
1 

Using Life Table Techniques to Model Mortality Rates for 

Small Populations 

Jack C. Yue 

National Chengchi University, Taipei, Taiwan,

Hsin Chung Wang 

Aletheia University, Taipei, Taiwan 

Presented at the Living to 100 Symposium 

Orlando, Fla. 

January 4–6, 2017 

Copyright © 2017 by the Society of Actuaries. 

All rights reserved by the Society of Actuaries. Permission is granted to make brief excerpts for a 

published review. Permission is also granted to make limited numbers of copies of items in this monograph 

for personal, internal, classroom or other instructional use, on condition that the foregoing copyright notice 

is used so as to give reasonable notice of the Society’s copyright. This consent for free limited copying 

without prior consent of the Society does not extend to making copies for general distribution, for 

advertising or promotional purposes, for inclusion in new collective works or for resale. 



2 

Using Life Table Techniques to Model Mortality Rates for 

Small Populations 

Jack C. Yue1 and Hsin Chung Wang2 

Abstract 

The study of human longevity has been a popular research topic due to the prolonging 

of life. However, the limited availability and poor quality of elderly data increase the difficulty 

of mortality modeling. It is particularly challenging if the size of the target population is small, 

and the parameter estimation of stochastic mortality models can be distorted. For example, the 

famous Lee-Carter model (Lee and Carter 1992) would have biased estimates for age-related 

parameters 𝛼𝑥  and 𝛽𝑥  in the case of small populations. In this study, we aim to provide a 

possible solution to deal with the parameter estimation of mortality models when the population 

size is small. 

We propose graduation methods to modify the parameters’ estimates of mortality 

models, similar to the process of constructing life tables where mortality rates are smoothed to 

remove the irregularity of some observed values. The graduation methods, including Whittaker 

graduation and partial standard mortality ratio (SMR), will be applied to the Lee-Carter model 

to smooth the parameters’ estimates and compared to the coherent Lee-Carter model (Li and 

Lee 2005). We use computer simulation to evaluate the proposed approach, and we find that it 

does have smaller fitting errors when the population size is small. 

Keywords: small area estimation, standard mortality ratio, graduation methods, Lee-Carter 

model, longevity risk 
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1. Introduction

Since people are living longer, life planning for the elderly has become a popular issue

around the world. Among all topics, the study of the elderly’s mortality rates and health receives 

a lot of attention. However, human life expectancy has been increasing rapidly, and in many 

countries (especially those with small populations and a rapid increase in longevity), data about 

the elderly have been limited in quantity and available period, which makes modeling mortality 

rates among the elderly difficult. For example, the famous Lee-Carter model (Lee and Carter 

1992) would have biased estimates for age-related parameters αx and βx in the case of small 

populations. According to our simulation, the bias is especially noticeable when the population 

size is 200,000 or less. 

The following example demonstrates the influence of small populations. We first use 

Taiwan’s mortality to derive the parameters of the Lee-Carter model. Suppose that the mortality 

rates follow the Lee-Carter model and the population structure is the same as that in Taiwan. 

We consider different population sizes, ranging from 10,000 to 5 million, and then simulate the 

random numbers of deaths, and then we apply them to the Lee-Carter model. To emphasize the 

influence of small populations, we show the estimation results only of population sizes not 

more than 200,000. Figure 1 shows the average biases of estimates of parameters αx and βx via 

singular value decomposition. The biases of αx estimates are especially noticeable and always 

larger than 0. In contrast, the biases of βx estimates can be positive or negative and seem to be 

around 0 on average. Note that the average biases are calculated based on 1,000 replications; 

the data period is 1991–2010, and the age range is 0–84 in the format of five-year age groups 

(17 groups). 
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Fig. 1. Bias of Parameters’ Estimates of the Lee-Carter Model 

The biased estimates in the case of small populations probably are the main reason why 

many recent studies focus on modifying mortality models for small populations. Intuitively, 

increasing the sample size is the most efficient way to stabilize the parameter estimation of 

mortality models, and including the mortality data from neighboring areas (or areas with 

similar mortality profiles) is a natural choice. For example, the coherent Lee-Carter model by 

Li and Lee (2005) can reduce the estimation errors by referencing the mortality data from 

populations with similar mortality improvements. Of course, the Bayesian approach is another 

possibility for increasing the sample size, such as the Bayesian modification of Lee-Carter 

model by Wiśniowski et al. (2015). In a sense, the coherent Lee-Carter model and Bayesian 

methods increase the sample size of small populations. However, it is difficult to judge which 

populations have mortality profiles similar to that of the target population. 

Dealing with estimating mortality rates of small populations is not new in the insurance 

industry, and actuaries often apply smoothing methods to reduce the fluctuations of age-

specific mortality rates in constructing life tables. In fact, the graduation methods originally 
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are designed to handle the problem of insufficient data, particularly for the elderly. Many 

traditional graduation methods enlarge the sample size by including data from adjacent ages, 

similar to those in the previous paragraph; two examples are moving weighted averages and 

the Whittaker method. We think it is possible to adapt the idea of graduation methods and use 

it to stabilize the parameter estimation of mortality models in the case of small populations. 

In this study, we explore the possibility of combining graduation methods and the Lee-

Carter model, adjusting the differences between the small and the reference populations. The 

reference population is used to provide smoothed mortality rates of the small population. Wang 

et al. (2012) showed that the Whittaker and partial standard mortality ratio (SMR) methods are 

effective in reducing bias and variation of mortality estimates if a proper reference population 

is chosen. We shall further evaluate if the idea of Wang et al. can be used to stabilize the 

parameter estimation of mortality models. Specifically, we assume that the mortality rates of 

small and reference populations satisfy the Lee-Carter model but their model parameters (or 

mortality improvements) are not the same. 

Similar to the setting in Wang et al., under certain mortality scenarios, we use a computer 

simulation in Section 4 to evaluate whether the modification via graduation methods is valid 

with respect to the mean absolute percentage error (MAPE), compared with those from the 

Lee-Carter model and coherent Lee-Carter model. The results show that the Whittaker and 

partial SMR methods can improve the parameter estimation of the Lee-Carter model in the case 

of small populations. 

 

2. Methodology 

The idea behind the proposed approach is similar to that of using graduation methods to 

adjust irregular fluctuations in observed mortality rates. However, unlike the usual graduation 

methods, such as the moving average, the proposed adjustment of mortality rates is based on a 

reference population, similar to Bayesian graduation. Basically, we propose two graduation 

methods: partial standard mortality ratio (SMR) and the Whittaker method. We will introduce 

the proposed approach in this section and evaluate its performance in the next section. 

The partial SMR (Lee 2003) is a modification of SMR, which is used to smooth mortality 

rates of small populations via the information from a large population, referencing the value of 

the SMR. The SMR, which is often used in epidemiology, is defined as follows: 
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where dx and ex are the observed and expected numbers of deaths at age x for the small 

population, Px is the population size of age x for the small population, and
R

xm is the central 

death (or mortality) rate of age x from the reference population. The SMR can be treated as a 

mortality index. If the SMR is larger (or smaller) than 1, then it usually indicates that the small 

population has a higher (or lower) overall mortality rate than the reference population. 

The numbers of age-specific deaths in the small population often are not many, and the 

observed mortality rates fluctuate a lot and sometimes are even 0. The SMR can provide a 

possible guideline to fine-tune these mortality rates. For the partial SMR, the graduated 

mortality rates satisfy 
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or the weighted average between raw mortality rates and SMR, where 2ĥ  is the estimate of 

parameter h2 for measuring the heterogeneity (in mortality rates) between the small and 

reference populations, and
*

xu is the mortality rate for age x in the reference population. 

 The idea behind the partial SMR is similar to a credibility-weighted estimate for 

calculating the future premium (Klugman et al. 2012), where the estimate is a linear 

combination of recent observed loss and related reference information. The Bayesian 

graduation methods (e.g., Kimeldorf and Jones 1967) function in a similar format, and the 

updated (or posterior) estimates are also a linear combination of new observations and past 

experience (London 1985). The key is to choose appropriate weights and the proper reference 

population. Of course, the reference population should have larger population size in order to 

have smooth values of 
*

xu . 

To achieve satisfactory results, Lee (2003) suggests the weight of partial SMR: 
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The larger 
2ĥ   is, the larger the difference in age-specific mortality rates (i.e., mortality

heterogeneity, or larger dissimilarity in shape between the age-specific mortality curve of the 

small population and that of the larger population). When the number of deaths is smaller, there 

will be greater weight from the large population, and the graduated mortality value equals 

*SMR xu when the number of deaths is 0. Lee mentioned that using the weight function 2ĥ  in 

Equation (2.3) usually has smaller mean square error (MSE) in mortality estimation. However, 

the derivation of 
2ĥ  is through some sort of approximations, and it cannot guarantee to have

the smallest MSE. 

Alternatively, we can also use the Whittaker graduation method to stabilize the mortality 

rates of a small population, with a modification similar to the partial SMR. First, we calculate 

the age-specific ratio of mortality rates from the small population to those from the reference 

population, or define 
*/ xxx uus  , where xu is the observed mortality rate of age x for the small

population. Next, we apply the Whittaker graduation to the mortality ratio sx via minimizing 

the following objective function: 

  
x x

x

z

xxx rhrrwM 2*2* )()( ,     (2.4) 

where rx is the graduated mortality ratio, wx is the weight (or exposure) of age x, h is a 

smoothing parameter, and Δ is the difference operator, or Δf(x) = f(x + 1) – f(x). Finally, the 

graduated mortality rates of small population are 
*

xx us  . The choice of parameter h is the key,

as well as the choice of reference population, in applying the Whittaker ratio (namely) 

graduation. 

Selecting the reference population is critical in applying the proposed graduation methods. 

This is also the case for applying the coherent Lee-Carter model, and choosing the appropriate 

group of coherent populations is important. In practice, selecting the populations with similar 

mortality profiles is not easy, and a natural choice is the whole nation (or nearby areas) if the 

small population is a subset of the nation. But the mortality differences within a country can be 

huge, even for neighboring cities. For example, in Taiwan, the largest difference in life 

expectancy between counties is more than 10 years (the city of Taipei versus Tai-tung County 

in the 2014 Taiwan Abridged Life Tables). It would be questionable to use the population of 

Taipei as the reference group for Tai-tung County. In the next section, we will use computer 
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simulation to evaluate the proposed approach, with emphasis on the similarity between the 

small and reference populations. 

 

3. Graduating Mortality Rates via the Reference Population 

As mentioned previously, choosing the appropriate reference population is important. 

However, instead of searching for the perfect reference population, we want to use the 

similarity level between the small and reference populations to judge whether we should adjust 

the mortality rates of the small population via the reference population. In this section, we first 

evaluate the performance of graduation methods using varies similarity levels. In the next 

section, we will use the idea of graduation to modify the parameter estimation of the Lee-Carter 

model. 

Suppose that there are seven scenarios for the mortality ratio sx between the small and 

reference populations, as shown in Figure 2. Various scenarios are designed to evaluate the 

effect of different graduation methods. The three scenarios in the left panel indicate that the 

mortality rates of the small and reference populations are similar, and we expect that the partial 

SMR would be a good choice for graduation. In contrast, the other four scenarios in the right 

panel assume that the mortality rates of the small and reference populations are different. For 

these four cases, the partial SMR might not be a good choice. 

 

Fig. 2. Seven Mortality Ratio Scenarios 
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We use a computer simulation to evaluate the performance of partial SMR and Whittaker 

graduation. Specifically, we use Taiwan’s female mortality data to fit the Lee-Carter model and 

treat the estimated parameters as the true values. The data period is 1991–2010, and the age 

range is 0–89, divided into five-year age groups of 0–4, 5–9, 10–14, … , 85–89, for a total of 

19 groups. The size of the small population is set to be either 100,000 or 200,000, and the size 

of reference population is set to be either 2 million or 4 million. Also, the comparison criterion 

is based on the mean absolute percentage error (MAPE):  


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



n

i i

ii

Y

YY

n
MAPE

1

%100

ˆ
1

,    (3.1) 

where iY   and iŶ   are the observed and predicted values for observation i, i = 1, 2, ..., n. 

According to Lewis (1982), a prediction with MAPE less than 10 percent is treated as highly 

accurate, and a MAPE greater than 50 percent is considered inaccurate. 

 Since the simulation results are similar for the cases where the reference population is 

larger than 2 million, we will only show the cases of 2 million. Tables 1 and 2 are the simulation 

results of cases where the small population is 100,000 and 200,000, for 1,000 simulation 

replications. Other than raw data and two proposed graduation methods, we also consider the 

case of Whittaker graduation to the observed mortality rates as a control group. For the 

Whittaker ratio and Whittaker graduation methods, the parameter wx is the exposure of age x, 

and the parameter h is average exposure of all ages. 

Table 1. Mean Absolute Percentage Error (MAPE) of Graduation Methods: 100,000 vs. 

2 Million 

 xs = 0.8 xs = 1 xs = 1.2 Increase Decrease V Rev-V 

Raw 42.87% 38.99% 36.05% 36.38% 43.80% 39.81% 41.26% 

Whittaker 32.27% 30.13% 28.24% 28.52% 33.52% 32.12% 29.90% 

Whittaker 

ratio 
25.18% 21.65% 19.70% 19.88% 27.32% 21.54% 25.18% 

Partial 

SMR 
9.45% 9.15% 9.02% 27.42% 49.04% 30.85% 20.70% 

Note: The cells with gray background are those with the smallest MAPE. 
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Table 2. Mean Absolute Percentage Error (MAPE) of Graduation Methods: 200,000 vs. 

2 Million 

 xs = 0.8 xs = 1 xs = 1.2 Increase Decrease V Rev-V 

Raw 31.74% 29.15% 27.40% 27.71% 32.50% 30.92% 29.28% 

Whittaker 25.42% 23.73% 22.76% 23.33% 26.30% 26.52% 22.74% 

Whittaker 

ratio 
20.22% 17.77% 15.92% 15.88% 21.31% 17.57% 19.91% 

Partial 

SMR 
8.73% 8.55% 8.45% 24.59% 47.24% 26.25% 17.43% 

Note: The cells with gray background are those with the smallest MAPE. 

As expected, all the graduation methods have smaller MAPEs than those without 

graduation (except for the case of decreasing scenario). For the first three scenarios, in which 

the mortality rates of small and reference populations have the same proportion for all ages, 

the SMR can provide a very good approximate estimate of this proportion. Thus, the MAPEs 

of the partial SMR are much smaller than other methods. Heuristically speaking, taking the 

results in Table 1 as a demonstration, it is like treating the reference population as the small 

population when we apply the partial SMR, so the MAPEs of the raw data are about √20 times 

of those of partial SMR, i.e., 20 = 2,000,000/100,000. 

For the other four mortality scenarios, where the mortality rates of small and reference 

populations are not very similar, the MAPEs of the Whittaker ratio generally are the smallest 

(except for the scenario of the reverse V shape). It seems that the Whittaker ratio is more robust 

than the partial SMR and the graduation results are not influenced much by different mortality 

scenarios. This probably can explain why the Whittaker method is still a popular choice of 

graduation methods. 

Of course, we can conduct exploratory data analysis (EDA) to evaluate if the mortality 

rates of small and reference populations are similar. For example, the age-specific mortality 

ratios in Figure 2 are one of the EDA tools we can use. We suggest using the partial SMR if 

they look like the first three scenarios, but we are skeptical of using the partial SMR for the 

last four scenarios. In fact, we experimented with using different values of mortality ratios for 

the last four scenarios, such as changing the ratios of the increasing scenario from 0.5–1.5 to 

(1  a)–(1 + a) for 0 < a < 1. We found that the MAPEs of the partial SMR are smaller than 
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those of Whittaker ratio if a < 0.3. In other words, if the small and reference populations are 

not very different, then the partial SMR is preferred. We should continue exploring whether we 

can modify the stochastic mortality models via graduation methods in the next section. 

 

4. Modification of the Lee-Carter Model 

In this section, we continue the discussion of applying the graduation methods to modify 

the Lee-Carter model. We first use the proposed approach to revise the mortality rates and then 

apply the graduated mortality rates to the Lee-Carter model. Again, we assume that the age-

specific mortality rates satisfy the Lee-Carter model and consider two different settings: 

whether the small and reference populations have different 𝛼𝑥 and the same 𝛽𝑥 or have the 

same 𝛼𝑥  and different 𝛽𝑥 . The roles of parameters 𝛼𝑥  and 𝛽𝑥  are somewhat close to the 

intercept and slope, if we treat the Lee-Carter model as the regression equation. The influence 

of different 𝛽𝑥 is expected to be larger than that of different 𝛼𝑥. 

Also, two types of modifications are considered: graduate raw mortality rates first and 

then apply the Lee-Carter model, or apply the Lee-Carter model first and then graduate model-

fitted mortality rates. To demonstrate the proposed approach, we should use the case where 

the small population is 100,000 and the reference population is 2 million. The results for the 

other combinations of small and reference populations are similar. Taiwan’s female mortality 

data, similar to those in the last section, are used to fit the Lee-Carter model, and the estimated 

parameters are treated as the true values. The model comparison is based on the MAPE as 

well, based on 1,000 simulation runs. 

We have two choices of graduation methods, the partial SMR and Whittaker ratio, and 

also two choices of mortality models, the Lee-Carter model or the coherent Lee-Carter model 

(namely, the Li-Lee model), as well as the order of mortality graduation and mortality model. 

Because there are quite a few choices of the proposed methods (order of mortality graduation, 

graduation methods, and mortality models), we only show those with smaller MAPEs. As for 

the reference group for evaluating the proposed approach, we choose the Lee-Carter and Li-

Lee models, in addition to the raw observations. 

The setting of different αx and the same βx in the Lee-Carter model is similar to those in 

Figure 2, and again we adapt the same seven mortality scenarios. The MAPEs of the proposed 

methods and the reference group are shown in Table 3. Unsurprisingly, the MAPEs of Lee-

Carter and Li-Lee models are obviously smaller than those of raw observations, since the 

mortality rates satisfy the Lee-Carter model. In addition, the MAPE’s of Li-Lee model are 
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always smaller than those of Lee-Carter model. It seems that the Li-Lee model is a fine 

modification to the Lee-Carter model when the small and reference populations share same 

slope but different intercept. 

 

Table 3. Mean Absolute Percentage Error (MAPE) of Lee-Carter Model Graduation: 

Different αx 

 xs = 0.8 xs = 1 xs = 1.2 Incr. Decr. V Rev-V 

Raw 34.11% 30.27% 27.63% 28.50% 34.98% 30.36% 32.57% 

Lee-Carter 18.25% 16.54% 15.09% 14.94% 20.14% 16.17% 18.66% 

Li-Lee 12.44% 11.76% 11.45% 12.14% 12.55% 12.89% 11.33% 

Partial SMR + 

Lee-Carter 
5.00% 4.70% 4.44% 23.71% 43.97% 25.04% 17.25% 

Li-Lee + 

Whittaker  
10.87% 10.69% 10.66% 11.46% 10.49% 12.53% 9.67% 

Lee-Carter + 

Whittaker  
16.34% 15.04% 14.05% 14.06% 17.41% 15.39% 16.32% 

Note: The cells with gray background are those with the smallest MAPE. 

 

 The MAPEs of graduation methods vary quite a lot. For the first three mortality scenarios, 

using the partial SMR to graduate first and then apply the Lee-Carter model has the smallest 

MAPEs, but the MAPEs for the last four scenarios are almost the largest. In contrast, applying 

the mortality model (Lee-Carter or Li-Lee model) first and using Whittaker ratio graduation 

outperforms the Lee-Carter model. The treatment combination Li-Lee + Whittaker has the 

smallest MAPEs for the last four mortality scenarios, with noticeable improvements over the 

Lee-Carter and Li-Lee models in all mortality scenarios. It seems that the graduation methods 

can improve the mortality estimates in the case of a small population. 

  We continue the discussion for the case of same αx and different βx, and use a setting 

similar to the seven mortality scenarios in Figure 2. Following the same concept, we also set 

up seven scenarios for the parameter βx to describe the relationship between the small and 

reference populations. Let /s r

x x xC    , where s

x  and r

x  are the age-related slope parameters in 

the Lee-Carter model for the small and reference populations. Seven x   scenarios are as 
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follows: 0.8xC  , 1.0xC  , 1.2xC  , and xC  is increasing, decreasing, V-shape, or reverse V-

shape. 

Table 4 shows the MAPEs of the reference groups and the proposed graduation methods 

for the case of same αx and different βx. Similar to the case of different αx in Table 3, the Li-

Lee model always has smaller MAPEs than the Lee-Carter model in all seven βx scenarios. It 

seems that even if the small and reference populations have quite different βx, using the idea of 

coherent group to increase the population size still can reduce the estimation error of mortality 

rates for the small populations. This is not what we expected, but it indicates that increasing 

the population size is a feasible approach, even though the populations included do not have a 

mortality profile identical to that of the small population. 

 

Table 4. Mean Absolute Percentage Error (MAPE) of Lee-Carter Model Graduation: 

Different βx 

 𝑪𝒙 = 0.8 𝑪𝒙 = 1.0 𝑪𝒙 = 1.2 Increase Decrease V Rev-V 

Raw 30.15% 30.27% 30.41% 30.48% 30.10% 30.33% 30.15% 

Lee-Carter 16.31% 16.54% 15.73% 15.47% 17.14% 16.01% 16.23% 

Li-Lee 12.28% 11.76% 12.22% 12.46% 13.05% 12.49% 12.67% 

Partial SMR 

+ Lee-Carter 
4.68% 4.70% 4.74% 6.91% 7.21% 5.96% 6.03% 

Lee-Carter + 

Whittaker  
13.98% 14.09% 13.99% 13.55% 14.90% 14.03% 14.10% 

Note: The cells with gray background are those with the smallest MAPE. 

 

Unlike the case of different αx, using the partial SMR to graduate mortality rates and then 

apply the Lee-Carter model has the smallest MAPEs. It outperforms the Lee-Carter and Li-Lee 

models in all scenarios, with significant reductions in the estimation errors. However, the 

improvements of the treatment combination of applying the Lee-Carter model first and using 

the graduation methods are not as significant. The best treatment combination is to apply the 

Lee-Carter model first and use the Whittaker ratio to graduate. Although this combination’s 

MAPEs are smaller than those of Lee-Carter model, they are always larger than those of Li-

Lee model. 
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Based on the computer simulation, we found that the mortality graduation can improve 

the mortality estimation of the Lee-Carter model, if proper graduation methods are selected. 

But the selection depends on the characteristics of mortality rates. We suggest conducting 

exploratory data analysis for the mortality rates, and the information, such as mortality ratios, 

can provide a useful guideline to choose the appropriate graduation methods. 

 

5. Conclusion and Discussion 

Living longer is a common phenomenon of human beings in the 21st century, and the 

study of mortality rates is a popular research topic in many fields, such as demography and 

actuarial science. The mortality models are a common tool for modeling the mortality rates, 

but the model estimation tends to be distorted by small sample size. In addition to larger 

variance, parameters’ estimates for the small populations often are biased. Quite a lot of 

modifications have been proposed to deal with the case of a small population. Three examples 

are the coherent Lee-Carter model by Li and Lee (2005), the Bayesian approach by Cairns et 

al. (2011) and the SAINT model by Jarner and Kryger (2011). Most of these modifications use 

mortality information from another population(s) as a reference to improve the model fitting. 

Including another population as a reference is like increasing the sample size, and this 

probably is the most intuitive and effective way to deal with the model estimation for small 

populations. The idea of increasing sample size has been used by actuaries to construct life 

tables as well, and many graduation methods can be treated as increasing sample size from 

those with a similar mortality profile. In this study, we adapt the idea of graduation and propose 

a modification of the Lee-Carter model, also with information from a reference population. 

Two types of graduation methods are used in this study: the partial SMR (Lee 2003) and 

Whittaker ratio. 

We consider two parameter settings for the Lee-Carter model: same αx with different βx 

and different αx with same βx, and use computer simulation to evaluate the proposed approach. 

In general, the partial SMR modification has smaller estimation errors (with respect to MAPE) 

than the Lee-Carter and Li-Lee models, if the small and reference populations have similar 

mortality profiles. When the mortality rates of small and reference populations are not similar, 

the Whittaker ratio is a possible alternative choice of graduation methods. We think the 

graduation methods are a feasible approach for dealing with small populations and can 

effectively reduce the estimation errors of the Lee-Carter model. 

We should continue exploring the graduation methods and use them to modify the 
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mortality models. However, we only consider various settings of age-related parameters αx and 

βx for the Lee-Carter model and do not consider the time-related parameter κi. Different 

functional forms of parameter κi can create problems when the reference populations are 

included (e.g., quadratic for the small population and linear for the reference population). Of 

course, the interactive effects might also exist if two or three parameters (αx, βx and κi) are 

different, and this can distort or even ruin the effect of graduation. 

Also, there can be more than one reference population, and of course, it is impossible 

that these populations are perfectly homogeneous in terms of mortality rates. It is more realistic 

to expect that some populations and the small population have similar mortality rates at 

younger ages, while other populations and the small population are similar at older ages. Then 

the concept of variable selection can be applied. We may develop similarity measures and use 

them to judge whether a reference population should be included. Further, it would be even 

better (but more difficult) if the selection of appropriate reference populations were age 

dependent.  

Modifying the graduation methods for mortality models (other than the Lee-Carter mode) 

is also a possible direction for future study. If the parameters of mortality models are additive, 

such as the age-period-cohort model, we can use the graduation methods to adjust the parameter 

estimation one parameter at a time. However, if the parameters are not additive, the situation 

is expected to be more complicated. For example, the cohort modification to the Lee-Carter 

model by Renshaw and Haberman (2006) contains one component of age with time and one 

component of age with cohort. These two components are not linearly dependent and can cause 

problems of adjusting the age parameters associated with time and cohort. 
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