SOCIETY OF ACTUARIES

Article from:

Pension Section News

February 2001 — Issue No. 45

PAGE 18

PENSION SECTION NEWS

FEBRUARY 2001

Why I Like J

by Brian Bambrough

everything | need for my lifestyle.

Lots of space. Seatswhich | can
remove or install, depending on my need of
the moment. Power windows, A/C, etc.,
etc. | am totally happy withit. Yetif an
auto company said to me “we' ve got a new
minivan with lots of new features including
GPS, built-in computer and anti-gravity,
and you can haveit at afraction of what
you paid for your old minivan,” | would
switch in a heartbeat.

Such is my relationship with APL and J.
APL isawonderful language for actuarial
work. It can manipulate arrays easily. It's
an interpreter, so it's easy to debug code. It
has powerful and flexible string handling
capabilities with which to create output.
Nothing could be ssmpler or more conven-
ient than component files.

So why switch to J? Because J has
everything APL has and awhole lot more.
When | am asked to describe what Jis like,
and thereis no time for a detailed answer, |
simply say “Jis APL on steroids.” For
some years | have been learning Jin scraps
of my sparetime. Now | am working on my
first commercia system. So | still have a
lot to learn. With this as context, here are
just afew of thereasons| like J.

Juses ASCII text instead of APL char-
acters. For example, the Greek iota has
been replaced by i. Thissimplifiesmy life
in several ways. | can use atext editor to
write and edit code. It is easier to send code
to clients and collaborators. It allows for a
richer set of primitives.

Like APL, Jhas only afew datatypes:
number, character, and box. | find boxing to
be more intuitive, consistent, and easier to
use than APL’s enclose and disclose.

There are many additions and extensions
to the language that are marvel ous conven-
iences. Some of these are possible because
of the expansion of the number of primi-
tives. For example, monadic {. is“head.”
Thisreturnsthefirst item in an array. There
isalso “tail,” “behead,” and “curtail.” Others
are brand new capabilities. For example,
“infix” acts on successive groups of itemsin
an array. In actuaria work, infix alows me
to produce dxs from a survivorship group,
Ix, with: dx =: 2 -\ IX. There are “nub” and

I drive alate-model minivan. It has

“nub sieve” primitives. With them | can, for
example, identify all the unique combina-
tions of plan, issue age, duration, and under-
writing classin ablock of policies. The
primitivei. is an example of an extension.
i.4 returnsa4 element vector, 01 2 3, just
likeiota, in APL. But i.2 3 returns amatrix
with two rows and three columns.

Jhasasymboal for infinity. It isthe
underline. Why would anyoneliving in a
finite world need infinity? Well, Jalso hasa
power conjunction. Thisissimilar to raising
anumber to a power. For example, 2 cubed
means multiply 2 by itself threetimes. The
power conjunction generalizesthisto apply
to any verb (the J name for function, or sub-
program). The power conjunction instructs
the verb to keep feeding its result back into
itself a specified number of times. If this
number isinfinity, the verb will only stop if
the verb’s output is the same as the input,
i.e., the process converges. Thisallows
incredibly compact and efficient code to get
the solution to problems such as finding the
yield from a messy cash flow stream.

The power conjunction is aso useful
when its argument is finite. For example, to
get second differences apply infix twice.
Suppose g isacolumn of gxsthat the user
has just entered by hand. How can you help
him check for errors? Get the second differ-
ences. diff =.2 - \™:2 g. Then flag those that
are not reasonable.

Jistotally consistent. Concepts stretch
across the entire language; for example,
“item” isatechnical termin J. Theitems of
Ix are the number of lives surviving at each
age. The items of atable are the rows, the
items of a3 dimensiona array are the
tables, etc. Thisideafinds an applicationin
Js“for” control structure. In BASIC we
have “fori=1ton.” In Jwe have“for_i.
array do.” In J, the for loop sequentially
assignstoi theitemsof array. Thisisa
powerful and useful generalization.

Jhas avery powerful grid feature. It's
much more than a spreadsheet. It can be
used to input, manipulate, and display data
in any way that you can imagine. It can also
handle infinite arrays, not much use in actu-
arial work, but intrinsically fascinating.

So, Jhas alot of neat features, but what
about building compl ete systems?

When | develop asystem, | just write a
script (the Jterm for program or module),
runit, and look at the results, just like
APL. When it'sworking right, | cal it
from the main module. A major feature of
this approach is that each script can, if

appropriate have its
own locale, the Jterm

for name space. Names , ' T‘ ‘
can beglobal ina

locale, but they don’t -
collide with the same

names in other locales.

APL workspaces have their virtues, but in
this respect Jis superior.

The GUI for asystem can be created in
amanner similar to other languages: set up
aform, drag and drop controls onit, and
use point and click to set the controls
attributes. J also allows me to create
controls and otherwise modify the form at
run-time. That this can be done easily (or at
all) distinguishes Jfrom most other
languages.

Isthere any downside to J? Possibly a
couple of things:

J, like any interpreter, runs slower than
compiled languages. Thisis generally not a
problem due to the array processing nature
of the language. In those instances where a
large amount of number crunching is
required, and it must be done by looping, |
use another language to compile thislogic,
then call it from my J code.

The only other problem with Jisthat its
environment and add-ons constitute a huge
amount of material. For an actuary who just
wants to use the language to solve prob-
lems, itiscritically important to delimit the
amount of material he or she will try to
absorb at first.

A good approach isto take a modest
problem, say a spreadsheet that is becom-
ing unwieldy, and learn enough to im-
plement it in Jasasingle script. Thiscan
be done by learning afew primitives, how
to write verbs and, possibly, somefile
handling. The material that can be ignored
includes: most of the primitives; hooks,
forks and trains; concepts like gerund and
obverse; OOP; grids; ODBC; the Project
Manager; mapped files and awhole lot
more. Even locales and the GUI can be
ignored at first.

My overall judgement of Jisthat | can
be more productive with it than any other
language, and it isajoy to work with. |
plan to use it as my main programming
language for the rest of my working life.

- =ua

Brian Bambrough, FSA, is president of
Bambrough & Associates Inc. in
Kalamazoo, MI. He can be reached at
b.bambrough@worldnet.att.net.

