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Abstract

Mortality trends may vary for different socioeconomic groups, such as in the United
Kingdom, where the gaps in life expectancy for different socioeconomic circumstances
are widening. The reasons for such diverging trends are unclear yet. A study of cause-
specific mortality may provide rich insights in that respect. Therefore, we investigate
the relationship between socioeconomic circumstances and causal mortality using a
unique data set obtained from the UK Office for National Statistics. We apply a
multinomial logistic framework; the reason is twofold. First, covariates such as so-
cioeconomic circumstances are readily incorporated. And second, the framework is
able to handle the intrinsic dependence among the competing causes. As a conse-
quence of the data set and modeling framework, we are able to investigate the impact
of improvements in cause-specific mortality by socioeconomic circumstances. We as-
sess the impact using (residual) life expectancy, a measure of aggregate mortality.
Of main interest are the gaps in life expectancy among socioeconomic groups, the
trends in these gaps over time, and the ability to identify the causes most influential
in reducing these gaps.
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1 Introduction

Over the past 30 years, life expectancy in high-income countries has increased dramatically,
averaging a gain of about two years per decade. However, these gains have not been shared
equally across all groups in society. In England, people living in the poorest residential areas
can, on average, expect to die eight years earlier than people living in the most affluent
(Office for National Statistics, 2015a). Recent evidence indicates that inequalities in life
expectancy in England have not only widened (Office for National Statistics, 2015b), but
are forecast to widen even further (Bennett et al., 2015; Villegas and Haberman, 2014).
This situation is not unique to England; elsewhere in Europe, notwithstanding differences
in the size and trend of the absolute gap in (standardized) mortality rates between the most
and least advantaged social groups across countries, the underlying message is the same:
health inequalities are ubiquitous and have persisted over time (Mackenbach et al., 2016;
Brønnum-Hansen and Baadsgaard, 2012).

In the United Kingdom, and elsewhere in Europe, the goals of public health policy were
redefined at the turn of the last century to give greater emphasis to tackling inequalities
in health (Graham, 2004). The World Health Organization (WHO) enshrined these goals
in a Health for All strategy, which was aimed at reducing health inequalities within and
between countries, where within-country targets focused on reducing inequalities between
socioeconomic groups (World Health Organization, 1999). In England in 2001, a national
target was set for narrowing health inequalities in infant mortality and life expectancy
(Department of Health, 2003). The life expectancy target stipulated a reduction of at
least 10 percent in the gap between the bottom quintile, based on health and deprivation
indicators, and the population as a whole.

In 2008, an influential report by the Commission on Social Determinants of Health
(World Health Organization, 2008) argued that social inequalities in power, money and
resources operating throughout the life course, rather than individual unhealthy behaviors
or access to health care, were instrumental in causing the observed social gradient in health.1

The social gradient arises not only because of sharp differences in the health of the best-
and worst-off in society, but also because those who are relatively disadvantaged, in terms
of social position, have progressively worse health outcomes than those who occupy a higher
rung in the social hierarchy. The subsequent Marmot review was tasked with supporting the
development of a health inequalities strategy for England, including a monitoring framework
for indicators and targets (Marmot Review Team, 2010). While not defining a specific
health gain target, the report called for the development of an aspirational national health
outcomes goal that included life and health expectancies achievable within the specified time
scale and focused on the reduction of differences across the social gradient (pp. 166–7).

In this paper, we provide a tool to assist public policies in defining their health inequal-
ity strategy. The proposed framework is able to analyze the impact on life expectancy, by
socioeconomic circumstances, of a hypothetical cause-of-death mortality reduction. Since
social groups are affected differently by the causes of death, specific causes may need to
be targeted in order to reduce inequalities. To gain such insight, we choose to use the
multinomial logistic model developed by Alai et al. (2015a). This model readily quantifies
the impact of cause-elimination, or shocks, on mortality metrics such as life expectancy.
The model provides an intuitive framework for any combination of shocks on the vari-

1The social gradient refers to observed differences between socioeconomic groups for some indicators
of interest, such as death rates, health status, etc. A higher socioeconomic gradient results in greater
differences across socioeconomic groups for the chosen indicator.
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ous considered causes and is readily extended to study the impact of these shocks across
socioeconomic circumstances.

An important assumption of the cause-elimination mechanism in the model of Alai et al.
(2015a) is that of extrinsic independence among the causes of death, a classic assumption in
causal mortality models. Indeed, as extrinsic dependence among causal mortality rates is
not objectively observable, notwithstanding the intrinsic dependence inherent in the nature
of competing outcomes, an assumption needs to be set. The most widely used is the in-
dependence assumption, although theories and methods attempting to model the extrinsic
dependence among causes have been proposed, including models incorporating individual
risk factors (covariates, e.g., body mass index, blood pressure, smoking level; see, e.g.,
Girosi and King (2006); Manton (1986); Manton et al. (1991); Rosén (2006)); models incor-
porating individual unobserved risk factors, referred as frailties (Hougaard, 1984; Manton
et al., 1986; Vaupel and Yashin, 1983); models employing multiple cause-of-death data and
thus providing a tool to investigate links between various causes (Mackenbach et al., 1999;
Manton and Myers, 1987; Manton and Poss, 1979; Manton et al., 1976, 1980); copulas
(Carriere, 1994; Dimitrova et al., 2013; Kaishev et al., 2007; Lo and Wilke, 2010); models
using cointegrating techniques in order to capture the long-run equilibrium relationships
that exist between different cause-specific mortality rates (Arnold and Sherris, 2013, 2015,
2016). Traditionally, the independence assumption developed by Chiang (1968) is applied;
see, e.g., the United States decennial life tables by Anderson (1999); Bayo (1968); Curtin
and Armstrong (1988); Greville et al. (1975). This approach is specified for causal forces
of mortality. However, Alai et al. (2015a) recently proposed a different procedure, based
on annual probabilities. In their approach, survival and death are competing outcomes
and, therefore, treated similarly, as opposed to Chiang’s model. We chose this approach
because of the convenience and accessibility of working with annual probabilities within the
multinomial framework.

Assessing the impact on life expectancy with a cause-elimination mechanism that incor-
porates socioeconomic variables is prudent, since the scale of the social gradient varies by
cause; as different causes-of-death are linked to different risk factors, the mix of causes of
death may differ across socioeconomic groups; and most importantly, it allows for scenario
analysis to assess the causes of death most influential to gains in overall life expectancy, as
well as reductions in life expectancy gaps.

The remainder of the paper is organized as follows. In Section 2, we introduce the data
set and its characteristics regarding the causes of death and the socioeconomic categories.
Section 3 outlines all relevant aspects of the methodology, including a description of the
multinomial logistic model and the mechanism employed to shock mortality. After providing
a subset of the model fit results in Section 4, we look at how to meet various policy targets
using cause-elimination scenarios in Section 5. Section 6 concludes the paper.

2 Data Set

The cause-of-death mortality database was provided by the Office for National Statistics
(ONS) in the United Kingdom. This database contains information on the gender, age,
year, socioeconomic circumstances and cause of death of each registered death in England.
The analyzed period is from 1981 to 2007, while the observed ages are grouped in five-
year age classes, from age 25 to the open group 85+. The causes of death are grouped
in six categories: diseases of the circulatory system, neoplasms, diseases of the respiratory
system, diseases of the digestive system, external causes and a final “other” category (see
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Appendix A for details). The corresponding central exposure figures were provided by
ONS for the period 2001–2007, while midyear populations were estimated by Norman et al.
(2008) for 1981–2000. In this section, we first detail the cause-of-death classification and
the determination of the socioeconomic circumstances, before introducing some notations.

2.1 Cause-of-Death Classification

ONS provided counts of deaths aggregated up to three-digit codes of the International
Classification of Diseases (ICD) developed by the World Health Organization (WHO). The
ICD is used worldwide and is regularly updated to take into account progress in science and
technology and to achieve more refined cause descriptions. Over the analyzed period, two
different ICDs were used in England: ICD-9 until 2001 and ICD-10 from then until 2007.
The classification of deaths has undergone two additional changes in England: Rule 3 in
1984 and ACCS in 1993 (see Figure 1 for a summary). ONS used over the period 1984–1993
a guideline called Rule 3 in order to select the main cause of death (ONS, 2015). These
guideline selection rules for the underlying cause of death were different from the rules
established by ICD-9 (Rooney and Smith, 2000). Finally, in 1993, an Automated Cause
Coding System (ACCS) was introduced; it is a computerized system for coding the causes
of death from death registrations (for additional details, see Rooney and Devis (1995) and
ONS (2015)).

Fig. 1: Death Classification Over the Period 1981–2007 in England

1984 1993 20011981 2007

ICD-9 ICD-10

Rule 3 ACCS

Naturally, as mentioned by Rooney and Smith (2000) and Villegas (2015), classification
revisions affect cause-of-death mortality trends, so these revisions need to be carefully
considered. Therefore, ONS developed comparability ratios in order to take into account
the changes of classification from ICD-9 to ICD-10 (see details in Rooney et al. (2002)). We
are directly using death rates adjusted by these comparability ratios (Bajekal et al., 2011;
Villegas, 2015).

2.2 Socioeconomic Circumstances

The socioeconomic classification is established according to the Index of Multiple Depriva-
tion of 2007 (IMD 2007). The IMD 2007 is the official measure of relative deprivation at
the small living area level (Lower Layer Super Output Area, LSOA) in England. It is a
weighted indicator based on the following factors: income, employment, health, education,
barriers to housing and services, living environment and crime; for more details, see Noble
et al. (2007). The IMD 2007 score allows classification of every LSOA, considered as ho-
mogeneous, into five equal-size deprivation categories or socioeconomic categories, with a
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1 indicating the least deprived (highest quintile) and a 5 the most deprived (lowest quin-
tile). To ease readability, we will also refer to quintile 1 as the “highest socioeconomic
category” and quintile 5 as “lowest socioeconomic category,” even if deprivation and the
socioeconomic rank are not necessarily equivalent. The deprivation quintile allocation of an
area is considered fixed over the complete period of observation; see Bajekal et al. (2013a)
for details on this assumed stability and potential biases arising from it. Readers seeking
additional details on the socioeconomic classification used should see Lu et al. (2014) and
Villegas and Haberman (2014).

2.3 Notation

To convert deaths and central exposure to annual mortality rates and initial exposure, the
following steps are applied. First, for each set of covariates, total deaths are calculated;
these are used in order to establish initial exposure via the relationship

E0(g, x, s, t) = Ec(g, x, s, t) +
1

2
D(g, x, s, t),

where E0(g, x, s, t), Ec(g, x, s, t) and D(g, x, s, t) denote initial exposure, central exposure
and total deaths, respectively, for gender g, age x, socioeconomic circumstances s, and time
t. Using initial exposure and cause-specific deaths, the cause-specific annual mortality rates
are calculated via the relationship

qi(g, x, s, t) =
Di(g, x, s, t)

E0(g, x, s, t)
,

where qi(g, x, s, t) and Di(g, x, s, t) denote the annual mortality rate and deaths, respec-
tively, for cause i. Lastly, survival is calculated via the relationship

p(g, x, s, t) = 1−
∑
i

qi(g, x, s, t) = 1− D(g, x, s, t)

E0(g, x, s, t)
,

where p(g, x, s, t) denotes the survival probability for a specific set of covariates.

3 Methodology

In this section, we provide the necessary modeling details. We outline the multinomial
logistic model and the regression formula we chose in order to link the mortality rates to
some selected covariates. We also detail the way shocks are applied to cause-specific death
rates.

3.1 Multinomial Logistic Model

Multinomial logistic (or logit) regression techniques are useful in modeling probabilistic
response variables for a competing categorical observations (see, e.g., Menard (2002) and
Borooah (2002). These models were used to investigate cause-specific mortality over the
entire age range in Alai et al. (2015a). Since this paper is extending the model introduced
in Alai et al. (2015a) to a more comprehensive database, we briefly summarize their model
and extend it to socioeconomic circumstances.
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A multinomial logistic model is based, as indicated by its name, on a multinomial
distribution: E realizations can be classified in n + 1 different outputs, each with its own
probability. In our study, E represents the initial exposure, while the n+1 different outputs
represent n causes of death and survival. Indeed, among E exposed individuals, d1 may die
of cause 1, . . . , dn may die of cause n, and l may survive, with probability

Pr[D1 = d1, . . . Dn = dn, L = l] =
E!

d1! · · · dn!l!
qd11 · · · qdnn pl,

where Di denotes the random number of deaths from cause i, L denotes the subsequent
survivors that complement the deaths, qi describes the probability of death as a result of
cause i, p the probability of survival, and

E = l +
n∑
k=1

dk;

n∑
k=1

qk + p = 1.

For ease of notation, we omit the arguments defining the gender, age group, year and
socioeconomic category. However, each variable should be understood with the additional
arguments (g, x, s, t); e.g., Di(g, x, s, t) represents the random deaths from cause i, for
gender g, age x, socioeconomic circumstances s and time t.

The multinomial logit model uses the logit transform of qi in order to link the mortality
and survival rates to a selection of covariates. Adopting survival as baseline category, we
have

log
qi
p

= Xβi, i = 1, . . . , n,

where X, named the design matrix, contains values of explanatory variables and βi is the
vector of regression parameters especially suited to cause i. The design matrix, X, may
contain indicator or numerical variables for categorical or continuous covariates, respec-
tively. The regression formula is the result of the product between the design matrix and
the vector of regression parameters, which we outline in Section 3.2. Knowing the regres-
sion parameters and the design matrix, we find the probabilities of interest by applying the
logistic function as follows:

qi =
exp{Xβi}

1 +
∑

k exp{Xβk}
, i = 1, . . . , n, (1)

p =
1

1 +
∑

k exp{Xβk}
. (2)

Notice that the form of the survival probability, p, differs from the probabilities of death,
qi, since survival is designated as the baseline category.
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3.2 Regression Formula

The explanatory variables used in the regression formula are a combination of time, age,
gender and socioeconomic factors. The relationship is assumed linear as follows:

ln
qi(g, x, s, t)

p(g, x, s, t)
= β0,i + β1,g,i + β2,x,i + β3,s,i + β4,it+ β5,it

2

+β6,g,x,i + β7,g,s,i + β8,g,it+ β9,g,it
2

+β10,x,s,i + β11,x,it+ β12,x,it
2 + β13,s,it+ β14,s,it

2

+β15,g,x,s,i + β16,g,x,it+ β17,g,x,it
2 + β18,g,s,it+ β19,g,s,it

2.

Time t is normalized to start with value 1, representative of year 1981. The regression pa-
rameters β1,g,i, β2,x,i and β3,s,i are main gender, age group and socioeconomic circumstances
specific, respectively. The regression parameters β4,i and β5,i describe the main linear and
quadratic trends over time. Gender interaction parameters with age group, socioeconomic
circumstances, linear and quadratic time are given by β6,g,x,i, β7,g,s,i, β8,g,i and β9,g,i, respec-
tively. Furthermore, β10,x,s,i, β11,x,i and β12,x,i are the interaction parameters for age group
with socioeconomic circumstances, linear and quadratic time, respectively. β13,s,i and β14,s,i
capture the interaction between socioeconomic circumstances and linear and quadratic time;
β15,g,x,s,i, β16,g,x,i, β17,g,x,i, β18,g,s,i and β19,g,s,i are the corresponding gender interaction terms.
These last five parameters ensure that men and women have completely distinct parameter
sets in the model. Finally, β0,i denotes the intercept parameter designating the reference
case, which is a man aged 25–29 in the least deprived socioeconomic circumstances.

3.3 Residual Life Expectancy

Since our data set is categorized by age groups, as opposed to single ages, we apply the
abridged life table method to calculate life expectancy (see e.g. Chiang (1984)). A required
input in this method is parameter ax, where x designates the age group, that controls the
relationship between central and crude mortality rates. This relationship has already been
established in Section 2.3 and is consistent with uniformly setting ax ≡ 0.5. It results in
the following relationship between q, the crude, and m, the central mortality rate:

q =
2m

2 +m
.

This relationship is widely used, the only exception being with infant mortality rates. As
our database provides mortality rates from age 25, no additional assumption is required.

3.4 Cause-Specific Mortality Shocks

The intrinsic nature of the dependence among the causes of death is addressed by the multi-
nomial model. If the relationship between the causes is stable and the causes themselves do
not experience shocks, then this is sufficient for inferential as well as forecasting purposes.
However, should one (or more) of the causes experience a positive shock, the other causes
may adjust to this in an unpredictable way. The uncertainty surrounding the impact of
causal shocks is due to extrinsic dependence. To address this, we use the independence
assumption between the causes of death defined by Alai et al. (2015a).
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Suppose we allow individual causes to receive shocks. Let ρi denote the marginal shock
to cause i, and assume 0 ≤ ρi. The case ρi = 0 indicates the elimination of cause i.2

Further, 0 < ρi < 1 indicates a marginal reduction in cause i mortality, ρi = 1 indicates
the absence of any marginal shock to cause i, and ρi > 1 indicates a marginal increase
in cause i mortality. In the absence of any information of extrinsic dependence, mortality
redistribution can be given by

qi =
ρie

Xβi

1 +
∑

k ρke
Xβk

, i = 1, . . . , n, (3)

p =
1

1 +
∑

k ρke
Xβk

. (4)

In the absence of shocks, Equations (3) and (4) reduce to Equations (1) and (2), respec-
tively. Equations (3) and (4) represent a proportional reweighting of mortality, which is
akin to assuming extrinsic independence. Besides, when cause j is eliminated within that
framework, deaths from causes i 6= j increase comparatively more, and survival increases
comparatively less than previous findings using the independence assumption developed by
Chiang (1968). Please see Alai et al. (2015a) for a more detailed comparison of the two
approaches.

We note that in Equations (3) and (4), we have implicitly assumed that shocks are
the same across ages and socioeconomic groups. However, population-level interventions
to reduce health risk factors can inadvertently increase social inequalities in outcomes by
disproportionately benefiting advantaged groups (Lorenc et al., 2013). Thus, we could allow
for socioeconomic-dependent shocks ρji , where i denotes the cause and j the socioeconomic
category. However, since the focus of this paper is not to help inform public health policy
to reduce inequalities in the social determinants of mortality, we assume as a starting point
that any scenario affects the groups in the same way, so ρ1i = . . . = ρ5i = ρi. We are indeed
interested in modeling the consequences of achieving the stated mortality targets and/or
the impact of complete cause elimination on life expectancy level and gap. Which practical
policy steps are needed to get to this level of mortality reduction is not the question we
are addressing in this paper. Besides, the Marmot Review suggests that policy makers
adopt the approach of “proportional universalism” (Marmot Review Team, 2010). Using
this approach, interventions are delivered to the whole population, with the “intensity”
adjusted according to the needs of specific groups (for example, some groups may need
more frequent help and advice). Such “upstream” actions are unlikely to eliminate the
social gradient in health completely but may help to reduce the gap.

4 Model Fit

A selection of fitted values is presented in Figures 2 to 5. Figures 2 and 3 show observed
log-mortality rates at age 65, with the fitted model, for males and females, respectively. The
model appears to capture very well the observed trends of the data. It smooths out the noise
considerably and achieves a well-defined distinction between each socioeconomic category—
the top and bottom lines representing death rates for the most deprived and least deprived,

2The description of cause elimination in this paper is more faithfully represented by the idea of ignoring
causes, rather than eliminating them, based on the definition of these terms introduced in Elandt-Johnson
(1976). Henceforth, we continue to use the term “cause elimination,” but this should not be confused with
the definition outlined in Elandt-Johnson (1976). See Alai et al. (2015a) for details.
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respectively. At the same time, the fitted model does not lose any of the essential patterns
characterizing each cause of death. Similar observations are made regarding the fitted
survival rates (Fig. 4) and life expectancies (Fig. 5): the model manages to smooth out the
noise while capturing the underpinning trends for each cause of death and socioeconomic
category.

Fig. 2: Observed and Fitted Values of Mortality Rates Over Time, Age Group
65–69, Males
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Fig. 3: Observed and Fitted Values of Mortality Rates Over Time, Age Group
65–69, Females
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Fig. 4: Observed and Fitted Values of Survival Rates Over Time
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Fig. 5: Observed and Fitted Life Expectancies Over Time
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Table 1 provides an analysis of the effects in the model. It tests whether the inclusion of
the effect represents an improvement in the model. A chi-square hypothesis test determines
the significance of the effect. The table indicates that each effect significantly improves the
model fit.

Table 1: Analysis of Effects

Effect DF Wald Pr > ChiSq
Chi-Square

gender (g) 6 345 <.0001
age (x) 72 579825 <.0001
imd07q (s) 24 1092 <.0001
period (t) 6 204 <.0001
period2 (t2) 6 167 <.0001
gender*age 72 19678 <.0001
gender*imd07q 24 35 0.0724
gender*period 6 37 <.0001
gender*period2 6 31 <.0001
age*imd07q 288 70199 <.0001
age*period 72 5456 <.0001
age*period2 72 3546 <.0001
imd07q*period 24 183 <.0001
imd07q*period2 24 120 <.0001
gender*age*imd07q 288 2822 <.0001
gender*age*period 72 1622 <.0001
gender*age*period2 72 1103 <.0001
gender*imd07q*period 24 197 <.0001
gender*imd07q*period2 24 128 <.0001

5 Achieving Policy Aims: Scenarios

We now turn to quantifying the impact of some cause-elimination or cause-reduction sce-
narios on life expectancy, but most importantly on gaps in life expectancy existing between
different socioeconomic categories. Causal-mortality shocks as described in Section 3.4 are
applied, first by eliminating one cause of death at a time (Section 5.1), then by combining
several cause-specific mortality shocks in order to reflect a policy target defined by the
World Health Organization (Section 5.2). Finally, an optimization approach is developed
in Section 5.3 to increase life expectancy and reduce inequalities simultaneously.

5.1 Scenario 1: Eliminating One Cause of Death at a Time

We successively apply six different mortality shocks: we eliminate each of the six causes of
death in turn; for example, we set the ρ parameter of diseases of the circulatory system to
0 while keeping all the other ρ parameters equal to 1 in Equations 3 and 4. Table 2 shows
the gain in life expectancy for men aged 65 in 2007 by socioeconomic circumstances when
deaths from each of the causes are eliminated. We see, for example, that the elimination of
circulatory diseases and neoplasms would produce the greatest gains, respectively, for men
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aged 65. It is also interesting to note that, in this case, the relative gains always favor the
lower socioeconomic groups; deaths by digestive and respiratory causes even favor lower
socioeconomic groups in absolute terms. Table 3 shows the same results for women aged
65 in 2007.

Table 2: Residual Life Expectancy for Men Aged 65, 2007

Residual Life Expectancy Q1 Q2 Q3 Q4 Q5
Fitted 19.38 18.51 17.84 16.78 15.42
Fitted {–circulatory} 23.93 22.92 22.24 20.99 19.37
Absolute gain 4.55 4.41 4.40 4.21 3.95
Relative gain 123% 124% 125% 125% 126%
Fitted {–digestive} 19.7 18.84 18.17 17.13 15.79
Absolute gain 0.32 0.33 0.33 0.35 0.37
Relative gain 102% 102% 102% 102% 102%
Fitted {–external} 19.53 18.66 17.99 16.93 15.56
Absolute gain 0.15 0.15 0.15 0.15 0.14
Relative gain 101% 101% 101% 101% 101%
Fitted {–neoplasms} 22.5 21.52 20.78 19.63 18.20
Absolute gain 3.12 3.01 2.94 2.85 2.78
Relative gain 116% 116% 116% 117% 118%
Fitted {–other} 20.54 19.61 18.87 17.75 16.29
Absolute gain 1.16 1.10 1.03 0.97 0.87
Relative gain 106% 106% 106% 106% 106%
Fitted {–respiratory} 20.8 19.95 19.33 18.36 17.09
Absolute gain 1.42 1.44 1.49 1.58 1.67
Relative gain 107% 108% 108% 109% 111%
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Table 3: Residual Life Expectancy for Women Aged 65, 2007

Residual Life Expectancy Q1 Q2 Q3 Q4 Q5
Fitted 21.54 20.79 20.28 19.5 18.35
Fitted {–circulatory} 26.21 25.27 24.76 23.87 22.42
Absolute gain 4.67 4.48 4.48 4.37 4.07
Relative gain 122% 122% 122% 122% 122%
Fitted {–digestive} 21.94 21.21 20.71 19.95 18.82
Absolute gain 0.40 0.42 0.43 0.45 0.47
Relative gain 102% 102% 102% 102% 103%
Fitted {–external} 21.71 20.96 20.45 19.66 18.51
Absolute gain 0.17 0.17 0.17 0.16 0.16
Relative gain 101% 101% 101% 101% 101%
Fitted {–neoplasms} 23.89 23.10 22.61 21.82 20.70
Absolute gain 2.35 2.31 2.33 2.32 2.35
Relative gain 111% 111% 111% 112% 113%
Fitted {–other} 23.46 22.63 22.05 21.14 19.85
Absolute gain 1.92 1.84 1.77 1.64 1.50
Relative gain 109% 109% 109% 108% 108%
Fitted {–respiratory} 23.02 22.30 21.85 21.22 20.21
Absolute gain 1.48 1.51 1.57 1.72 1.86
Relative gain 107% 107% 108% 109% 110%

Naturally, the elimination of the deaths from a specific cause increases life expectancy
in each socioeconomic category. However, this will not necessarily reduce the social gaps.
Figure 6 presents the time evolution of the gap in life expectancy at ages 25, 45 and 65
between the lowest and highest socioeconomic groups for men and women. The black
line labeled “Observed” reproduces the gap that was prevailing from 1981 to 2007. It is
interesting to note that the gap for women decreased until approximately the mid-1990s and
started to increase thereafter, while for men the gap at ages 25, 45 and 65 increased from the
mid-1980s, end of the 1980s and over the whole period, respectively. Each plot also contains
the gap in life expectancy that would result if a specific cause of death were eliminated. For
example, the line labeled “-circulatory” would reflect the gap in life expectancy between the
lowest and highest socioeconomic categories if deaths due to the circulatory system were
eliminated in 1981.

Several observations can be made about the impact of eliminating a cause in 1981 on
the gap in life expectancy until 2007:

• Eliminating diseases of the circulatory system increases the inequality gap (compared
with the observed all-cause mortality) for both men and women, especially at age 65
as well as at the beginning and end of the period of observation. This is in line with
observations made in Nordic countries (Brønnum-Hansen and Baadsgaard, 2012).

• Eliminating neoplasms results in an increase in the gap for men in recent years, while
it decreases the gap for women.

• The reduction in the gap following the elimination of neoplasms for women is less
important nowadays than 25 years ago.
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Fig. 6: Impacts of Cause Elimination on the Gap in Life Expectancy Between
the Highest and Lowest Socioeconomic Categories
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• Eliminating the “other causes” category increases the gap at ages 25, 45 and 65 for
women, while the gap increases only at ages 45 and 65 for men.

• Eliminating digestive diseases decreases the gap in life expectancy at ages 25, 45 and
65 for both genders, and the reduction in the gap increases over time.

• Eliminating respiratory diseases decreases the gap at ages 25, 45 and 65 for both
genders, the reduction being relatively constant over time.

• Eliminating the external causes of death decreases the gap at age 25 (both genders)
and age 45 (men only), the impact being much smaller for women than for men.

The increase in the gap following the elimination of neoplasms or the diseases of the
circulatory system may seem counterintuitive, since death rates for any cause are higher
for the lowest socioeconomic category, and thus, eliminating a cause will save more lives
in the lowest quintile. However, these saved lives have a higher probability to die of the
remaining causes of death. Therefore, if the causes not deleted have a relatively greater
socioeconomic gradient (e.g., respiratory diseases) than the cause deleted (e.g., circulatory
diseases), inequality will increase. But if it were the other way around—if the differences in
death rates between socioeconomic groups for the remaining causes were not as important
as for the deleted cause—then inequality would decrease. Finally, eliminating a cause (e.g.,
external causes at age 65) would make no difference to the gap, if the gradient for this
cause were similar to that of all causes. Therefore, the relative difference in the inequality
gradient between the deleted and remaining competing causes will determine the magnitude
and the direction of the inequality change from the baseline (here no cause elimination).

Another important remark is related to the impact of cause elimination on the gap
across age groups. Figure 6 shows that the elimination of the diseases of the digestive
system would reduce the gap importantly at ages 25 and 45 (especially nowadays), while
it would not affect much the gap at age 65. The reason is simple: deaths due to digestive
diseases occur mainly around age 45 and thus by age 65 are relatively insignificant.

5.2 Scenario 2: Meeting the WHO 25×25 Target

The WHO Global Burden of Disease initiative identified reduction in the health burden
of noncommunicable diseases (NCDs) as a major issue for sustainable development. In
response, the UN General Assembly signed a declaration committing member states to the
prevention and control of NCDs (United Nations, 2011). Countries agreed to adopt an
overarching target of reducing premature mortality (ages between 30 and 70) from the four
main NCDs (cardiovascular diseases, chronic respiratory diseases, cancers and diabetes) by
25% relative to their 2010 levels by 2025 (referred to as the 25×25 target).

Since a key feature of the cause-elimination approach introduced in this paper is that
it allows the consideration of simultaneous shocks to different causes, the WHO 25×25
target can be applied and its impact on life expectancy and social inequalities analyzed.
However, the ICD classification used in our database does not exactly coincide with the
required classification to analyze the WHO target. Indeed, we cannot analyze diabetes
as a separate category (which represent around 1% of deaths in England), and we are
additionally including acute respiratory conditions such as pneumonia in the respiratory
category. Nevertheless, as the implied differences are minimal, applying the 25×25 target
by reducing mortality from circulatory diseases, respiratory diseases and neoplasms by 25%
still provides a very good estimation of the potential impacts of the WHO target on life
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expectancy. Besides, this 25% decrease is applied across all ages, even if the 25×25 target
focuses only on premature mortality. Indeed, we assume that actions to prevent premature
deaths from NCDs will act at successively older ages. However, this assumption can easily
be changed, the model allowing different mortality reductions across age groups.

Within our model framework, the 25×25 target is equivalent to setting in Equations 3
and 4, ρi = 0.75 for circulatory diseases, respiratory diseases and neoplasms while main-
taining ρi = 1 for the other three groups of causes. A second, more aggressive target
also is analyzed: since the 25×25 target is planned over 15 years (2010–2025), this would
correspond to a 40% decline in 25 years (1981–2007). Thus, we also present results for a
40% mortality decrease for circulatory diseases, respiratory diseases and neoplasms (“40
target”). This is equivalent to setting ρi = 0.6 for these three groups of causes of death.
Tables 4 and 5 present, for men and women, respectively, the remaining life expectancies
at ages 25, 45 and 65 for each deprivation quintile under each of the two WHO target sce-
narios. We see that for both men and women and at at all ages and deprivation quintiles,
achieving this reduction in cause-specific mortality results in a significant increase in life
expectancy. For instance, for men aged 25, life expectancy would increase from an average
across quintiles of 53.67 years in 2007 to 55.99 years under the the 25×25 target. However,
it is worth noting that the achievement of the WHO targets might result in an increase
in life expectancy inequalities at some ages. For example, for men aged 65, the 40 target
would result in a 0.12-year increase in the difference in life expectancy between the least
and most deprived quintiles of England.

Table 4: Residual Life Expectancy for Men in 2007 Under WHO Scenarios

Age 25
Scenario Q1 Q2 Q3 Q4 Q5 Average Q1–Q5
Fitted 2007 56.77 55.47 54.31 52.38 49.44 53.67 7.33
25×25 Target 59.08 57.76 56.62 54.71 51.79 55.99 7.29
40 Target 60.91 59.57 56.62 56.52 53.60 57.44 7.30

Age 45
Scenario Q1 Q2 Q3 Q4 Q5 Average Q1–Q5
Fitted 2007 37.39 36.21 35.18 33.47 30.99 34.65 6.40
25×25 Target 39.67 38.57 37.46 35.77 33.31 36.94 6.36
40 Target 41.48 40.26 39.26 37.57 35.11 38.74 6.37

Age 65
Scenario Q1 Q2 Q3 Q4 Q5 Average Q1–Q5
Fitted 2007 19.38 18.51 17.84 16.78 15.42 17.59 1.79
25×25 Target 21.41 20.49 19.82 18.73 17.33 19.56 1.85
40 Target 23.06 22.10 21.42 20.31 18.87 21.15 1.91

5.3 Scenario 3: Optimal National Targets to Increase Life Ex-
pectancy and Reduce Inequalities

This raises the question of which scenario of cause elimination would help to close the
life expectancy gap while achieving the greatest overall increase in life expectancy across
the society. We can answer such a policy question using a multi-objective optimization
approach whereby we seek to find (under some constraints) the scenario of cause-specific
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Table 5: Residual Life Expectancy for Women in 2007 Under WHO Scenarios

Age 25
Scenario Q1 Q2 Q3 Q4 Q5 Average Q1–Q5
Fitted 2007 59.58 58.60 57.77 56.50 54.49 57.39 5.09
25×25 Target 61.70 60.71 59.93 58.73 56.77 59.57 4.93
40 Target 63.34 62.32 59.93 60.43 58.50 60.90 4.84

Age 45
Scenario Q1 Q2 Q3 Q4 Q5 Average Q1–Q5
Fitted 2007 40.00 39.07 38.32 37.14 35.33 37.97 4.66
25×25 Target 42.08 41.13 40.43 39.31 37.56 40.10 4.51
40 Target 43.68 42.72 42.05 40.98 39.25 41.74 4.43

Age 65
Scenario Q1 Q2 Q3 Q4 Q5 Average Q1–Q5
Fitted 2007 21.54 20.79 20.28 19.50 18.35 20.09 3.18
25×25 Target 23.40 22.62 22.13 21.37 20.22 21.95 3.18
40 Target 24.87 24.05 23.58 22.84 21.68 23.40 3.19

reduction shocks that simultaneously maximizes the overall gain in life expectancy and
minimizes the gap in life expectancy between the least and most deprived quintiles.

Formally, let ex,g,s,t(ρ) denote the remaining life expectancy at age x for gender g,
socioeconomic circumstance s and time t, given a cause-reduction scenario ρ = (ρ1, . . . , ρn).
Then, for fixed age x, gender g and time t, the optimization problem can be formulated as
follows:

min {f1(ρ) = −1
5

∑
s ex,g,s,t(ρ), f2(ρ) = ex,g,Q1,t(ρ)− ex,g,Q5,t(ρ)}, (5)

s.t.
n∑
i=1

(1− ρi) ≤ K; (6)

ρ ≤ ρi ≤ 1 i = 1, . . . , n, (7)

where the first objective f1 is equivalent to maximizing the average life expectancy across
deprivation quintiles and the second objective f2 minimizes the absolute difference in life
expectancy between the least deprived quintile (Q1) and the most deprived quintile (Q5).
In the above optimization problem, Equation (6) is a total shock constraint, indicating that
a total shock of K is allowed across all causes, while constraint (7) indicates that marginal
increases are not allowed and that a cause can be only reduced up to a level ρ.

We now use the optimization problem to evaluate whether the WHO 25×25 and WHO
40 targets are “optimal.” To do so, we have solved the optimization problem with

• ρ = 1− 0.25 = 0.75 and K = 3× 0.25 = 0.75 for the WHO 25×25 target, and

• ρ = 1− 0.4 = 0.6 and K = 3× 0.4 = 1.2 for the WHO 40 target.

By setting ρ = 0.75 for the WHO 25×25 target, we impose a maximum mortality
decrease of 25% for each of the six causes. Besides, by imposing K = 0.75, we require that
the cumulative mortality decrease across the causes is of maximum 75%. This maximum
cumulative mortality decrease can be achieved through different combinations: (1) reducing
only one cause-specific mortality rate by 75% and keeping all the other mortality rates
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constant; (2) reducing one cause-specific mortality rate by 50% and another one by 25%;
(3) reducing each of the six analyzed cause-of-death mortality rates by 10% (since the
total needs to be equivalent to or smaller than 75%); etc. Thus, as in the WHO 25×25
target, we allow a mortality decrease of maximum 25% per cause and a total shock of
maximum 75%. However, we do not pre-specify the causes of death that need to be reduced.
The optimization procedure will determine, among all the possible combinations, which
one corresponds to the greatest gain in life expectancy and largest reduction in social
inequalities. The same approach is applied for the WHO 40 target.

Figure 7 presents for each sex and ages 25, 45 and 65 the Pareto front for both WHO
target scenarios. These plots depict on each axis each of the two objectives, indicating
what is the maximum average life expectancy, f1, that can be achieved for a given gap in
life expectancy, f2. Figures 8 and 9 plot for the WHO 25×25 and the WHO 40 targets,
respectively, the cause-specific shocks, ρi, that would need to be applied to achieve a given
gap in life expectancy. For example, for men aged 25 and the 25×25 target scenario, Figure
8 shows that to achieve a gap in life expectancy of 7.1 years, diseases of the respiratory
system need to be reduced by 20% (ρrespiratory = 0.8), neoplasms need to be reduced by
5% (ρneoplasms = 0.95), and digestive and circulatory diseases need to be reduced by 25%
(ρdigestive = ρcirculatory = 0.75). In parallel, an inequality gap of 7.1 years for men aged 25
corresponds to an average life expectancy across social groups of about 55.3, as described
by Figure 7.

From these three figures we note the following:

• The conflicting nature of the objectives becomes clear with higher average gains in
life expectancy coming at the cost of a wider life expectancy gap. For instance, under
the WHO 40 policy scenario, the minimum life expectancy gap for men aged 25 is
6.82 years, which corresponds to the lowest average life expectancy (54.6 years), and
the maximum average life expectancy is 57.81, which corresponds to the highest life
expectancy gap (7.3 years; Figure 7).

• While for women the optimal shocks are independent of age, for men the optimal
policy is age dependent. (Figures 8 and 9 differ by age for men, as opposed to
women.)

• In particular, for women of all ages, if the aim is to increase life expectancy indepen-
dently of life expectancy gap (top-right end of plots in Figure 7), then the optimal
policy target should be to reduce mortality from circulatory diseases, neoplasms and
other causes of death (right end of plots in Figures 8 and 9). By contrast, for men of
all ages, the maximum increase in life expectancy is achieved by targeting mortality
from circulatory diseases, neoplasms and respiratory diseases.

• For women of all ages, if the aim is to decrease the life expectancy gap independently
of increase in life expectancy (bottom-left end of plots in Figure 7), then the optimal
policy target should be to reduce mortality from neoplasms and from respiratory
and digestive diseases (left end of plots in Figures 8 and 9). By contrast, for men
of all ages, the minimum gap in life expectancy is achieved by targeting digestive,
respiratory and external causes. Circulatory diseases also need to be targeted for
men aged 45.

Of main interest in multi-objective optimization problems are the so-called knees of the
Pareto front (Branke et al., 2004)—the solutions around which a marginal increase in life
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Fig. 7: Pareto Front of the Two Optimal WHO Targets
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Fig. 8: Optimal Policies for WHO 25×25 Target
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Fig. 9: Optimal Policies for WHO 40 Target
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expectancy would result in a significant increase in life expectancy inequalities or where
a marginal decrease in inequalities will result in significant reduction in the average life
expectancy. In the absence of any additional information, such solutions are likely to be
the ones preferred by the policy maker.

For women of all ages, the “knee” solutions correspond to the policy scenario targeting
mortality from circulatory diseases, neoplasms and respiratory diseases. Interestingly, this
coincides with the original WHO targets, suggesting that the WHO policy is optimal for
women. By contrast, for men of all ages, the “knee” solutions correspond to the policy
scenario targeting mortality from circulatory, digestive and respiratory diseases, which does
not coincide with the original WHO targets. Hence, for men, a possibly more appropriate
policy would be targeting digestive diseases, which are one of the main contributors to
socioeconomic inequalities, as opposed to neoplasms.

6 Conclusion

This paper provides the basis to assist government bodies in implementing well-informed
strategies aimed at reducing social inequalities. This is especially relevant today in England
and around the world, given that addressing such inequalities has become a key focus of
public policy. The proposed approach uses cause-specific mortality data in order to gain
insight into differences in life expectancies by deprivation categories. We investigate the
relationship between socioeconomic circumstances and causal mortality on a unique data
set obtained from the UK Office for National Statistics and apply a model that has the
ability to incorporate any combination of cause-specific mortality shocks. This investigation
is performed in two steps. First, the model developed by Alai et al. (2015a) is extended to
allow for socioeconomic covariates. Second, an optimization procedure is developed that
identifies the cause-specific reduction scenario that simultaneously maximizes the overall
gain in life expectancy while minimizing social inequalities.

The results presented in this paper may have important consequences in forming public
policy. First, it is well known that the decline in heart disease mortality was a major
contributor to increases in life expectancy over the past 25 years for men and women across
all socioeconomic groups (Bajekal et al., 2013b)). However, the elimination or reduction
of such causes of death contributes, according to our results, to an increase in inequalities
by socioeconomic circumstances. Public policy exclusively targeting cardiovascular diseases
may, therefore, be contradictory to the aim of reducing the social gradient in life expectancy.

Second, insight into the latest time trends is a crucial factor for determining policy
aimed at a reduction in inequalities. Indeed, by 2007, the picture has significantly changed
in terms of identifying the optimal cause of death to target in order to reduce life expectancy
gaps. For example, eliminating neoplasms would have reduced the gap in the 1980s, while
doing so more recently would have actually increased it.

Third, if the aim is to reduce the inequalities for all age groups and both genders, then,
based on the situation in 2007, respiratory diseases need to be targeted for elimination.
Since these deaths are largely related to smoking habits, prevention campaigns and other
forms of dissuasion should be implemented. Public policy could also focus on targeting
digestive diseases (e.g., liver cirrhosis) and external causes of death (accidents) in order to
reduce the inequality gaps at younger ages, particularly for men.

Fourth, the targets set by WHO result in an increase in life expectancy for all groups,
but also result in increasing inequalities for men. The developed optimization procedure
indicates that it would be better for the male population to target digestive diseases instead
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of neoplasms; this would achieve an optimal balance between increasing life expectancy and
reducing the inequality gap.

Finally, it is worth highlighting that the way in which dependence is treated plays a
very important role in our model framework. Including different dependence assumptions
in our model would provide important and complementary information. For example,
interesting properties of various multivariate distributions have recently been formulated
that may be applicable to the study of cause-of-death dependence. In the work of Alai et al.
(2013), a multivariate gamma distribution based on a common shock model was applied to
lifetime data and later generalized to include Tweedie distributions in Alai et al. (2015b,
2016c). If the link between different causes is established via shared risk factors, a common
shock model may be appropriate. Furthermore, a multivariate Pareto distribution with a
parametric form of dependence was shown to be well estimated via the distribution of the
minimum value of its marginals (see Alai et al. (2016b)); this may render it suitable for
cause-of-death lifetime data, where only the minimum observation is available.

Naturally, any study on mortality reduction necessarily leads to the very interesting
and controversial discussion of the biological processes of aging, considered by many as
the greatest underlying risk factor affecting mortality (see, e.g., Hayflick (2004)). While
some experts, such as De Grey (2006), expect huge mortality improvements for the coming
century, others are more pessimistic. They argue that the human body was not designed
for long-term use, so humans cannot biologically live much longer unless we manage, in
the future, to alter our basic biology (see, e.g., Olshansky et al. (2002)). The latter case
implies that if we managed to reduce current health inequalities by attacking one disease at
a time, a new set of health inequalities would emerge, as the body is biologically aging and
thus malfunctioning. Inequalities will then never disappear. Such questions are naturally
important to study but are well beyond the scope of this paper.

To conclude, the optimization procedure and corresponding results introduced in Section
5.3 are presented for illustrative purposes. This work aims to show the wide variety of
analyses that can be performed within our model framework. We are currently working on
an extension that incorporates a budget constraint, as defined in Equation 6, rather than
a total shock constraint. Such a constraint would allow for the inclusion of relevant costs
incurred from strategic policy aimed at reducing certain cause-specific mortality rates. This
would also allow us to consider socioeconomic-dependent shocks. Indeed, as some treatment
or prevention plan may affect the groups differently, we may assume that public policy may
wish to adjust their spending across specific groups in the population in order to achieve
uniform shocks (or equity in outcomes) or, to the contrary, target resources on high-risk
groups. In light of these costs, the optimal strategy might be adjusted in favor of others
that maximize life expectancy “returns.” In other words, the targeted cause of death would
be identified not only via its impact on life expectancy and social inequality gaps, but also
on the impact implementation would have on the national budget. Such a model would be
of great added value for ensuring well-informed public policy.
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Appendix A Common and Prevalent Causes of Death

Table 6: ICD Classification

ICD Chapter Common Conditions
Neoplasms (cancer) Lung (trachea, bronchus), colon (rectum, anus),

breast, prostate
Circulatory Ischemic heart disease (heart attack),

cerebrovascular disease (stroke)
Respiratory Influenza and pneumonia,

chronic obstructive respiratory disease
(bronchitis, emphysema, asthma)

Digestive Peptic ulcer, cirrhosis and
chronic liver disease, hernia

External Nontransport accidents, intentional self-harm,
motor vehicle accidents

Other Diabetes mellitus, dementia, renal failure,
Parkinson’s, Alzheimer’s disease
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