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Abstract

In this paper, the force of mortality at the oldest ages is studied using the statistical tools from extreme value theory. A
unique database recording all individual ages at death above 95 for extinct cohorts born in Belgium between 1886
and 1904 is used to illustrate the relevance of the proposed approach. No leveling off in the force of mortality at the
oldest ages is found, and the analysis supports the existence of an upper limit to human lifetime for these cohorts.
Therefore, assuming that the force of mortality becomes ultimately constant—i.e., that the remaining lifetime tends to
the negative exponential distribution as the attained age grows—is a conservative strategy for managing life
annuities.



1 Introduction and Motivation

Insurers need reliable estimates of mortality at oldest ages to price life annuities and reverse
mortgages, for instance. Gompertz, Makeham, logistic and other parametric models have
often been used by actuaries to fit mortality statistics. The exponential increase in the force
of mortality postulated by the Gompertz model is generally appropriate for adults and early
old ages, but the mortality increases tend to slow down at older ages, typically around 85,
so that this model fails to describe the end of the life table. Alternative models have been
proposed to account for the mortality deceleration observed at older ages in industrialized
countries. The plateau that appears at these advanced ages is attributed to the earlier
selection of the more robust individuals in heterogeneous cohorts. This empirical finding
supports the logistic model obtained by including a gamma distributed frailty coefficient
accounting for the heterogeneity in the Gompertz model (Manton et al. 1986).

When the main interest is in mortality at the oldest ages, inference is conducted in an area
of the sample where there is a very small amount of data. Moreover, extrapolation beyond
the range of the data is often desirable, a procedure known as closure of the life table. In
such a case, it is essential to have a good model for the longest lifetimes. Extreme value
theory deals with statistical problems concerning the far tail of the probability distribution,
being supported by strong theoretical arguments, and thus appears as the natural candidate
for analyzing mortality at the oldest ages.

Models for extreme values have already been used to describe individual lifetimes but
concentrating on minima. Brillinger (1961) was among the first authors who draw the
attention of the actuarial community to the use of extreme value techniques in the analysis of
mortality. Specifically, he pointed out that the Gompertz law naturally appears to describe
lifetimes if the human body is considered as a series system made of a large number of
components with independent and identically distributed failure times. The death then
occurs when the first component fails that is, at the minimum of these failure times. The
minimum of these failure times asymptotically obeys the Gompertz model.

By construction, the approximation of the lifetime distribution by an extreme value
distribution such as the Gompertz law can be expected to hold only for small or moderate
ages, but not for high ages, as pointed out by Aarssen and de Haan (1994). For high
ages, another approach is thus needed, such as the one proposed in this paper. Notice
that some authors argue that the Gompertz model may also apply to higher ages. For
instance, Gavrilov and Gavrilova (2011) concluded from a study of several extinct cohorts
that mortality at advanced ages obeys the Gompertz model up to ages 102 to 105, without
noticeable deceleration. However, this study is subject to debate. See, e.g., Ouellette and
Bourbeau (2014) for an opposite view.

The present paper adopts a distribution-free approach to analyze mortality at the oldest
ages; only some weak regularity of the tail of the distribution function is assumed. This
method is acceptable from both the theoretical and practical viewpoints. To this end, we
recall the basic features of extreme value theory (EVT) that gives the theory for describing
extremes of random phenomena. EVT, and its close link to limiting residual life distribu-
tions, offers a unified approach to the modeling of the right tail of a lifetime distribution.
This method is not solely based on the data at hand but includes a probabilistic argument
concerning the behavior of the extreme sample values. EVT has already been successfully



applied to solve various non-life-insurance problems; see, e.g., Cebrian et al. (2003) and
the references therein. In this paper, we demonstrate that it also offers the appropriate
framework for dealing with the highest ages at death. The analysis of residual lifetimes at
high ages is in line with the peaks-over-threshold (POT) method used to study tail behavior
exhibited by non-life-insurance losses. POT is based on the convergence of the distribu-
tion of exceedances over a threshold to the generalized Pareto (GP) distribution when the
threshold increases. Transposed to the life insurance setting, this approach is justified by
the convergence of the remaining lifetime distribution at high ages to the GP distribution.

The present paper is not the first attempt to use EVT techniques to model mortality at
the oldest ages. EVT was even initially developed to deal with such problems, as can be
seen from Gumbel (1937), Balkema and de Haan (1974) and Aarssen and de Haan (1994),
for instance. Our approach is closely related to the pioneering study by Watts et al. (2006),
where the usefulness of EVT techniques in life insurance data analysis is clearly established.
Actuaries have also developed threshold life tables where the extrapolation of mortality to
older ages (above the threshold) is done using EVT. We refer the readers to the works by
Han (2005), Li et al. (2008, 2010) and Bravo et al. (2008, 2012). Compared with these
previous studies, the originality of our paper relies on several facts:

- We work here with reliable individual exact ages at death, not with annual aggregated
mortality data.

- We resort to advanced statistical tools to explore the trajectory of mortality near the
end of the lifetimes, questioning the choice of the appropriate threshold in the POT
approach above 95 years old, as well as the estimation method for the tail index.

- We conduct the analysis using cohort mortality statistics, and not period data, as the
theoretical arguments supporting the use of EVT techniques are fulfilled in this case,
as will become clear in the next sections.

EVT techniques have also been considered in other disciplines such as demography, as
a natural tool to analyze mortality at the oldest ages. For instance, Hanayama and Sibuya
(2015) estimated the ultimate age in the Japanese population by means of EVT techniques,
based on aggregated mortality statistics for Japanese centenarians in the Human Mortality
Database (HMD). The approximate linearity of the mean residual life function led to the
use of the GP distribution to describe survival above a high age. The GP parameters are
then estimated by binomial regression on yearly death counts, and a significantly negative
estimated tail index resulted for male cohorts born after 1883 and female cohorts born after
1867. Despite obvious similarities, there are also important differences between this study
and the one conducted in the present paper. First, we work with individual data. These
data consists in exact ages at death for all residents of Belgium who were born there and
died there at age 95 or older. Also, these authors arbitrarily selected the age range where
mortality obeys the GP model, starting at age 100, and only considered maximum likelihood
estimation techniques. We discuss these two choices here, and we stress their great impact
on the final estimates.

Several authors, including Gampe (2010), have suggested that age-specific death proba-
bilities may level off at some point above 100 years, rather than continuing to increase with



age. This proposal has been supported by the analysis of the mortality of supercentenarians
(aged 110 and over) from many countries included in the International Database of Longevity
(IDL). Notice that if the force of mortality tends to flatten at oldest ages, then remaining
lifetimes become ultimately negative exponential. The analysis conducted in the present pa-
per suggests that the remaining lifetimes display a lighter tail than the negative exponential
and that there is an upper bound on the human lifetime, which actuaries call ultimate age.
Our results are in line with those obtained by Poulain et al. (2001), who concluded that
the annual death probabilities between ages 100 and 108 rise from 0.35 to 0.50 for Belgian
females and from 0.42 to 0.55 for Belgian males. These values are similar to those obtained
by Kannisto (1994) from a significantly larger study population. Importantly, we work here
with individual exact ages at death and never aggregate them over intervals, as this may
bias the analysis.

Notice that actuaries are more interested in closing the life table in an appropriate man-
ner than in providing a final answer to the question of maximum life span. Indeed, the
problem posed by the mortality pattern at oldest ages, with a still increasing, or plateauing,
or even decreasing force of mortality after a maximum level has been reached, goes far be-
yond the actuarial expertise, as almost no data are available at ages above 115. Actuaries
nevertheless need an appropriate model, supported by empirical evidence, to close the life
table so that actuarial calculations can be performed, typically in life annuity or reverse
mortgage portfolios. To this end, this paper uses a unique database recording the ages at
death for 19 extinct cohorts born in Belgium between 1886 and 1904; restricting the analysis
to these 19 extinct cohorts ensures that we deal with complete data. The survival of Belgian
centenarians has been studied by Poulain et al. (2001). As explained by these authors,
the National Register, a centralized, fully computerized population register for the whole
population of Belgium that was established by law in 1985 (see Poulain 2010), minimizes the
risk of errors in recorded ages at death. This is why we use data extracted from the Belgian
National Register to conduct the present study. As ages are recorded up to the day, we can
model lifetimes on a continuous scale and apply EVT techniques to complete data that are
not censored by intervals.

The remainder of this paper is organized as follows. We start in Section 2 by describing
the data used in the present study. Section 3 gives a brief, user-friendly description of EVT
tools that are necessary to analyze mortality at the oldest ages. The definition of the gen-
eralized extreme value distribution is recalled, providing actuaries with a limit distribution
for maxima subject to an appropriate standardization. Its connection to the generalized
Pareto distribution is established by taking the limit of the conditional distribution for the
exceedances over a threshold. The presentation is made in terms of demographic indicators,
to make it more appealing for actuaries working in life insurance. In particular, the close
links existing between EV'T and limiting residual lifetime distributions are made explicit.
Selecting the threshold above which the exceedances obey the generalized Pareto distribu-
tion is the key first step in actuarial application based on EVT. The analysis conducted here
is based on tools proposed by Pickands (1975), Reiss and Thomas (1997) and McDonald et
al. (2011). Section 4 is devoted to several applications of the model, such as the estima-
tion of ultimate age and the prediction of the highest age at death recorded among a group
of individuals. The final Section 5 summarizes the main findings of the paper and briefly
concludes.



2 Description of the Data Set

2.1 Data Source and Validation Process

As mentioned in the introduction to this paper, a national population register serves as the
centralizing database in Belgium and provides official population figures. Statistics on births
and deaths are available from this register according to basic demographic characteristics
(e.g., age, gender, marital status). We have at our disposal the ages at death for every
individual who died at age 95 or older, plus a list of survivors aged 95 and older at the
end of the observation period. There are 46,666 observations relating to individuals born
in Belgium who died after age 95 since 1981. The inviduals in the database are 22 percent
males and 78 percent females. For each individual, we know the exact birth and death dates.

Data have been validated in a number of ways. For more details, we refer to Poulain et
al. (2001), so that we can be confident in the reliability of the ages at death recorded in the
database. In particular, all individuals who were not born in Belgium have been excluded
from the data set, so that migrations can be neglected (as international mobility is almost
nonexistent for native Belgian citizens above age 95), and date of birth is recorded from
official certificates (and not reported by individuals). Notice that no exposures to risk need
to be included in the analysis, as our method uses individual observations (and not aggregate
ones—by attained age, for instance). Also, these individual data are known to be reliable,
which is not always the case for aggregate mortality statistics at old ages.

Finally, in population theory, the complete cohort approach consists of observing a group
of people born at the same time until all of them pass away, but this assumption is often
difficult to validate in practice. Fortunately, in the Belgian case, the very scrupulous age
validation performed allows us to consider the complete extinction of the different cohorts
under study, as far as all newborns in Belgium who died in Belgium are concerned. Few
belgian citizens born in Belgium died abroad above 95 years of age. Intense international
cooperation made it possible to identify a limited number of centenarians born in Belgium
who died abroad. For reliability and coverage reasons, this study did not consider these
cases. This explains why the complete cohort approach has been adopted in the present
study.

2.2 Descriptive Statistics

Basic descriptive statistics of the data sets are given in Table 2.1} The average age at death
for females is greater than for males, as expected. However, the differences are rather modest,
compared with the differences observed for the total lifetime from birth, except for the much
higher number of females reaching age 95 compared with males. The highest ages at death
observed in Belgium for these cohorts are 112.58 for females and 111.47 for males. Recall
that Jeanne Calment died at the age of 122 years in 1997. After this record, only a single
person, Sarah Knauss, has lived for 119 years (she died in 1993). Since then, three women
lived more than 117 years, and three others are still alive at 116 years old.

Cohort-specific data are displayed in Table for both females and males. We can
read there the initial number of individuals included in the analysis, for each extinct cohort
born between 1886 and 1904 (that is, the number Lgs of individuals born in calender year



Table 2.1: Basic Descriptive Statistics for Observed Ages at Death Above 95,
Cohorts 1886 to 1904

Males Females
Number of observations 10,050 36,616

Mean 97.35 97.75
Std. dev. 2.05 2.37

1st quartile 95.77 95.91
Median 96.79 97.12
3rd quartile 98.36 98.99
Maximum 111.47 112.58

t € {1886,...,1904} still alive at age 95), as well as the age at death of the last survivor
for each cohort. These values are given separately for males and females. We can see there
that Lgs increases as time passes, as expected. Also, the number of individuals entering the
study is larger for females than for males. The maxima m are relatively stable over cohorts
and are higher for females than for males: For each cohort, the last survivor was a female.
In addition, there is no visible trend in the shifted life expectancy at 95. It even remains
stable around 97 for all male and female cohorts. The observation that egs did not improve
across the 19 birth cohorts is quite remarkable. This seems to suggest no potential gain of
extreme longevity through generations at these advanced ages. We address this issue using
a formal test in Section 3.

Notice that the value of Lgs increases for successive cohorts, due to an increase in the
number of births (which for boys starts roughly at 90,000 in 1886 and reaches about 100,000
in 1904, and for girls starts at about 85,000 and reaches about 95,000) and an improvement
of survival up to age 95 for both males and females. Nevertheless, the life expectancy at
95 did not show any improvement; the different cohorts show similar figures, and no trend
emerged (see Table . The method adopted is not appropriate for using a stationary
population. In fact, we observe a 10 percent increase in the number of births, but this does
not affect our results, as the survival above 95 is similar for all cohorts (see Section [3.5|for a
formal test). We agree that a problem could have emerged if the number of births had not
increased substantially and the survival above 95 had improved, which is not the case here.

Box plots are provided in Figure 2.1, and Figure displays the corresponding his-
tograms. For both genders, box plots reveal ages at death above median and third quartile
that are spread on a wider range of values. The same conclusion is reached on the basis of
the histogram, where we see that the right tail expands on old ages, whereas the majority
of deaths are concentrated before age 100. This suggests that we deal with a skewed dis-
tribution with a significant proportion of values in the right tail that might be considered
extreme.

3 Methodology

Now that the data basis has been presented, let us perform a statistical analysis using the
tools from EVT.



Table 2.2: Initial Size for Each Cohort (Lg;), Observed Highest Age at Death
(m) and Mean Age at Death (95 + ég5), Males and Females

Males Females
t Lgs m 95 + ég5 Los m 95 + €95
1886 359 108.17  97.35 1045 107.78  97.70
1887 418 105.13 9741 1130 110.45  97.64
1888 412 106.33  97.20 1242 110.32  97.68
1889 462 105.58  97.53 1208 110.16  97.69
1890 425 107.70  97.50 1311 112.58  97.60
1891 428 105.81  97.35 1368 109.72  97.70
1892 444 105.44  97.29 1510 110.89  97.72
1893 492 110.29  97.46 1544 107.75  97.63
1894 498 106.19  97.22 1760 107.41  97.71
1895 526 106.62  97.24 1852 109.38  97.86
1896 545 106.27  97.43 1894 109.79  97.85
1897 568 106.43  97.33 2009 109.85  97.72
1898 572 105.74  97.26 2149 110.89  97.71
1899 630 106.88  97.35 2301 111.60  97.72
1900 576 111.47  97.27 2460 111.70  97.78
1901 635 103.77  97.23 2787 110.36  97.89
1902 632 106.79  97.42 2829 112.36  97.82
1903 669 104.71  97.46 2980 109.96  97.81
1904 759 106.15  97.32 3237 110.18  97.74




Figure 2.1: Box Plots for the Observed Ages at Death Above 95, Cohorts 1886
to 1904 for Males (Left) and Females (Right)
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Figure 2.2: Histograms for the Observed Ages at Death Above 95 for Males
(Left) and Females (Right), Cohorts 1886 to 1904
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3.1 Extreme Value Theory (EVT) for Mortality at the Oldest
Ages

Consider a sequence of independent individual lifetimes T}, 75, T3, ... with common distri-
bution function
«q0 = P[T; < z], >0,

fori =1,...,n, satisfying oqo = 0. Here, T} represents the total lifetime, from birth to death.
It may also represent the remaining lifetime after a given initial age o (equal to 95 in our
study), with common distribution function ,q,.

Define a sequence of maxima M, = max{Ty,T5,...,T,}. In words, M, represents the
oldest age at death observed in a homogeneous group of n individuals subject to the same
life table z — ,q9. EVT studies the asymptotic behavior of M,, when n tends to infinity
and provides results analogous to the central limit theorem for maxima (rather than sums),
provided some mild technical conditions on x — ,qq are fulfilled. Of course, without further
restriction, M,, obviously approaches the upper limit of the support

w = sup{z > 0|,q0 < 1}, possibly infinite.
This is easily seen from

P[M, <z] = (mqo) —>{ Lifr > w as n — 0o.
Once M, is appropriately centered and normalized, however, it may converge to some specific
limit distribution. Precisely, if there exist sequences of real numbers a,, > 0 and b,, € R such
that the normalized sequence (M,, — b,)/a, converges in distribution to H, i.e.,
{— < x} = lim (anﬁbnqo) = H(z) (3.1)

n—-+oo

lim P

n—-+oo an

for all points of continuity of H, then H is a generalized extreme value (GEV) distribution,
i.e., H = H¢ given by

exp (—(1+€2);/) if € £ 0,
He(z) =

exp (—exp(—x)) if € =0,

where y; = max{y, 0} is the positive part of y. The definition domain of He is (—1/¢, 4+00)
if £ > 0, (—o0,—1/¢) if £ < 0, and the whole real line R if £ = 0. Here, the parameter
& controlling the right tail is called the tail index or the extreme value index. The three
classical extreme value distributions are special cases of the GEV family: if £ > 0, we have
the Fréchet distribution, if & < 0, we have the Weibull distribution, and & = 0 gives the
Gumbel distribution. When & > 0, we face lifetimes with heavy tails, which contradicts
empirical evidence available for human lifetimes (in this case, forces of mortality decrease
with attained age). Thus, the cases £ = 0 and £ < 0 are of interest for life insurance
applications. Notice that if holds with £ < 0, then w < oo, so that a negative value of
& supports the existence of a finite ultimate age w.



A sufficient condition for (3.1)) to hold is
d /1
lim — (-) —¢ (3.2)

r—w xr M$
where
4 q0
__ dz?®
fo =
zPo

is the force of mortality at age x. Intuitively speaking, t can be considered as the force of
resistance to mortality, or force of vitality at age x. The resistance to mortality must thus
stabilize when £ = 0 or become ultimately linear. A negative ¢ indicates that the resistance
ultimately decreases at advanced ages. For & < 0, we have w < oo, and condition (3.2))
implies

lim ((w—2)p,) = —1.

T—w 5

3.2 Limiting Remaining Lifetime Distribution
Consider the remaining lifetime 7' — x at age x, given T' > x, with distribution function
s ¢y = P[T —x < s|T > x.

It may happen that for large attained age x, this conditional probability distribution stabi-
lizes after a normalization—that is, there exists a positive function a such that

T—x
a(z)

where G is a nondegenerate distribution function. It is possible to establish that only a
limited class of distribution functions are eligible in (3.3]), namely

>3‘T>x —1-G(s), s>0, (3.3)

T—w

limP[

G(s) = Gels) = InHy(s)

L= (1+&) /5 i € 0,
1 —exp(—s) if £ =0.

Here, the support is the half positive real line if £ > 0 and [0, —1/&] if £ < 0. The related
scale family known as the generalized Pareto (GP) distribution is then defined as

Gepls) = Ge (£> , B>0.
g
At particular cases of the GP distribution functions G¢,3, we find some classical distributions,
namely, the Pareto distribution when & > 0, the type II Pareto distribution when ¢ < 0,
and the negative exponential distribution when £ = 0. Thus, when ¢ = 0, the remaining
lifetimes at high ages become ultimately negative exponentially distributed, so that the forces
of mortality stabilize, in line with the empirical study conducted by Gampe (2010).



Clearly, extreme value analysis for maxima is thus closely connected with the study of
residual lifetimes. It can be shown that holds with H = H¢, if and only if holds
with G = G¢. In words, G¢ describes the remaining lifetimes above sufficiently old ages if
and only if H¢ governs the sample maximum behavior, i.e., if ' belongs to the domain of
attraction of a GEV distribution.

For some appropriate function 3(-), the approximation

Gz = Gep(a)(s) for s >0 (3.4)

holds for z large enough. The approximation (3.4) is justified by the Pickands—Balkema—de
Haan theorem:

Jimsup [ug; = G (s)] = 0 (3.5)
is true provided that F satisfies some rather general technical conditions. In view of ,
the remaining lifetimes at age x can be treated as a random sample from the GP distribution,
provided z is large enough.

If w < oo (ie., & < 0), then a suitable transformation of the extreme value index &
possesses an intuitive interpretation. Recall that the remaining life expectancy at age =z,
denoted as e,, is defined as

e, =E[T —z|T > x].

Aarssen and de Haan (1994) established that for £ < 0, so that an upper bound w exists on
the life span, (3.1]) is equivalent to

ey S
= lim = =«

lim E =
oy T=w W — X 1-¢

T—w

[T—x

‘T>x
w—x

These authors call @ = (&) the perseverance parameter and provide the following explana-
tion. Consider an individual still alive at some advanced age x. The ratio % represents
the percentage of the actual remaining lifetime 7" — x to the maximum remaining lifetime
w — x. This percentage stabilizes, on average, when x — w and converges to «, which thus
appears as the expected percentage of the maximum possible remaining lifetime effectively

used by the individual.

3.3 Threshold Selection

To be in a position to apply the results presented in the preceding section, we first have to
determine a threshold age z* such that the approximation is sufficiently accurate for
x > x*. Thus, our aim is to determine the youngest age beyond which the GP distribution
offers a reasonable approximation of the remaining lifetime distribution. Notice that Li et
al. (2008) and Bravo et al. (2012) also used statistical procedures to select the threshold age
x* above which the GP behavior appears. This is done by modeling the mortality below the
threshold, using a standard parametric model (Gompertz in these studies), and by shifting
to the GP model above the threshold. The optimal threshold value is then obtained by a grid
search, maximizing the likelihood of the composite model. However, this selection procedure
heavily depends on the appropriateness of the parametric model describing mortality below

10



the threshold. This introduces an additional specification risk in the analysis of mortality at
the oldest ages, whereas EVT is in essence a nonparametric approach to modeling the tails
of a distribution. The flexible extreme value mixture model discussed in this section is also
based on a composite model, but it replaces the parametric specification for younger ages
with a flexible nonparametric one, avoiding this drawback.

To identify the optimal threshold value, we can use the following graphical tools from

EVT.

3.3.1 Empirical Mean Excess Function Plot

It is easily checked that when a lifetime has the GP distribution function G¢ 3, the remaining
life expectancy is a linear function in the attained age x; that is,

ey = B + Lm (3.6)

1-¢ 1-¢
provided z < w < [+ x£ > 0. Hence, the idea is to determine, on the basis of the graph of
the empirical version €, of e,, a pivot age x* such that €, becomes approximately linear for
older ages.
The empirical version of the remaining life expectancy e, viewed as a function of attained
age z, is displayed in Figure 3.1} These values have been obtained from the observed ages
at death {t;,ts,...,t,} represented in the database by

o _ i Ut > 4] Di (ti — 2)I[t; >

ez = — Tr =
where I[A] = 1 if the event A did occur and 0 otherwise, and where #B is the number
of elements in the set B. As usual, e, is only evaluated at the observations, i.e., for x €
{t1,t2,...,tn}. Denoting the observed ages at death arranged in ascending order as t;;; <

tg < ... <1}, we have in this case

Cipg = —— 2 (i) — tw)-

Clearly, if the remaining lifetimes obey the negative exponential distribution, then the
mean excess function is constant. Consequently, the plot of e, versus age x will be a hor-
izontal line. Short-tailed distributions will show a downward trend, and an upward trend
will be an indication of heavy-tailed behavior. The linear, decreasing shape of €, in Figure
[3.1] contradicts the negative exponential behavior of the remaining lifetime. A downward
trend is clearly visible in Figure supporting short-tailed behavior. Therefore, a negative
value of tail index £ is expected. Notice that the apparent increasing trend visible in the
far right part of Figure 3.1 for males, which conflicts with our intuition, is a feature of the
data and can be attributable to the high volatility in the last ages at death observed in the
population.

According to Poulain et al. (2001), the remaining life expectancies for Belgian male and
female centenarians (i.e. ej9) were estimated to 1.68 and 1.97, respectively. This is in line
with the values displayed in Figure [3.1]

11



Figure 3.1: Empirical Expected Remaining Lifetimes ¢, for Males (Left) and
Females (Right)

3.0
3.0

25
2.0 25

15
15

05

0.0
0.0

95 100 105 110 95 100 105 110

The comparison with negative exponentially distributed lifetimes can be performed with
the help of an exponential Q-Q plot. Its interpretation is easy. If the data are an indepen-
dent and identically distributed sample from a negative exponential distribution, the points
should lie approximately along a straight line. A convex departure from the ideal shape indi-
cates a heavier-tailed distribution in the sense that empirical quantiles grow faster than the
theoretical ones. Concavity indicates a shorter-tailed distribution. It is easy to see a concave
pattern of the exponential Q-Q plot in Figure [3.2] confirming the short-tailed behavior of
the lifetime distribution.

Here it is tricky to detect the lowest threshold beyond which the mean excess function plot
becomes approximately linear (see Figure . Consequently, we favor automatic selection
procedures for the threshold suggested in the literature. We refer the reader to Scarrott et
al. (2012) for a detailed review of threshold selection methods.

3.3.2 Pickands Method

In his pioneered paper establishing the theorem underlying the POT approach, Pickands
(1975) also proposed a selection procedure for the threshold. Pickands (1975) defined z* =
Tin—4r41), since the 4M largest observations intuitively contain information about the upper
tail of the distribution function. We recall that T} is the kth-order statistics in ascending
order. Specifically, Pickands (1975) suggested cor/r\lputing M in the following way. For each
Ll=1,2,...,[n/4], let d; = supy<ycno |§l($) — G()|, where §l($) is the empirical upper
tail, defined as -

12



Figure 3.2: Exponential Q-Q Plot for Lifetimes for Males (Left) and Females
(Right)
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and G(z) is the estimate of the survival function of the GP distribution with parameters ¢
and [ being estimated by the percentile method using the median and the third quartile.
Notice that d; is a kind of Kolmogorov-Smirnov test statistic. Finally, M is obtained as the
smallest integer solution of

1<i<[n/4]
Applying this method to our data sets, we obtain the results displayed in Table (3.1}

Table 3.1: Values of M, 4M, and Tj,_4y/+1) Obtained by the Pickands Method for
Both Males and Females

Male Female
M 2,302 3,159
4M 9,208 32,256
Tin—anm41)  95.24 95.41
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3.3.3 Reiss-Thomas Method

Reiss and Thomas (1997) proposed an automatic selection procedure to choose the optimal
value of the threshold z*. According to these authors, 2* = T}, _j+11], where £ minimizes

i<k

Here, 5 is a shape parameter estimator based on the upper ordered statistics Tj,,—i1, - - -, Tjn)-
The tuning parameter § satisfies 0 < § < 0.5. Neves and Alves (2004) recommend taking
0.35 as the value of § for computations. In this setting, final values for k* and 2* are recorded

in Table 3.2

Table 3.2: Values of k* and 2* for Both Males and Females With the Reiss-
Thomas Method

Male Female
k* 9,959 4,108
Th—r+41 95.03  100.89

3.3.4 Flexible Extreme Value Mixture Model

As pointed out in Scarrott et al. (2012), more sophisticated threshold selection procedures
have been developed in the last decade, such as the mixture model. Our goal is to approxi-
mate the upper tail of the lifetime distribution with the GP distribution without specifying
any parametric form for the bulk of the distribution in order to avoid a specification risk.
This differs from Li et al. (2008), who specified a Gompertz distribution below the threshold.
Our purpose is achieved if the bulk of the distribution is simultaneously estimated nonpara-
metrically. This model is precisely the one developed by MacDonald et al. (2011) with their
flexible extreme value mixture distribution. Formally, if I is the common distribution of the
11,715,175, ..., then it is expressed as

H(z|A
(1-— gbu)Hgi")\g r<u

(- 6u) + 6uG(alu, 8.6 o> (3.10)

F(x[Au, 5,§) = {

where ¢, is the probability of being above the optimal threshold u = z*, H is a nonparametric
kernel distribution that depends on a bandwidth parameter A, and G is the GP distribution
function. The likelihood of model ([3.10)) is expressed as

L(0) = Lk(A, u)Lpp(u, 1, B, ) (3.11)

where 0 = (A, u, i, 5,€) is the vector of parameters. Lk and Lpp respectively refer to the
likelihood of the nonparametric and GP parts of the overall distribution.
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The function nlbckdengpd from the R-package evmix has been used for estimation. The
Epanechnikov kernel was specified for the nonparametric part, as suggested by Wang et
al. (1998), since it is optimal in the mean square sense. To avoid issue of ties in kernel
estimation, similar exact ages were uniformly spread over the same day, as suggested in
Einmahl et al. (2008). Maximum likelihood estimation of the model requires initial values
for parameters A, u, 8 and £ for numerical optimization. As there exists no rule of thumb for
choosing these values, a reasonable grid of values for each parameter was fixed, and then the
negative log likelihood was computed at each point of the Cartesian product of those grids
in order to reasonably surround the parameters’ space. Initial values were set as parameter
values, which minimized the negative log likelihood. These values are in Table [3.3]

Table 3.3: Initial Values for Parameters of the Flexible Extreme Value Mixture
Model for Both Males and Females

Males Females

u 99 100
& 01 0.1
3 2 2.2
A 0.019  0.019

Estimation results are summarized in Table [3.4] To asses the impact of the age range
considered for estimation, we also consider the restricted data set covering ages 98 and over.
We start at age 98 because market statistics are available from the Belgian National Bank,
acting as the insurance regulator, up to that age (the last category is open, gathering ages
99 and over).

Table 3.4: Estimated Values Parameters of the Flexible Extreme Value Mixture
Model for Both Males and Females

Males Females

> 98 > 95 > 98 > 95
98.89  97.82 99.99 100.01
-0.156 -0.140 -0.125 -0.125
2.146  2.218 2.251 2.248
0.030  0.025 0.028 0.039

)y 2 R

We see from Table that the estimated parameters remain stable when the age range
is modified. In particular, the optimal age z* = u is not affected when the initial age moves
from 95 to 98.

3.4 Final Choice

Thresholds selected by all selection procedures are summarized in Table |3.5]
The GP distribution enjoys the convenient threshold stability property, which ensures
that if the lifetime has distribution function G¢ g, then the remaining lifetime at any age z
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Table 3.5: Thresholds Selected by All Three Automatic Selection Procedures for
Both Males and Females

Males Females
Age >98 > 95 > 08 > 95
Pickands 98.40 95.24 98.60 95.41

Reiss & Thomas 98.07 95.03 100.89 100.89
Mixture model 98.89 97.82 99.99 100.01

has distribution function G¢ gi¢,. This basically says that, provided the lifetime obeys the
GP model, the remaining lifetime at any attained age x is still GP with the same index &.
Therefore, the threshold z* was finally fixed at the maximum of those values in order to be
in line with the property of threshold stability of the GP distribution. Henceforth, for the
remainder of the paper, z* is set to 98.89 for males and to 100.89 for females. This means
that the extreme value region for female ages appeared much later than for male ages. It
also clearly reflects the gender gap.

3.5 Maximum Likelihood (ML) Estimation of the GP Parameters

Now that the threshold age z* has been selected, the GP parameters have to be estimated
from the observed T; exceeding x*. Several methods are available, including moment estima-
tion, probability-weighted moment estimation and maximum likelihood estimation. Maxi-
mizing the likelihood function is used here, due to its optimal statistical properties, intuitive
contents and general acceptance in the actuarial community. Alternative methods are con-
sidered in Section [3.6l

The GP likelihood function for observed remaining lifetimes at attained age x* is given

by N
ce.s) = [ <% (1+g<ti_m)5>.

it >a*

The log likelihood to be maximized is

L&, B) = —In B#{t;|t; > 2*} — (1 + 1) > In (1 + %(ti - x*)) (3.12)

g i|t;>a*

where #{t;|t; > 2*} is the number of survivors at age x*, denoted as L,~. This optimization
problem requires numerical algorithms. There are different approaches to get starting values
for the parameters £ and $. A natural approach consists of using moment conditions (that
is, we equate sample mean and sample variance to their theoretical expressions involving &
and (), which gives

+2

ovom L z svom L
rov =2 (1= ) and BV =5

where 7 and s? are the sample mean and variance of the observed t; — z*. For £ < 0, the use
of (3.13]) does not require any additional assumption, as all moments are finite.

—2

:E(% + 1), (3.13)
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Another convenient way to get starting values for the maximum likelihood estimates
consists of fitting a straight line to the empirical remaining life expectancies, as a function of
attained age x. The intercept and slope of a straight line fit to e, determine the estimations
of ¢ and 8 in accordance with (3.6)).

It can be shown that for £ > —0.5, the maximum likelihood (ML) regularity conditions
are fulfilled. Hosking and Wallis (1987) proved that the ML estimators of the GP parameters
(f , B) are asymptotically normally distributed with expected value (&, 3) and approximate

covariance matrix . Are? pite)

Sa0 = ( S0 ch 2018 ) (314
This result allows us to obtain the standard errors for the ML estimators. For reasons
of convergence of the algorithm, a reparametrization of the GP model with parameters
o =log(B) and a = 1/¢ is often used to maximize the likelihood.

ML estimation of GP parameters can be found in Table 3.6, together with standard
errors. Since £ > —0.5 in both cases, upper bounds of the 95% confidence  interval for tail
index £ can be obtained from the asymptotic normality of the ML estimator & recalled above.
The upper bounds of the resulting confidence intervals are —0.065 for females and —0.102 for
males. Both bounds are negative, supporting the assumption £ < 0 for both genders.

Table 3.6: Maximum Likelihood Estimates for the GP Parameters § and £, With
Standard Errors and Kolmogorov-Smirnov Goodness-of-Fit p-Values

Parameters Male Female

T 98.89  100.89
Ly 1,940 4,104
gML ~0.132  -0.092

s.e (EMF) 0.015  0.014
ML 2.008  2.019

se (BML)  0.057  0.042
KS pvalue 0.828 0.951

To check whether the data comply with the GP distribution, we plotted the histogram
and the GP density function (see Figure and the GP Q-Q plot (see Figure B.4)). In the
Q-Q plot, the empirical quantiles versus the estimated GP quantiles are represented. If the
GP model fits, a linear pattern must be visible.

Both histogram and density function exhibit the same shape. Furthermore, there is a
clear linear pattern in the Q-Q plot, which confirms that the GP model adequately describes
the remaining lifetime distribution above x*.

Moreover, a formal Kolmogorov-Smirnov goodness-of-fit test has been performed to check
the compliance of the data with the GP distributions. The resulting p-values are reported
in Table 3.6, As they exceed all the usual confidence levels, the null hypothesis of a GP
behavior cannot be rejected for the lifetime data under study.

The analysis performed in this section could theoretically be applied separately to each
cohort. In practice, however, this is hardly possible, because of the much-restricted group
sizes at older ages when considering cohorts in isolation. As a consequence, parameter
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estimates would have a poor efficiency. This limitation is inherent to all studies devoted
to mortality at old ages. The descriptive statistics reported in Table 2.2 do not reveal any
trend across cohorts, based on observed cohort-specific highest ages at death and remaining
life expectancies.

Let us now investigate more accurately whether mortality at old ages differs between
cohorts. To this end, denote as T the age at death for an individual included in the study,
belonging to cohort C. To keep reasonable sample sizes, we created four groups of consecutive
cohorts. Each of the first three groups, GG, G5 and (3, consists of five consecutive cohorts,
whereas the last group, G4 = {1901, ...,1904}, contains the last four cohorts. Denote as

Fi(y) =PI <ylCeqGyj], j=1,...,4 (3.15)

the lifetime distribution for the jth group of cohorts. The unconditional lifetime distribution
F' is defined as F(y) = P[T" < y|. If both random variables 7" and C' are independent, then
both conditional F; and unconditional F' distributions coincide. Thus, we are interested in
testing for

{H02F1:F2:F3:F4:F

Hy: F(y) # F](y) for some 7 and y. (3.16)

Here, we use the test statistic of Cramer—Von Mises type proposed by Kiefer (1959). The
p-values obtained for both male and female populations are respectively 0.853 and 0.7019,
leading to the nonrejection of the null hypothesis at all usual confidence levels. No significant
mortality trends across cohorts are detected at older ages in our data set, which supports
the analysis based on the 19 cohorts. Notice that this homogeneity across cohorts is in line
with the study by Fraga Alves et al. (2016) performed on supercentenarians, where no time
trend has been detected.

3.6 Comparison With Alternative Estimators

Apart from the ML estimator, several other estimation procedures have been proposed in
the literature for the tail index £. In this section, we compare ML estimation with some
commonly used alternative estimators:

moment estimator denoted as WOM and EMOM

B.5
probability weighted moment estimator denoted EP MOM and B\P MOM “which are often
used in EVT studies (see Beirlant et al. (2005a) for theoretical details);

, which have been presented in Section

extended Hill estimator applicable to the case & < 0, denoted as EH and BH and proposed
by Beirlant et al. (2005b);

moment-type estimator denoted as EM and B\M and proposed by Dekkers et al. (1989).

Results from these alternative estimators are summarized in Tables 3.7 and 3.8 for both
females and males at optimal thresholds x*. We see there that the estimated tail index
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Figure 3.3: Histogram and GP Density Function of the Remaining Lifetimes at
Age x* = 98.89 for Males (Left) and z* = 100.89 for Females (Right)
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Figure 3.4: GP Q-Q Plots for the Remaining Lifetimes at Age x* = 98.89 for
Males (Left) and z* = 100.89 for Females (Right)
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for females is smaller than the one for males for all estimators, while the estimated scale
parameter for females is higher than the one for males. Clearly, the estimation method affects
the estimated tail index, which in turn may lead to different conclusions about, for instance,
the value of the ultimate age. Despite these differences, all estimators support & < 0.

Table 3.7: Comparison of Estimation Results With Optimal Threshold z* = 98.89
for Males

ML MOM PMOM M H
¢ -0.132 -0.163 -0.171  -0.163 -0.155
g 2098  2.160 2.175 2128  2.113

Table 3.8: Comparison of Estimation Results With Optimal Threshold x* = 100.89
for Females

ML MOM PMOM M H
¢ -0.092 -0.097 -0.105 -0.097 -0.094
g 2.019 2027 2.043 1.997  1.991

4 Some Applications of the Model

4.1 Ultimate Age w

As the negativity of the tail index is supported by the data, this implies the existence of a
finite ultimate age w that can be estimated by

W=z —

(4.1)

EARNIAS)

Estimated ultimate ages computed from (4.1)) with ML estimates are displayed in Table
[4.1] Simulated confidence intervals at 95% also are shown there, based on 10,000 simulations.

Table 4.1: ML Estimated Ultimate Ages with 95% Simulated Confidence Interval
for Both Male and Female
Note: @~ and @" are respectively lower and upper bounds.

Males Females

W 114.82 122.73
w- 11231 118.19
wt 118.87  131.21

The female population has the highest estimated ultimate age. Estimations are in line
with the highest ages at death recorded for females (112.58) and for males (111.47).
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Estimated ultimate ages derived from alternative estimators also are considered. For
moment type estimators éM and gH , we estimate w as proposed by Einmahl and Magnus

(2008):

Wir = T (1 — MV (k")

with k* =n — ¢* and

M (k) =

Under some mild technical conditions that can be found in Dekkers et al. (1989),

1
k

R‘

=0

Vi (@ - w)

Ehs

is normally distributed with mean 0 and variance

(1

Thoiy MY () (1 - fA)

— §*(1 — 36 +487)

§H (1 —26)(1 = 35)(1 - 48)

Therefore, simulated confidence intervals for w can be provided. Results are summarized
in Tables [4.2] and [4.3] for females and males, respectively. Notice how the estimated ultimate

age is sensitive to the estimator used for computation.

1 — min(0, @))

Z (108(T}n ) — 10g(Thu ).

(4.2)

Table 4.2: Alternative Estimation Results With Optimal Threshold z* = 98.89

for Males
ML | MOM | PMOM M H
w | 114.82 | 112.14 111.64 | 111.91 | 112.53
W~ | 112.31 | 109.81 109.05 109.07 | 109.29
wT | 118.87 | 116.20 116.65 114.75 | 115.76

Table 4.3: Alternative Estimation Results With Optimal Threshold z* = 100.89

for Females

ML | MOM | PMOM M H
w | 122.73 | 121.86 120.30 | 121.41 | 122.14
W~ | 118.19 | 117.43 115.80 | 115.80 | 116.09
wt | 131.21 | 130.22 129.53 | 127.03 | 128.20
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4.2 Highest Age at Death M,

As pointed out by Wilmoth and Robine (2003), the maximum age at death can be modeled
statistically as an extreme value of a random sample. To study the behavior of the highest
age at death, we use the GP approximation of the exceedances. Under the conditions that
yield to the GP approximation Gg¢g for the remaining lifetime distribution at age x*, the
number L, of survivors at threshold age z* is roughly Poisson with mean (,« = E[L,]
(as an approximation to the binomial distribution valid for large sizes and small success
probabilities). As a consequence, the distribution function

S P[M[L:c*} S S]

= P[L, :O]—i—ZP[Lm* =k Ty —ao"<s—a" ... Ty —a"<s— a7
k=1

can be approximated by
k
s ek, s—a*\ V¢
exp(—Ly) + Zexp(—ﬁx*) o (1 — (1 +¢ 3 )
k=1 ’

+
*\ —1/¢
= exp (_)\(1+§s—5$) )
+

Hence, we find the following approximation for the quantile at probability level 1 — € of

Mip,.:
* ﬂ g:):* ¢ 1
v (‘mu—@)"

Notice that if we define the location-scale family He,, ,, by

T —p
Hﬁ;H:Tﬁ(‘%’):Hi( ¢ )7 /LGR, ¢>0>

then the distribution of the maximum M, , of the lifetimes of the L, individuals reaching
age x* can be approached by a GEV distribution Hy,, ,, where

p=BE N6 — 1) and ¢ = BES..

The corresponding quantile function is given by

S g — ¥ In(—In(u)) if&=0

So that the median of the highest age at death is given by

HA(Q:{M+%«—m@»f—0 i€ #0

(In(2)) € — 1

ngﬁyw(o&a) =p+ ¢
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This median will limit g — ¢ In(In2) as € — 0. If £ < 1, then

BM..] =+ (P1-¢) - 1)

will limit p + 15 as & — 0, where j is the Euler constant (= 0.57721), which equals I"(1),
where I is the digamma function, i.e., the derivative of the gamma function. If £ < 1/2,
then

v?(T(1-26) - ((P(1 - ©)°)
52

V[MLZ*] =

with limit ¢?7%/6 as & — 0.

Notice that this suggests another estimation procedure for the tail index &, often referred
to as the block maxima approach. See, for instance, Watts et al. (2006) for an application
in life insurance. The idea is to fit the GEV distribution to maxima taken from independent
blocks of data. Here, this involves recording the cohort-specific maxima and fitting the 19
gender-specific observations, using the GEV distribution Hg,,,. Estimates are summarized
in Table 4.4l They are obtained by using the R-package ismev, which provides tools for
statistical modeling of extreme values.

Table 4.4: GEV Estimates and Their Standard Errors (in Parentheses) for Males
and Females

1 B 3
Males 105.83 1.323 -0.012
(0.334) (0.236) (0.139)
Females 109.78 1477 -0.434
(0.375) (0.279) (0.170)

Theoretically, tail index estimates from the block maxima and POT approach should be
very close. As one can see, results are slightly different, meaning that estimation is sensitive
to the chosen approach. This difference may also be linked to the block definition we adopted
for the block maxima approach. In fact, we simply consider cohort blocks, which makes more
sense demographically. However, the block maxima only take into account the 19 observed
cohort maxima, leading to more estimation instability.

Let us now compute the prediction intervals for the highest ages at death observed for
each cohort and compare them with the observed, cohort-specific M,,. The result is visible
in Figure [.1] where we can see the observed cohort-specific maxima surrounded by 95%
prediction intervals. Almost all cohort maxima are within the prediction interval.

4.3 Point Estimation of High Quantiles

Quantiles at usual probability levels can easily be estimated by their empirical counterparts.
However, when we are interested in the very high quantiles, this approach is no longer
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Figure 4.1: Observed Cohort-Specific Maxima Surrounded by 95% Prediction
Intervals for Males (Left) and Females (Right)
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valid, since estimation based on a limited number of large observations would be strongly
inaccurate. Fortunately, the EVT approach offers an efficient alternative.

From ({3.4), we see that (provided z* is sufficiently large) a potential estimator for the
remaining lifetime distribution yq,« is GE; 3(3). Quantile estimators derived from this curve
are conditional quantile estimators that indicate the potential survival beyond the threshold
age r* when it is attained. When estimates of the unconditional quantiles are of interest,

relating the unconditional cumulative distribution function g to G 5 for x* — g > x>,
through

<90 = 1—2po
1— z*P0x—az* Pr*

1— x*p()(l — Gag(a: — :C*))

we can obtain high-level quantiles, i.e., solutions ¢(¢) to the equation

Q

t(e)40 = I—e

Provided the sample size is large enough, we can estimate ,«py by its empirical counterpart
so that estimated quantiles are estimated as

e i((0eo) )

where L.« and Lgs are the number of survivors at the threshold age z* and at age 95 (i.e.,
the total number of individuals under study for a given cohort), respectively.

(4.3)
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The survival probability to age z* — % > x > x* can be estimated by

o~ L:):* *
2P0 = Ton <1 — Gag(x —x )) )

Notice that for 2* — 2 > 2 > 2*, we have

~ 1
e @ — o)

5 Discussion

Mortality at oldest ages is difficult to study because of data scarcity. In this paper, a
unique Belgian database of individual lifetimes allowed us to accurately study this mortality
using tools from extreme value theory. Maximum likelihood estimation gives a negative
estimated tail index, suggesting the existence of an ultimate age. We found an ultimate
age of 114.82 for males and 122.73 for females. Those results are consistent with observed
data and demographic experience in the sense that they are higher than observed highest
ages in the data set (111.47 for males and 112.58 for females) and approximately equal to
the worldwide maximum age records. Interestingly, the obtained ultimate age for females is
close to Jeanne Calment’s record of 122.42 (122 years and 164 days); she was born in Arles,
France, on February 21, 1875, and died at the same place on August 4, 1997. The values
obtained in this paper are also in line with the study by Dong et al. (2016), who conclude
that the human life span has a natural limit of about 115 years, with occasional outliers like
Jeanne Calment.

Alternative estimators for the tail index were also considered. Results clearly show the
sensitivity to the selected estimation procedure.

Contrarily to previous studies by Robine et al. (2005) and Gampe (2010), we do not
conclude that the force of mortality approaches a constant level (0.7 in their studies). This
may be explained by the following reasons:

- The IDL gathers information from different populations, whereas we conduct our anal-
ysis on a single population.

- Younger ages are included in the analysis.

Notice also that the EVT model assumes homogeneity, in contrast to frailty models recog-
nizing the heterogeneity present in the population with respect to mortality. In that context,
the flattening of the mortality curve at old ages is attributed to mortality selection. The
EVT approach could have nevertheless led to the conclusion that the tail index is 0, meaning
that the remaining lifetimes become negative exponentially distributed above a sufficiently
high threshold, which approximately conforms with the conclusion drawn from frailty mod-
els (with Gompertz baseline and gamma frailty, for instance). The empirical findings seem,
however, to contradict this conclusion, as data support a negative tail index, which results
in a lighter tail than with the negative exponential distribution, and an increasing force of
mortality at the oldest ages, tending to infinity at ultimate age.

25



As a by-product of our analysis, we also conclude that an ultimate age exists. However,
we do not claim that this limit must be interpreted in the biological or demographic sense,
induced by genes or another natural mechanism. Rather, the ultimate age that has been
obtained in the present paper serves as a working upper bound on a policyholder’s lifetime
when actuarial calculations need to be performed. From a practical point of view, closing
the life table by assuming that the missing ¢, are approximately constant beyond the last
available age—i.e., assuming that the remaining lifetimes ultimately conform to the negative
exponential distribution—is equally efficient and even conservative for products exposed to
longevity risk.
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