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 Abstract

The paper offers a simple framework for ranking the common reinsurance struc-
tures in practice with the theory of stochastic orders. The basic idea is to slice
the space of reinsurance structures into groups by expected loss cost to facilitate
the comparisons within the group and between groups. Given the standard risk
aversion assumption in economics, a spectrum of reinsurance structures with
the same expected loss cost can be compared analytically with one another and
sequenced based on their risk coverages under the convex order. The paper then
expands the dimension of the comparison to groups of reinsurance structures
with different expected loss costs, which can be ranked under the increasing
convex order and the usual stochastic order. As such, the paper maps out the
ordering for the entire space of reinsurance structures and presents it in a ma-
trix format for quick reference. The implication of this stochastic ordering to
reinsurance pricing is also investigated.

Keywords: Reinsurance; Usual Stochastic Order; Convex Order; Increasing
Convex Order; Stochastic Dominance; Insurance Premium Principles.
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1 Introduction

Reinsurance is one of the most frequently used risk management tools by insurance
companies in managing their portfolios. Insurance companies regularly evaluate and,
if necessary, modify the structure of their reinsurance program to adjust their overall
risk exposures in an evolving business environment. For example, an enterprise risk
management (ERM) analysis may compare the coverages and the efficiency between
the current reinsurance program and alternative reinsurance structures. These alter-
native reinsurance structures may involve increasing or decreasing the retention level
of an excess of loss reinsurance, adding an aggregate deductible or an aggregate limit
and adjusting the placement ratio.

To find the optimal reinsurance contract that maximizes an objective variable, such
as the net underwriting income, the typical industry approach is to run a simulation
model with as many potential reinsurance structures as possible. One of the key
challenges in the ERM evaluation process is how to set the reinsurance prices for
these alternative options, which to a large extent determines the efficiencies of the
options. Given that the ERM modelers usually do not have the benefit of market
quotes for all the options, it is important these reinsurance structures can be properly
ordered and priced in the model. The abundance of reinsurance choices together with
the complexity of reinsurance pricing, however, often makes the selection process very
difficult.

The goal of this paper is to provide actuaries, underwriters and brokers a frame-
work to compare common reinsurance structures so that unnecessary simulation may
be avoided and reasonable results can be obtained quickly in an ERM analysis. We
first explore the risk ranking of common reinsurance structures using the convex or-
der from the theory of stochastic orders (e.g., Shaked and Shanthikumar 2007, Müller
and Stoyan 2002 and Denuit et al. 2005). We then further expand the dimension of
the comparison to reinsurance structures with different expected loss costs using the
usual stochastic order (equivalently, the first-order stochastic dominance)1 and the
increasing convex order (dual to the general second-order stochastic dominance).

The convex order is dual to the concave order, which is the familiar Rothschild-
Stiglitz second-order stochastic dominance (R-S SSD) with equal means as pioneered
by Rothschild and Stiglitz (1970) in economics. Heyer (2001) uses the general SSD
to rank reinsurance contracts on an empirical distribution basis through simulation.
Assuming a risk-averse principal (or equivalently an increasing concave utility func-
tion), if the net underwriting income resulting from reinsurance structure A is larger in
“size” and less volatile than reinsurance structure B, then A is second-order stochastic
dominating B from a cedant’s point of view. However, the result of the underwriting
income comparison using the general SSD is often inconclusive as demonstrated in
Heyer’s analysis. This paper will focus on the loss distributions, rather than the un-
derwriting income distributions, of the reinsurance structures as there exists a natural
ordering for the former but not necessarily for the latter.

1See Levy (1998) for a general introduction to stochastic dominance and see Heyer (2001) for an
application of stochastic dominance to reinsurance.
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The convex order allows us to compare alternatives that have the same expected
value and thus eliminate the need to compare “size” or “magnitude.” The focus of the
comparison, instead, can then be on the “variability” or the pure risk of the reinsur-
ance structures. We will show analytically that any risk-averse individual under the
convex order can distinguish and rank basic reinsurance structures given their natural
orders in “variability.” In short, under the convex order, the stop-loss reinsurance is
more risky than the quota share reinsurance, which in turn is more risky than the
reinsurance with an aggregate limit (i.e., 100 percent quota share with a cap):

Aggregate Limit �cx Quota Share �cx Stop-Loss

where A �cx B means B dominates A under the convex order.
This line of reasoning can be extended to analyzing the aggregate loss treaties with

more than one contract feature. For example, a quota share treaty with a stop-loss
threshold can be compared with a quota share treaty with an aggregate limit. More
parameters need to be calibrated within a treaty to make sure that the mean loss is the
same across all treaties as required by the convex order. Note that these combination
structures with two contract features form a continuum of options that are bounded
by the three basic reinsurance structures. Outlined below are the rankings of some
possible combinations.

Aggregate Limit

�cxMixture of Quota Share and Aggregate Limit

�cxQuota Share

�cxMixture of Stop-Loss and Quota Share

�cxStop-Loss.

The approaches we have used in analyzing the aggregate loss reinsurance can also
be applied to the excess of loss (XOL) reinsurance treaties with features such as
annual aggregate deductible (AAD), higher per claim retention2, partial placement
(or equivalently cedant co-participation) and aggregate limit. Note that the convex
order is closed under convolutions. That is, when the claim count distribution is
independent of the severity distributions, the dominance relationship between the
severity distributions at the per risk/per occurrence level can be carried over to the
aggregate layer loss level. This closure property is crucial in proving the relationship
between XOL with partial placement and XOL with higher retention.

We will show that under the convex order, these XOL reinsurance treaties along

2Here the per risk/per occurrence retention is raised, but the sum of the retention and limit is
the same as that for the original layer. See Definition 5.6.
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with the corresponding hybrid structures can be ranked analytically as follows:

XOL with Aggregate Limit

�cxXOL with Mixture of Partial Placement and Aggregate Limit

�cxXOL with Partial Placement

�cxXOL with Mixture of Higher Retention and Partial Placement

�cxXOL with Higher Retention

�cxXOL with Mixture of Aggregate Deductible and Higher Retention

�cxXOL with Aggregate Deductible.

The next step is to expand the dimension of the comparison to reinsurance struc-
tures with different expected loss costs using the usual stochastic order (equivalently,
the first-order stochastic dominance) and the increasing convex order (the dual to the
general second-order stochastic dominance). The usual stochastic order (�st) can be
established between any two structures that are of the same type, but have different
expected losses. If different types of structures are involved in the one-on-one com-
parison, we may be able to establish dominance under the weaker increasing convex
order (�icx).

The use of the usual stochastic order and increasing convex order greatly expands
the range of reinsurance structures that can be compared and ranked. While it ap-
pears that the number of comparison combinations may be infinite, some reinsurance
treaties, however, are not comparable under any of the three stochastic orders. Partic-
ularly, the comparison is inconclusive between a quota share treaty and a treaty with
both an aggregate limit and an aggregate deductible. The reason for inconclusiveness
is that neither treaty has thicker tails on both ends of the density function, which
is required for the dominance relationship. We will show that the inconclusiveness
follows a predictable pattern based on the types of reinsurance structure.

Section 2 of the paper defines the three stochastic orders and Section 3 compares
the risk rankings of basic reinsurance structures under the convex order. The paper
then extends the analysis to the reinsurance structures with different expected values
in Section 4 while Section 5 applies the same methodology to excess of loss reinsurance.
We then compare aggregate reinsurance structures with XOL reinsurance structures
in Section 6. The implications of this risk-ranking analysis to reinsurance pricing
and the optimal reinsurance literature are considered in Section 7 and the concluding
remarks are in Section 8.

2 Preliminaries

Assume a standard collective risk model where x > 0 is a continuous ground-up loss
random variable for a single occurrence or a single risk with mean 0 < E(x) < ∞
and variance 0 < V ar(x) < ∞. Let N ≥ 0 be an integer-based random variable
for the ground-up loss frequency and independent of x. S denotes the corresponding
aggregate loss and S =

∑N
i=1 xi, where i is the index for N and S = 0 when N = 0.
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We first define the usual stochastic order and then introduce the increasing convex
order and the convex order.

Definition 2.1. Usual Stochastic Order: (Shaked and Shanthikumar 2007, Defi-
nition 1.A.1) Let X and Y be two random variables such that P (X > t) ≤ P (Y > t)
for all t ∈ (−∞,∞). Then X is said to be smaller than Y in the usual stochastic
order or X �st Y .

In economics, the usual stochastic order is called the first-order stochastic dom-
inance (FSD). The definition implies that at every percentile, Y has a higher value
than X. It can be characterized as X �st Y if, and only if, E(φ(X)) ≤ E(φ(Y )) for
all non-decreasing functions φ : R → R, provided the expectations exist. Clearly, if
X �st Y , then E(X) ≤ E(Y ) and V ar(X) ≤ V ar(Y ) as both the expectation and
the variance functions are non-decreasing.

Definition 2.2. Increasing Convex Order: (Shaked and Shanthikumar 2007, Def-
inition 4.A.1) Let X and Y be two random variables such that E(φ(X)) ≤ E(φ(Y ))
for all increasing convex functions φ : R→ R, provided the expectations exist. Then
X is said to be smaller than Y in the increasing convex order or X �icx Y .

The increasing convex order is a dual order to the increasing concave order or
the second-order stochastic dominance (Kass et al. 2009, Theorem 7.3.10), which
is often used by financial economists to analyze investment decision-making under
uncertainty. In other words, if a risk-averse individual prefers Y to X under the
second-order stochastic dominance, he/she would equivalently also prefer −X to −Y
under the increasing convex order. Thus it is usually a matter of convenience and
intuition to use the increasing convex order rather than the increasing concave order
or the second-order stochastic dominance when the objects for comparison are losses
rather than assets.

Definition 2.3. Convex Order: (Shaked and Shanthikumar 2007, Definition 3.A.1)
Let X and Y be two random variables such that E(φ(X)) ≤ E(φ(Y )) for all convex
functions φ : R → R, provided the expectations exist. Then X is said to be smaller
than Y in the convex order or X �cx Y .

The convex order is closely related to the increasing convex order and second-order
stochastic dominance. The difference between the convex order and the increasing
convex order is that the convex order requires that E(φ(X)) ≤ E(φ(Y )) holds for all
convex functions φ. Since φ(x) = x and φ(x) = −x are both convex, X �cx Y implies
that X and Y must have the same expected value, i.e., E(X) = E(Y ).

In a sense, the increasing convex order compares both the “size” and the “varia-
bility” of random variables while the convex order compares only the “variability,”
given that the underlying random variables must have the same expected value. Fo-
cusing on the convex order first allows us to make comparison between reinsurance
structures of the same “size.” This is essentially the concept of risk defined by Roth-
schild and Stiglitz (1970) in economics. The standard characterizations for these
stochastic orders are summarized as follows:
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Proposition 2.1. (Shaked and Shanthikumar 2007, theorems 41.A.3, 3.A.1 and
4.A.6) Let X and Y be two random variables. The stop-loss premium function of
X is defined as πX(d) =

∫∞
d

(1− F (x))dx, where F is the distribution function and d
is a stop-loss threshold.

(1)X �icx Y if, and only if, πX(d) ≤ πY (d),∀d ≥ 0

(2)Given E(X) = E(Y ), X �cx Y if, and only if, πX(d) ≤ πY (d),∀d ≥ 0

(3)X �icx Y if, and only if, there exist a random variable Z such that

X �st Z �cx Y or X �cx Z �st Y

Proposition 2.1 says that having a larger stop-loss premium is a necessary and
sufficient condition for both the convex order and the increasing convex order. It
can be shown that it is just a necessary condition for the usual stochastic order.
Thus if X �st Y , then X �icx Y . Or equivalently in economics, if −X is first-order
stochastic dominating −Y , −X is also second-order stochastic dominating −Y . Item
(3) of the proposition above is the well-known separation theorem that links the three
stochastic orders and will be used in Section 4 to show the dominance relationship
between reinsurance structures with different expected loss costs.

Assuming equal means, a sufficient condition for one random variable having larger
stop-loss premium than the other random variable for every stop-loss threshold is that
the distribution functions of the two random variable cross only once.

Definition 2.4. Single Crossing Condition3: The cumulative distribution func-
tions (CDF) F and G satisfy the single crossing condition if for some u∗ in (0, 1),{

F−1(u) ≤ G−1(u) if u ≥ u∗

F−1(u) ≥ G−1(u) if u < u∗.

The following proposition shows that this single crossing property together with
the equality of the means can be used to establish the convex order between two
random variables.

Proposition 2.2. (Rüschendorf 2013, Theorem 3.3.C; Denuit et al. 2005, Property
3.4.19 ) Let X and Y be two random variables with distribution functions F and G,
respectively, such that E(X) = E(Y ). Then X �cx Y if for some u∗ in (0, 1),{

F−1(u) ≤ G−1(u) if u ≥ u∗

F−1(u) ≥ G−1(u) if u < u∗.

We will see below in Section 3 that the comparison of the basic reinsurance struc-
tures can fit neatly into the framework with the single crossing condition. On the
other hand, multiple crossings can happen between the distribution functions of other

3Also known as the Karlin-Novikov cut criterion in its simplest form or the thicker tail condition
in the actuarial literature (Denuit et al. 2005).
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types of reinsurance such as excess of loss reinsurance. To establish the ranking for
those reinsurance structures, we need to use the property of closure under convolu-
tions for the three stochastic orders (Shaked and Shanthikumar 2007, theorems 1.A.3,
3.A.13 and 4.A.9) as shown in sections 5 and 6.

3 Aggregate Loss Reinsurance

We first investigate three basic reinsurance structures: those with stop-loss, aggregate
limit or quota share. The distribution functions for all these structures are defined
on the same space as the gross aggregate loss (0 ≤ S <∞), which is continuous and
increasing. Assuming these structures have the same means, we’ll show that they can
be ranked using the convex order since their distribution functions cross only once
when compared in pairs.

3.1 Three Basic Reinsurance Structures

Definition 3.1. Stop-Loss: The stop-loss reinsurance SD with a threshold D > 0 is

SD =

{
0 if 0 ≤ S < D

S −D if D ≤ S.

Definition 3.2. Quota Share: Let 0 < q < 1 be a quota share percentage. The
quota share reinsurance is Sq = qS.

Definition 3.3. Aggregate Limit (i.e., 100 percent quota share with a cap): The
reinsurance SL with an aggregate limit L > 0 is

SL =

{
S if 0 ≤ S < L

L if L ≤ S.

To illustrate the interrelationship of these reinsurance structures, the distribution
functions FSD

, FSq and FSL
for the reinsurance contracts with stop-loss, quota share

and aggregate limit, respectively, are graphed below in the typical Lee graph format
(Lee 1988) with the y-axis as loss amount and the x-axis as distribution percentile.
The area under each curve is the expected value of the respective loss random variable,
which is assumed the same for all reinsurance structures in the illustration.

In figure 1, the blue curve is the distribution function for aggregate gross loss S
while the red curve represents a stop-loss reinsurance SD, which stays flat until the
aggregate loss amount reaches the stop-loss threshold D at around 40th percentile and
then increases with the same incremental amounts as S. The expected retained loss
amount by the cedant would be equivalent to the area between the two curves.

The green curve in figure 2 represents the distribution function for a reinsurance
with an aggregate limit (SL) while the red curve is for a stop-loss reinsurance (SD).
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The SL curve follows the same path as the gross loss curve S and then becomes flat at
the aggregate limit L. The areas between the curves before and after the intersection
are the same and represent the trade-off between the two reinsurance structures. The
curve for the stop-loss reinsurance is more spread out with higher weights in the upper
tail.

Figure 3 compares the curves between the aggregate limit reinsurance SL and
the quota share reinsurance Sq while figure 4 compares the latter with the stop-loss
reinsurance SD. Notice the differences between the curves in figures 3 and 4 are less
than those in figure 2 as it will be shown later that the stop-loss reinsurance and
aggregate limit reinsurance are the two extreme options in terms of riskiness.

The reason we can conveniently graph the distribution functions of S, SD, SL and
Sq in the same space is that SD, SL and Sq are non-decreasing functions of S and are
in fact comonotone (Denuit et al. 2005, Definition 1.9.1). That is, given a specific
aggregate loss S∗ and its percentile u∗ on the distribution function of S, the corre-
sponding S∗D, S

∗
L and S∗q are all at the same percentile u∗ on the distribution functions

of SD, SL and Sq, respectively. This makes the comparison of reinsurance structures
much more straightforward.
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3.2 Risk Rankings of Basic Structures

The steps to show that stop-loss reinsurance dominates quota-share reinsurance follow
the classical results in Van Heerwaarden, Kass and Goovaerts (1989), where they show
that a risk-averse cedant would prefer the stop-loss reinsurance contract to all other
contracts if all contracts have the same expected loss cost.

Proposition 3.1. Assume that the stop-loss reinsurance SD, the aggregate limit rein-
surance SL and the quota share reinsurance Sq for a ground-up aggregate loss S defined
above have the same expected value. Under the convex order, the stop-loss reinsurance
is more risky than the quota share reinsurance, which in turn is more risky than the
reinsurance with an aggregate limit. That is SL �cx Sq �cx SD, or

Aggregate Limit �cx Quota Share �cx Stop-Loss.

Proof. Based on Theorem 6.1 in Van Heerwaarden, Kass and Goovaerts (1989), the
CDF of the retained loss net of a reinsurance with an aggregate deductible intersects
only once with the CDF of the retained loss net of any other reinsurance structure
given the equality of the mean losses. This also implies that the CDF of SD crosses
only once with the CDF of any other reinsurance structures including Sq. Let S∗

denote the gross loss at the intersection of SD and Sq. That is S∗ − D = qS∗, or
S∗ = D

1−q . The value of SD and Sq at the intersection would be S∗D = S∗q = qD
1−q and

FS(S∗) = FSD
( qD
1−q ) = FSq(

qD
1−q ). Note that when S∗ < S, Sq < SD since SD increases

faster than Sq. Similarly, SD ≤ Sq when S ≤ S∗. Thus the CDF of SD crosses the
CDF of Sq from below (in the context of a Lee graph). That is,{

FSq(x) ≤ FSD
(x) if x ≤ qD

1−q

FSD
(x) ≤ FSq(x) if qD

1−q ≤ x.

By Proposition 2.2, Sq �cx SD and the stop-loss reinsurance is more risky than
the quota share reinsurance under the convex order. Similarly, we can demonstrate
SL �cx Sq. By the transitivity property of the convex order, SL �cx Sq �cx SD.

Example 1: The XYZ Insurance Company writes $50 million general liability in-
surance annually at an expected loss ratio of 70 percent. Currently the company has
a 20 percent quota share treaty with a 20 percent ceding commission and no aggre-
gate limit. XYZ is considering replacing the quota share with a stop-loss reinsurance
treaty that attaches at an 80 percent loss ratio with a reinsurance premium of $5.5
million. The company estimates that the expected loss cost of the stop-loss treaty is
$3.5 million, which means the implied margin is $2 million.

Table 1 below shows the treaty premium, treaty expected loss and implied rein-
surance margin for each structure.
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Table 1 - Ranking Comparison
Option Option Insurance/Reins. Expected Implied
Type Description Premium Loss Cost Margin
S gross $50M $35M
Sq 20% quota share $(10-2)M = $8M $7M $1M

Sq 10% quota share $(5-1)M = $4M $3.5M $0.5M
SD stop-loss $5.5M $3.5M $2M

Based on the risk-ordering analysis, the comparable treaties under the convex order
are the stop-loss treaty and the 10 percent quota share treaty as both have the same
expected loss cost and the former is more risky than the latter. This is also reflected in
the extra margin charge of (2M−0.5M) = 1.5M. Note that the stop-loss threshold D
is at an 80 percent loss ratio or $40 million. The intersection point of the 10 percent
quota share and the stop-loss treaties is at S = D/(1 − q) = 40/0.9 = 44.44M or
SD = Sq = qD/(1− q) = $4.44M. In other words, the 10 percent quota share treaty
recovers more than the stop-loss treaty when the gross loss is less than $44.44 million.
The extra margin is meant to cover the uncertainty of the loss beyond $44.44 million.
The company should weigh their risk preference against the extra margin in selecting
their reinsurance program.

3.3 Hybrid Reinsurance Structures

This line of reasoning and analysis can be extended to the aggregate loss reinsurance
treaties with more than one contract feature, which include combinations of stop-
loss, quota share and aggregate limit. As more features are included in a reinsurance
structure, more parameters such as stop-loss threshold and aggregate limit need to
be calibrated to make sure that the mean losses are the same across all treaties as
required by the convex order. We define below two additional types of reinsurance
and show that they can be properly ordered under the convex order along with the
three basic reinsurance structures.

Definition 3.4. Quota Share with Aggregate Limit: The reinsurance Sq,L with
an aggregate limit L > 0 and a quota share percentage 0 < q < 1 is

Sq,L =

{
qS if 0 ≤ qS < L

L if L ≤ qS.

Definition 3.5. Quota Share with Stop-Loss: The reinsurance SD,q with a stop-
loss threshold D > 0 and a quota share percentage 0 < q < 1 is

SD,q =

{
0 if 0 ≤ qS < D

qS −D if D ≤ qS.
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Proposition 3.2. Denote q, q1 and q2 as quota share percentages, D and D2 as stop-
loss thresholds and L and L1 as aggregate limits. Let 0 < q < q1 < 1, 0 < q < q2 < 1,
0 < D2 < D and 0 < L < L1 such that the reinsurance options, SL, Sq1,L1, Sq, SD2,q2

and SD for a ground-up aggregate loss S have the same expected value. That is,

E(SL) = E(Sq1,L1) = E(Sq) = E(SD2,q2) = E(SD).

Then the following orderings can be established:

SL �cx Sq1,L1 �cx Sq �cx SD2,q2 �cx SD

or

Aggregate Limit

�cxMixture of Quota Share and Aggregate Limit

�cxQuota Share

�cxMixture of Stop-Loss and Quota Share

�cxStop-Loss.

Proof. SL �cx Sq1,L1 since the distribution function of Sq1,L1 intersects only once with
the distribution function of SL from below at L and the single crossing condition
applies. Similarly, since 0 < q < q1 < 1, the distribution function of Sq intersects only
once with the distribution function of Sq1,L1 from below at L1 and thus Sq1,L1 �cx Sq.

Since 0 < q < q2 < 1, Sq2 represents a larger layer than Sq. Similar to the proof
in Proposition 3.1, the loss distribution function from a larger layer with a stop-loss
such as SD2,q2 crosses only once with the distribution function of any other reinsurance
option such as Sq, given that E(Sq) = E(SD2,q2). And we conclude that Sq �cx SD2,q2 .
The proof of SD2,q2 �cx SD follows the same argument in Proposition 3.1.

Example 2: Continuing the example in Section 3.1, the XYZ Insurance Company
considers lowering the stop-loss threshold from 80 percent to 75 percent loss ratio, but
taking a 10 percent co-participation in the stop-loss treaty. It also considers adding
an overall aggregate limit to the quota share reinsurance. It has been determined that
both the new stop-loss reinsurance and a 12 percent quota share reinsurance with 9.6
million aggregate limit have an expected loss cost of 3.5 million.

Based on the risk-ranking analysis and the quotes received earlier in the example in
Section 3.2, the reinsurance premium for the new stop-loss option should be between
$5.5 million and $4 million and the premium for the 12 percent quota share reinsurance
with a $9.6 million aggregate limit should be less than $4 million. In this case, Option
SL would be a 100 percent quota share reinsurance with a small overall aggregate limit
such as $5 million.

The new option SD2,q2 is obviously not the only treaty that can be ranked between
the stop-loss reinsurance SD and the quota share reinsurance Sq. Contract options
can be created by decreasing the stop-loss threshold from the 80 percent loss ratio
and reducing the quota share percentage from 100 percent such that the combination
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of the stop-loss threshold and quota share percentage have the same expected loss
as before. Then in theory, an infinite number of options can be ordered and placed
in between Options SD and Sq. Under the convex order, the option with a higher
stop-loss threshold would dominate those with lower stop-loss thresholds. Similarly,
a continuum of options can fill the space between Options SL and Sq by changing
the quota share percentage and aggregate limit while keeping the expected loss cost
constant.

Table 2 - Ranking Analysis
Option Option Quoted Reins. Expected Implied
Type Description Premium Loss Cost Margin

100% quota share,
SL $5M aggregate limit $3.5M

12% quota share,
Sq1,L1 $9.6M aggregate limit $3.5M

10% quota share,
Sq No aggregate limit $(5-1)M=$4M $3.5M $0.5M

Stop-loss attaching at 75%
SD2,q2 loss ratio, 90% quota share $3.5M

Stop-loss attaching at 80%
SD loss ratio, 100% quota share $5.5M $3.5M $2M

These hybrid reinsurance structures may seem like convex combinations of the
three basic reinsurance structures. But, in fact, they are distinctively different. The
hybrids represent non-linear trade-off between the basic reinsurance features, such as
stop-loss thresholds, quota share percentages and aggregate limits. Although a 50
%/50% percent combination of Sq and SD in the example above can be theoretically
ranked between Sq and SD, it is not a real option in reinsurance practice. SD2,q2 , on
the other hand, does exist in practice with a higher quota share percentage than Sq

and a lower stop-loss threshold than SD.

4 Beyond Convex Order

We have shown in Section 3 that the basic reinsurance structures and their combina-
tions can be compared in pairs and ranked using the convex order. The comparison
is static in nature as the range of the structures is limited to those having the same
expected loss cost. In this section, we expand the comparison to the structures with
different expected loss costs. The tools that we use are the usual stochastic order and
the increasing convex order as defined in Section 2. We show in the following proposi-
tion that the dominance relationship under these two stochastic orders for structures
with different expected values can be clearly mapped out. On the other hand, some
reinsurance structures are not comparable even though their expected loss costs may
be far apart.
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Proposition 4.1. Denote q, q1 and q2 as quota share percentages, D and D2 as stop-
loss thresholds and L, and L1 as aggregate limits. Let 0 < q < q1 < 1, 0 < q < q2 < 1,
0 < D2 < D and 0 < L < L1 such that the reinsurance options, SL, Sq1,L1, Sq, SD2,q2

and SD for a ground-up aggregate loss S have the same expected value m. That is,

E(SL) = E(Sq1,L1) = E(Sq) = E(SD2,q2) = E(SD) = m.

Consider a similar set of reinsurance structures, SL′, Sq′1,L
′
1
, Sq′, SD′2,q

′
2

and SD′ for
the same ground-up aggregate loss S, where 0 < q′ < q′1 < 1, 0 < q′ < q′2 < 1,
0 < D′2 < D′ and 0 < L′ < L′1 such that

E(SL′) = E(Sq′1,L
′
1
) = E(Sq′) = E(SD′2,q

′
2
) = E(SD′) = n > m.

Then the following orderings can be established:

SL′ Sq′1,L
′
1

Sq′ SD′2,q
′
2

SD′

SL �st �icx �icx �icx �icx

�icx if q′1 < q1, L1 < L′1
Sq1,L1 �st if q1 ≤ q′1, L1 ≤ L′1 �icx �icx �icx

Sq �st �icx �icx

�icx if q2 < q′2, D2 < D′2
SD2,q2 �st if q2 ≤ q′2, D

′
2 ≤ D2 �icx

SD �st

where the table reads, from left to right, SL �st SL′, SL �icx Sq′1,L
′
1
, Sq1,L1 �icx Sq′1,L

′
1

if q′1 < q1 and L1 < L′1, and so on.

Proof. We first show the usual stochastic orderings (�st) on the diagonal of the table
above. Since n > m, the following inequalities must be true: L < L′, q < q′ and
D′ < D. Then the distribution functions of SL′ , Sq′ and SD′ are above those of SL,
Sq and SD, respectively, at every percentile. Thus we have SL �st SL′ , Sq �st Sq′ and
SD �st SD′ . Similarly, if q1 ≤ q′1 and L1 ≤ L′1, the distribution function of Sq′1,L

′
1

are
above that of Sq1,L1 at every percentile. By the same token, if q2 ≤ q′2 and D′2 ≤ D2,
the distribution function of SD′2,q

′
2

are above that of SD2,q2 at every percentile. This
proves all the usual stochastic orderings (�st) on the diagonal.

Now we prove Sq1,L1 �icx Sq′1,L
′
1

if q′1 < q1 and L1 < L′1. According to Proposition
3.2, we can find a q∗ < q1 such that Sq1,L1 �cx Sq∗,L′1

. Since E(Sq′1,L
′
1
) = n > m

= E(Sq∗,L′1
) = E(Sq1,L1), then q∗ < q′1 and Sq1,L1 �cx Sq∗,L′1

�st Sq′1,L
′
1
. By Proposition

2.1, Sq1,L1 �icx Sq′1,L
′
1
. Similarly, we can show SD2,q2 �icx SD′2,q

′
2

if q2 < q′2 and D2 < D′2.
Note that SL �st SL′ �cx Sq′1,L

′
1
. By Proposition 2.1, SL �icx Sq′1,L

′
1
. All the other

increasing convex ordering pairs on the upper right corner of the table follow the same
argument.

Note that when q1 < q′1 and L′1 < L1, no relationship can be derived between
Sq1,L1 and Sq′1,L

′
1

as the former has a larger left tail while the latter has a larger right
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tail. Similarly, no ordering can be established for SD2,q2 and SD′2,q
′
2

when q′2 < q2 and
D′2 < D2. Figures 5 and 6 illustrate this point.

In figure 5, the curve V V ∗ is the collection of reinsurance treaties with the same 
expected loss m, where each point on the curve represents a different combination of 
quota share percentage q2 and stop-loss threshold D2. For example, point V represents 
a reinsurance treaty with a $50 million stop-loss threshold and a 60 percent quota 
share. Similarly, the curve V ′V ′′ is the collection of reinsurance treaties, all having 
the same expected loss n, where n > m. Proposition 4.1 says that the relationship 
between the points on the V ′V ′′ curve and the point V is such that the treaties above 
point V ′ on the V ′V ′′ curve are riskier than V under the increasing convex order 
and the points between V ′ and V ′′ including V ′ and V ′′ are riskier than V under the 
usual stochastic order. The treaties below V ′′, however, do not have any dominating 
relationship with V .

Similarly in figure 6, the WW ∗ and the W ′W ′′ curves represent the reinsurance
structures having expected loss costs of m and n, respectively, where n > m. The
treaties between W ′ and W ′′ are dominating W under the usual stochastic order while
the treaties along the curve above W ′ are dominating W under the increasing convex
order. No dominating relationship exists between W and those treaties below W ′′ on
the W ′W ′′ curve.

5 Application to Excess of Loss Reinsurance

The approach above can be applied to the excess of loss reinsurance except that
the terminologies used in XOL are slightly different. The equivalent of a stop-loss
threshold in an XOL reinsurance is called an aggregate deductible while the equivalent
of a quota share in XOL is called partial placement or co-participation from a cedant’s
point of view. We first define the various XOL options.
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5.1 Basic XOL Definitions and Risk Rankings

Definition 5.1. Excess of Loss: For l, r > 0, the (l xs r) layer loss for a risk or an
occurrence is

(x− r)+ ∧ l =


0 if 0 ≤ x < r

x− r if r ≤ x < r + l

l if r + l ≤ x.

Definition 5.2. Aggregate Layer Loss: Let Y =
∑N

i=1((xi − r)+ ∧ l) denote the
aggregate layer loss for the (l xs r) layer where the summation is over the ground-up
loss frequency random variable N with index i. Y = 0 when N = 0.

Definition 5.3. XOL with Aggregate Deductible: The XOL reinsurance YD
with an aggregate deductible D > 0 is

YD =

{
0 if 0 ≤ Y < D

Y −D if D ≤ Y.

Definition 5.4. XOL with Aggregate Limit: The XOL reinsurance YL with an
aggregate limit L > 0 is

YL =

{
Y if 0 ≤ Y < L

L if L ≤ Y.

Definition 5.5. XOL with Partial Placement: Let Yq = qY denote the XOL
reinsurance with partial placement where 0 < q < 1 is the ratio ceded to reinsurers
and (1− q) is the cedant’s co-participation ratio in the reinsurance.

Proposition 5.1. Assume that the XOL reinsurance with aggregate deductible, ag-
gregate limit and partial placement have the same expected value. Under the convex
order, the XOL reinsurance with an aggregate deductible is more risky than the XOL
reinsurance with partial placement, which in turn is more risky than the XOL rein-
surance with an aggregate limit. That is YL �cx Yq �cx YD, or

XOL with Aggregate Limit

�cxXOL with Partial Placement

�cxXOL with Aggregate Deductible.

Proof. Similar to the proof of Proposition 3.1.

Example 3: The XYZ Insurance Company writes $100 million of commercial auto
insurance annually. The company is presented with three reinsurance options: (1)
$4M xs $1M XOL reinsurance with unlimited free reinstatements, (2) $4M xs $1M
XOL reinsurance with an aggregate deductible of $3 million and unlimited free re-
instatements, or (3) $4M xs $1M XOL reinsurance with three free reinstatements.
The company estimates that the expected loss costs for options 1, 2 and 3 are $6



16

million, $4 million and $5.5 million, respectively and quoted reinsurance premiums
are $8 million, $5.8 million and $7 million, respectively.

Table 3 summarizes the estimated expected loss cost and market quotes for each of 
the reinsurance options:

Table 3 - Ranking Analysis
Option Variation of Quoted Reins. Expected Implied
Type 4x1 XOL Premium Loss Cost Margin
Y Free unlimited reinstatements $8M $6M $2M

YD $3M aggregate deductible $5.8M $4M $1.8M
Free unlimited reinstatements

Yq 66.6% (= 4/6) placement $5.33M $4M $1.33M

Free unlimited reinstatements
Yq 91.7% (= 5.5/6) placement $7.33M $5.5M $1.83M

3 free reinstatements
YL (aggregate limit = 16M) $7M $5.5M $1.5M

According to the risk-ranking analysis, a relevant comparison can be made between
the 4x1 XOL reinsurance with a 66.6 percent placement and the 4x1 reinsurance with
a $3 million aggregate deductible as the expected loss costs are the same at $4 mil-
lion. The extra margin charge is $0.47 million (1.8M�1.33M) for the risky aggregate
deductible option. On the other hand, the theory indicates that the 4x1 XOL reinsur-
ance with a 91.7 percent placement is more risky than the 4x1 XOL reinsurance with
an aggregate limit of $16 million (implied by the three reinstatements). The extra
margin charge for the 4x1 XOL reinsurance with a 91.7 percent placement is $0.33
million (1.83M�1.5M).

5.2 Higher XOL Retention as an Option

In XOL reinsurance, insurers can consider another option, namely adjusting their per
risk/per occurrence retentions. Insurers often make these adjustments in response
to changes in the underlying exposure and the implication to capital requirements.
In this section, we will explore how an XOL reinsurance with a higher retention is
stacking up against other types of XOL reinsurance in terms of risk ranking. Again
we will assume all reinsurance structures under consideration in this section have the
same expected value.

Definition 5.6. XOL With Higher Retention: Given an (l xs r) layer, the (lH xs
rH) layer is a layer with a higher retention if r < rH , lH < l and (r + l) = (rH + lH).
Let YH =

∑N
i=1((xi − rH)+ ∧ lH) denote the aggregate layer loss for the (lH xs rH)

layer where the summation is over the ground-up loss x with frequency N .

For example, by definition, a $3M xs $2M XOL layer is a higher layer than a $4M
xs $1M XOL layer while the sums of the respective limits and retentions are identical
at $5 million. Suppose the cedant co-participates in the $4M xs $1M layer so that the
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resulting $4M xs $1M XOL reinsurance with partial placement has the same expected
value as the $3M xs $2M XOL reinsurance. We will show in the following proposition
that the latter is more risky than the former under the convex order.

Proposition 5.2. (Higher Retention vs. Partial Placement) Let Yq denote the (l xs
r) XOL with partial placement and YH denote the (lH xs rH) XOL where rH > r,
lH < l and r + l = rH + lH . Assuming E(Yq) = E(YH), then under the convex order,
YH is more risky than Yq. That is Yq �cx YH , or

Partial Placement �cx Higher Retention.

Proof. First we analyze the two per risk/occurrence severity random variables, q[(x−
r)+∧l] and [(x−rH)+∧lH ]. The relationship between q[(x−r)+∧l] and [(x−rH)+∧lH ] is
similar to that of a quota share reinsurance with q as the quota share percentage and a
stop-loss reinsurance with (rH−r) as the stop-loss threshold. Note that qE[(x−r)+∧l]
= E[(x−rH)+∧ lH ]. Then the single crossing condition and the equality of the means
imply that on the individual severity distribution basis,

q[(x− r)+ ∧ l] �cx [(x− rH)+ ∧ lH ].

That is, under the convex order [(x− rH)+ ∧ lH ] is more risky than q[(x− r)+ ∧ l].
Note that Yq =

∑N
i=1 q[(xi − r)+ ∧ l] and YH =

∑N
i=1[(x− rH)+ ∧ lH ] where N is the

number of risks/occurrences and E(Yq) = E(YH). As the convex order is closed under
convolution (Shaked and Shanthikumar 2007, Theorem 3.A.13) and the frequency
random variable N is independent, we get Yq �cx YH .

Proposition 5.3. (Higher Retention vs. Aggregate Deductible) Let YD denote the
(l xs r) XOL reinsurance with aggregate deductible D and let YH denote the (lH xs
rH) XOL reinsurance where r < rH , lH < l and (r + l) = (rH + lH). Assuming
E(YD) = E(YH), then under the convex order, YD is more risky than YH . That is
YH �cx YD, or

XOL with Higher Retention �cx XOL with Aggregate Deductible.

Proof. Similar to the proof for Proposition 3.1, Theorem 6.1 in Van Heerwaarden,
Kass and Goovaerts (1989) implies that the CDF of YD also crosses only once with
the CDF of any other XOL reinsurance structures such as YH given that the (lH xs
rH) layer is a subset of the original layer. Given the equality of the means and the
single crossing property, Proposition 2.2 implies that YH �cx YD.

Combining propositions 5.1, 5.2 and 5.3 and using the transitivity of the convex
order, we obtain the following result:

XOL with Aggregate Limit

�cxXOL with Partial Placement

�cxXOL with Higher Retention

�cxXOL with Aggregate Deductible.
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The red curve in figure 7 represents the distribution function for a reinsurance with
aggregate deductible YD, which stays flat until the aggregate layer loss amount reaches
the deductible threshold D at the 25th percentile and then increases with the same
incremental amounts as Y .

The yellow curve represents the distribution function of an XOL reinsurance with
partial placement Yq while the blue curve is for an XOL reinsurance YH with a per
risk/occurrence retention level higher than that for Y . Given that Yq and YH have the
same expected loss, the blue YH curve starts under the yellow Yq curve, then the two
curves intertwine over most of the percentiles and finally the YH curve takes over after
the last intersection at the 70th percentile. Notice that the convex order does allow
multiple crossings of the CDF curves as long as the stop-loss premium requirement
in Proposition 2.1 is satisfied. When multiple crossings occur, it is difficult to discern
convex order dominance empirically. Thus the analytical proof is an important confir-
mation of the dominance relationship and serves as an indication tool for reinsurance
pricing.

5.3 Hybrid XOL Structures

Again this line of reasoning and analysis can be extended to the XOL treaties with
more than one contract feature, which include combinations of aggregate deductibles,
higher retentions, partial placement and/or aggregate limits. For common reinsurance
structures with at most two contract features, proving stochastic ordering may be
straightforward. We define below three additional types of reinsurance and show that
they can be properly ordered under the convex order along with the four basic XOL
reinsurance structures. For these reinsurance structures with two contract features,
the proof of stochastic ordering is similar to those in propositions 5.2 and 5.3.
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Definition 5.7. Mixture of Partial Placement and Aggregate Limit: The
XOL reinsurance Yq,L with an aggregate limit L > 0 and a placement ratio 0 < q < 1
is

Yq,L =

{
qY if 0 ≤ qY < L

L if L ≤ qY.

Definition 5.8. Mixture of Higher Retention and Partial Placement: The
XOL reinsurance YH,q with a placement ratio 0 < q < 1 and a higher retention as
defined in Definition 5.6 is YH,q = qYH .

Definition 5.9. Mixture of Aggregate Deductible and Higher Retention:
The XOL reinsurance YD,q with an aggregate deductible D > 0 and a higher retention
as defined in Definition 5.6 is

YH,D =

{
0 if 0 ≤ YH < D

YH −D if D ≤ YH .

Similar to Proposition 4.1, the following proposition uses the usual stochastic order
and the increasing convex order and extends the analysis to include XOL reinsurance
structures with different expected losses.

Proposition 5.4. Denote H, H2 and H3 as higher retention layers, q, q2 and q3 as
placement ratios, D and D3 as aggregate deductibles and L and L1 as aggregate limits.
Let 0 < q < q1 < 1, 0 < q < q2 < 1, 0 < D3 < D, 0 < L < L1 and H be a higher layer
than either H2 or H3 such that the XOL reinsurance options, YL, Yq1,L1, Yq, YH2,q2,
YH , YH3,D3 and YD for an aggregate layer loss Y have the same expected value, m.
That is,

E(YL) = E(Yq1,L1) = E(Yq) = E(YH2,q2) = E(YH) = E(YH3,D3) = E(YD) = m.

Then the following orderings can be established:

YL �cx Yq1,L1 �cx Yq �cx YH2,q2 �cx YH �cx YH3,D3 �cx YD

or

XOL with Aggregate Limit

�cxXOL with Mixture of Partial Placement and Aggregate Limit

�cxXOL with Partial Placement

�cxXOL with Mixture of Higher Retention and Partial Placement

�cxXOL with Higher Retention

�cxXOL with Mixture of Aggregate Deductible and Higher Retention

�cxXOL with Aggregate Deductible.

Moreover, consider a similar set of reinsurance structures, YL′, Yq′1,L′1, Yq′, YH′2,q′2,
YH′, YH′3,D′3 and YD′, on the same layer aggregate loss Y , where 0 < q′ < q′1 < 1,
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0 < q′ < q′2 < 1, 0 < D′3 < D′, 0 < L′ < L′1 and H ′ is a higher layer than either H ′2
or H ′3 such that

E(YL′) = E(Yq′1,L′1) = E(Yq′) = E(YH′2,q′2) = E(YH′) = E(YH′3,D′3) = E(YD′) = n > m.

Then the following orderings can be established:

YL′ Yq′1,L′1 Yq′ YH′2,q′2 YH′ YH′3,D′3 YD′

YL �st �icx �icx �icx �icx �icx �icx

Yq1,L1 see * �icx �icx �icx �icx �icx

Yq �st �icx �icx �icx �icx

YH2,q2 see ** �icx �icx �icx

YH �st �icx �icx

YH3,D3 see *** �icx

YD �st

where the table reads, from left to right, YL �st YL′, YL �icx Yq′1,L′1 and so on.

* Yq′1,L′1
�icx if q′1 < q1, L1 < L′1

Yq1,L1 �st if q1 ≤ q′1, L1 ≤ L′1

** YH′2,q′2 *** YH′3,D′3
�icx if H2 < H ′2, q2 < q′2 �icx if H ′3 < H3, D3 < D′3

YH2,q2 �st if H ′2 ≤ H2, q2 ≤ q′2 YH3,D3 �st if H ′3 ≤ H3, D
′
3 ≤ D3

where in general H < H ′ means H ′ has a higher per risk/occurrence retention than
H.

Proof. The proof of YL �cx Yq1,L1 �cx Yq is similar to the proof of Proposition 3.2
while the proof of Yq �cx YH2,q2 �cx YH is similar to the proof of Proposition 5.2,
where the convex order is established first at the per risk/occurrence level. Use the
closure by convolution property to prove the ordering at the aggregate layer loss level.
Similarly, use Proposition 5.3 to prove YH �cx YH3,D3 �cx YD since D3 < D and H is
a higher layer than H3, which in turn is a higher layer than the original layer for YD.

The usual stochastic orderings (�st) and the increasing convex orderings (�icx) in
the large table above are similar to those in Proposition 4.1 except the relationship
for the structures with the higher retention layers. We need to show YH �st YH′ and
the relationships in the (**) grid and (***) grid. Since n > m, H is a higher layer
than H ′. Then the distribution function of YH′ must be above that of YH at every
percentile, hence YH �st YH′ .

If H ′2 ≤ H2 and q2 ≤ q′2, the distribution function of YH′2,q′2 must be above that
of YH2,q2 at every percentile. By the same token, if H ′3 ≤ H3 and D′3 ≤ D3, the
distribution function of YH′3,D′3 must be above that of YH3,D3 at every percentile. This
proves all the usual stochastic ordering on the diagonal.
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If q2 < q′2 and H2 < H ′2, based on the first half of this proposition, we can find a q∗

greater than q2 such that YH2,q2 �cx YH′2,q∗ . Since E(YH′2,q′2) = n > m = E(YH′2,q∗) =
E(YH2,q2), then q∗ must be smaller than q′2 and YH2,q2 �cx YH′2,q∗ �st YH′2,q′2 . By
Proposition 2.1, YH2,q2 �icx YH′2,q′2 . Similarly, we can show YH3,D3 �icx YH′3,D′3 if
H ′3 < H3 and D3 < D′3 and Yq1,L1 �icx Yq′1,L′1 if q′1 < q1 and L1 < L′1.

Similar to figures 5 and 6 for aggregate loss reinsurance, figures 8 and 9 illustrate
the relationships between YH′2,q′2 and YH2,q2 and between YH′3,D′3 and YH3,D3 , respec-
tively. In figure 8, the curve V V ∗ represents the collection of reinsurance treaties with
the same expected loss m, where each point on the curve is a different combination
of placement percentage q2 and layer retention H2. Similarly, the curve V ′V ′′ is the
collection of reinsurance treaties, all having the same expected loss n, where n > m.
Proposition 5.4 says that the relationship between the points on the V ′V ′′ curve and
the point V is such that the treaties above point V ′ on the V ′V ′′ curve are riskier than
V under the increasing convex order and the points between V ′ and V ′′ including V ′

and V ′′ are riskier than V under the usual stochastic order. The treaties below V ′′,
however, do not have any dominating relationship with V . Similar interpretation can
be made for figure 9, where the WW ∗ and the W ′W ′′ curves represent reinsurance
structures with different combinations of layer retentions and aggregate deductibles
and having expected loss costs of m and n, respectively (n > m).

In general, with equal means, options with an aggregate deductible would domi-
nate those without an aggregate deductible under the convex order. If both options
have an aggregate deductible, then the one with a higher aggregate deductible would
dominate the other with a lower aggregate deductible. Similarly, options without an
aggregate limit would dominate those with an aggregate limit. If both options have
an aggregate limit, then the one with a higher aggregate limit would dominate the
other with a lower aggregate limit.

Example 4: Continuing the example in Section 5.1, the XYZ Insurance Company
decides to explore other options by increasing the retention level of the XOL reinsur-
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ance for commercial auto liability and is willing to co-participate up to 20 percent.
The company determines that the $3M xs $2M XOL reinsurance and the $2.5M xs
$2.5M XOL reinsurance have the expected loss costs of $5 million and $4 million, re-
spectively. Both options assume unlimited reinstatements. In addition, the company
estimates that adding a $1.5 million aggregate deductible to the $3M xs $2M XOL
reinsurance can reduce the expected loss cost to $4 million. Similarly, decreasing the
number of free reinstatements from three to one for the $4M xs $1M XOL reinsurance
also reduces the expected loss cost to $4 million.

Based on the risk-ranking analysis and the quotes received earlier for the $4M xs
$1M layer, the reinsurance premiums for these new options should be less than $5.8
million and greater than $5.33 million and should be in the order as shown in Table
4.

An interesting question can be raised as to how the reinsurance premium for an
XOL layer (e.g., Option YH) can be approximated in general. Based on the risk-
ranking results, one can find a premium lower bound for an XOL layer from a lower
retention layer with partial placement (Option YH2,q2) and an upper bound from a
lower retention layer with an aggregate deductible (Option YH3,D3). Clearly the closer
the layers and the smaller the aggregate deductible, the better the approximation of
the reinsurance premium.

Table 4 - Ranking Analysis
Option Option Quoted Reins. Expected Implied
Type Description Premium Loss Cost Margin

4x1 XOL, 100% placement,
YL 1 free reinstatement $4M

4x1 XOL, 71.7% placement,
Yq1,L1 3 free reinstatements $5.09M $4M $1.09M

4x1 XOL, 66.6% placement,
Yq free unlimited reinstatements $5.33M $4M $1.33M

3x2 XOL, 80% placement, (0.8*5)
YH2,q2 free unlimited reinstatements =$4M

2.5x2.5 XOL, 100% placement,
YH free unlimited reinstatements $4M

3x2 XOL, 100% placement,
YH3,D3 free unlimited reinstatements, $4M

$1.5M aggregate deductible
4x1 XOL, 100% placement,

YD free unlimited reinstatements, $5.8M $4M $1.8M
$3M aggregate deductible

6 A Global Comparison

In reinsurance practice, the need to compare XOL reinsurance structures with the
reinsurance on aggregate losses arises constantly. The metrics used in comparison



23

are usually the distribution moments, such as mean and standard deviation along
with some tail measures. In this section, we use the stochastic ordering approach to
comparing reinsurance options that are on either an aggregate loss basis or an XOL
basis.

Proposition 6.1. Denote q as an XOL placement ratio, D and D1 as a stop-loss
threshold and an XOL aggregate deductible, respectively and L and L1 as an aggregate
limit and an XOL aggregate limit, respectively. Let 0 < q < 1, 0 < D1 < D,
0 < L < L1 and H be a higher layer such that the reinsurance options, SL, YL1, Yq,
YH , YD1 and SD have the same expected loss value, m. That is,

E(SL) = E(YL1) = E(Yq) = E(YH) = E(YD1) = E(SD) = m.

Then the following orderings can be established:

SL �cx YL1 �cx Yq �cx YH �cx YD1 �cx SD

or

Aggregate Limit

�cxXOL with Aggregate Limit

�cxXOL with Partial Placement

�cxXOL with Higher Retention

�cxXOL with Aggregate Deductible

�cxStop-Loss.

Consider a similar set of reinsurance structures, SL′, YL′1, Yq′, YH′, YD′1 and SD′, with
regard to the same underlying loss, where 0 < q′ < 1, 0 < D′1 < D′ and 0 < L′ < L′1
and H ′ is a higher per risk/occurrence layer such that

E(SL′) = E(YL′1) = E(Yq′) = E(YH′) = E(YD′1) = E(SD′) = n > m.

Then the following orderings can be established:

SL′ YL′1 Yq′ YH′ YD′1 SD′

SL �st �icx �icx �icx �icx �icx

YL1 �st �icx �icx �icx �icx

Yq �st �icx �icx �icx

YH �st �icx �icx

YD1 �st �icx

SD �st

where the table reads, from left to right, SL �st SL′, SL �icx YL′1, YL1 �st YL′1 and so
on.
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Proof. The proof for the first half of the proposition follows the proofs in Proposition
3.1 and Proposition 5.4. The proof of the (�icx) and (�st) relationship in the grid
follows the first half of this proposition and propositions 4.1 and 5.4, where we show
that if A �cx B �st C, then A �icx C.

Note that the quota share reinsurance is not compatible with this comparison
framework involving XOL reinsurance. The right tail of the quota share reinsurance
is always thicker than that of the XOL reinsurance while the opposite is true for the
left tail. Proposition 6.1 also indicates that stop-loss reinsurance and the reinsurance
with an aggregate limit serve as the upper and lower boundaries for the XOL reinsur-
ance options. To make the comparison more complete, we can add the hybrid XOL
reinsurance from Section 5.3. Given the transitivity of the convex order, the ranking
of those hybrid XOL reinsurances would be the same as indicated in Proposition 5.3.

7 Implications to Pricing and Optimal Reinsur-

ance

Assuming reinsurance companies are also risk averse, it is reasonable to assume that
they would adopt premium principles that observe the established ordering above.
Suppose the reinsurance structures under consideration have the same expected value
and reinsurance companies employ the expected loss premium principle in calculation
of the reinsurance premium. The actuarial literature indicates that stop-loss reinsur-
ance would always be preferred by the cedant as it passes more risk to the reinsurer
and costs the same as all the other options. Thus the implication of the risk ranking
analysis above is that if reinsurance A is found to be more risky than reinsurance
B, then reinsurance A should be priced higher than reinsurance B to compensate for
the higher risk. As such, these ranking results may serve as an elementary tool in
identifying inconsistent market quotes.

In the optimal reinsurance literature (e.g., Cheung 2010), the frequently used ap-
proach in finding optimal reinsurance is by maximization/minimization of an objective
function over a convex constraint. The convex objective function (to be minimized)
can be Value at Risk (VaR) or Tail Value at Risk (TVaR) of the retained exposure,
which is defined as total exposure minus ceded exposure plus the reinsurance premium
for the ceded exposure.

Definition 7.1. VaR Objective Function: The VaR objective function is

MinVaR[X − f(X) + PR(f(X))]

where f(X) is the ceded loss and PR(f(X)) is the corresponding reinsurance pre-
mium.

Obviously if the premium calculation is expected value based, the optimal rein-
surance would always be the stop-loss reinsurance given that a tail measure is the
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selection criterion. Thus it is more realistic if the premium principle is convex in the
maximization/minimization process (e.g., Chi 2012; Guerra and Centeno 2010).

The standard deviation principle and the variance principle along with the Wang
principle are known to observe the second order stochastic dominance relationship.
It would be interesting to evaluate the pricing differentials among the reinsurance
structures using the three premium principles, which could be a subject for future
research.

8 Conclusions

Reinsurance can be regarded as financial derivatives on a random loss process, which
determines how reinsurers and insurers would share the loss upon its realization.
The major technical difference between reinsurance and other financial derivatives
such as stock options is that common reinsurance structures are comonotone with the
underlying loss process. This makes the comparison of reinsurance structures intuitive
and sometimes straightforward.

Following the classical results on optimal reinsurance in the actuarial literature,
the paper4 has shown that many common reinsurance structures in practice can be
ranked either under the convex order if they have the same expected loss costs or
under the increasing convex order and the usual stochastic order if they have different
expected loss costs. Using the results of the paper, actuaries and underwriters can
easily compare the riskiness of various reinsurance structures in an ERM and/or
reinsurance retention analysis. The results also imply that reinsurers should price
these reinsurance contracts with premium principles that recognize the risk rankings
established in the paper.

4Loss discount and other accounting treatments that may be associated with specific reinsurance
treaties are not considered here and are beyond the scope of this paper.
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