Y 

1 $200 $0 
2 $50 $0 
3 $0 $300 

 
 

Let XC  be the price of a European call option on X, and YP  be the price of a 
European put option on Y.  Both options expire in one year and have a strike price 
of $95. 
 
 
Calculate Y XP C− . 
 
 
(A) $4.30 
 
(B) $4.45 
 
(C) $4.59 
 
(D) $4.75 
 
(E) $4.94  
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Solution to (27)  Answer: (A) 
 
We are given the price information for three securities: 
 
    1 
 
B:        e−0.1  1 
 
    1  
 
    200 
 
X:        100  50  
 
    0  
 
    0 
 
Y:        100  0  
 
    300  
 
The problem is to find the price of the following security 
    −10 
 

         ??  95  
 
    0  
The time-1 payoffs come from: 
(95 – 0)+ − (200 – 95)+ = 95 – 105 = −10 
(95 – 0)+ − (50 – 95)+ = 95 – 0 = 95 
(95 – 300)+ − (0 – 95)+ = 0 – 0 = 0 
 
So, this is a linear algebra problem.  We can take advantage of the 0’s in the time-1 
payoffs.  By considering linear combinations of securities B and Y, we have 
 
      1 
        

0.1 1
3:                     

300
YB e−− −   1 

 
      0 
 
We now consider linear combinations of this security and X.  Then, the answer for the 
problem is 
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1
0.1 1

3
200 1 10

(100, )
50 1 95

e
−

− −⎛ ⎞ ⎛ ⎞
− ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

0.1 1
3

1 1 101 (100, )
50 200 95200 50

e− − −⎛ ⎞ ⎛ ⎞
= − ⎜ ⎟ ⎜ ⎟−− ⎝ ⎠ ⎝ ⎠

 1051 (100, 0.571504085)
19500150
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

  
4.295531=   ≈  4.30.  

 
 
 

 
Remarks:  (i) We have priced the security without knowledge of the real probabilities.  
This is analogous to pricing options in the Black-Scholes framework without the need to 
know α, the continuously compounded expected return on the stock. 
 
(ii) We have used the following inversion formula for 2-by-2 matrices 

   
1

1a b d b
c d c aab cd

− −⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟−−⎝ ⎠ ⎝ ⎠

. 

 
(iii)  Matrix calculations can also be used to derive some of the results in Chapter 10 of 
McDonald (2006).  The price of a security that pays Cu when the stock price goes up and 
pays Cd when the stock price goes down is 

 
1

( 1)
h rh

u
h rh

d

CuSe e
S

CdSe e

δ

δ

−
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 

( ) ( )

1 ( 1)
rh rh

u
r h r h h h

d

Ce e
S

CuSe dSe dSe uSeδ δ δ δ+ +

⎛ ⎞− ⎛ ⎞
= ⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝ ⎠

 

 ( )

1 ( )
( )

urh h h rh
r h

d

C
e de ue e

Cu d e
δ δ

δ +

⎛ ⎞
= − − ⎜ ⎟− ⎝ ⎠

 

 
( ) ( )

( )
r h r h

urh

d

Ce d u ee
Cu d u d

δ δ− −
− ⎛ ⎞− −

= ⎜ ⎟− − ⎝ ⎠
 

 ( * 1 *) urh

d

C
e p p

C
− ⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

.
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28. Assume the Black-Scholes framework.  You are given: 
 

(i) ( )S t  is the price of a nondividend-paying stock at time t.  
 

(ii) (0) 10S =  
 

(iii) The stock’s volatility is 20%.  
 

(iv) The continuously compounded risk-free interest rate is 2%.  
 
 

At time t = 0, you write a one-year European option that pays 100 if 2[ (1)]S  is 
greater than 100 and pays nothing otherwise. 

 
 You delta-hedge your commitment.   
 
 
 Calculate the number of shares of the stock for your hedging program at time t = 0. 
 
 

(A) 20 
 
(B) 30 
 
(C) 40 
 
(D) 50 
 
(E) 60 
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Solution to (28)    Answer: (A) 
  

Note that 2[ (1)]S  > 100 is equivalent to S(1) > 10. 
Let I(.) denote the indicator function, i.e., 

  
1             if  is true

( )
0              otherwise

A
I A ⎧

= ⎨
⎩

. 

 
Then, the option payoff is 
   100×I(S(1) > 10). 
 
Now, the time-0 price for a European option with a time-T payoff of I(S(T) > K) is  

e−rT N(d2).   
One way to obtain this result is to note that the time-T payoff of a gap call option with 
strike price K1 and payment trigger K2 is 
   [S(T) – K1] I(S(T) > K2) 
   =  S(T)I(S(T) > K2)  –  K1I(S(T) > K2). 
Because K1 is arbitrary, the coefficient of K1 in the gap call option price formula (14.15) 
gives the result. 
 
To find the number of shares in the hedging program, we differentiate the price formula 
with respect to S, 

  2100 ( )rTe N d
S

−∂
∂

 

  =  2
2100 ( )rT de N d

S
− ∂′

∂
 =  2

1100 ( )rTe N d
S Tσ

− ′ . 

 
With 1T = , r = 0.02, δ = 0, σ = 0.2, S = S(0) = 10, K = K2 = 10, we have 2 0d =  and 

 2
1100 ( )rTe N d

S Tσ
− ′  0.02 1100 (0)

2
e N− ′=

 
    

20 / 2
0.02 1100

22
ee

π

−
−=

 
    

0.0250 19.55.
2
e

π

−

= =  

  
 
Remark:  An option with payoff I(S(T) > K) is sometimes called a cash-or-nothing call.  
An option with payoff S(T)I(S(T) > K) is sometimes called an asset-or-nothing call.  



 

22 

29.   The following is a Black-Derman-Toy binomial tree for effective annual interest 
rates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Compute the volatility in year 1 of the 3-year zero-coupon bond generated by the 
tree. 

 
 
 (A) 14% 
 
 (B) 18% 
 
 (C) 22% 
 
 (D) 26% 
 
 (E) 30% 
 

5%  

3% 

       r0 rud 

2% 

6% 

     Year 0     Year 1        Year 2 
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Solution to (29)  Answer: (D) 
 
According to formula (24.48) in McDonald (2006), the “volatility in year 1” of an n-year 
zero-coupon bond in a Black-Derman-Toy model is the number κ such that  
   y(1, n, ru)  =  y(1, n, rd) e2κ, 
where y, the yield to maturity, is defined by 

   P(1, n, r)  =  
1

1
1 (1, , )

n

y n r

−
⎛ ⎞
⎜ ⎟+⎝ ⎠

. 

Here, n = 3 [and hence κ is given by the right-hand side of (24.53)].  To find P(1, 3, ru) 
and P(1, 3, rd), we use the method of backward induction.  
   
 
 
 
 
 
 
 
 
 

P(2, 3, ruu)  = 
1 1

1 1.06uur
=

+
,   

P(2, 3, rdd)  = 
1 1

1 1.02ddr
=

+
, 

P(2, 3, rdu)  = 
1 1 1

1 1.034641ud uu ddr r r
= =

+ + ×
, 

P(1, 3, ru)  =  
1

1 ur+
[½ P(2, 3, ruu)  +  ½ P(2, 3, rud)] = 0.909483, 

P(1, 3, rd)  =  
1

1 dr+
[½ P(2, 3, rud)  +  ½ P(2, 3, rdd)] = 0.945102. 

 
Hence, 

 e2κ  =  
(1,3, )
(1,3, )

u

d

y r
y r

 = 
1/ 2

1/ 2

[ (1,3, )] 1
[ (1,3, )] 1

u

d

P r
P r

−

−

−
−

 = 0.048583
0.028633

, 

resulting in κ  =  0.264348  ≈  26%. 
 
 
Remark:  The term “year n” can be ambiguous.  In the Exam MFE/3L textbook 
Actuarial Mathematics, it usually means the n-th year, depicting a period of time.  
However, in many places in McDonald (2006), it means time n, depicting a particular 
instant in time.

P(1, 3, ru)

P(1, 3, rd)

   P(0, 3)  P(2, 3, rud) 

P(2, 3, rdd)  

P(2, 3, ruu) 
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30.  You are given the following market data for zero-coupon bonds with a maturity 
payoff of $100.   
 

Maturity (years) Bond Price ($) Volatility in Year 1 
1 94.34 N/A 
2 88.50 10% 

 
A 2-period Black-Derman-Toy interest tree is calibrated using the data from above: 
 
 
 
 
 
 
 
 
 
Calculate rd, the effective annual rate in year 1 in the “down” state. 
 
 
(A)  5.94% 
 
(B)  6.60% 
 
(C)  7.00%  
 
(D)  7.27%  

 
(E)  7.33% 

ru  

rd  

r0  

Year 0          Year 1 
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Solution to (30)  Answer: (A) 
 
 
 
 
 
 
 
 
 
In a BDT interest rate model, the risk-neutral probability of each “up” move is ½. 
 
Because the “volatility in year 1” of the 2-year zero-coupon bond is 10%, we have  

σ1 = 10%. 
This can be seen from simplifying the right-hand side of (24.51).   
 
Now, 
 P(0, 2) =  P(0, 1)[½P(1, 2, ru)  +  ½P(1, 2, rd)] 

  =  P(0, 1)
1 1 1 1
2 1 2 1u dr r

⎡ ⎤
+⎢ ⎥+ +⎣ ⎦

 

  =  P(0, 1) 0.2

1 1 1 1
2 1 2 1d dr e r

⎡ ⎤
+⎢ ⎥+ +⎣ ⎦

, 

or 

 0.2

1 1
1 1d dr e r

+
+ +

 =  2 0.8850
0.9434
×   =  1.8762. 

Thus, we have 
 0.2 0.2 2 0.22 (1 ) 1.8762[1 (1 ) ],d d dr e r e r e+ + = + + +  
which is equivalent to 
 0.2 2 0.21.8762 0.8762(1 ) 0.1238 0.d de r e r+ + − =  

The solution set of the quadratic equation is {0.0594,  −0.9088}.  Thus, 
   rd  ≈  5.94%. 
 

 

ru 12
dr e σ=   

rd  

r0  

Year 0     Year 1 
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31.   You compute the delta for a 50-60 bull spread with the following information: 
 

(i) The continuously compounded risk-free rate is 5%. 
 
(ii)  The underlying stock pays no dividends. 
 
(iii)  The current stock price is $50 per share. 
 
(iv)  The stock’s volatility is 20%. 
 
(v) The time to expiration is 3 months. 

 
 

How much does the delta change after 1 month, if the stock price does not change? 
 
 
(A) increases by 0.04 
 
(B) increases by 0.02 
 
(C) does not change, within rounding to 0.01 
 
(D) decreases by 0.02 
 
(E) decreases by 0.04 
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Solution to (31)  Answer: (B) 
 
Assume that the bull spread is constructed by buying a 50-strike call and selling a 60-
strike call. (You may also assume that the spread is constructed by buying a 50-strike put 
and selling a 60-strike put.) 
 
The delta for the bull spread is equal to  
 

(delta for the 50-strike call)  –  (delta for the 60-strike call). 
 
The delta will be identical if put options are used instead of call options. 
 

Call option delta = N(d1), where 
T

TrKS
d

σ

σ )
2
1()/ln( 2

1

++
=  

 
50-strike call: 

175.0
12/32.0

)12/3)(2.0
2
105.0()50/50ln( 2

1 =
×++

=d ,   N(d1) ≈ N(0.18) = 0.5714 

 
60-strike call: 

6482.1
12/32.0

)12/3)(2.0
2
105.0()60/50ln( 2

1 −=
×++

=d ,  N(d1) ≈ N(–1.65)  

     = 1 – 0.9505 = 0.0495 
Delta of the bull spread = 0.5714 – 0.0495 = 0.5219. 
 
 
After one month, 50-strike call: 

1429.0
12/22.0

)12/2)(2.0
2
105.0()50/50ln( 2

1 =
×++

=d ,   N(d1) ≈ N(0.14) = 0.5557 

 
60-strike call: 

0901.2
12/22.0

)12/2)(2.0
2
105.0()60/50ln( 2

1 −=
×++

=d ,   N(d1) ≈ N(–2.09)  

               = 1 – 0.9817 = 0.0183 
 
Delta of the bull spread = 0.5557 – 0.0183 = 0.5374. 
 
The change in delta = 0.5374 − 0.5219 = 0.0155 ≈ 0.02. 


