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Abstract

Rather than looking at mortality rates directly, a number of recent academic studies have
looked at modeling rates of improvement in mortality when making mortality projections.
Although relatively new in the academic literature, the use of mortality improvement rates
has a long-standing tradition in actuarial practice when allowing for improvements in mor-
tality from standard mortality tables. However, mortality improvement rates are difficult to
estimate robustly, and models of them are subject to high levels of parameter uncertainty,
since they are derived by dividing one uncertain quantity by another. Despite this, the
studies of mortality improvement rates to date have not investigated parameter uncertainty
due to the ad hoc methods used to fit the models to historical data. In this study, we adapt
the Poisson model for the numbers of deaths at each age and year, proposed in Brouhns
et al. (2002), to model mortality improvement rates. This enables models of improvement
rates to be fitted using standard maximum likelihood techniques and allows parameter un-
certainty to be investigated using a standard bootstrapping approach. We illustrate the
proposed modeling approach using data for the U.S. population and the England and Wales
population.

Keywords: Mortality improvements; Mortality forecasting; Parameter uncertainty

1. Introduction

Some of the most far-reaching social and economic challenges of the current age are caused
by the rapid increases in longevity and aging of populations across the world. One strand
of efforts to meet these challenges has been the development of a wide range of models in
order to forecast the future evolution of mortality rates, based on a combination of statistical
extrapolation of historical data and expert judgment.
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However, one of the subtle differences between academic models for forecasting and those
used by actuaries in the life insurance industry is over what variable to model. Academic
mortality models usually focus on modeling mortality rates at age x and time t, denoted
variously as µx,t (the instantaneous force of mortality), mx,t (the central rate of mortality)
or qx,t (the one-year probability of dying). Many of these models have been inspired by the
seminal paper of Lee and Carter (1992) and operate in the generalized age/period/cohort
framework described in Hunt and Blake (2015c) and implemented in Villegas et al. (2016).
More specifically, as discussed in Hunt and Blake (2015c), much of the recent actuarial
literature looking at the modeling and forecasting of human mortality builds on the Poisson
log-bilinear modeling approach introduced in Brouhns et al. (2002), in which the numbers
of deaths at age x and year t are modeled as independent Poisson variables and where
the central rate of mortality mx,t is taken as the response variable linked to a parametric
predictor structure ηxt by means of a log-link function, i.e.,

lnmx,t = ηx,t. (1)

In contrast, practitioners are often interested primarily in the mortality improvement

rates, usually defined by − ln
(

µx,t
µx,t−1

)
, − ln

(
mx,t

mx,t−1

)
or 1− qx,t

qx,t−1
. This is because the changes

in mortality rates are what is of interest when assessing longevity risk for an insurer or pen-
sion scheme. However, improvement rates are usually estimated using the largest data set
available over a long time period—often the national population—in order to give reliable es-
timates. Such a data set will usually have mortality rates very different from the population
of interest. Nonetheless, by considering mortality improvement rates, inferences made using
these large data sets can still be used for smaller sub-populations, albeit potentially subject
to longevity “basis risk” (see Haberman et al. (2014)). Furthermore, the discussion of mor-
tality improvement rates also allows practitioners to compare the evolution of mortality in
populations with very different levels of mortality—for instance, men and women or popula-
tions in different countries. In the United Kingdom, the concept of mortality improvement
rates became widely adopted among actuaries as a result of the Continuous Mortality In-
vestigation (2002) and has continued with the development of the CMI Mortality Projection
Model (Continuous Mortality Investigation (2009) and subsequent developments). Similarly,
the Scale AA improvement rates were introduced by the Society of Actuaries in the United
States in 1995, and the Scale BB improvement rates in 2012, for use when projecting mor-
tality rates (Society of Actuaries Group Annuity Valuation Table Task Force, 1995; Society
of Actuaries, 2012).

However, the modeling of improvement rates is more challenging than the modeling of
mortality rates themselves. Since improvement rates are effectively the first derivatives of
the mortality rates, any uncertainty in the measurement of mortality rates is magnified
significantly in the measurement of improvement rates. On the one hand, as illustrated
by Figures 1a and 1b, the general trend in generally improving mortality rates in the raw
(or “crude”) data is far clearer when looking at mortality rates themselves than at the
improvement rates, where the noise around the signal is far more prominent. On the other
hand, as Figures 1c and 1d illustrate, the age shape of mortality rates is very clear and well
understood, while the age shape of mortality improvement rates is very noisy and displays
considerable heteroskedasticity across ages.
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(a) Crude Mortality Rates at Age 70
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(b) Crude Improvement Rates at Age 70
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(c) Crude Mortality Rates in Year 2011
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(d) Crude Improvement Rates in Year 2011

Fig. 1. England and Wales Male Mortality and Improvement Rates

In recent years, a number of academic studies have modified the structure in Equation
(1) to look at the modeling and forecasting of mortality improvement rates. This has meant
using response variables and link functions such as

ηx,t = ln

(
mx,t+1

mx,t

)
in Mitchell et al. (2013) and

ηx,t = 2
mx,t−1 −mx,t

mx,t−1 +mx,t

in Haberman and Renshaw (2012). This is usually thought of as using a new response
variable with the log or identity link, respectively, rather than keeping mx,t as the response
variable with a nonstandard link function.

Such an approach does not present any theoretical problems; however, some practical
issues need to be considered. First, the distribution of the response variables is highly

3



nonstandard, so the use of the Poisson distribution is no longer appropriate. In practice,
a Gaussian error structure is often assumed with suitable modifications to allow for the
complex relationship between the variance of an observation and the underlying exposures.

Second, as illustrated before, the variance of the response variable is likely to be far
higher as a proportion of the mean than when modeling mortality rates and with a high
degree of heterogeneity across ages and years. The parameter error in the measurements
of the free parameters in the predictor structure will therefore be far higher than for the
corresponding model of mortality rates. This means we must adopt far simpler predictor
structures than would be the case for models of the mortality rate. For these reasons, more
research is needed before such mortality improvement models become widely adopted.

The academic studies of improvement rates to date, while trailblazing in their approach
to the topic, have been forced to make ad hoc modeling assumptions in order to deal with the
challenges associated with the direct modeling of mortality improvement rates. In contrast, a
well-developed theoretical framework for the class of generalized age/period/cohort models of
mortality rates has been developed. Therefore, this paper tries to apply some of the structure
developed for the study of mortality rates to the modeling of mortality improvements, to
reduce the need for some of the ad hoc modeling assumptions and allow a more rigorous
examination of mortality improvement rates. More specifically, we adapt the Poisson model
for the numbers of deaths at each age and year, proposed in Brouhns et al. (2002), to model
mortality improvement rates. This approach enables models of improvement rates to be
fitted using standard maximum likelihood techniques, which has several advantages:

i. The Poisson structure for death counts accounts automatically for heterogeneity across
ages due to exposures (see , Haberman and Renshaw (2012)).

ii. It allows parameter uncertainty to be investigated using the standard bootstrapping
techniques considered in Brouhns et al. (2005) and Koissi et al. (2006).

The reminder of this paper is organized as follows. In Section 2, we introduce some of the
notation used throughout the paper. In Section 3, we investigate the connections between
models of mortality and improvement rates, as well as the potential to allow for constant
improvement rates in mortality models. We then develop techniques for fitting improvement
rate models to data and apply them to the mortality experiences of England and Wales and
of the United States in Sections 4 and 5. In doing so, we note some of the differences in
the definition of improvement rates in previous studies and the impact these have on the
robust estimation of the parameters within improvement rate models. We also investigate the
impact of parameter uncertainty on the age and period terms in improvement rate models
and briefly look at projections from improvement rate models. Finally, in Section 6, we
summarize our findings and provide some conclusions.

2. Data and Notation

Throughout this paper, we assume that the available data comprise a cross-classified
mortality experience containing observed numbers of deaths at age x in year t, dx,t, with
matching central exposures ex,t. We assume that age x is in the range [1, X], calendar year
or period t is in the range [0, T ] and, therefore, that year of birth y = t − x is in the range
[−X,T − 1].
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We denote the force of mortality and the central rate of mortality by µx,t and mx,t, respec-
tively, with the crude (empirical) estimate of the latter being m̂x,t = dx,t/ex,t. Furthermore,
we assume that the force of mortality is constant over each year of age x and calendar year t,
implying that the force of mortality and central death rate coincide, i.e., µx,t = mx,t. Finally,
consistent with Brouhns et al. (2002), we assume that the random number of deaths Dx,t at
age x in year t is a Poisson-distributed random variable with distribution

Dx,t ∼ Poisson(ex,tmx,t) (2)

and, hence, that mx,t = E(Dx,t)/ex,t. Observed death counts dx,t are the realization of the
random variable defined in Equation (2).

3. Poisson Improvement Rate Models

In this section, we exploit the connections between improvement rate models and mortal-
ity rate models to produce a Poisson formulation of mortality improvement rate models. We
then discuss how this formulation can be used to assess parameter uncertainty in mortality
improvement rate models and to obtain forecasts of mortality rates.

3.1. Preliminaries

Similar to Mitchell et al. (2013), we start from a model of the annual improvement rate,
given by

− ln

(
mx,t

mx,t−1

)
= −∆mx,t = ηx,t, (3)

where the negative sign is for presentational purposes to ensure that improvements (i.e.,
declines) in mortality rates are positive and that ηx,t can be interpreted as a the continuous
rate of improvement at age x in year t.

To add structure to this, we then define the predictor structure ηx,t, using the general
age/period/cohort structure described in Hunt and Blake (2015c), i.e.,

ηx,t = αx +
N∑
i=1

β(i)
x κ

(i)
t + γt−x, (4)

where

• αx is a static function of age, which gives the average (constant) rate of improvement
in mortality at each age x;

• κ(i)t are period functions governing the change in improvement rate in year t;

• β(i)
x are age functions that modulate the corresponding period functions;2 and

2These age functions can be nonparametric (having form determined entirely by the data) or parametric
(having a predefined functional form), as discussed in Hunt and Blake (2015c).
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• γy is a cohort function describing systematic differences in the rate of improvement
which depend upon a cohort’s year of birth, y = t− x.

Unlike Mitchell et al. (2013) and Haberman and Renshaw (2012), we do not model
−∆mx,t directly, since the mortality improvement rates in this specification do not follow
a standard probability distribution. They are also highly heteroskedastic, meaning that
standard estimation techniques are problematic. Instead, we iterate Equation (3) to give

ln (mx,t) = ln (mx,0)−
t∑

τ=1

ηx,τ .

By defining Ax = ln (mx,0) as the initial mortality curve, this can be rewritten as

ln (mx,t) = η̃x,t = Ax −
t∑

τ=1

ηx,τ . (5)

In this form, it is natural to use a Poisson model for the death counts, such that the
number of deaths observed at age x and for year t follows a Poisson distribution with mean
ex,tmx,t. Under this assumption and with the log-link function,

Dx,t ∼ Poisson(ex,t exp(η̃x,t)), (6)

as per Brouhns et al. (2002) and Hunt and Blake (2015c), but with the modified predictor
structure η̃x,t, which gives us a model of mortality improvement rates directly rather than a
model for mortality rates.3

We also see that, since we can use the Poisson model for the death counts in this for-
mulation of an improvement rate model, we are able to estimate the parameters using max-
imum likelihood techniques and estimate their parameter uncertainty using the techniques
of Brouhns et al. (2005) and Koissi et al. (2006). This, therefore, overcomes some of the key
limitations of the methods in Mitchell et al. (2013) and Haberman and Renshaw (2012, 2013),
which used more ad hoc fitting techniques and did not investigate parameter uncertainty.4

3One drawback of using a Poisson model for the death counts, common to models of mortality rates
and improvement rates, is that it assumes that the variance of an observation is equal to its expectation.
Such overdispersion can be dealt with by using an overdispersed Poisson model in a generalized nonlinear
modeling framework or by allowing for heterogeneity in the population via the use of the negative binomial
distribution, such as in Delwarde et al. (2007); Li et al. (2009). However, we do not investigate this further
in this study.

4In the case of Mitchell et al. (2013), least squares estimation was used to fit the improvement rates,
while in Haberman and Renshaw (2012), an iterated generalized linear model procedure was used to allow
for overdispersion in the observed improvement rates. However, in neither case were these distributions
selected on the basis of providing an appropriate distribution for the observed death counts. Consequently,
this means that many common methods for assessing parameter uncertainty are not appropriate, as discussed
in Section 3.5.
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3.2. Estimation and Equivalent Mortality Rate Structure

We now exploit the connection between improvement rate models and traditional mor-
tality rate models to devise an estimation approach for the Poisson improvement rate model
defined by Equations (5) and (6).

From Equations (4) and (5), the predictor structure in this latter equation can be rewrit-
ten as

ln(mx,t) = η̃x,t

ln(mx,t) = Ax −
t∑

τ=1

ηx,τ

ln(mx,t) = Ax −
t∑

τ=1

(
αx +

N∑
i=1

β(i)
x κ

(i)
t + γτ−x

)

ln(mx,t) = Ax − αxt−
N∑
i=1

β(i)
x

t∑
τ=1

κ
(i)
t −

t∑
τ=1

γτ−x

ln(mx,t) = Ax − αxt+
N∑
i=1

β(i)
x K

(i)
t + Γt−x (7)

with
K

(i)
0 = 0 and Γ−X = 0, (8)

and

K
(i)
t = −

t∑
τ=1

κ
(i)
t and Γt−x = −

t∑
τ=1

γτ−x, for 1 ≤ t ≤ T . (9)

In Equation (7), it is clear that αx is determining the constant trend rate of mortality
improvement in the historic data at each age. We also see that, if the αx term is not
included, Equation (7) is equivalent to a standard age/period/cohort model (see Hunt and
Blake (2015c)). Therefore, we see that conventional mortality rates models are identical
to improvement rate models without constant improvement terms, and merely differ in the
presentation of the parameters (i.e., the constraints in Equation (8), as opposed to the
conventional identifiability constraints

∑
tKt = 0 and

∑
c Γc = 0).

In contrast, we see that including an αx constant improvement term in Equation (7)
extends the family of generalized age/period/cohort models discussed in Hunt and Blake
(2015c) with a term that is nonparametric in age and linear in time. Therefore, every
mortality rate model discussed in Hunt and Blake (2015c) has an extended version that
includes a constant improvement rate term, which is equivalent to using the same predictor
structure for mortality improvement rates rather than mortality rates.

To estimate the improvement rate model in Equations (5) and (6), we can then estimate
the equivalent mortality rate model defined by (7) with the constraints in (8) and recover
the parameters of the improvement rate model using the relationships in (9). Hence, we can
use standard techniques to fit mortality rate models to data and convert these to models of
the improvement rate. In this paper, we follow such an approach and estimate the models
using the R package StMoMo (Villegas et al., 2016), which enables the fitting of general
age/period/cohort mortality rate models.
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3.3. Models With Constant Improvement Rates

A key question when deciding on the form of the predictor structure in Equation (4) is
whether to include an αx term. This term represents the average rate of improvement at
each age over the period of the historic data and, when the model is projected, will give a
constant component to the rate of improvement in mortality in the future.

Some authors take issue with this and believe that it conflicts with the requirements of
biological reasonableness.5 In particular, Haberman and Renshaw (2012) show that the αx
static age function in a standard mortality rate model disappears when the first derivative is
taken to obtain an improvement rate model. Furthermore, there are legitimate questions as to
what form any constant rate of improvement should take. Including a nonparametric αx term
in the predictor structure of Equation (4) will assume that the average rates of improvement
observed over the period of the historic data at each age will continue indefinitely into the
future. Instead, it may be desirable to impose a parametric structure on the age shape, in
the same way that models from the Cairns-Blake-Dowd family impose a parametric structure
on the shape of mortality rates. Such a choice can result in a more parsimonious model,
making it easier to fit to data, and will have generally simpler identifiability issues. However,
unlike models of mortality rates, we are unlikely to have as strong an intuition as to what
the shape of mortality improvements will be a priori when deciding on an improvement rate
model.

Ultimately, the decision whether to include an αx term in the model of mortality im-
provement rates is largely subjective and will depend on the preferences of the model user.

3.4. Estimation and Use of Crude Mortality Rates

One of the main differences between the formulation of mortality improvement rate mod-
els in Equation (3) and that in Mitchell et al. (2013) and Haberman and Renshaw (2012) is
that the previous literature defines improvement rates in terms of the crude mortality rates,
m̂x,t = dx,t/ex,t, and so uses

− ln

(
m̂x,t

m̂x,t−1

)
= −∆m̂x,t = ηx,t (10)

in Mitchell et al. (2013), as opposed to the model fitted mortality rates, mx,t = E(Dx,t)/ex,t,
in Equation (3). Converting this to a Poisson formulation of the model, we see that this
gives6

Dx,t ∼ Poisson (ex,tm̂x,t−1 exp(−ηx,t)) , (11)

as opposed to

Dx,t ∼ Poisson (ex,tmx,t−1 exp(−ηx,t)) (12)

5The concept of biological reasonableness was introduced in Cairns et al. (2006b) and defined as “a method
of reasoning used to establish a causal association (or relationship) between two factors that is consistent
with existing medical knowledge.”

6Equation (11) follows from noting that under the Mitchell et al. (2013) form of an improvement rate
model, the expected number of deaths at age x in year t is ex,tm̂x,t−1 exp(−ηx,t)
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from Equation (6) in our formulation. We note that the Mitchell et al. (2013) form of an
improvement rate model can also be fitted using standard Poisson generalized (non-)linear
modeling techniques by setting ln m̂x,t−1 as an offset within the generalized (non-)linear
model predictor structure.

The difference between formulations (11) and (12) of an improvement rate model, al-
though subtle, has profound consequences, as we will discuss in the remainder of this paper.
From now onward, when referring to the estimation of the parameters in the predictor ηx,t,
we will say that we use a “crude” estimation approach whenever we assume (11) and a
“fitted” estimation approach whenever we assume (12). This naming convention reflects the
fact that formulation (11) is based on defining improvement rates in terms of crude mortality
rates (see, Equation (10)) while formulation (12) is based on defining improvement rates in
terms of fitted (or model-estimated) mortality rates (see, Equation (3)).

3.5. Parameter Uncertainty

As discussed in Section 1, one of the key problems with investigating mortality improve-
ment rates is the level of uncertainty in estimating models for them. This is far greater
than in similar models for mortality rates, and is a feature that is understated in models of
improvement rates to date.

To give an example of this, consider the situation where we are trying to estimate mortal-
ity rates when the true mortality rate is mx,t = 0.5% per year. Using a Poisson model, the rel-

ative parameter uncertainty in our estimate is proportional to 1
/√

ex,tmx,t = 1
/√

E(Dx,t) ,

i.e., inversely proportional to the square root of the expected number of deaths. So to obtain
a relative uncertainty of 1 percent in our estimate of the mortality rate (i.e., a one-standard-
deviation confidence interval for our mortality rate of (0.495%, 0.505%)) requires roughly
10,000 expected deaths or an observed population of 2 million lives.

If the true rate of mortality improvement is 2 percent over a one-year period, then
observing the same population in the following year will yield an estimate for the mortality
rate in the second year of (0.485%, 0.495%). Therefore, although our central estimate for
the annual improvement rate observed will be 1 − 0.49%

0.50%
= 2%, the range of our confidence

interval for the annual improvement will be (0.0%, 4.0%), i.e., a relative uncertainty in the
estimate of the rate of improvement of 100 percent. To get levels of certainty in our estimates
of improvement rates that are comparable to those obtained for mortality rates themselves,
we roughly need to square the number of expected deaths being observed each year (e.g.,
1 million expected deaths in order to obtain a relative uncertainty of 1 percent), with a
corresponding increase in the number of lives under observation (e.g., 200 million lives).
This is clearly impractical in almost all circumstances.

This is not a fatal limitation when using improvement rate models, as long as we accept
the fundamental uncertainty in our parameter estimates; however, this means that it is vital
that we allow for parameter uncertainty when using improvement rate models. Because there
was no clear process generating the observed numbers of deaths or improvement rates in the
models of Mitchell et al. (2013) and Haberman and Renshaw (2012), this was very difficult
to do systematically. However, since we assume a Poisson distribution for the death counts,
we can use standard techniques for estimating parameter uncertainty in our framework.
Specifically, we use the semiparametric bootstrapping technique of Brouhns et al. (2005),
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which generates new death counts by sampling from the Poisson distribution with mean dx,t,
to which the model is refitted in order to give new parameter estimates. Alternatively, one
could use the residual bootstrapping technique of Koissi et al. (2006), which resamples the
deviance residuals from fitting the model to generate new death counts. In practice, however,
both approaches yield qualitatively similar results. We refer the interested reader to Villegas
et al. (2016, Section 8) for the specific details of our implementation of the bootstrapping
approaches of Brouhns et al. (2005) and Koissi et al. (2006).

3.6. Projection of Mortality and Improvement Rates

To project the improvement rate model to give future improvement rates (and hence
future mortality rates), we project the period and cohort functions in a similar fashion to
that used in a model of mortality rates. Therefore, it is possible to use similar time series
techniques.7 However, since the model is now one of improvement rates rather than mortality
rates, the demographic significance of the parameters is now different, which will influence
our choice of projection model.8

In general, we can assume that the d difference of the period index κt := (κ
(1)
t , . . . , κ

(N)
t )′

follows a vector autoregressive (VAR) model around a linear trend (Pfaff, 2008):

∆dκt = C + Dt+

p∑
i=1

Ai∆
dκt−1 + ξκt , ξκt ∼ N(0,Σ), (13)

where C and D are N -dimensional vectors of parameters, A1, . . . ,Ap are N ×N matrices of
autoregressive parameters, and Σ is the N×N variance-covariance matrix of the multivariate
white noise ξκt . We note that the VAR(1) model used in Haberman and Renshaw (2012)
and the multivariate random walk with drift are particular cases of Equation (13).

As for the cohort effects, we can assume in general that they follow an autoregressive
integrated moving average model, ARIMA(p, q, d), with drift, i.e.,

∆dγc = δ0 + φ1∆
dγc−1 + · · ·+ φp∆

dγc−p + εc + δ1εc−1 + · · ·+ δqεc−q, (14)

where δ0 is the drift parameter, φ1, . . . , φp are the autoregressive coefficients with φp 6= 0,
δ1, . . . , δq are the moving-average coefficients with δq 6= 0, and εc is a Gaussian white-noise
process with variance σε.

The time series models in (13) and (14) can be used to obtain projected values of the

period index κT+s :=
(
κ
(1)
T+s, . . . , κ

(N)
T+s

)′
and cohort index γT−1+s, s = 1, . . . , h, respectively,

and to derive projected values of mortality improvement rates:

ηx,T+s = αx +
N∑
i=1

β(i)
x κ

(i)
T+s + β(0)

x γT−x+s.

7Allowing for similar issues as described in Hunt and Blake (2015a,b) in order to obtain “well-identified”
projections that do not depend on the arbitrary identifiability constraints chosen when fitting the model.

8Demographic significance is defined in Hunt and Blake (2015c) as the interpretation of the components
of a model in terms of the underlying biological, medical or socioeconomic causes of changes in mortality
rates which generate these rates.
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Table 1. Model Structures Considered in This Paper

Model Improvement Model (ηxt) Equivalent Mortality Model (η̃xt)

CI αx Ax − αxt

LC β
(1)
x κ

(1)
t Ax + β

(1)
x K

(1)
t

LC-CI αx + β
(1)
x κ

(1)
t Ax − αxt+ β

(1)
x K

(1)
t

CBD κ
(1)
t + (x− x̄)κ

(2)
t Ax +K

(1)
t + (x− x̄)K

(2)
t

CBD-CI αx + κ
(1)
t + (x− x̄)κ

(2)
t Ax − αxt+K

(1)
t + (x− x̄)K

(2)
t

APC-CI αx + κ
(1)
t + γt−x Ax − αxt+K

(1)
t + Γt−x

Now, to obtain projected mortality rates, we use

mx,T+s = m̂x,T exp

(
−

s∑
τ=1

ηx,T+τ

)
,

where m̂x,T are the last observed central mortality rates.

4. England and Wales, 1961–2011, Ages 20–89: A Poisson Improve-
ment Rate Approach

In this section, we illustrate the discussion of Section 3 by applying a Poisson improvement
rate approach to the modeling of mortality in England and Wales. In particular and similarly
to Haberman and Renshaw (2012), we use historical mortality data for the England and
Wales male population covering calendar years 1961–2010 and ages 20–89, obtained from the
Human Mortality Database (2014). Of particular interest in this discussion are the inclusion
of constant improvement rates, the implications of using a “fitted” or “crude” estimation
approach, the impact of parameter uncertainty, and the choice of time series model for the
period indexes.

4.1. Predictor Structures

We focus on the models summarized in Table 1. For each model, this table includes the
predictor structure used to model improvement rates (recall Equation (4)), as well as the
equivalent mortality rate predictor as per Equation (7).

Model CI represents a simple model including only constant improvement rates, whose
equivalent mortality rate model is similar to the generalized linear model of mortality rates
discussed in Renshaw and Haberman (2003). Model LC is the celebrated Lee and Carter
(1992) model, in both mortality rate and improvement rate form, while the LC-CI structure
corresponds to Lee-Carter model with added constant mortality improvement rates. This
latter predictor structure was considered in Mitchell et al. (2013) in its improvement rate
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form and in Callot et al. (2014) in its mortality rate form. Model CBD is the improvement
rate equivalent of the two-factor model introduced in Cairns et al. (2006a) and in mortality
rate form is equivalent to the “CBDX” model discussed in Hunt and Blake (2015a). Similar
to the LC-CI model, the CBD-CI stands for the CBD model including constant mortality
improvements. The APC-CI structure is the improvement rate version of the classical age-
period-cohort model. Such a model has recently been considered by the Continuous Mortality
Investigation (2016a,b) in their proposed update of the widely used CMI mortality projection
model.

In estimating the parameters of the models in Table 1, we impose where necessary the
standard parameter constraints. However, for the LC and LC-CI, we deviate from the stan-
dard

∑
x β

(1)
x = 1 constraint and impose instead

∑
x β

(1)
x = X, so that the period index κ

(1)
t

can roughly be interpreted as average improvement rates in year t (or average deviations from
the constant improvement rates in the LC-CI structure). The specific parameter constraints
applied in estimating the models in Table 1 are discussed in Appendix A.

The parameter estimates of all the models in Table 1 applied to male data for England
and Wales over the period 1961–2011 and ages 20–89 are shown in Figures 2–7. In these
figures, black continuous lines depict parameter estimates obtained with the “fitted” estima-
tion approach introduced in this paper, while red dashed lines depict parameter estimates
obtained with the “crude” estimation approach discussed in Section 3.4. From Figures 2–7,
we note the following:

• The noticeable differences in the estimated age-dependent parameters αx and βx under
the two alternative estimation approaches, with the “crude” approach producing very
ragged estimates. This is a clear reflection of the parameter uncertainty issues of
working with improvement rates directly, as discussed in Section 3.5.

• The contrasting close alignment between the estimates of period indexes κ
(1)
t , κ

(2)
t and

the cohort index γt−x under the two alternative estimation approaches. This sug-
gests that the choice of estimation approach will be of greater relevance for model
structures with constant improvement rates (e.g., CI, LC-CI, CBD-CI, APC-CI) or

12
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“non-parametric” age modulating function (e.g., LC and LC-CI) than for purely “para-
metric” structures such as the CBD.

• The clear interpretation of the αx term as average mortality improvements, indicating
that in England and Wales, mortality improvement rates over the 1961–2011 period
have ranged from about 0.75 percent per year between ages 20 and 30 and about 2
percent per year at ages 60 to 70.

• The similarity in the αx parameters of the CI, LC-CI and CBD-CI models using the
“fitted” approach. From the interpretation above, this should not be surprising and
is comparable to the similarity in static age functions in different models. However, it
is worth noting that this similarity does not follow through to the parameter values
fitted using the “crude” approach.

• The ease of interpretation of the primary period index κ
(1)
t , whose numerical value

can be thought of as the average improvement rate observed in the year t for models

14



without constant improvement rate and as the average deviation from the constant
improvement rates for predictors with an αx term. This is in contrast with mortality
level models where it is difficult to link the value of κ

(1)
t to quantities with intuitive

practical relevance.

• The interpretation of the cohort parameters γt−x in Figure 7 as average deviations in
improvement rates. In particular, we see that the so-called golden generation born in
the inter-war period (see Willets (2004) and Murphy (2009)) has experienced mortal-
ity improvements of around 1 to 2 percent per year greater than the average. It is
also interesting to note the existence of a “tarnished” cohort born after the Second
World War, who in contrast appear to be experiencing worse-than-average mortality
improvements.

• The noticeable upward trend in the primary period index κ
(1)
t in most models, reflecting

the faster improvements observed in recent years in England and Wales.9 This trend
raises questions as to how to model the period indexes appropriately while ensuring
the plausibility of the projected mortality rates.

4.2. Modeling the Period Indexes

We consider two alternative time series models to project the period indexes: a VAR(1)
model as in Haberman and Renshaw (2012), and a VAR(1) around a linear trend to ac-
knowledge the upward trend seen in the primary period index for all models. To illustrate
the implications of the choice of time series model, in Figure 8 we plot for both time series
specifications 95 percent prediction intervals for the period index κ

(1)
t of the LC model along

with the matching prediction intervals for mortality rates at ages 40, 55, 70 and 85. Recall-
ing that the κ

(1)
t can be interpreted as average improvement rates, we see that under the

VAR(1) model (Figure 8a), improvement rates are predicted to range from –2 to 6 percent
per year, while under the VAR(1) model around a linear trend (Figure 8b), improvement
rates are forecast to increase steadily to reach a value of between 2 and 8 percent per year by
2060. This upward trend induces a quadratic behavior in the log-mortality rate forecasts and
accelerating improvements in mortality rates. In some models, the faster improvement rates
at some ages than others result in “mortality crossovers” (as shown in Figure 8b), where
younger ages are forecast to have higher mortality than older ages. This may be felt to be
unrealistic and conflicts with our desire for “biologically reasonable” projections. Hence, we
restrict our projections to the VAR(1) model to avoid implausible projection patterns.10

9We note that since 2011, there have been several years of slower improvements than were expected, so
this trend may not have continued beyond our data.

10However, mortality crossovers were not observed in models such as the CBD and CDB-CI models,
indicating that they may be dealt with by imposing some form of parametric structure on the age-shape of
the improvements. It is also possible that mortality crossovers could occur using the VAR(1) model, e.g., as
when extending projections further into the future.
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Fig. 8. Fan Charts of the Primary Index κ
(1)
t and of Mortality Rates mx,t at Ages

x = 40, 55, 70, 85 From the LC Model: England and Wales Males, Ages 20–89,
1961–2011, Using the “Fitted” Estimation Approach and Different Time Series
Models
Note: Shades in the fans represent prediction intervals at the 50%, 80% and 95% levels.
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4.3. Impact of Parameter Uncertainty

We now turn our attention to the investigation of the impact of parameter uncertainty
on the estimation of the parameters of improvement rate models. To do so, for each of the
six predictor structures in Table 1 and for the two parameter estimation approaches, we have
generated 1,000 bootstrapped samples of the model parameters, using the semiparametric
bootstrapping approach introduced in Brouhns et al. (2005). Figure 9 presents fan charts
depicting the 50, 80 and 95 percent bootstrapped confidence intervals of the parameter of
the CI, LC and CBD models. The results for these three models are representative of the
results for all six models considered in this paper.

From Figure 9a, we see that using a “crude” parameter estimation approach akin to the
one used in Mitchell et al. (2013) and Haberman and Renshaw (2012) results in significantly
higher uncertainty in estimates of constant improvement rate parameters αx than using
the “fitted” estimation approach introduced in this paper. For instance, under the “crude”
approach, the 95 percent confidence interval of the improvement rate at age 40, α40, is (0.81%,
1.26%), which is three times wider than the equivalent (1.00%, 1.16%) under the “fitted”

approach. Similarly, Figure 9b shows that nonparametric age-modulating parameters β
(1)
x

also suffer from considerable parameter uncertainty under the “crude” estimation approach.
It is also interesting to note that, in many cases, the confidence intervals of the age parameters
under the “crude” approach do not contain the “fitted” parameter estimates. Therefore, it is
not simply a case that the “crude” approach is estimating the same parameter values but with
less precision. In contrast, Figure 9c indicates that period indexes κ

(i)
t are in general robust

with negligible differences in levels of uncertainty between the two estimation approaches.
To understand the differences in uncertainty levels produced by the two estimation ap-

proaches, it is instructive to consider in more detail the CI model. Specifically, note that
under the “fitted” estimation approach, the constant improvement rate at age x, αx, is
estimated as the slope of the (Poisson) linear regression

ln m̂x,t = Ax − αxt+εx,t,

which depends on the whole historical mortality profile, {m̂x,0, m̂x,1, . . . , m̂x,T}. By contrast,
under the “crude” estimation approach, the estimate of αx is approximately the average of
the observed improvement rates at age x over the investigation period. That is,

αx ≈ − 1

T

T∑
t=1

∆ ln m̂x,t

αx ≈
ln m̂x,0 − ln m̂x,T

T
,

which depends only on the observed mortality rates at the start and at the end of the
investigation period. Clearly, using only the first and last observations, as opposed to all the
historical observations, will result in more uncertain estimates which are less robust to the
addition of new data or to parameter uncertainty.

The differences in central estimates and levels of uncertainty of the model parameters
produced by the two estimation approaches can have an important impact on the mortality
projections produced by the models. To investigate this potential issue, in Figure 10 we
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Fig. 9. Parameters for Model CI With Parameter Uncertainty: England and
Wales Males, Ages 20–89, 1961–2011.
Note: Shades in the fan represent confidence intervals at the 50%, 80% and 95% level. Black
fans correspond to the “fitted” estimation approach, and red fans to the “crude” estimation
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Fig. 10. Fan Charts for Mortality Rates mx,t at Ages x = 40, 55, 70 from the CI,
LC and CBD Models: England and Wales Males, Ages 20–89, 1961–2011.
Note: The solid lines show historical mortality rates for the period 1961–2011. Shades in
the fan represent prediction intervals at the 95% level.

present, for models CI, LC and CBD, fan charts of mortality rate forecasts at selected ages.
For each model, we consider the following four types of forecasts:

i. Forecast produced by the “fitted” approach without allowance for parameter uncertainty;

ii. Forecast produced by the “fitted” approach with allowance for parameter uncertainty;
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iii. Forecast produced by the “crude” approach without allowance for parameter uncer-
tainty; and

iv. Forecast produced by the “crude” approach with allowance for parameter uncertainty.

From Figure 10, we note the following:

• The noticeable impact of considering parameter uncertainty under the “crude” estima-
tion approach for models CI at all ages and for the LC at younger ages. In particular,
we note that due to the absence of a period index in the CI structure, this model
provides point forecasts only when parameter uncertainty is ignored.

• The noticeable differences between the central projections in the “fitted” and “crude”
approaches for the LC model. This is particularly visible at age 55, where the “fit-
ted” approach projects a much steeper decline in mortality than the “crude” fitting
approach. These differences in central forecasts can be linked back to the differences
in the estimates of β

(1)
x produced by the two estimation approaches (recall Figure 3).

• The contrasting similarity in central forecasts and levels of uncertainty for the CBD
under both estimation approaches and with or without parameter uncertainty (see
Figure 10c).

Visual inspection of the fan charts indicates that the choice of estimation approach has
a material impact on the central forecasts produced by a mortality improvement model. To
examine this in a more quantitative manner, we consider the relative difference between
the median forecasts of mortality rates in year 2040 produced by the “fitted” and “crude”
estimation approaches. Formally, if mf,med

x,2040 and mc,med
x,2040 denote the median forecasts for age

x in 2040 produced by the “fitted” and “crude” estimation approaches, respectively, then
the relative difference at age x, RDx, is given by

RDx =
mf,med
x,2040 −m

c,med
x,2040

mf,med
x,2040

.

Figure 11 presents plots of these relative difference for all six models of Table 1. We see that,
with the exception of the CBD model, for all other models, both estimation approaches result
in significantly different central forecasts. The LC model stands out as the one with the
highest discrepancies between estimation approaches. It is also interesting to note that the
shape of these differences in the median mortality rate forecasts closely matches the shape of
the age and cohort parameters in the difference models, indicating that the differing ability
of the approaches to estimate these parameters is what drives the forecast differences.

Now, to investigate further the differences in forecast levels of uncertainty produced by
the models under both parameter estimation approaches, in Figure 12 we plot, on a log scale,
the standard deviation of the mortality rate forecasts at each age in year 2040 produced by
the “fitted” and “crude” estimation approaches, with and without parameter uncertainty.
From this figure, we note the following:

• The close alignment between the solid black lines and dashed black lines in Figures
12b–12f, indicating that parameter uncertainty has very small impact on the prediction
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Fig. 11. Relative Difference Between the Mortality Rates Forecast in 2040 for
England and Wales Males, Obtained Using a “Fitted” and a “Crude” Estimation
Approach

levels of uncertainty under the “fitted” estimation approach for all models.11 We note
that in Figure 12a, there are no solid lines, since the CI model provides central forecasts
only in the absence of parameter uncertainty.

• The contrasting significant impact of parameter uncertainty under a “crude” approach
for models CI, LC, LC-CI and CBD-CI. These models have the characteristics of hav-
ing a constant improvement rate term, αx, and/or a nonparametric age modulating

parameter β
(1)
x , which are difficult to estimate robustly under the “crude” estimation

approach.

• The close similarity of the standard deviations for the CBD model under the four sets
of forecasts, highlighting the considerable stability of this predictor structure. This
stability is a result of the CBD model being the sole model that only requires estimates
of period indexes.

4.4. Robustness and Stability of Projections

The considerable parameter uncertainty seen for some models discussed in the previous

11However, it is worth noting that Figure 12 is on a log scale, so the impact of parameter uncertainty may
not be negligible for practical purposes.
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Fig. 12. Standard Deviation of the Mortality Rates Forecast in 2040 for England
and Wales Males

22



section may have important implications for the robustness of parameter estimates as we
change the period of data used in the estimation. This in turn may result in potentially
unstable projections.

To investigate this potential issue, we consider the stability of forecasts over fixed horizon
periods as the estimation period rolls forward through time. In each subplot in Figure 13,
we show the average 10-year-ahead projected improvement rate at age 40, using different
20-year rolling estimation periods. For instance, the points labeled as stepping-off year 1980
(2011) correspond to each model fitted to data from 1961 to 1980 (1982 to 2011), and the
quantity in the vertical axis is the average improvement rate at age 40 for the next 10 years,
i.e, for the period 1981–1990 (2012–2021). For a stable model, projections should progress
smoothly as we change the data window. From Figure 13, we note the following:

• The general lack of stability of the “crude” estimation approach for all models except
for the CBD model. The instability of the “crude” approach for some models is very
significant. For instance, in the case of the CI model, changing the estimation period
from 1984–2003 to 1985–2004 results in projected 19-year-ahead average improvement
passing from 0.19 percent to 1.35 percent (see Figure 13a). The contrasting stability
of the CBD approach under both estimation approaches is not a surprise, as the CBD
is the only model that does not involve any age improvement terms (see Figure 13d).

• The same pattern of falling 10-year forecasts at age 40 for four out of six models,
consistent with the mortality improvement rate reducing at younger ages through the
1990s.

• The noticeable different behavior of the APC-CI model as compared with the rest of
the models. This is explained by the fact that this is the only model including a cohort
term (see Figure 13f).

5. United States, 1968–2014, Ages 20–89

To test the robustness of the approach to different data sets, we have repeated our
analysis using data for men in the United States over the period 1968 to 2014 from the
Human Mortality Database (2014). In so doing, we find results that are broadly comparable
to those for England and Wales.

However, it is worth noting that the observed parameter uncertainty in the age func-
tions estimated using the “crude” approach is smaller than for England and Wales but still
significantly larger than when using the “fitted” approach. This indicates that, although
increasing the population size can help with parameter uncertainty under this approach, it
does not remove the issue, even for a very large population such as that of the United States.

Figure 14 shows the fitted parameters for the CI, LC and CBD models, with parameter
uncertainty, for the U.S. data. It is interesting to see that there is little visible upward
trend in κ

(1)
t for the LC and CBD models, which indicates that, unlike for England and

Wales, there has been little acceleration in the rate of improvement in mortality over the
period. It is also interesting to note the behavior of improvement rates using the CBD model
during the late 1990s, when the average rate of improvement across all ages (κ

(1)
t ) increased
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Fig. 13. Average 10-Year-Ahead Projected Improvement Rate at Age 40 With
Different Stepping-Off Year: 20-Year Rolling Window
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rapidly. However, this was offset by sharp declines in κ
(2)
t , indicating that this faster rate of

improvement affected mainly those at younger ages.
Figure 15 shows the projected mortality rates for U.S. men, applying the CI, LC and CBD

models using the VAR(1) model. We see that these are all broadly biologically reasonable,
although there are similar differences between the “crude” and “fitted” approaches as were
discussed for England and Wales in Section 4.3.12

6. Conclusions

Rates of improvement in mortality are a very natural and intuitive way of interpreting
mortality data, which has led to them being widely used practically for setting and commu-
nicating assumptions regarding changes in longevity. However, they have not been studied in
much depth in an academic context, possibly due to the difficulties in defining improvement
rates and in fitting models robustly to data.

In this study, we have developed a more rigorous framework for the study of mortality
improvement rates and its fundamental connection to models of mortality rates. This means
that we can draw on the large amounts of work done to model mortality rates to obtain
robust and stable estimates of improvement rates without requiring the ad hoc modeling
frameworks that have been a feature of previous studies. Furthermore, we investigate the
parameter estimates obtained under previous studies and find that they not only are sub-
ject to considerable parameter uncertainty but also give significantly different best-estimate
forecasts of future mortality rates, which may be biased and less robust in comparison with
our approach and with models of mortality rates.

However, we also note that the improvement rate approach makes any changes in the
rate of improvement—i.e., systematic accelerations and decelerations in the rate of mortality
improvement—more obvious and harder to ignore in the historical data. These were more
obvious in the data for England and Wales, but there is no reason to suspect they are not
a feature of other data sets that has been largely overlooked in studies that only project
log-mortality rates linearly. However, we find that these are difficult to allow for in future
projections without running the risk of biologically unreasonable predictions such as mortal-
ity crossovers. These trade-offs between the plausibility of future projections and the need
for consistency with the trends observed in the recent past are features of many approaches
to modeling mortality. However, we leave further examination of this topic for future work.

In summary, we find that the “fitted” approach to modeling mortality improvement rates
is a flexible and versatile method for investigating the pattern of mortality changes in the
past and for projecting mortality rates into the future. We believe it can give modelers a
new perspective on existing models and potential avenues to develop new models. Perhaps
most importantly, however, it may allow for a common language to communicate theoretical
and academic results to a wider audience of practitioners.

12Figures comparable to those shown in Figures 11, 12 and 13 for England and Wales are not shown for
reasons of space but are available on request from the authors.
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Fig. 14. Parameters for Model CI With Parameter Uncertainty: U.S. Males,
Ages 20–89, 1968–2014.
Note: Shades in the fan represent confidence intervals at the 50%, 80% and 95% level. Black
fans correspond to the “fitted” estimation approach, and red fans to the “crude” estimation
approach.
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Fig. 15. Fan Charts for Mortality Rates mx,t at Ages x = 40, 55, 70 From the CI,
LC and CBD Models Applied to U.S. Males, Ages 20–89, 1968–2014.
Note: The solid lines show historical mortality rates for the period 1968–2014. Shades in
the fan represent prediction intervals at the 95% level.
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Appendix A. Parameter Constraints

Table A.2 presents the parameter constraints used in estimating the models in Table 1.
In Table A.2, we note that the constraints in the second column are applied when using the
“crude” approach to the fitting of a mortality improvement rate model, while the constraints
in the third column are applied when using the “fitted” approach to model fitting. We also
note that the “level” constraints in the improvement rate predictor structure,∑

t

κ
(i)
t = 0,

become constraints of the deterministic trends in the mortality rate predictor structure,∑
t

(t− t̄)K(i)
t = 0.

These sets of constraints make sense intuitively, since the αxt term in the mortality
improvement rate model explains any constant improvements in the historical data, so the
K

(i)
t are constrained to only explain possible deviations from this constant improvement.

Similarly, for the APC-CI, the improvement rate predictor constraints on the cohort effect,∑
y

γy = 0,
∑
y

(y − ȳ)γy = 0,

Table A.2. Parameter Constraints for the Structures Considered in This Paper

Model Improvement Model (ηxt) Equivalent Mortality Model (η̃xt)

CI — —

LC
∑

x β
(1)
x = X

∑
x β

(1)
x = X, K

(1)
0 = 0

LC-CI
∑

x β
(1)
x = X,

∑
t κ

(1)
t = 0

∑
x β

(1)
x = X, K

(1)
0 = 0,∑

t(t− t̄)K
(1)
t = 0

CBD — K
(1)
0 = 0, K

(2)
0 = 0

CBD-CI
∑

t κ
(1)
t = 0,

∑
t κ

(2)
t = 0

K
(1)
0 = 0, K

(2)
0 = 0,

∑
t(t− t̄)K

(1)
t = 0,∑

t(t− t̄)K
(2)
t = 0

APC-CI

∑
t κ

(1)
t = 0,

∑
y γy = 0,∑

y(y − ȳ)γy = 0

K
(1)
0 = 0,

∑
t(t − t̄)K

(1)
t = 0,

Γ−X = 0,
∑

y(y − ȳ)Γy = 0,∑
y(y − ȳ)2Γy = 0

28



become constraints ∑
y

(y − ȳ)Γy = 0,
∑
y

(y − ȳ)2Γy = 0

in the mortality rate predictor structure.
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