
 

 
 
 

 
 
 
 
 
 

Article from: 
 

Pension Section News 
 

February 2001 – Issue No. 45 



I drive a late-model minivan. It has
everything I need for my lifestyle.
Lots of space. Seats which I can

remove or install, depending on my need of
the moment. Power windows, A/C, etc.,
etc. I am totally happy with it. Yet if an
auto company said to me “we’ve got a new
minivan with lots of new features including
GPS, built-in computer and anti-gravity,
and you can have it at a fraction of what
you paid for your old minivan,” I would
switch in a heartbeat.

Such is my relationship with APL and J.
APL is a wonderful language for actuarial
work. It can manipulate arrays easily. It’s
an interpreter, so it’s easy to debug code. It
has powerful and flexible string handling
capabilities with which to create output.
Nothing could be simpler or more conven-
ient than component files.

So why switch to J? Because J has
everything APL has and a whole lot more.
When I am asked to describe what J is like,
and there is no time for a detailed answer, I
simply say “J is APL on steroids.” For
some years I have been learning J in scraps
of my spare time. Now I am working on my
first commercial system. So I still have a
lot to learn. With this as context, here are
just a few of the reasons I like J:

J uses ASCII text instead of APL char-
acters. For example, the Greek iota has
been replaced by i. This simplifies my life
in several ways. I can use a text editor to
write and edit code. It is easier to send code
to clients and collaborators. It allows for a
richer set of primitives.

Like APL, J has only a few data types:
number, character, and box. I find boxing to
be more intuitive, consistent, and easier to
use than APL’s enclose and disclose.

There are many additions and extensions
to the language that are marvelous conven-
iences. Some of these are possible because
of the expansion of the number of primi-
tives. For example, monadic {. is “head.”
This returns the first item in an array. There
is also “tail,” “behead,” and “curtail.” Others
are brand new capabilities. For example,
“infix” acts on successive groups of items in
an array. In actuarial work, infix allows me
to produce dxs from a survivorship group,
lx, with: dx =: 2 -/\ lx. There are “nub” and

“nub sieve” primitives. With them I can, for
example, identify all the unique combina-
tions of plan, issue age, duration, and under-
writing class in a block of policies. The
primitive i. is an example of an extension.
i.4 returns a 4 element vector, 0 1 2 3, just
like iota, in APL. But i.2 3 returns a matrix
with two rows and three columns. 

J has a symbol for infinity. It is the
underline. Why would anyone living in a
finite world need infinity? Well, J also has a
power conjunction. This is similar to raising
a number to a power. For example, 2 cubed
means multiply 2 by itself three times. The
power conjunction generalizes this to apply
to any verb (the J name for function, or sub-
program). The power conjunction instructs
the verb to keep feeding its result back into
itself a specified number of times. If this
number is infinity, the verb will only stop if
the verb’s output is the same as the input,
i.e., the process converges. This allows
incredibly compact and efficient code to get
the solution to problems such as finding the
yield from a messy cash flow stream.

The power conjunction is also useful
when its argument is finite. For example, to
get second differences apply infix twice.
Suppose q is a column of qxs that the user
has just entered by hand. How can you help
him check for errors? Get the second differ-
ences: diff =.2 −/\^:2 q. Then flag those that
are not reasonable.

J is totally consistent. Concepts stretch
across the entire language; for example,
“item” is a technical term in J. The items of
lx are the number of lives surviving at each
age. The items of a table are the rows, the
items of a 3 dimensional array are the
tables, etc. This idea finds an application in
J’s “for” control structure. In BASIC we
have “for i = 1 to n.” In J we have “for_i.
array do.” In J, the for loop sequentially
assigns to i the items of array. This is a
powerful and useful generalization.

J has a very powerful grid feature. It’s
much more than a spreadsheet. It can be
used to input, manipulate, and display data
in any way that you can imagine. It can also
handle infinite arrays, not much use in actu-
arial work, but intrinsically fascinating.

So, J has a lot of neat features, but what
about building complete systems?

When I develop a system, I just write a
script (the J term for program or module),
run it, and look at the results, just like
APL. When it’s working right, I call it
from the main module. A major feature of
this approach is that each script can, if

appropriate have its
own locale, the J term
for name space. Names
can be global in a
locale, but they don’t
collide with the same
names in other locales.
APL workspaces have their virtues, but in
this respect J is superior.

The GUI for a system can be created in
a manner similar to other languages: set up
a form, drag and drop controls on it, and
use point and click to set the controls’
attributes. J also allows me to create
controls and otherwise modify the form at
run-time. That this can be done easily (or at
all) distinguishes J from most other
languages.

Is there any downside to J? Possibly a
couple of things:

J, like any interpreter, runs slower than
compiled languages. This is generally not a
problem due to the array processing nature
of the language. In those instances where a
large amount of number crunching is
required, and it must be done by looping, I
use another language to compile this logic,
then call it from my J code.

The only other problem with J is that its
environment and add-ons constitute a huge
amount of material. For an actuary who just
wants to use the language to solve prob-
lems, it is critically important to delimit the
amount of material he or she will try to
absorb at first.

A good approach is to take a modest
problem, say a spreadsheet that is becom-
ing unwieldy, and learn enough to im-
plement it in J as a single script. This can
be done by learning a few primitives, how
to write verbs and, possibly, some file
handling. The material that can be ignored
includes: most of the primitives; hooks,
forks and trains; concepts like gerund and
obverse; OOP; grids; ODBC; the Project
Manager; mapped files and a whole lot
more. Even locales and the GUI can be
ignored at first.

My overall judgement of J is that I can
be more productive with it than any other
language, and it is a joy to work with. I
plan to use it as my main programming
language for the rest of my working life.

Brian Bambrough, FSA, is president of
Bambrough & Associates Inc. in
Kalamazoo, MI. He can be reached at
b.bambrough@worldnet.att.net.

PENSION SECTION NEWSPAGE 18 FEBRUARY 2001

Why I Like J
by Brian Bambrough


