# TRANSACTIONS OF SOCIETY OF ACTUARIES 1959 VOL. 11 NO. 29AB 

## A THEORY OF MORTALITY CLASSES

## LOUIS LEVINSON

## INTRODUCTION

THE course of mortality for any large group depends on three basic things: first, the inherent nature of the organism-horses, for example, seem to be constitutionally incapable of living as long as men; among human beings such differences may exist according to sex and race, although conclusive evidence that this is necessarily so has not been adduced; second, the environment in the broadest sense, including not only climate but all the geographic, economic, scientific and sociological forces influencing longevity-it is to these forces that diferences in mortality by race and possibly sex, may be attributable; third, the stages in the course of life in which the respective individuals in the group are found at any particular point.
2. It is the basic thesis of this paper that all mortality tables constructed on the experience of lives having in common the first and second of the foregoing elements differ from one another only as the stages of deterioration, to which the persons represented in the respective tables have progressed, differ. Accordingly, it may be postulated that the mortality embodied in different tables developed within a given period from the experience of lives, constitutionally similar, having a common environment may be expressed as varying manifestations of the mortality experienced in the population as a whole. In the development of this proposition a "mortality class" focuses attention exclusively on the members' prospects for longevity, and not on the accident through which they enter the experience, such as is the case with the collections of lives called the "class of annuitants," or the "class of medically examined insured lives," etc.
3. The mortality classes commonly encountered in life insurance experience are not homogeneous even in the loosest meaning of that term. In fact, two classes exhibiting mortality rates as different as those shown in a select table of insured lives on one hand, and a disabled life table on the other, will include many of the same lives. Even the collections of lives being accepted for standard insurance, despite the great skill of underwriters, are not homogeneous. Some of the poorest risks are accepted involuntarily as they manage to slip through the selection screen. One has merely to examine the causes of death resulting in first year claims among such lives to realize that even individuals suffering from degenerative diseases often far advanced had been admitted to the select group.
4. Homogeneity in organisms as complex as humans is an unattainable ideal. However, it may be assumed that, by a suitable selection process, a practical kind of homogeneity with respect to risk of death could be obtained within relatively small collections of lives. This hypothesis may be extended to encompass the notion that all lives in a given environment may be collected in mutually exclusive subgroups of this kind.
5. In this paper, a "mortality class" is a collection of lives at a given age composed in a particular way of these homogeneous subgroups. A class subject to light mortality might be thought of as including a larger proportion of the subgroups enjoying better health, engaged in less hazardous occupations, etc., while a class exhibiting a high rate of death might be considered as including a larger proportion of lives belonging to subgroups experiencing heavier mortality. Every mortality class, therefore, would normally include subgroups displaying different levels of mortality. A mortality class is heterogeneous by definition, but the heterogeneity is definite and specific for any particular class.
6. Since it will be assumed that the various subgroups are subject to rates of deterioration in vitality appropriate to each of them, it may be sensed that the career of a mortality class will be select in form, indefinitely; it will never normally reach an "ultimate" state, in which experience becomes equal to that of another class. This feature appears to be confirmed by modern select tables which trace mortality for 15 years without reaching the state where the "effects of selection" have worn off.

## MORTALITY STRATA

7. In developing the thesis outlined, definite criteria for the determination of the "subgroups" appear necessary. As a first step, it is proposed that each of the lives in the population, regardless of age, may at any point be thought of as being subject to a risk of death within a year according to the physical condition and the environmental influences peculiar to such life.
8. Accordingly, let us imagine that the entire population of the United States is "underwritten" at one time by the application of ideal methods (including diagnostic procedures which might indicate physical impairments not, under present conditions, normally discoverable) so as to appraise for each person in the country the risk of death within a year. It may then be assumed that if these lives are ranked according to these probabilities they may be collected in several groups, each subject, for practical purposes, to a uniform risk of dying within a year. Each of these groups may at the point of being so appraised be considered as within a definite mortality stratum. Lives exhibiting the lowest risk of death within a year will be said to be then in the lowest stratum.
9. The probability of death within a year in the case of a life in the lowest stratum, 1, at the beginning of the year will be expressed in the symbol ${ }_{1} q$; corresponding probabilities for the succeeding higher strata by ${ }_{2} q,{ }_{3} q$, etc., to ${ }_{z} q$, the rate characteristic of the highest stratum $z$. Complementary probabilities of survival within the respective strata will be designated $1 p, 2 p, s p, \ldots s p$.
10. These rates being independent of age, some individuals of advanced age may be placed in the lowest stratum by reason of excellence of physical condition and the favorable nature of the other forces having an effect on survival, and, obviously, some young lives may, for quite different reasons, be placed in the highest stratum. Of course the vital strength of the older lives in a given stratum will, on the average, deteriorate sooner than that of the younger lives and we may expect that with the passage of time fewer of the older lives will be found in the stratum in which they are originally placed than will be the case with the younger lives.
11. While individuals do experience changes in health, residence, occupation, etc., which would place them in higher strata as they grow older, most individuals, except at the more advanced ages, tend to remain in the same stratum from one year to the next for many years. However, occasionally changes occur in the physical condition or in the general environment of some individuals which might warrant a move to a lower stratum. In view of the fact that the tide is in the direction of deterioration, if anything, it is assumed that any changes to lower strata will be more than compensated for by changes in the reverse direction. Any changes in strata, accordingly, will ignore the likelihood of movement from a higher stratum to a lower.

## RATE OF DETERIORATION

12. An individual is classifiable at every point of his lifetime in one stratum or another. If his life continues one year, as he advances from one age to the next he may remain in the same stratum or, provided he is not already in the highest stratum, he may move to a higher stratum. The function measuring the probability of remaining in the same stratum or moving to a higher stratum is referred to as the rate of deterioration and will be designated by the symbol $a$, modified on the left by a superscript indicating the stratum at the beginning of the year of age and by a subscript for the stratum one year later; the age at the beginning of this interval is shown in the conventional position. Thus, ${ }^{4}{ }_{i}^{a} a_{x}$ will represent the probability that a life aged $x$ in stratum $s$ surviving one year will be in a stratum $s+t(t \geq 0)$ at age $x+1$.
13. With reference to those surviving to age $x+1$, it is obvious that

$$
\begin{equation*}
\sum_{i=0}^{x-1}+i_{i} a_{x}=1 \tag{1}
\end{equation*}
$$

With reference to those living at age $x,{ }_{a} p \cdot{ }_{0+1}^{*} \alpha_{x}$ represents the probability that an individual in stratum $s$ living at that age will, one year later, be in stratum $s+t$. From (1) it is evident that

$$
\begin{equation*}
\sum_{i=0}^{2-2}, p \cdot{ }_{0+i} a_{x}={ }_{0} p . \tag{2}
\end{equation*}
$$

14. If rates of deterioration are known, all subsequent vital facts with regard to any collection of lives of the same age in a given stratum originally are fully determined: the proportions of lives surviving and dying at each age are told by the characteristic op's and ${ }^{q} q$ 's of the several strata; and the number of lives in each stratum from year to year is given by the rates of deterioration. It will be observed, therefore, that, for lives, constitutionally similar, and subject to a common environment, the rate of deterioration is the basic function measuring the incidence of the breakdown of the living machine.

## MORTALITY SETS

15. The lives of a given age within the mutually exclusive subgroups to which reference has been made will hereafter be called sets. A set, therefore, is a collection of lives of the same age in a given stratum. A set composed of lives aged $x$ years who are in stratum $s$ at formation of the set will be designated $l_{[x(s))}$.
16. The survivors of $l_{[x(s)]}$ living at age $x+n$ will be indicated by the symbol $l_{\{x(0)\}+n}$. The individuals composing $l_{\{x(0)\}+n}$ will, except where $s$ is the highest stratum, normally be distributed in more than one stratum, and the latter symbol will be modified by a subscript on the left to indicate these strata. Thus, the survivors of the original set $l_{[x(s)]}$ who are in stratum $s+t$ at the end of $n$ years will be represented by ${ }_{0+t} l_{[t(0)]+n}$. Contemporaries in all strata at that time, of course, represent the total number of survivors, i.e.,

$$
\begin{equation*}
\sum_{t=0}^{2-2}{ }_{a+t} l_{\{x(t)\}+n}=l_{\{x(a)\}+n} . \tag{3}
\end{equation*}
$$

17. The members of any set, it is assumed, form a homogeneous subgroup, as far as mortality is concerned, in the year following the establishment of the set. However, this homogeneity does not persist. In the second
year the survivors of the original set will be distributed in several strata by reason of the deterioration of vital force, adverse change in environment, etc., and this process will continue progressively from year to year as the age increases. The survivors of the original set in any stratum at any age themselves constitute a set at that age. That is to say, sets break downinto sets. As far as the risk of death within a year is concerned, therefore, $l_{\left[x f_{s}\right)+n}$ is not different from $l_{[x+n(s)], \text { nor }}^{s+i} l_{[x(s)]+n}$ from $l_{[x+n(s+t)]}$. In effect then, sets are fixed elements, varying in any given collection of lives which they constitute only in relative size.

FUNCTIONS EXPRESSIBLE IN TERMS OF, OR DERIVED FROM, $\mathcal{L}_{\{x(a)]+n}$
18. Deaths occurring among the survivors of any set may be denoted in the usual way. That is to say,

$$
\begin{equation*}
\left.\left.l_{[x}(s)\right]+n-l_{[x}(s)\right]_{+n+1}=d_{[x(s)]+n} . \tag{4}
\end{equation*}
$$

Similarly, the probabilities of surviving and of dying within a year may be designated by the customary ratios, i.e.,

$$
\begin{align*}
& \frac{l_{[x(g)]+n+1}}{\left.l_{[x}(s)\right]+n}=p_{[x(s)]+n}  \tag{5}\\
& \frac{\left.d_{[x}(s)\right]+n}{\left.l_{[x}(s)+n\right]}=q_{[x(s)]+n} \tag{6}
\end{align*}
$$

Commutation functions may be developed in the conventional manner; thus

$$
\begin{aligned}
& \mathrm{D}_{[x(s)]+n}=v^{x+n} l_{[x(\theta)]_{+n}} \\
& \left.\mathrm{C}_{[x}(s)\right]_{+n}=v^{x+n+1} d_{[x(\theta)]+n} \\
& \mathrm{~N}_{[x(s)]+n}=\sum_{n}^{\omega} \mathrm{D}_{[x(s)]+t} \\
& \mathrm{M}_{[x(s)]+n}=\sum_{n}^{\omega} \mathrm{C}_{[x(s)]+t}
\end{aligned}
$$

19. The symbol $q_{[x(s)]}$ represents the probability of death within a year of a life aged $x$ who is then in stratum $s$. From what has been said it will be observed that this probability is the absolute rate ${ } q$ to which all lives in stratum $s$ are subject; that is, $q_{[x(a)]}$ has the same value as,$q$. However, since, when $n>0$, some lives in $l_{[x(a)]+n}$ are not in stratum $s, q_{[x(s)]+n}$ is not equal to ${ }_{\Omega} q$.

SET RADIXES
20. The references already made to "mortality class" have indicated that such a class is limited to one age and is characterized by the distribu-
tion peculiar to it of lives in the several strata. A mortality class will be designated by the conventional select notation $l_{[x]}$ and the survivors $n$ years later by $l_{[x]+n}$. In all respects a mortality class is treated as a collection of lives entering the experience at a particular point of time which will be called the date of "formation" of "organization" or of "establishment" of the class.
21. Sets are components of a mortality class, so that

$$
\begin{equation*}
\left.\sum_{s=1}^{z} l_{l x}(x)\right]=l_{|x|} \tag{7}
\end{equation*}
$$

Sets are the common elements or "building blocks" of different classes, and the radixes of the sets in any class will depend on the proportions which the lives in any stratum bear to the total number of lives in the class. These proportions, obviously, are $l_{(x(1) / 1} / l_{[x]}, l_{[x(2)]} / l_{[x]}$, etc., and in view of their importance, a special symbol $\rho$, called the Set Radix will be employed to identify them. Hence

$$
\begin{aligned}
& \frac{l_{x(1)]}}{l_{[x)}} \text { will be designated }{ }_{1} \rho_{[x]} \\
& \frac{l_{x(2)]}}{l_{(x)}} \text { will be designated }{ }_{2} \rho_{[x]} \text {, etc. }
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sum_{v=1}^{z} \cdot p_{[x]}=1 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\sum_{s=1}^{2} \cdot \rho_{[x}\right\rangle l_{[x]}=l_{[x]} \tag{9}
\end{equation*}
$$

If the set radixes characteristic of a mortality class are given, it will be noted that the sizes of the several sets composing the class may directly be determined.
22. At the end of one year from the date of organization of the class, the survivors

$$
\begin{equation*}
\sum_{s=1}^{x} \cdot p_{[x]} l_{[x]} \cdot{ }^{2} p=l_{[x \mid} p_{[x]} . \tag{10}
\end{equation*}
$$

On subtracting equation (10) from (9) and dividing by $l_{[x]}$, we obtain

$$
\sum_{s=1}^{n}, p_{[x]} \cdot, q=q q_{[x]} ;
$$

which is to say that, for the class, the average probability of dying within a year after the formation of a class is equivalent to the weighting by the set radixes of the absolute rates of mortality respectively operative in the several sets comprising the class.
23. On the basis of the particular radixes of the sets composing a class

$$
\begin{equation*}
\sum_{j=1}^{s} d_{|x(z)|+n}=d_{[x \mid+n} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sum_{s=1}^{x} d_{\mid x(s)]+n}}{\sum_{i=1}^{x} l_{[x(s)]+n}}=q_{[x]+n} . \tag{13}
\end{equation*}
$$

24. Commutation functions developed for sets may also be added to equal the corresponding functions of the class; thus

$$
\begin{aligned}
& \sum_{s=1}^{x} \mathrm{D}_{(x(x)]+n}=\mathrm{D}_{\{x \mid+n} \\
& \sum_{s=1}^{z} \mathrm{C}_{[x(0)]+n}=\mathrm{C}_{(x \mid+n} \\
& \sum_{s=1}^{z} \mathrm{~N}_{[x(0)\}+n}=\mathrm{N}_{\{x \mid+n} \\
& \sum_{s=1}^{z} \mathrm{M}_{\{x(s) \mid+n}=\mathrm{M}_{\{x \mid+n}
\end{aligned}
$$

25. In carrying out the foregoing summations, it should be remembered that the elements being added vary in amount from one class to another according to the values of $\rho$ employed in determining the sets. General commutation functions for mortality classes cannot be developed, therefore, since each class will depend on its peculiar composition.

POPULATION TABLES
26. A mortality class implies some process by means of which the proportions of the lives in the several strata come to be included in, or excluded from, the class. However, despite the fact that in the population all lives are included and none omitted, the lives at any age in the population may be thought of as a class since they may be considered as falling
into regular sets. At the same time the persons living at any age may be considered to be the survivors of classes established at younger ages. The population table, accordingly, may be regarded either as a series of classes organized at the several ages (the prospective view, as it were) or as the survivors of a class formed at some prior age (the retrospective view).
27. Considering individuals in the population as classes organized at the several ages, we have for the lives in the general population at age $x$ :

$$
\begin{equation*}
\sum_{x=1}^{z}{ }_{x} \rho_{x x} l_{x}=l_{x} \tag{14}
\end{equation*}
$$

where the $x$ in the symbol for this peculiar class is, in accordance with conventional usage, written without brackets. However, the age subscripts in the set radixes are placed in brackets to indicate the age at which the class is formed. The survivors of this class living at age $x+1$ are distributed in the several strata as follows:

| Stratum | Survivors |
| :---: | :---: |
| 1 | ${ }_{1} \rho_{[x} l_{x} \cdot{ }_{1 p} p \cdot{ }_{1}^{1} a_{x}$ |
| 2 | $\left\{\begin{array}{r}\left.{ }_{1} \rho\right\|_{x} l l_{x} \cdot{ }_{1} p \cdot{ }_{2}^{1} a_{x} \\ +\left.{ }_{2} \rho\right\|_{x} l_{x} \cdot{ }_{2} p \cdot{ }_{2}^{2} a_{x}\end{array}\right.$ |
| 3 | $\left\{\begin{array}{c}{ }_{1} \rho_{l x} l_{x} \cdot{ }_{1} p \cdot{ }_{3}^{1} a_{x} \\ +{ }_{2} \rho_{[x} l_{x} \cdot{ }_{2} p \cdot{ }_{3}^{2} a_{r} \\ +{ }_{3} \rho l_{x} l_{x} \cdot{ }_{3} p \cdot{ }_{3}^{3} a_{x}, \text { etc. }\end{array}\right.$ |

28. The individuals aged $x+1$ in the population regarded as a class may be indicated in the same manner as in (14):

$$
\begin{equation*}
\sum_{s=1}^{z}: \rho_{l_{x+1}} l_{x+1}=l_{x+1} \tag{18}
\end{equation*}
$$

The number of lives in (18), of course, is the same as the survivors of (14) at age $x+1$; and the expressions in (15), (16), (17), etc., are respectively equal to the terms for the corresponding strata in (18) since they each represent the number of lives at age $x+1$ in the indicated strata. That is to say, for stratum 1 ,

$$
\begin{equation*}
{ }_{1} \rho_{x x} l_{x} \cdot{ }_{1} p \cdot{ }_{1}^{1} a_{x}={ }_{1} \rho_{[x+1} l_{x+1}, \tag{19}
\end{equation*}
$$

whence

$$
\begin{equation*}
{ }_{1} \rho_{|x|} \cdot{ }_{1} p \cdot{ }_{1}^{1} a_{x}={ }_{1} \rho_{|x+1|} p_{x} ; \tag{20}
\end{equation*}
$$

for stratum 2,

$$
\begin{equation*}
{ }_{1} \rho_{\{x} \cdot \cdot{ }_{1} p \cdot{ }_{2}^{1} a_{x}+{ }_{2} \rho_{x} \mid \cdot{ }_{2} p \cdot{ }_{2}^{2} a_{x}={ }_{2} \rho_{|x+1|} \cdot p_{x} ; \tag{21}
\end{equation*}
$$

for stratum 3,

$$
\begin{equation*}
\sum_{x=1}^{3}{ }_{d} \rho_{[x]} \cdot{ }_{\cdot p} \cdot{ }_{3}^{{ }_{3} a_{x}}={ }_{3} \rho_{[x+1]} p_{x} ; \tag{22}
\end{equation*}
$$

for stratum 4,

$$
\begin{array}{r}
\sum_{x=1}^{4} \cdot \rho_{[x]} \cdot{ }_{\ell} \rho \cdot i a_{x}={ }_{4} \rho_{[x+1]} p_{x} ;  \tag{23}\\
\text { etc } .
\end{array}
$$

29. In deriving rates of deterioration it will be assumed (in paragraphs 34 et seq.) that these rates, already subject to the condition that

$$
\sum_{t=0}^{2-i}+i_{i}^{i} a_{x}=1
$$

are expressible as a frequency distribution such that

$$
\begin{equation*}
{ }_{s+i} a_{z}=f_{t}\left({ }_{i}^{i} a_{x}\right) . \tag{24}
\end{equation*}
$$

30. On solving (20) for ${ }_{1}^{1} a_{z}$ we obtain

$$
\begin{equation*}
{ }_{1}^{1} \alpha_{z}=\frac{\left.1 \rho\right|_{x+1} \mid p_{x}}{\left.1 \rho\right|_{x} \mid \cdot 1 p} . \tag{25}
\end{equation*}
$$

The solution of (21) yields

$$
\begin{align*}
{ }_{2}^{2} a_{x} & =\frac{\left.{ }_{2} \rho\left(l_{x+1}\right) p_{x}-\left.{ }_{1} \rho\right|_{x}\right] \cdot{ }_{1} p \cdot{ }_{2}^{1} a_{z}}{{ }_{2} \rho(x){ }_{2} p}  \tag{26}\\
& =\frac{{ }_{2} \rho(x+1] p_{x}-{ }_{1} \rho\left[{ }_{x]} \cdot{ }_{1} p \cdot f_{1}\left({ }_{1}^{1} a_{x}\right)\right.}{{ }_{2} \rho(x) \cdot{ }_{2} p} . \tag{27}
\end{align*}
$$

In similar fashion the solutions of (22) and (23) give, respectively,

${ }_{4}^{4} a_{x}=$

These equalities are useful in computing rates of deterioration and will be referred to later.
31. Rates of deterioration are basic to all the variety of death rates experienced among lives having in common certain general constitutional features as well as the broad environment in which they exist. Unfortunately, as a practical matter these rates cannot be obtained by direct observation. For one thing, criteria for measuring deterioration in vitality are lacking in quantitative refinement; for another, it is virtually impossible to trace sufficiently large groups over a long enough period to determine rates of deterioration having statistical validity.
32. One possible method of deriving rates of deterioration not dependent on direct methods is to estimate such rates from the internal evidence supplied by large exposures in which possible distortions due to withdrawals of lives are not present. A census study would seem to provide a suitable medium for this purpose, and analyses have been made of the data given in the United States Life Tables 1940-51 with a view to extracting these rates.
33. This table appears to be a particularly suitable one for this purpose, inasmuch as it was constructed in a period when migration in both directions was quite small and since it is reasonably contemporary with several intercompany studies of insurance experience on a select basis, such as the 1946-1940 Select Basic Table and the mortality experienced on disabled lives given in TSA 1952 Reports, each of which provides opportunities to test the application of this theory in practical instances.

## DERIVATION OF PRACTICAL RATES OF DETERIORATION

34. Rates of deterioration derived from the United States Life Tables 1949-51 were based on the following assumptions:
(1) that rates of deterioration applicable to lives in a given stratum at a given age might be expressed as a frequency distribution represented by the terms of a binomial having as many terms as the number of strata to which a life might move in one year;
(2) that the entire range of mortality might be embraced within six strata, the $q$ 's of which are in the following geometric progression with ratio 4.5 ,

| Rate | Stratum | Rate of Death |
| :---: | :---: | :---: |
| 19. | 1 | . 00040 |
| $2 q$. | 2 | . 00180 |
| ${ }^{4}$ q. | 3 | . 00810 |
| 49. | 4 | . 03645 |
| $5 q$. | 5 | . 164025 |
| *q. . . . . . . | 6 | . 7381125 |

35. The relative ease of operating on the binomial contributed to its employment in this paper. Choosing it was an empirical matter and does not indicate a conviction that deterioration in vitality actually follows such a distribution. Other frequency distributions may very well be superior for the purpose. Furthermore, it is realized that the use of strata as broad as those indicated introduces some statistical complications. However, the results flowing from these assumptions exemplified in the applications illustrated later seem to be reasonable by the usual pragmatic tests.
36. A life in stratum 1, accordingly, could, after one year, either continue in that stratum or move to one of the other five strata. In accordance with the first assumption, therefore, rates of deterioration might be equated respectively to the six terms of the binomial expansion $\left[1 b_{x}+\right.$ $\left.\left(1-{ }_{1} b_{x}\right)\right]^{5}$ as indicated in the following tabulation:
To Stratum
1
3
4
5
6

Term
${ }_{1}^{1} a_{x} \quad{ }_{2}^{1} a_{x} \quad{ }_{3}^{1} a_{x} \quad{ }_{4}^{1} a_{x} \quad{ }_{5}^{1} a_{x} \quad{ }_{6}^{1} a_{x}$

Value
${ }_{1} b_{x}^{5} 5_{1} b_{x}^{4}\left(1-{ }_{1} b_{x}\right) 10_{1} b_{x}^{3}\left(1-{ }_{1} b_{x}\right)^{2} 10_{1} b_{x}^{2}\left(1-{ }_{1} b_{x}\right)^{3} 5_{1} b_{x}\left(1-1 b_{x}\right)^{4}\left(1-{ }_{1} b_{x}\right)^{5}$
Since

$$
{ }_{1}^{1} a_{x}=\frac{\left.1 \rho \rho_{x+1}\right)_{x}}{1 \rho_{|x|} \cdot 1 p}
$$

by equation (25),

$$
{ }_{1} b_{x}=\sqrt[5]{\frac{\left.1 \rho\right|_{x}+1 \mid}{1 \rho_{[x]} \cdot p_{x}}}
$$

from which all the terms in the expansion may be evaluated once the values of $\rho$ are derived (see paragraphs 39 et seq.). The rates of deterioration from stratum 1 , accordingly, are completely determinable.
37. Correspondingly, a life in stratum 2 might, on surviving one year, be in any one of five strata. The a's would be represented as follows:

To Stratum

$$
\begin{array}{lllll}
2 & 3 & 4 & 5 & 6
\end{array}
$$

Term

$$
\begin{array}{lllll}
{ }_{2}^{2} a_{x} & { }_{3}^{2} a_{x} & { }_{4}^{2} a_{x} & { }_{5}^{2} a_{x} & { }_{6}^{2} a_{x}
\end{array}
$$

Value

$$
{ }_{2} b_{x}^{4} 4_{2} b_{x}^{3}\left(1-{ }_{2} b_{x}\right) \quad 6_{2} b_{x}^{2}\left(1-{ }_{2} b_{x}\right)^{2} 4_{2} b_{x}\left(1--_{2} b_{x}\right)^{3}\left(1-2 b_{x}\right)^{4}
$$

By equation (27),

$$
{ }_{2}^{2} a_{x}=\frac{{ }_{2} \rho(x+1) p_{x}-{ }_{1} \rho_{(x)} \cdot{ }_{1} p \cdot 5_{1} b_{x}^{4}\left(1-{ }_{1} b_{x}\right)}{2_{2} \rho_{[x]}{ }_{2} p} .
$$

The fourth root of the expression on the right, accordingly, yields ${ }_{2} b_{x}$, from which, after obtaining the indicated $\rho$ functions, the five rates of deterioration from stratum 2 may be computed.
38. To illustrate further, the survivor of a life in stratum 5 would be subject at the next year of age to the following rates of deterioration:

$$
\begin{aligned}
& { }_{5}^{5} a_{x}={ }_{5} b_{x} \\
& { }_{6}^{5} a_{x}=\left(1-{ }_{5} b_{x}\right) .
\end{aligned}
$$

By the methods indicated above, these a's may also be calculated. A life in stratum 6, of course, has open to him only the same stratum, so that ${ }_{6}^{6} \mathrm{a}_{x}=1$.

## derivation of set radixes from census table

39. Set radixes derived from general population life tables, by making appropriate assumptions as to the distribution of lives by stratum (see par. 41 et seq.), may be used for mortality classes selected from that population.
40. In the computation of set radixes for the general population (census) table, the equality demonstrated in equation (11) is used, namely, that

$$
\begin{equation*}
\sum_{s=1}^{6}{ }_{s} \rho_{[z]} \cdot{ }_{s} q=q_{*} \tag{30}
\end{equation*}
$$

where the sum of the $\rho$ 's is 1 . Also assumed is a distribution of the $\rho$ 's in accordance with the frequencies indicated in the binomial expansion. (See comments on the use of the binomial in paragraph 35.) Values of $\rho$ have been determined from $r$ 's which satisfy the equation ${ }^{1}$
by setting

$$
\begin{equation*}
.00040[r+(1-r) 4.5]^{5}=q_{x} \tag{31}
\end{equation*}
$$

${ }_{1} \rho_{[x]}$ equal to $r^{5}$

| ${ }_{2} \rho_{[x]}$ | " | " $5 r^{4}(1-r)$ |
| :--- | :--- | :--- |
| ${ }_{3} \rho_{[x]}$ | " | " $10 r^{3}(1-r)^{2}$ |
| ${ }_{4} \rho_{[x]}$ | " | " $10 r^{2}(1-r)^{3}$ |
| ${ }_{5} \rho_{[x]}$ | " | " $5 r(1-r)^{4}$ |
| ${ }_{6} \rho_{[x]}$ | « | " $(1-r)^{5}$ |

[^0]41. The character of the rates of mortality experienced in any class from year to year is dependent on the relative magnitudes of the set radixes employed to determine the class. Set radixes for the census table may be arrived at empirically as described above. However, there is no systematic method of determining the set radixes for any class, so that resort must be taken to devices of various kinds to arrive at set radixes for each class which reproduce in satisfactory fashion the experience to be expressed in terms of classes.
42. One device found reasonably successful is the following procedure: an array of set radixes for a standard table (the census table, for example) computed on the basis of the binomial distribution is entered to determine the set radixes for such age which when applied to unit sets at the age being worked on reproduce some salient features of the class. To illustrate, suppose the experience data indicate that, under a class of lives, $c$ deaths develop in $n$ years. An age $y$ in the census table may be found to describe the class so that the sum of the sets comprising the class
$$
\left(\sum_{s=1}^{z}, \rho_{[y]} l_{x x}\right)
$$
would all together produce the number of deaths satisfying the equation:
\[

$$
\begin{equation*}
\sum_{t=0}^{n-1}\left\{d_{(x(1) \mid+t}+d_{\{x(2)]+t}+\ldots+d_{\{x(z) \mid+t}\right\}=c \tag{32}
\end{equation*}
$$

\]

43. The device of utilizing the distribution of set radixes at age $y$ of the census table in the characterization of a mortality class organized at age $x$ will be employed in the applications described later. Such an age $y$ will be identified by a symbol using angle brackets and written as the numerator of a fraction having the actual age of the lives involved as a denominator. Thus, $\langle y\rangle / x$ will indicate the distribution by stratum of a mortality class formed at age $x$ having set radixes equal to those of the general population at age $y$. The denominator of the foregoing symbol may be omitted if the age being dealt with is clearly understood.
44. If the age $y$ is taken from a census table and the class is a collection of medically examined insured lives, $y$ will ordinarily be smaller than $x$. If, on the other hand, the class $I_{[x]}$ is composed of highly impaired lives, $y$ may very well be greater than $x$.

## HYBRID MORTALITY CLASSES

45. In his classical paper on select mortality tables presented to the British Institute in 1881 (JIA XXII) Sprague wrote:
... when we bear in mind that the rate of mortality among insured lives depends upon the rate of lapse, in such a way that, the greater the rate of lapse, the greater will be the rate of mortality, we see that, in order to determine the true value of the policy, we ought to know the values of assurances and annuities upon select lives among which there are no withdrawals. At present, however, I believe there are no tables in existence that will give us the values of these quantities. The fact is that, although we have ample materials for determining the exact rate of mortality among insured lives, and are able to determine with great accuracy the rate of mortality during the first insurance year for entrants of any age, and to trace the gradual increase in the rate of mortality among them caused by the combined operation of advancing age and the withdrawals of healthy lives, yet we have no means at present of determining how the rate of mortality would increase if there were no such withdrawals. All we can say is, that there is good reason for believing that the rate of mortality would be less than is now found to prevail among insured lives. . . .
(The spelling has been changed from the simplified form actually used by Sprague.)
46. The mortality classes so far described in this paper represent collections of lives all of whom are assumed to remain under observation from the formation of the class until death. Sprague's conclusions, which seem supported by general reasoning, are here adopted, and in this section a class is considered as hybrid when the mortality of those lives withdrawing is different ${ }^{2}$ from that of the lives under observation. A mortality class, no members of which withdraw during the experience otherwise than by death, will be referred to as a "simple class."
47. Let it be assumed that such a hybrid class is composed of two subclasses experiencing mortality appropriate respectively to withdrawing lives (this subclass will be distinguished by a prime) and to lives not withdrawing (this subclass will be marked by a double prime). At the formation of the class, the number of lives in the former subclass represents $100 a \%$ of the total number, and, of course, the number in the latter is 100 $(1-a) \%$. If the radixes of the $l$ 's in these three classes each be equal to 1 ,

$$
\begin{equation*}
a l_{x \mid}+(1-a) l_{x]}^{\prime}=l_{[x \mid} . \tag{33}
\end{equation*}
$$

48. In the hybrid class $l_{[x]}$, the number withdrawing from observation in year $n, l_{[x]+n-1}(w q)_{[x]+n-1}$, will be indicated by $w_{[x]+n-1}$. The number of deaths in that year among those who had previously withdrawn (with-

[^1]drawal being assumed to take place at end of year) will be designated $(w d)_{[x]+n-1}$, where
\[

$$
\begin{equation*}
(w d)_{[x \mid+n-1}=q|x|+n-1 \sum_{t=1}^{n-1}\left(w_{|x|+t-1} \cdot n-t-1 p^{\prime} p_{x \mid+t}^{\prime}\right) \tag{34}
\end{equation*}
$$

\]

and where the total number of deaths in that year among all the survivors of the original entrants, as in a double decrement table, is equal to

$$
\begin{equation*}
d_{(x \mid+n-1}+(w d)_{|x|+n-1} . \tag{35}
\end{equation*}
$$

49. In year $n$, on the other hand, the deaths arising among the two subclasses are equal, respectively, to $a d_{[z]+n-1}^{\prime}$ and $(1-a) d_{\{x \mid+n-1}^{\prime \prime}$. Equating the total number of deaths, therefore,

$$
\begin{equation*}
a d_{\{x]+n-1}^{\prime}+(1-a) d_{[x]+n-1}^{\prime \prime}=d_{[x]+n-1}+(w d)_{[x]+n-1} . \tag{36}
\end{equation*}
$$

50. The total number of deaths developing in the first $g$ years is the sum for the $g$ values of the several respective terms entering into equation (36); that is,

$$
\begin{align*}
a \sum_{n=1}^{0} d_{|x|+n-1}^{\prime}+(1-a) \sum_{n=1}^{n} d_{|x|+n-1}^{\prime \prime}= & \sum_{n=1}^{g} d_{|x|+n-1}  \tag{37}\\
& +\sum_{n=1}^{g}(w d)_{|x|+n-1}
\end{align*}
$$

51. Equation (36) may be solved for $a$, the proportion of the hybrid class composed of lives exhibiting mortality characteristic of "withdrawal prone" lives, to give

$$
\begin{equation*}
a=\frac{d_{|x|+n-1}-d_{|x|+n-1}^{\prime \prime}+(w d) \mid\{x \mid+n-1}{} . \tag{38}
\end{equation*}
$$

It should be remembered, however, that unless the hybrid table for $l_{\{x\}}$ is constructed on the basis of the elementary functions underlying the theory described, the value of $a$ will not be identical for every value of $n$ in (36).
52. The solution of (37) would therefore yield a more significant value, since the results of several years may be taken into account. The determination of $a$ from (37) results in the following:

$$
\begin{equation*}
a=\frac{\sum_{n=1}^{0} d_{[x]+n-1}-\sum_{n=1}^{g} d_{\{x \mid+n-1}^{\prime \prime}+\sum_{n=1}^{0}(w d)_{|x|+n-1}}{\sum_{n=1}^{0} d_{\{x \mid+n-1}^{\prime}-\sum_{n=1}^{g} d_{\{x \mid+n-1}^{\prime \prime}} \tag{39}
\end{equation*}
$$

53. In the case of a hybrid class the composition of the two subclasses poses a problem requiring for solution the determination of set radixes for the two subclasses. One method of approaching this problem is to obtain by successive approximation values for the two subclasses entering into equation (39). The mortality of lives continuing under observation and rates of withdrawal being given, this method involves determining $\left\langle y^{\prime}\right\rangle / x$ and $\left\langle y^{\prime \prime}\right\rangle / x$ such that for two convenient values of the $g$ of equation (39), the same value of $a$ results.
54. That is to say, if it be assumed that the two values of $g$ are $g_{1}$ and $g_{2}$, the $y$ functions ( $\left\langle y^{\prime}\right\rangle$ and $\left\langle y^{\prime \prime}\right\rangle$ ) desired will be those for which

$$
\begin{align*}
a & =\frac{\sum_{n=1}^{g_{1}} d_{[x]+n-1}-\sum_{n=1}^{q_{1}} d_{[x]+n-1}^{\prime \prime}+\sum_{n=1}^{g_{1}}(w d)_{[x]+n-1}}{\sum_{n=1}^{g_{1}} d_{[x]+n-1}^{\prime}-\sum_{n=1}^{g_{1}} d_{\{x \mid+n-1}^{\prime \prime}}  \tag{40}\\
& =\frac{\sum_{n=1}^{g_{2}} d_{[x \mid+n-1}-\sum_{n=1}^{g_{2}} d_{[x]+n-1}^{\prime \prime}+\left.\sum_{n=1}^{g_{2}}(w d)\right|_{x \mid+n-1}}{\sum_{n=1}^{g_{2}} d_{[x]+n-1}^{\prime}-\sum_{n=1}^{g_{2}} d_{[x \mid+n-1}^{\prime \prime}}
\end{align*}
$$

55. Assuming that a series of mortality rates, $q_{[I]+n-1}$, and a series of withdrawal rates, $(w q)_{\{x\}+n-1}$, are given, the characteristics of a hybrid table which will approximate certain desired features of the given experience may be determined by the following practical method:
(1) Decide what features are to be reproduced. A relatively uncomplicated function for this purpose is the number of deaths over the two different periods, $g_{1}$ and $g_{2}$. In view of the rapid changes frequently encountered in rates of mortality at the earliest durations, $g_{1}$ may very well be taken as 3 or 4 . For $g_{2}$, the common 15 year period used in recent mortality investigations is a good choice. In the experiments described later, 3 and 15 are consistently used for $g_{1}$ and $g_{2}$ respectively.
(2) Select an age distribution $\left\langle y^{\prime}\right\rangle / x$. The choice here should be an age somewhat younger than $[x]$ if it is thought that the mortality of the subclass subject to withdrawal is lighter than that of the hybrid class. On the basis of a subclass with a unit radix subject to rates of mortality appropriate to $\left\langle y^{\prime}\right\rangle / x$, obtain the number of deaths over $g_{1}$ years and $g_{2}$ years, that is,

$$
\sum_{n=1}^{g_{1}} d_{|x|+n-1}^{\prime} \quad \text { and } \quad \sum_{n=1}^{g_{2}} d_{\left.\right|_{x} \mid+n-1}^{\prime} .
$$

(3) Keeping in mind that $\Sigma d_{[x]+n-1}$ and $\Sigma(w d)_{[x]+n-1}$ are, in effect, given in the basic assumptions of the problem, an age $\left\langle y^{\prime \prime}\right\rangle / x$ may be determined which will produce values of $\Sigma d_{\{x \mid+n-1}^{\prime \prime}$ satisfying the condition that the second and third expressions in (40) be equal.
(4) $\left\langle y^{\prime}\right\rangle$ and $\left\langle y^{\prime \prime}\right\rangle$ having been obtained, by means of equation (39), the relative proportions, $a$ and ( $1-a$ ), respectively, of the two subclasses may be derived.
(5) With the data now available, the $d$ 's of the hybrid class may be computed by means of equation (36). The $q$ 's may be developed by the usual methods.
(6) The $q$ 's so arrived at may be compared with the given rates. The usual criteria of closeness of fit may be employed to test the results. Incidentally, to the extent that the progression of deaths is smooth in the component basic sets, the resulting functions in the hybrid class will be smooth and require no further graduation.
(7) If the results are not satisfactory, a choice of other values of $g_{1}, g_{2}$ and $\left\langle y^{\prime}\right\rangle$ may turn out better.

## TABLES

56. The basic and some derived tables developed as described in this paper from an analysis of the United States Life Tables 1949-51 for white males are given in the Appendix. Rates of mortality in the Census Tables diminish with age over some younger age spans. Where this occurs, the binomial distribution does not produce satisfactory rates of deterioration, so that although set radixes for the population distributions are shown for ages down to 10 , no a's are shown for ages younger than 26 . The youngest age $\rho$ 's may be of use in obtaining $\langle\boldsymbol{y}\rangle$ ages.
57. In making calculations under the methods described, it will be found that frequent use is made of functions involving $\langle y\rangle / x$, especially the series of $d_{[x]+n-1}$. The latter function may be obtained by weighting the $d$ 's of the sets composing the class organized at age $x$ by the population set radixes applicable to age $y$. A considerable saving in time and computation may be effected by obtaining by mechanical means tabulations of $d_{[x]+n-1}$ for all values of $\langle y\rangle$ likely to be needed. In order to keep the length of this paper within reasonable bounds, only some illustrations of this function for age 37 are shown. If any considerable volume of calculations is undertaken, a fairly full array of such functions is practically indispensable.

## APPLICATIONS

58. Some experiments are here described illustrating the processes developed in this paper. What is done, generally, is to determine for each of several ages the mortality class which yields rates of mortality comparable with those shown in a select table constructed from experience in the vicinity of the year 1950. The select tables employed for this purpose include the 1946-1949 Basic Tables, the Benefit 1 Disabled Life Table included in TSA 1952 Reports and some data included in the annuity study prepared by the Joint Committee on Mortality in TASA XIIX, 112.
59. Withdrawal rates needed in the construction of hybrid tables are not available in connection with the comparisons made with the 19461949 Basic Table. (Such rates might have been obtained as a by-product of the investigation. Some consideration, it is suggested, might be given to deriving rates of termination as a natural concomitant of all mortality investigations.) In the absence of these data, it was assumed that Linton's "Medium" Termination Rates ${ }^{3}$ were experienced at all ages. For the period of the study it is thought that this assumption is reasonable.
60. In the work done in connection with the disabled life study, the yearly rates of recovery given in the report were taken in all formulas to be a decrement precisely equivalent to the rate of withdrawal. No such decrement, of course, entered into the comparison made with the annuity study.
61. The several published tables used show rates of mortality for 5 or 10 year age groups. Where the age grouping covered 5 years, it was assumed that the rates represented those applicable to the age at the midpoint. However, where the range covered 10 years, the rates shown were taken to be those appropriate to an age one-half year older than the middle age of the group.

## SINGLE PREMIUM NONREFUND ANNUITIES

62. The data used in this illustration are those given in the Report of the Joint Committee on Mortality on the mortality under individual annuities issued between 1931 and 1945 and observed between 1941 and 1946 anniversaries (TASA XLIX, 112). The application described is based on
${ }^{8}$ These rates are as follows:

| Year | Med. Term. Rate | Year | Med. Term. Rate | Year | Med. Term. Rate |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | $15 \%$ | 6. | 5.1\% | 11 | 3.3\% |
| 2. | 8.8 | 7. | 4.5 | 12 | 3.2 |
| 3 | 7.3 | 8 | 4.1 | 13 | 3.0 |
| 4 | 6.3 | 9. | 3.8 | 14 | 2.9 |
| 5. | 5.7 | 10 | 3.5 | 15 | 2.7 |

figures shown for age intervals $50-59,60-69$, and $70-79$, and is limited to experience by number of annuity contracts issued on the nonrefund basis.
63. As a first step, simple male and female mortality classes at ages 55 , 65 and 75 were obtained by determining $y$ ages for which $2 \frac{1}{2} \%$ annuities on the bases described in this paper would be equal to those shown in Table 8 (TASA XLIX, 125). Inasmuch as the commutation columns developed for this paper are based on $3 \frac{1}{2} \%$, special calculations were employed in deriving the $2 \frac{2}{2} \%$ values.
64. The $y$ ages and $q_{[x]+n}$ 's underlying the annuities so calculated are shown in Table 1.
65. In the study of annuity mortality, durations 6 through 15 (the maximum as measured by the interval between issuance in 1931 and the anniversary in 1946) were combined by attained age. In the light of the principles of this paper such a procedure suffers from two defects: first, the study sheds no light on the mortality at the attained ages beyond the fifteenth year; second, it obscures the gradation of death rates for durations between the fifth and fifteenth years. Since the attained age experience, it may be guessed, is weighted heavily by lives entering in the later 60's, the rates of mortality at the longer durations for the younger lives at entry are probably understated, while those for the durations following shortly after the fifth year in the case of the older lives, in all likelihood, are overstated.
66. In view of such considerations, it may be that the annuity premiums based on the study and shown in Table 8 of the Report are too high at the younger ages and too low at the older. Paradoxically, this is very much like saying that premiums based on the Standard Annuity Table may more closely represent the experience investigated, on a select basis, than the premiums shown.
67. Attention may be called to the ratios in Table 1 of this paper at the common attained ages included which show a well-marked progression with duration after the organization of the class. These rates it will be remembered are derived so as to reproduce the annuity premiums shown in Table 8 of the Report. If those annuity premiums had been closer to those based on the Standard Annuity Table, the death rates at the shorter durations produced by the present method would probably have been somewhat higher at entry age 55 and somewhat lower at entry age 75.
68. If the annuity experience had been large enough to minimize chance fluctuations and had indicated mortality results on a select basis for all 15 durations (as in the continuous intercompany insurance mortality investigation), mortality classes could have been described on the present method which might have had greater credibility. Where there are no withdrawals, theoretically even five years of select experience

## TABLE 1

Rates of Mortality Underlying $2 \frac{1}{2} \%$ Nonrefund life annuities, Computed by Present method, Equal to Corresponding Annuities Shown in Report of Joint Committee on Mortality (TASA XLIX, 125)
(Ratios to 1937 Standard Annuity Table)

| Male |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age [ $x$ ]: | 55 |  | 65 |  | 75 |  |
| $\left\langle y^{\prime}\right.$; | 48.20 |  | 57.99 |  | 69.83 |  |
| $n$ | $\begin{aligned} & 1,000 \\ & Q_{(x)} \end{aligned}$ | Ratio | $\begin{aligned} & 1,000 \\ & 9[x]_{+n} \end{aligned}$ | Ratio | $\begin{aligned} & 1,000 \\ & q_{I_{+} r} / n \end{aligned}$ | Ratio |
| 0. | 8.61 | 64\% | 20.39 | 71\% | 49.65 | 82\% |
| 1. | 10.05 | 69 | 23.78 | 77 | 58.84 | 90 |
| 2 | 11.49 | 73 | 27.11 | 81 | 67.26 | 96 |
| 3 | 13.01 | 77 | 30.60 | 85 | 75.54 | 100 |
| 4. | 14.60 | 80 | 34.28 | 88 | 83.93 | 104 |
| 5. | 16.29 | 82 | 38.15 | 91 | 92.69 | 106 |
| 10. | 26.76 | 93 | 63.75 | 105 |  |  |
| 15. | 42.52 | 102 | 99.91 | 115 |  |  |
| 20. | 67.37 | 111 |  |  |  |  |
| 25. | 102.88 | 118 |  |  |  |  |

Female

| Age $\ x$ ]: | 55 |  | 65 |  | 75 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\langle{ }^{\text {¢ }}\right.$ ) | 44.34 |  | 55.36 |  | 68.00 |  |
| $n$ | $\begin{aligned} & 1,000 \\ & q_{[x]+n} \end{aligned}$ | Ratio | $\begin{aligned} & 1,000 \\ & q_{[x]+\pi} \end{aligned}$ | Ratio | $\begin{aligned} & 1,000 \\ & q_{[z]+\infty} \end{aligned}$ | Ratio |
| 0. | 3.52 | 38\% | 8.81 | 45\% | 27.64 | 66\% |
| 1 | 4.10 | 41 | 10.65 | 50 | 34.97 | 78 |
| 2. | 4.77 | 44 | 12.74 | 55 | 42.23 | 87 |
| 3. | 5.51 | 47 | 15.17 | 61 | 49.87 | 96 |
| 4. | 6.35 | 51 | 17.92 | 67 | 59.97 | 103 |
| 5. | 7.27 | 54 | 21.04 | 73 | 66.62 | 110 |
| 10. | 13.53 | 69 | 42.69 | 102 |  |  |
| 15. | 25.83 | 90 | 77.21 | 128 |  |  |
| 20. | 47.57 | 114 |  |  |  |  |
| 25. | 81.79 | 135 |  |  |  |  |

should be sufficient to describe a mortality class. However, in such a case the volume of data should be large enough to rule out material fluctuations.

## STANDARD MEDICALIY EXAMINED INSURED LIVES

69. The study made by the Joint Committee on Mortality of intercompany experience in the period 1946-1949 on insured lives under standard policies issued subject to examination is much more useful for present purposes than the annuity study just referred to. The advantages, as may be expected, lie in the volume of data and the completeness of the select data exhibited.
70. The 1946-1949 experience, however, did not separate the experience on male and female lives. The rates of mortality shown in the Report, accordingly, it may be assumed with confidence, are lower than they would be on a true male experience. But the preponderance of lives were male and it is thought that, for purposes of illustration, no great error will be committed if the data are treated as if they were composed exclusively of males. At any rate, such a procedure is consistent with the methods of the 1946-1949 investigation, and any results developed are comparable with those given in the Report.
71. In an investigation of insured lives some of whom withdraw, only the lives continuing in the experience and the deaths among them yield the death rates finally arrived at. If, as is assumed, the mortality among those withdrawing is lighter than among those who remain, a progressively decreasing proportion of the lives is subject to the lighter mortality rates and the slope of the death curve, therefore, is determined not only by the increasing hazard of death with age but also by the increasing concentration of the less healthy lives. These considerations, of course, suggest a hybrid class such as has been described.
72. Hybrid classes, accordingly, were formed at ages $27,37,47$ and 57 of such a nature that the number of deaths over 15 years among the survivors remaining within the experience was equal to those arising among such survivors under a double decrement table. The decrements were those occasioned by death according to the crude 1946-1949 death rates (given in TSA II, Table 11, page 510) and by withdrawal in accordance with the Linton Medium Annual Rates of Termination (par. 59, footnote). The numbers of deaths over the first three years were also equated (since $g_{1}$ was taken as 3 , par. 55, (1)).
73. The assumptions employed in completing the hybrid classes at the four ages are shown in the tabulation at the top of page 67.
74. Table 2 shows the number of deaths among the persisting lives in each year of the 15 year select period under the present method and on the
bases of the crude 1946-1949 Table and the Linton Medium Rates of Termination. It should be observed that about the same numbers of deaths occur over years 1-3 and years 1-15 under the two methods.

| Age [ $x$ ]. | 27 | 37 | 47 | 57 |
| :---: | :---: | :---: | :---: | :---: |
| $\left\langle y^{\prime}\right\rangle$, | 12 | 13 | 19 | 25 |
| $\left\langle y^{\prime \prime}\right\rangle$ | 16.8600 | 18.6420 | 38.6640 | 50.1848 |
|  | 8055 | 4927 | 4344 | . 5945 |
|  | 3 | 3 |  |  |
|  | 15 | 15 | 15 | 15 |

75. Comparative rates of mortality on the bases in Table 2 are given in Table 3. The processes by which the death rates were produced on the present method, it will be noted, serve also as a method of graduation.

## TABLE 2

Number of Deaths among Lives Persisting of 1,000 Original Entrants
Subject to Withdrawal According to Linton Medium Rates of Withdrawal and Mortality According to (1) Present Method (Paragraph 73)
(2) Crude 1946-49 Rates

| Age: | 27 |  |  | 37 |  |  | 47 |  |  | 57 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | (1) | (2) | (1)- | (1) | (2) | (1)- | (1) | (2) | (1)- | (1) | (2) | (1)- |
| 1 | . 79 | . 69 | 10 | 1.13 | . 96 | . 17 | 2.60 | 2.32 | . 28 | 5.19 | 4.99 | 20 |
| 2 | . 71 | 74 | -. 03 | 1.15 | 1.21 | -. 06 | 2.78 | 2.53 | 25 | 5.80 | 5.70 | 10 |
| 3 | . 68 | . 76 | -. 08 | 1.24 | 1.36 | -. 12 | 3.05 | 3.61 | -. 56 | 6.47 | 6.77 | $-.30$ |
| 4. | . 67 | . 85 | -. 18 | 1.35 | 1.50 | -. 15 | 3.36 | 3.95 | -. 59 | 7.16 | 8.53 | -1.37 |
| 5 | . 67 | . 71 | -. 04 | 1.48 | 1.61 | -. 13 | 3.69 | 3.53 | . 16 | 7.86 | 10.59 | -2.73 |
| 6 | 69 | 69 | . 00 | 1.63 | 1.70 | -. 07 | 4.07 | 3.98 | . 09 | 8.59 | 8.88 | - . 29 |
| 7 | 71 | 64 | . 07 | 1.78 | 1.71 | . 07 | 4.47 | 4.00 | 47 | 9.31 | 8.71 | . 60 |
| 8 | . 75 | . 86 | -. 11 | 1.96 | 2.03 | -. 07 | 4.91 | 5.35 | -. 44 | 10.02 | 9.87 | 15 |
| 9 | 80 | . 73 | . 07 | 2.14 | 2.24 | -. 10 | 5.35 | 4.95 | . 40 | 10.71 | 10.38 | 33 |
| 10 | 86 | . 88 | -. 02 | 2.34 | 2.16 | . 18 | 5.82 | 5.36 | 46 | 11.42 | 11.02 | 40 |
| 11 | . 92 | . 85 | . 07 | 2.56 | 2.50 | . 06 | 6.28 | 6.51 | - . 23 | 12.15 | 11.16 | . 99 |
| 12. | 1.00 | . 93 | . 07 | 2.82 | 2.83 | -. 01 | 6.76 | 6.92 | - . 16 | 12.86 | 11.58 | 1.28 |
| 13 | 1.08 | 1.09 | -. 01 | 3.05 | 2.89 | . 16 | 7.20 | 0.36 | . 84 | 13.52 | 13.16 | , |
| 14 | 1.19 | 1.24 | -. 05 | 3.30 | 3.17 | . 13 | 7.65 | 7.21 | , 44 | 14.11 | 15.07 | . 96 |
| 15 | 1.29 | 1.15 | 14 | 3.58 | 3.63 | -. 05 | 8.06 | 9.50 | -1.44 | 14.67 | 13.42 | 1.25 |
| Yrs. 1-3. | 2.18 | 2.19 | -. 01 | 3. 52 | 3.53 | -. 01 | 8.43 | 8.46 | $-.03$ | 17.46 | 17.46 | 00 |
| Yrs. 1-15.. | 12.81 | 12.81 | $\infty$ | 31.51 | 31.50 | . 01 | 76.05 | 76.08 | -. 03 | 149.84 | 149.83 | . 01 |

The graduation effects considerable smoothness, perhaps at some sacrifice of fidelity to the crude data. This feature is well illustrated at age 57 where the large number of deaths noted in the crude data in policy years 4 and 5 results in a relatively high series of $q$ 's in that vicinity in the 19461949 graduated table.
76. The period over which the policies entering into the 1946-1949 investigation were in force was a period of mixed economic conditions. The 1940's, especially after the entry of the United States into the war, were years of full employment and economic activity and, we know, favorable

TABLE 3
APPLICATION TO 1946-1949 SELECT EXPERIENCE

## Mortality Rates per 1,000

Comparison of Rates from Hybrid Table with
Crude and Graduated Rates (TSA II, 506, 510)
(Linton Medium Rates of Termination Assumed)

| Age: $\begin{array}{r} \left\langle y^{\prime}\right\rangle \\ \left\langle y^{\prime \prime}\right\rangle: \\ a: \end{array}$ | 27 |  |  |  |  |  |  | $\begin{aligned} & 37 \\ & 13 \\ & 18.6420 \\ & .4927 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Policy Year | Present Method | $1946-1949$ <br> Experience |  | (1) - <br> (2) | $(3)-$ <br> (2) | Present Method <br> (1) | 1946-1949 <br> Experience |  | (1) -(2) | (3) - <br> (2) |
|  |  | Crude <br> (2) | Grad. <br> (3) |  |  |  | Crude <br> (2) | Grad. <br> (3) |  |  |
| 1 | 79 | . 69 | . 66 | . 10 | $-.03$ | 1.13 | 96 | . 97 | 17 | 01 |
| 2 | 84 | . 87 | . 82 | - . 03 | - . 05 | 1.35 | 1.42 | 1.39 | -. . 07 | $-.03$ |
| 3 | . 88 | . 98 | . 97 | - . 10 | - . 01 | 1.60 | 1.76 | 1.78 | -. 16 | . 02 |
| 4 | 93 | 1.18 | 1.04 | $-.25$ | - . 14 | 1.90 | 2.10 | 2.07 | -. 20 | -. 03 |
| 5. | 1.00 | 1.06 | 1.12 | $-.06$ | . 06 | 2.21 | 2.41 | 2.43 | $-.20$ | . 02 |
| 6. | 1.09 | 1.09 | 1.17 | . 00 | . 08 | 2.59 | 2.70 | 2.75 | -. 11 | . 05 |
| 7 | 1.19 | 1.06 | 1.23 | . 13 | . 17 | 2.99 | 2.88 | 3.00 | . 11 | 12 |
| 8 | 1.31 | 1.50 | 1.35 | - . 19 | $-.15$ | 3.46 | 3.58 | 3.52 | $-.12$ | -. 06 |
| 9 | 1.46 | 1.34 | 1.45 | . 12 | . 11 | 3.94 | 4.13 | 3.91 | $-.19$ | - . 22 |
| 10. | 1.64 | 1.68 | 1.58 | - . 04 | $-.10$ | 4.51 | 4.16 | 4.37 | . 35 | . 24 |
| 11. | 1.82 | 1.68 | 1.78 | . 14 | . 10 | 5.13 | 5.01 | 5.02 | . 12 | . 01 |
| 12. | 2.05 | 1.90 | 1.97 | . 15 | . 07 | 5.88 | 5.91 | 5.60 | $-.03$ | $-.31$ |
| 13. | 2.29 | 2.30 | 2.22 | $-.01$ | - . 08 | 6.61 | 6.26 | 6.16 | . 35 | - . 10 |
| 14. | 2.60 | 2.72 | 2.56 | $-.12$ | $-.16$ | 7.42 | 7.14 | 6.96 | . 28 | - . 18 |
| 15. | 2.92 | 2.61 | 2.95 | . 31 | . 34 | 8.36 | 8.46 | 8.21 | $-.10$ | $-.25$ |
| Age:$\begin{array}{r} \left\langle y^{\prime}\right\rangle: \\ \left\langle y^{\prime \prime}\right\rangle: \\ a: \end{array}$ | $\begin{aligned} & 47 \\ & 19 \\ & 38.6640 \\ & .4344 \end{aligned}$ |  |  |  |  | $\begin{aligned} & 57 \\ & 25 \\ & 50.1848 \\ & .5945 \end{aligned}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Policy Year | Present Method | 1946-1949Experience |  | (1) - <br> (2) | (3) - <br> (2) | Present Method <br> (1) | 1946-1949 <br> Experience |  | (1) -(2) | (3) - <br> (2) |
|  |  | Crude <br> (2) | Grad. <br> (3) |  |  |  | Crude <br> (2) | Grad. <br> (3) |  |  |
| 1. | 2.60 | 2.32 | 2.14 | . 28 | $-.18$ | 5.19 | 4.99 | 4.66 | . 20 | $-.33$ |
| 2. | 3.28 | 2.98 | 3.16 | . 30 | . 18 | 6.86 | 6.74 | 6.84 | . 12 | . 10 |
| 3 | 3.96 | 4.68 | 4.27 | - . 72 | - . 41 | 8.46 | 8.85 | 9.52 | $-.39$ | . 67 |
| 4 | 4.73 | 5.56 | 5.04 | $-.83$ | $-.52$ | 10.19 | 12.14 | 11.62 | $-1.95$ | $-.52$ |
| 5 | 5.57 | 5.33 | 5.95 | 24 | . 62 | 12.08 | 16.31 | 13.92 | $-4.23$ | $-2.39$ |
| 6 | 6.55 | 6.42 | 6.75 | . 13 | . 33 | 14.18 | 14.76 | 15.42 | - . 58 | . 66 |
| 7 | 7.64 | 6.84 | 7.43 | . 80 | . 59 | 16.43 | 15.49 | 16.42 | . 94 | . 93 |
| 8 | 8.85 | 9.64 | 8.72 | $-.79$ | $-.92$ | 18.82 | 18.69 | 18.68 | . 13 | -. 01 |
| 9 | 10.15 | 9.39 | 9.80 | . 76 | . 41 | 21.41 | 20.90 | 20.63 | . 51 | - . 27 |
| 10 | 11.60 | 10.69 | 11.15 | . 91 | . 46 | 24.26 | 23.57 | 23.05 | . 69 | $-.52$ |
| 11. | 13.13 | 13.59 | 12.97 | $-.46$ | $-.62$ | 27.42 | 25.35 | 26.65 | 2.07 | 1.30 |
| 12 | 14.82 | 15.16 | 14.57 | $-.34$ | $-.59$ | 30.87 | 27.94 | 30.30 | 2.93 | 2.36 |
| 13 | 16.56 | 14.63 | 16.08 | 1.93 | 1.45 | 34.64 | 33.78 | 34.13 | . 86 | . 35 |
| 14. | 18.45 | 17.34 | 18.21 | 1.11 | . 87 | 38.64 | 41.30 | 38.50 | $-2.66$ | -2.84 |
| 15. | 20.41 | 23.98 | 21.17 | -3.57 | $-2.81$ | 43.10 | 39.56 | 43.60 | 3.54 | 4.04 |

policy persistency. However, the 1930 's, for the most part, were a time in which life insurance experienced relatively poor persistency. It has been assumed that the Linton Medium Rates were representative, on the average, of the rate of lapse during the entire period. Since the close of World War II, persistency of business has been remarkably good. In order to test the effect which different rates of lapse would have on mortality rates, assuming all other things are unchanged, the rates shown in Table 4

TABLE 4
Effect of Change in Rates of Withdrawal. on Mortality Rates per 1,000

Hybrid Class-Age 37
( $\left.y^{\prime}\right\rangle: 13$
$\left\langle y^{\prime \prime}\right\rangle: 18.6420$
a: .4927
Withdrawal according to (1) Linton Medium Termination Rates
(2) Linton Termination Rates A
(3) Linton Termination Rates B

| Year | Mortality Rates pex 1,000 |  |  | (2) - (t) | (3) - (1) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |  |  |
| 1 | 1.13 | 1.13 | 1.13 | 00 | 00 |
| 2 | 1.35 | 1.32 | 1.38 | $-.03$ | 06 |
| 3 | 1.60 | 1.55 | 1.67 | -. 05 | . 12 |
| 4. | 1.90 | 1.82 | 1.98 | $-.08$ | . 16 |
| 5. | 2.21 | 2.11 | 2.34 | $-.10$ | . 23 |
| 6. | 2.59 | 2.45 | 2.77 | $-.14$ | . 32 |
| 7. | 2.99 | 2.83 | 3.24 | $-.16$ | . 41 |
| 8. | 3.46 | 3.26 | 3.76 | $-.20$ | . 50 |
| 9. | 3.94 | 3.70 | 4.32 | $-.24$ | . 62 |
| 10. | 4.51 | 4.22 | 4.98 | $-.29$ | 76 |
| 11. | 5.13 | 4.80 | 5.69 | $-.33$ | . 89 |
| 12. | 5.88 | 5.50 | 6.55 | $-.38$ | 1.05 |
| 13. | 6.61 | 6.17 | 7.35 | $-.44$ | 1.18 |
| 14. | 7.42 | 6.93 | 8.31 | $-.49$ | 1.38 |
| 15. | 8.36 | 7.80 | 9.37 | $-.56$ | 1.57 |

for age 37 at issue were prepared. These rates were computed by using exactly the assumptions set forth in paragraph 73 for the characterization of the hybrid class. However, in lieu of the Linton Medium Rates, it was assumed that in one case the Linton Termination Rates $A^{4}$ and, in the other, the Linton Termination Rates $\mathrm{B}^{4}$ were experienced.
77. An interesting speculation is suggested by the changes brought about in the rate of mortality by altering the assumed rate of withdrawal. Is some part of the mortality improvement which has generally

[^2]been observed among insured lives since the 1946-1949 investigation attributable to the more favorable persistency enjoyed in recent years? Then, too, would the mortality of insured lives show a retrogression if rates of withdrawal worsened? No implication is intended that mortality generally has not experienced a genuine decline, since investigations not limited to insured lives undeniably show a diminution in death rates. What is offered as a possibility is the likelihood that variations in the mortality of insured lives may appear independently by reason of changes in the level of withdrawals.

## DISABLED LIFE MORTALITY

78. The 1952 Report of the Committee on Disability and Double Indemnity contained a comprehensive intercompany investigation of experience during the period from 1930 to 1950 in the case of disability benefits offered by a number of companies. Included in the Report (TSA 1952 Reports, 102-104) was a study on a 15 year select basis of the annual rates of termination by death and recovery among persons who had become disabled. These termination rates were separately reported for three types of benefit, namely Benefit 1, Benefits 2 and 3 combined and Benefit 5 .
79. In the case of each type of benefit, the tables indicated that very sizable proportions of lives qualifying for disability benefit recover in the course of several years. Since the rate of death among those recovering is unquestionably lower than that among those remaining disabled, and inasmuch as the data were in select form and, furthermore, provided an experience on withdrawal (by recovery), these tables seemed to lend themselves quite naturally to analysis as a hybrid class.
80. The waiting periods involved in Benefits 2,3 and 5 seemed likely to give rise to special problems with regard to first year death rates, which it was felt would not obtain in the case of Benefit 1. Accordingly, hybrid tables based on the data given for Benefit 1 experience (Report, page 102) were developed at entry ages 37,47 and 57 .
81. The assumptions used in these instances were as follows:

| Age [ $x$ ]. | 37 | 47 | 57 |
| :---: | :---: | :---: | :---: |
| ${ }^{\text {d }}$ ( $\left.{ }^{\prime}\right\rangle$ | 44 | 55 |  |
| $\left\langle y^{\prime \prime}\right\rangle$ | 94.4498 | 94.8023 | 85.2977 |
| $a$ | . 6230 | . 5188 | . 2270 |
| $g_{1}$. | 3 | 3 |  |
| $g_{3}$. | 15 | 15 | 15 |

82. The rates of mortality assumed experienced among the lives continuing to be classed as disabled according to the present method and as given in the 1952 Report are shown in Table 5.

## COMMENTS ON THE MORTALITY OF IMPAIRED LIVES

83. The impact of withdrawal experience on the level of death rates and on their incidence cannot be overemphasized. The effects on the progression of mortality rates produced by rates of withdrawal are illustrated in connection with standard lives in the figures shown in Table 4, and in the case of disabled lives by the rates shown in the 1952 Disability Report (and in the hybrid class analysis described above). It must be assumed that the effects on impaired lives are not any less important.

TABLE 5
Probabilities of Death ( $\times 1,000$ )-Benefit 1 Disabled Lives Compared with rates Shown in TSA 1952 Reports, Page 102

$$
1,000 q_{(x)+n-1}
$$

| Age $\{x\}$ : $\left\langle y^{\prime}\right\rangle$ : $\left\langle y^{\prime \prime}\right\rangle$ : $a$ : |  | 37 44 94.4498 $\mathbf{. 6 2 3 0}$ |  |  | $\begin{aligned} & 47 \\ & 55 \\ & 94.8023 \\ & .5188 \end{aligned}$ |  |  | $\begin{aligned} & 57 \\ & 59 \\ & 85.2977 \\ & .2270 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Disability Year | Present Method | $\begin{aligned} & 1930- \\ & 1950 \\ & \text { Grad. } \\ & \text { Death } \\ & \text { Rates } \end{aligned}$ | Diff. | Present <br> Method | $\begin{gathered} 1930- \\ 1950 \\ \text { Grad. } \\ \text { Death } \\ \text { Rates } \end{gathered}$ | Diff. | Present <br> Method | $\begin{aligned} & 1930- \\ & 1950 \\ & \text { Giad. } \\ & \text { Death } \\ & \text { Rates } \end{aligned}$ | Diff. |
| 1 | 115.4 | 115.0 | 4 | 153.7 | 157.5 | $-3.8$ | 134.0 | 138.1 | -4.1 |
| 2. | 62.7 | 61.1 | 1.6 | 90.2 | 85.6 | 4.6 | 99.6 | 98.3 | 1.3 |
| 3. | 47.0 | 49.3 | -2.3 | 68.8 | 69.2 | $-.4$ | 88.1 | 85.0 | 3.1 |
| 4. | 41.3 | 41.7 | $-.4$ | 60.4 | 59.3 | 1.1 | 83.4 | 78.6 | 4.8 |
| 5. | 38.5 | 37.3 | 1.2 | 56.3 | 54.1 | 2.2 | 81.0 | 77.0 | 4.0 |
| 6. | 36.7 | 35.2 | 1.5 | 53.6 | 52.0 | 1.6 | 79.5 | 78.2 | 1.4 |
| 7. | 35.1 | 34.3 | . 8 | 51.6 | 51.5 | . 1 | 78.7 | 80.4 | $-1.7$ |
| 8. | 33.7 | 34.0 | $-.3$ | 49.9 | 51.4 | -1.5 | 78.2 | 82.3 | -4.1 |
| 9. | 32.4 | 33.7 | $-1.3$ | 48.7 | 50.9 | $-2.2$ | 78.1 | 83.1 | $-5.0$ |
| 10. | 31.3 | 33.1 | -1.8 | 47.8 | 49.9 | -2.1 | 78.6 | 82.8 | $-4.2$ |
| 11. | 30.4 | 32.1 | $-1.7$ | 47.2 | 48.4 | -1.2 | 79.7 | 81.9 | $-2.2$ |
| 12. | 29.8 | 30.8 | -1.0 | 47.0 | 46.9 | . 1 | 81.2 | 81.1 | . 1 |
| 13. | 29.3 | 29.3 | 0 | 47.0 | 46.1 | . 9 | 83.2 | 81.3 | 1.9 |
| 14. | 29.1 | 28.1 | 1.0 | 47.4 | 46.5 | . 9 | 85.3 | 82.8 | 2.5 |
| 15. | 29.1 | 27.5 | 1.6 | 47.9 | 48.2 | $-.3$ | 88.1 | 86.1 | 2.0 |

84. No information, however, appears to be published with respect to the proportion of policies placed on impaired lives, according to impairment, which terminate by surrender or lapse. Some contributions to experience, moreover, may treat reduction or removal of rating as a withdrawal from experience. It may perhaps fairly be suspected that the better lives with a given rating exercise a strong antiselection by giving up policies subject to extra charge.
85. Some attempts were made to apply the present methods to some of
the impaired life groups included in the 1951 Impairment Siudy. The methods of this paper required data in select form and by age at entry, but the material in the study, although select in form, grouped all ages at entry together. Any application, therefore, involved either assuming that the ratios indicated were common to all ages or estimating possible differences in the progressions of ratios by age. Neither of these approaches was fruitful of result, and inasmuch as the absence of withdrawal figures interposed, in itself, a barrier to success, no further effort was made in this direction.
86. In interpreting the results of the Impairment Study (TSA VI, 291), three types of experience were noted. These types differed one from the other with respect to the relation percentagewise which the progression of mortality rates bore to the standard base. The most common type showed a relationship in that respect tending to diminish with duration; not as common were impairments which displayed a tendency either to a constant relationship or to an increasing one.
87. The first type (diminishing relationship) is what normally would be expected in any class which contained a larger proportion of lives in the higher mortality strata than are found in the standard group. The class of impaired lives tends early to lose by death its larger contingent of members in the poorest health. Others take their places, it is true, but the rate of increase in the mortality of the class survivors is slowed down as the poorest lives originally included in the class disappear.
88. In the class of lives comprising the standard group, on the other hand, the rate of increase in mortality is steeper, as the larger component of better lives evidences the relatively heavier effects of deterioration. All simple classes, in fact, having a $y$-age distribution where $y$ is greater than $[x]$ generate death rates which approach those characteristic of age [x].
89. Impaired lives considered as hybrid classes will also produce death rates representing a progressively smaller ratio to those of a standard, provided rates of withdrawal among the lives in better health are comparable in magnitude with the Linton rates, say. In order not to have the ratios decrease with duration, unusual rates of withdrawal must be experi-enced-the character of the rates depending on the level of mortality and on the age. From the common sense point of view, the rate of increase in the probability of death necessary to show a constant or increasing relationship to the base can be obtained only by experiencing an appropriate loss by withdrawal among the better lives, and such losses may be abnormally large. The availability of statistics with regard to withdrawal is much to be desired for a better understanding of this kind of mortality experience.

## GENERAL OBSERVATIONS

90. Mortality is determined by many forces and this paper is an attempt to isolate some of these forces and indicate the effects they exert on its course. Basic, of course, as the practice of actuaries in the study of mortality has traditionally recognized, is the process of selection in the broadest sense, that is, the quality of lives (as measured by their prospects for longevity) whose rates of death are investigated. That this elemental influence fundamentally controls and determines the incidence of death in any collection of lives for many years (not merely for five years or fifteen) is the major thesis of this paper.
91. Of almost equal importance appear to be the generalized effects of "antiselection" as represented by the withdrawal from observation of lives subject, on the average, to a lighter rate of mortality than those which continue. While this concept is well understood by actuaries, the measurement of its effects has not received the attention its importance seems to deserve. It might be well to repeat the suggestion that statistics on this subject be compiled as a natural concomitant of all mortality studies.
92. The concepts here developed would also suggest periodic analysis of the mortality of the whole population to gauge the changes occurring in the rates of deterioration brought about by all the complex forces of the general environment. Knowledge of the extent of such changes should enable actuaries to measure the effects on the body of "existing" lives in any exposure, assuming that the distribution of those lives into the several strata of mortality was determinable from the rates of deterioration previously operating.
93. A wider knowledge by actuaries of the influences bearing on the course of mortality may enable them to determine which features of experience are characteristic and which accidental. And from the practical standpoint, in life insurance, such knowledge may permit more accurate determination of the level of surrender charges (as far as any differential in mortality might enter into consideration of them), of the magnitude of reserves, of the evaluation of some benefits which involve the rate of deterioration, etc.
94. The author's thanks are due to several of his business associates who assisted in various ways in the completion of this paper. Mention cannot be made of all who helped, but especial appreciation must be expressed for the invaluable aid received from William A. Bailey, A.S.A., and Edwin L. Luippold in calculating the very considerable volume of functions needed through the medium of an IBM 650 electronic computer. For
extensive computations entailed in the development of the principle of hybrid tables the author's thanks are given to Mrs. Marion E. Cannon, his secretary. To Mr. Bailey and Alan C. Goddard, A.S.A., thanks are expressed also for helpful suggestions and assistance in the computations embodied in the applications illustrated.

## APPENDIX

TABLE A
Factors for Obtaining Rates of Deterioration-White Males Derived from U.S. Life Tables 1949-51

| $x$ | $1 b^{2}$ | $2 b_{x}$ | ${ }_{2}{ }^{\text {x }}$ | $4 b_{x}$ | $5_{5}$ | $x$ | $1 b_{x}$ | $2 b_{x}$ | $b_{x}$ | ${ }^{6} b_{x}$ | $b_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26. | . 99924 | . 99892 | . 99795 | . 99468 | . 98152 | 71 | . 96568 | . 96037 | . 94923 | . 92190 | . 83831 |
| 27. | . 99826 | . 99793 | . 99695 | . 99368 | . 98048 | 72 | . 96349 | . 95787 | . 94617 | . 91768 | . 83135 |
| 28. | . 99778 | . 99745 | . 99646 | . 99313 | . 97967 | 73 | . 96152 | . 95556 | . 94324 | . 91353 | . 82431 |
| 29 | . 99686 | . 99652 | . 99551 | . 99211 | . 97847 | 74 | . 95950 | . 95317 | . 94020 | . 90921 | . 81704 |
| 30 | . 99600 | 99565 | . 99460 | . 99111 | . 97711 | 75 | . 95733 | . 95061 | . 93696 | . 90465 | . 80947 |
| 31. | . 99477 | 99440 | . 99331 | . 98969 | . 97519 | 76 | . 95504 | . 94791 | . 93355 | . 89987 | . 80161 |
| 32. | . 99409 | 99371 | . 99256 | . 988877 | . 97360 | 77 | . 95334 | . 94577 | . 93066 | . 89552 | . 79406 |
| 33. | . 99310 | 99269 | . 99148 | . 98749 | . 97163 | 78 | . 95159 | . 94357 | . 92768 | . 89108 | . 78644 |
| 34 | . 99263 | . 99219 | . 99090 | . 98667 | . 96993 | 79 | . 94889 | . 94041 | . 92375 | . 88572 | . 77801 |
| 35. | . 99187 | . 99140 | . 99002 | . 98555 | . 96789 | 80 | . 94524 | . 93629 | . 91884 | . 87935 | . 76862 |
| 36. | . 99090 | 99039 | . 98892 | . 98416 | 96548 | 81 | . 94072 | . 93126 | . 91298 | . 87197 | . 75817 |
| 37. | . 99009 | . 98954 | . 98796 | . 98289 | . 96306 | 82 | . 93542 | . 92541 | . 90623 | . 86361 | . 74662 |
| 38. | . 98972 | . 98912 | . 98742 | . 98200 | . 9609.3 | 83 | . 93047 | . 91984 | . 89965 | . 85525 | 73478 |
| 39 | . 98915 | . 98850 | . 98667 | . 98088 | . 95852 | 84 | . 92636 | . 91505 | . 89376 | . 84741 | . 72318 |
| 40. | . 98868 | . 98798 | .98601 | . 97982 | . 95610 | 85 | . 92304 | . 91100 | . 88855 | . 84015 | . 71202 |
| 41. | 98783 | . 98706 | . 98495 | . 97835 | . 95323 | 86 | . 92045 | . 90766 | . 88400 | . 83351 | . 70145 |
| 42 | 98779 | . 98695 | 98468 | . 97764 | . 95098 | 87 | . 91792 | . 90437 | . 87951 | . 82696 | . 69111 |
| 43 | 98755 | 98665 | . 98421 | 97671 | . 94854 | 88 | . 91460 | . 90031 | . 87429 | . 81978 | . 68042 |
| 44 | . 98716 | . 98618 | . 98357 | 97561 | . 94590 | 89 | . 91066 | . 89563 | . 86847 | . 81204 | . 66937 |
| 45 | 98664 | . 98558 | . 98279 | . 97436 | . 94308 | 90 | . 90617 | . 89039 | . 86208 | . 80376 | . 65793 |
| 46. | . 98619 | . 98506 | . 98208 | . 97314 | . 94024 | 91 | . 90109 | . 88456 | . 85509 | . 79489 | . 64601 |
| 47 | . 98598 | . 98475 | . 98157 | . 97212 | . 93753 | 92 | . 89529 | . 87798 | 84734 | . 78527 | . 63347 |
| 48. | . 98578 | . 98446 | . 98108 | . 97109 | . 93482 | 93 | . 88942 | . 87129 | . 83943 | . 77544 | . 62071 |
| 49. | . 98545 | . 98403 | . 98044 | . 96992 | . 93196 | 94 | . 88364 | . 86466 | . 83154 | . 76557 | . 60791 |
| 50. | . 98488 | . 98336 | . 97955 | . 96848 | . 92883 | 95 | . 87806 | 85821 | . 82378 | . 75580 | . 59521 |
| 51 | . 98385 | . 98224 | 97820 | 96657 | . 92517 | 96 | . 87267 | 85192 | 81617 | 74617 | 58270 |
| 52. | . 98321 | . 98147 | . 97718 | . 96494 | . 92169 | 97. | . 86662 | 84498 | . 80793 | 73598 | 56990 |
| 53. | . 98273 | . 98087 | . 97632 | . 96343 | 91826 | 98. | . 85985 | 83730 | . 79898 | 72515 | . 55668 |
| 54. | . 98229 | . 98030 | . 97548 | . 96193 | . 91481 | 99 | . 85316 | . 82976 | . 79013 | . 71440 | . 54358 |
| 55. | . 98177 | . 97964 | . 97454 | . 96031 | . 91122 | 100 | . 84652 | . 82232 | . 78137 | . 70374 | . 53066 |
| 56. | . 98156 | . 97929 | . 97389 | . 95897 | . 90786 | 101. | . 84061 | . 81518 | . 77288 | . 69336 | . 51808 |
| 57. | . 98124 | . 97883 | . 97313 | . 95751 | . 90441 | 102. | . 83437 | . 80786 | . 76424 | . 68289 | . 50563 |
| 58 | . 98109 | 97853 | 97252 | . 95620 | . 90109 | 103. | . 82915 | . 79973 | 75499 | . 67194 | . 49299 |
| 59 | . 98058 | . 97786 | . 97155 | 95453 | . 89746 | 104 | . 82376 | . 79112 | . 74528 | . 66063 | . 48024 |
| 60 | . 97983 | . 97695 | . 97033 | . 95260 | . 89358 | 105. | . 81683 | . 78314 | . 73499 | . 64882 | . 46727 |
| 61. | . 97896 | . 97591 | . 96896 | . 95050 | . 88948 | 106. | . 75786 | . 76981 | . 72364 | . 63639 | . 45399 |
| 62 | . 97849 | . 97526 | . 96797 | . 94873 | . 88564 | 107. |  | . 76599 | . 71184 | . 62319 | . 44024 |
| 63. | . 97807 | . 97466 | . 96701 | . 94700 | . 88182 |  |  |  |  |  |  |
| 64 | . 97716 | . 97357 | . 96556 | . 94478 | . 87756 |  |  |  |  |  |  |
| 65 | . 97575 | . 97197 | . 96360 | . 94202 | . 87275 |  | $=C_{i}^{6-1}$ | $)^{4-4}$ | $\left.-b_{x}\right)^{\prime}$, | $(6-5) \geq$ | $\geq 0$ |
| 66. | . 97397 | 96998 | . 96122 | . 93881 | . 86741 |  |  |  |  |  |  |
| 67. | 97257 | 96834 | . 95915 | . 93584 | . 86213 |  | ferences | to $b_{x}$ in | paragra | hs 36,3 | , 38. |
| 68. | . 97120 | . 96673 | . 95708 | . 93282 | . 85671 |  |  |  |  |  |  |
| 69 | . 97028 | . 96555 | . 95542 | . 93015 | . 85153 |  |  |  |  |  |  |
| 70. | . 96798 | . 96298 | . 95238 | . 92612 | . 84509 |  |  |  |  |  |  |

TABLE B
Set Radixes-White Males
Distribution of Lives in Population-based on U.S. LIfe Tables 1949-51

| s: | 1 | 2 | 3 | 4 | 5 | 6 | $\boldsymbol{7 x}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x$ | *P(e) |  |  |  |  |  |  |
| 10 | . 88502 | . 10944 | . 00541 | . 00013 |  |  | . 00000 |
| 11 | . 87581 | . 11769 | . 00633 | . 00017 |  |  | . 000062 |
| 12 | . 85411 | . 13684 | . 00877 | . 00028 |  |  | . 00067 |
| 13 | . 81905 | . 16680 | . 01359 | . 00055 | . 00001 |  | . 00076 |
| 14 | . 77252 | . 20462 | . 02168 | . 00115 | . 00003 |  | . 00090 |
| 15 | . 73067 | . 23663 | . 03065 | . 00199 | . 00006 |  | . 00105 |
| 16 | . 69492 | . 26236 | . 03962 | . 00299 | . 00011 |  | . 00120 |
| 17. | . 60769 | . 28089 | . 04727 | . 00398 | . 00017 |  | . 00133 |
| 18 | . 64872 | . 29325 | . 05302 | . 00479 | . 00022 |  | . 00143 |
| 19 | . 63116 | . 30424 | . 05866 | . 00566 | . 00027 | 00001 | . 00153 |
| 20 | . 61643 | . 31314 | . 06363 | . 00646 | . 00033 | 00001 | . 00162 |
| 21. | . 60561 | . 31948 | . 06741 | . 00711 | . 00038 | . 00001 | . 00169 |
| 22 | . 59818 | . 32373 | . 07008 | . 00759 | . 00041 | . 00001 | . 00174 |
| 23 | . 59527 | . 32537 | . 07114 | . 00778 | . 00043 | . 00001 | . 00176 |
| 24 | . 59818 | . 32373 | . 07008 | . 00759 | . 00041 | . 00001 | . 00174 |
| 25. | . 00261 | . 32121 | . 06848 | . 00730 | . 00039 | 00001 | . 00171 |
| 26. | . 60712 | . 31860 | . 06688 | . 00702 | . 00037 | . 00001 | . 00168 |
| 27 | . 60561 | 31948 | . 06741 | . 00711 | . 00038 | .00001 | . 00169 |
| 28 | . 60111 | . 32206 | . 06902 | . 00740 | . 00040 | . 000001 | . 00172 |
| 29 | . 59527 | . 32537 | . 07114 | . 00778 | . 00043 | .0000t | . 00176 |
| 30 | . 58680 | . 33009 | . 07427 | . 00836 | . 00047 | . 00001 | . 00182 |
| 31. | . 57598 | 33596 | . 07838 | . 00914 | . 00053 | . 00001 | . 00190 |
| 32 | . 56190 | . 34330 | . 08390 | . 01025 | . 00063 | . 00002 | . 00201 |
| 33 | . 54639 | . 35104 | . 09022 | . 01159 | . 000074 | . 00002 | . 00214 |
| 34 | . 52874 | . 35936 | . 09770 | . 01328 | . 00090 | . 00002 | . 00230 |
| 35. | . 51050 | . 36739 | . 10576 | . 01522 | . 00110 | . 00003 | . 00248 |
| 36. | . 49110 | . 37528 | . 11471 | . 01753 | . 00134 | . 00004 | . 00269 |
| 37 | . 47024 | . 38297 | . 12476 | . 02032 | . 00166 | . 00005 | . 00294 |
| 38 | . 44854 | . 39006 | . 13568 | . 02360 | . 00205 | . 00007 | . 00323 |
| 39 | . 42717 | . 39607 | . 14690 | . 02724 | . 00253 | . 00009 | . 00355 |
| 40 | 40577 | 40108 | . 15858 | . 03135 | . 00310 | . 000012 | . 00391 |
| 41 | . 38468 | . 40496 | . 17052 | . 03590 | . 00378 | . 00016 | . 00431 |
| 42 | . 36325 | . 40775 | . 18308 | . 04110 | . 00461 | . 00021 | . 00477 |
| 43. | . 34311 | . 40923 | . 19525 | . 04658 | . 00556 | . 00027 | . 00526 |
| 44. | . 32385 | . 40957 | . 20720 | . 05241 | . 00663 | . 000034 | . 00579 |
| 45 | . 30523 | . 40880 | . 21902 | . 05867 | . 00786 | . 00042 | 00637 |
| 46 | . 28709 | . 40694 | . 23075 | . 06542 | . 00927 | . 000053 | . 00701 |
| 47. | . 26959 | . 40405 | . 24222 | . 07261 | . 01088 | . 00065 | . 00771 |
| 48 | . 25305 | . 40022 | . 25318 | . 08008 | . 01266 | . 00080 | . 00846 |
| 49 | 23748 | . 39558 | 26355 | . 08780 | . 01462 | . 00097 | . 009226 |
| 50 | . 22267 | . 39013 | 27342 | . 09581 | . 01679 | . 00118 | . 01012 |
| 51 | 20836 | . 38388 | . 28290 | . 10424 | . 01920 | . 00142 | . 01106 |
| 52 | . 19415 | . 37659 | . 29220 | . 11336 | . 02199 | . 00171 | . 01212 |
| 53. | . 18050 | . 36852 | . 30095 | . 12289 | . 02509 | 00205 | . 01328 |
| 54 | . 16761 | . 35981 | . 30898 | . 13267 | . 02848 | . 00245 | . 01453 |
| 55 | . 15548 | . 35060 | . 31624 | . 14262 | . 03216 | . 00290 | . 01587 |
| 56 | . 14404 | . 34090 | . 32273 | . 15276 | . 03615 | . 00342 | . 01731 |
| 57. | . 13350 | . 33101 | . 32831 | . 16281 | . 04037 | . 00400 | . 01882 |
| 58. | . 12372 | . 32095 | . 33305 | . 17280 | . 04483 | . 00465 | . 02041 |

TABLE B-Continued

| 3 : | 1 | 2 | 3 | 4 | 5 | 6 | $\chi_{\text {x }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x$ | * P(z) |  |  |  |  |  |  |
| 59 | . 11475 | . 31091 | 33693 | . 18258 | . 04947 | . 00536 | . 02206 |
| 60 | . 10634 | . 30069 | . 34010 | . 19233 | . 05439 | . 00615 | . 02381 |
| 61 | . 09834 | . 29021 | . 34257 | . 20218 | . 05966 | . 00704 | . 02569 |
| S2 | . 09072 | . 27945 | . 34432 | . 21212 | . 06534 | . 00805 | . 02772 |
| 63 | . 08366 | . 26874 | . 34531 | . 22186 | . 07127 | . 00916 | . 02985 |
| 64 | . 07715 | . 25818 | . 34561 | . 23130 | . 07740 | . 01036 | . 03207 |
| 65 | . 07098 | 24750 | . 34517 | 24071 | . 08393 | . 01171 | . 03445 |
| 66 | . 06500 | . 23643 | . 34401 | 25027 | . 09104 | . 01325 | . 03707 |
| 67 | . 05914 | . 22486 | . 34199 | . 26008 | . 09889 | 01504 | . 04000 |
| 68 | . 05358 | . 21313 | . 33913 | . 26978 | . 10731 | . 01707 | . 04319 |
| 69 | . 04837 | . 20138 | . 33536 | . 27926 | . 11627 | . 01936 | . 04604 |
| 70 | . 04361 | . 18994 | . 33088 | . 28820 | . 12551 | . 02186 | . 05027 |
| 71 | . 03901 | . 17812 | . 32533 | . 29710 | . 13566 | . 02478 | . 05434 |
| 72 | . 03463 | . 16610 | . 31870 | . 30576 | . 14667 | . 02814 | . 05887 |
| 73 | . 03054 | . 15409 | . 31104 | . 31393 | . 15842 | . 03198 | . 06384 |
| 74 | . 02680 | . 14235 | . 30248 | . 32137 | . 17072 | . 03628 | . 06921 |
| 75 | . 02340 | . 13095 | . 29308 | . 32799 | . 18351 | . 04107 | . 07499 |
| 76 | . 02034 | . 11993 | . 28290 | . 33366 | . 19676 | . 04641 | . 081111 |
| 77 | . 01758 | . 10933 | . 27200 | . 33832 | . 21042 | . 05235 | . 08789 |
| 78 | . 01517 | . 09945 | . 26075 | . 34182 | . 22406 | . 05875 | . 09487 |
| 79. | . 01307 | . 09026 | . 24926 | . 34418 | . 23761 | . 06562 | . 10214 |
| 80 | . 01120 | . 08150 | . 23728 | . 34541 | 25141 | . 07320 | . 10993 |
| 81 | . 00949 | - 07299 | . 22457 | . 34546 | 26573 | . 08176 | . 11848 |
| 82 | . 00793 | . 06466 | . 21096 | . 34414 | 28072 | . 09159 | . 12802 |
| 83 | . 00651 | . 05653 | . 19641 | . 34121 | 29637 | . 10297 | . 13875 |
| 84 | 00527 | 04887 | . 18136 | . 33649 | . 31217 | . 11584 | . 15053 |
| 85 | . 00423 | . 04194 | . 16641 | . 33011 | . 32741 | . 12990 | . 16304 |
| 86 | . 00338 | . 03587 | . 15205 | . 32230 | . 34159 | . 14481 | . 17596 |
| 87 | . 00271 | . 03066 | . 13864 | . 31344 | . 35433 | . 16022 | . 18898 |
| 88 | . 00218 | . 02622 | . 12621 | . 30379 | . 36560 | 17600 | . 20202 |
| 89 | . 00175 | . 02236 | . 11454 | . 29334 | . 37562 | 19239 | . 21528 |
| 90. | . 00139 | . 01899 | . 10350 | . 28210 | . 38445 | 20957 | . 22890 |
| 91. | . 00110 | . 01602 | . 09303 | 27009 | . 39208 | 22768 | . 24299 |
| 92. | . 00087 | . 01341 | 08306 | 25729 | 39850 | 24687 | . 25766 |
| 93 | . 00067 | . 01110 | 07357 | . 24369 | 40360 | 26737 | . 27305 |
| 94 | . 00051 | . 00911 | . 06465 | . 22946 | 40720 | 28907 | . 28906 |
| 95 | . 00039 | . 00740 | . 05640 | . 21485 | . 40921 | . 31175 | . 30553 |
| 96 | . 00029 | . 00598 | . 04891 | . 20014 | . 40950 | . 33518 | . 32227 |
| 97 | . 00022 | . 00479 | . 04218 | . 18556 | . 40816 | . 35909 | . 33911 |
| 98 | . 00016 | . 00382 | . 03614 | . 17111 | . 40511 | . 38366 | . 35617 |
| 99 | . 00012 | . 00300 | . 03069 | . 15676 | . 40038 | . 40905 | . 37357 |
| 100. | . 00008 | . 00234 | . 02585 | . 14273 | . 39398 | 43502 | . 39113 |
| 101 | . 00006 | . 00181 | . 02163 | . 12923 | . 38602 | 46125 | . 40866 |
| 102 | . 00004 | . 00139 | 01799 | . 11641 | . 37667 | 48750 | . 42600 |
| 103. | . 00003 | . 00106 | . 01487 | . 10433 | . 36603 | 51368 | . 44312 |
| 104 | . 00002 | . 00080 | 01218 | . 09289 | 35412 | 53999 | . 46014 |
| 105. | . 00001 | 00060 | . 00988 | . 08210 | . 34097 | 56644 | . 47710 |
| 106 | . 00001 | . 00044 | . 00792 | . 07194 | 32660 | . 59309 | . 49402 |
| 107 | . 00001 | . 00031 | . 00626 | . 06239 | 31098 | 62005 | . 51100 |
| 08. | . 00000 | . 00022 | . 00485 | . 05343 | 29406 | 64744 | . 52810 |

TABLE C
Number Living of 100,000 Entrants Originally
IN Strata 1-6-White Males
Derived from U.S. Life Tables 1949-51
$l_{[(x)(0)+n}$


TABLE C-Continued

| * | s | Age at Entry |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 27 | 37 | 47 | 57 | 67 | 77 | 87 |
| 11 | 2 3 4 4 6 | 99360 97300 88866 60000 10872 0 | 98792 9549 84261 52789 8772 0 | 98206 93735 79530 45409 6562 0 | 97104 90575 78402 36584 4510 0 | 92598 81107 57598 24359 2533 0 | 76460 57981 33520 11085 961 0 | 43275 26178 11630 2955 224 0 |
| 12 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $\begin{array}{r} 99253 \\ 98895 \\ 87452 \\ 56567 \\ 8764 \\ 0 \end{array}$ | $\begin{array}{r} 98530 \\ 94728 \\ 82029 \\ 48783 \\ 6885 \\ 0 \end{array}$ | 97735 92394 76383 40904 4971 0 | $\begin{array}{r} 96197 \\ 88307 \\ 68012 \\ 31774 \\ 3261 \\ 0 \end{array}$ | 89902 76281 51182 19662 1692 0 | 69019 49466 26401 7813 562 0 | 33137 1879 7533 1707 109 0 |
| 13 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | 99128 9642 85947 53210 7048 0 | $\begin{array}{r} 98222 \\ 93810 \\ 79681 \\ 44950 \\ 5388 \\ 0 \end{array}$ | 97170 90879 73096 36694 3752 0 | 95070 8571 63467 27401 2344 0 | 86614 70972 44915 15686 1119 0 | 60955 4168 20324 5400 324 0 | 24348 12679 4711 958 52 0 |
| 14 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | 98988 95937 84350 49939 5654 0 | 97866 92790 77228 41300 4204 0 | 96498 89183 69694 32783 2821 0 | $\begin{array}{r} 93693 \\ 82789 \\ 58830 \\ 23468 \\ 1664 \\ 0 \end{array}$ | $\begin{array}{r} 82717 \\ 65277 \\ 38910 \\ 12365 \\ 733 \\ 0 \end{array}$ | 52609 3342 15293 3059 183 0 | 17165 8324 2846 523 24 0 |
| 15 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | 98820 9375 82660 45760 4525 0 | 97452 91659 74676 37836 3270 0 | 95708 87302 66200 29168 2112 0 | 92031 75936 54143 19951 1188 0 | 78208 59294 33254 9624 474 0 | 44325 26559 11246 2431 102 | 11610 5258 1661 277 11 0 |
| 16 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | 98630 9447 80874 43678 3611 0 | 96971 90409 72025 34555 2534 0 | 94784 85231 62636 25841 1374 0 | 90046 7593 49451 16828 836 0 | 73104 53127 28008 7387 303 0 | 36416 2053 8077 1582 56 0 | 7538 3198 937 143 5 0 |
| 17 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 6 \end{aligned}$ | 98410 94051 78998 40704 2874 0 | $\begin{array}{r} 96417 \\ 89032 \\ 69287 \\ 31455 \\ 1956 \\ 0 \end{array}$ | 93712 82973 59030 22798 1108 0 | $\begin{array}{r} 87707 \\ 72058 \\ 44803 \\ 14077 \\ 584 \\ 0 \end{array}$ | $\begin{array}{r} 67444 \\ 46885 \\ 23216 \\ 5584 \\ 191 \\ 0 \end{array}$ | 29136 15495 5662 1008 30 0 | 4699 1873 512 71 7 2 0 |
| 18 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $\begin{array}{r} 98157 \\ 93281 \\ 77036 \\ 37847 \\ 2282 \\ 0 \end{array}$ | $\begin{array}{r} 95778 \\ 87524 \\ 66471 \\ 28541 \\ 1504 \\ 0 \end{array}$ | $\begin{array}{r} 92485 \\ 80534 \\ 5510 \\ 20029 \\ 863 \\ 0 \end{array}$ | 84989 67877 40251 11676 404 0 | 61309 40696 18917 4153 119 0 | 22675 1131 3870 628 16 0 | 2813 1057 270 35 1 0 |
| 19 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $\begin{array}{r} 97867 \\ 92444 \\ 74993 \\ 35109 \\ 1807 \\ 0 \end{array}$ | $\begin{array}{r} 95048 \\ 8582 \\ 63592 \\ 25813 \\ 1153 \\ 0 \end{array}$ | $\begin{array}{r} 91088 \\ 77918 \\ 51798 \\ 17521 \\ 635 \\ 0 \end{array}$ | $\begin{array}{r} 81880 \\ 63451 \\ 35443 \\ 9599 \\ 278 \\ 0 \end{array}$ | $\begin{array}{r} 54836 \\ 34708 \\ 15141 \\ 3037 \\ 73 \\ 0 \end{array}$ | 17146 8117 2578 382 8 0 | 1617 575 138 16 0 0 |
| 20 | 1 2 3 4 4 5 6 | $\begin{array}{r} 97536 \\ 91505 \\ 72872 \\ 32491 \\ 1426 \\ 0 \end{array}$ | $\begin{array}{r} 94216 \\ 84104 \\ 60663 \\ 2367 \\ 880 \\ 0 \end{array}$ | $\begin{array}{r} 89507 \\ 75127 \\ 48209 \\ 15255 \\ 465 \\ 0 \end{array}$ | $\begin{array}{r} 78375 \\ 58828 \\ 3124 \\ 7818 \\ 189 \\ 0 \end{array}$ | $\begin{array}{r} 48204 \\ 29063 \\ 1899 \\ 2182 \\ 44 \\ 0 \end{array}$ | 12588 5632 1673 227 4 0 | 892 301 68 7 0 0 |
| 21 | 1 2 3 4 5 6 | 97157 90486 70676 29996 1123 0 | $\begin{array}{r} 93278 \\ 82193 \\ 57702 \\ 20904 \\ 669 \\ 0 \end{array}$ | $\begin{array}{r} 87723 \\ 72159 \\ 44594 \\ 13214 \\ 338 \\ 0 \end{array}$ | $\begin{array}{r} 74482 \\ 54063 \\ 27333 \\ 6307 \\ 127 \\ 0 \end{array}$ | $\begin{array}{r} 41617 \\ 23887 \\ 9182 \\ 1542 \\ 26 \\ 0 \end{array}$ | 8967 3797 1057 132 2 0 | 472 151 32 3 0 0 |

TABLE C-Continued
Number Living of 100,000 Entrants Originally
in Strata 1-6-White Males
Derived from U.S. Life Tables 1949-51
$h_{x}(\mathrm{~m})+\mathrm{n}$

| * | 5 | Ace at Entay |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 27 | 37 | 47 | 57 | 67 | 77 |
| 22 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $\begin{array}{r} 96727 \\ 89377 \\ 6814 \\ 27626 \\ 881 \\ 0 \end{array}$ | $\begin{array}{r} 92224 \\ 80151 \\ 54724 \\ 18720 \\ 507 \\ 0 \end{array}$ | $\begin{array}{r} 85722 \\ 69022 \\ 41152 \\ 11383 \\ 244 \\ 0 \end{array}$ | $\begin{array}{r} 70230 \\ 49228 \\ 23907 \\ 5038 \\ 8.5 \\ 0 \end{array}$ | $\begin{array}{r} 35269 \\ 19267 \\ 6958 \\ 1072 \\ 15 \\ 0 \end{array}$ | 6193 486 650 75 1 0 |
| 23 | 1 2 3 4 5 6 | $\begin{array}{r} 96240 \\ 88174 \\ 6695 \\ 25382 \\ 690 \\ 0 \end{array}$ | 91052 77985 51748 16710 383 0 | $\begin{array}{r} 83493 \\ 65727 \\ 3722 \\ 9750 \\ 176 \\ 0 \end{array}$ | 65669 44396 20475 3985 56 0 | 29321 15246 5176 732 9 0 | 4143 159 388 41 0 0 |
| 24 | 1 2 3 4 5 6 | 95692 86875 63726 23264 538 0 | 89755 75699 48787 14886 288 0 | $\begin{array}{r} 81034 \\ 62298 \\ 34930 \\ 8303 \\ 125 \end{array}$ | 60845 39629 17349 3119 37 0 | 23893 11828 3778 491 3 0 | 2682 972 225 22 0 0 |
| 25 | 1 2 3 4 3 6 | 95075 85476 61312 21269 419 0 | $\begin{array}{r} 88325 \\ 73298 \\ 45851 \\ 13180 \\ 215 \\ 0 \end{array}$ | $\begin{array}{r} 78330 \\ 58741 \\ 3163 \\ 7026 \\ 89 \\ 89 \end{array}$ | 55087 34982 14531 2413 24 0 | $\begin{array}{r} 19067 \\ 8989 \\ 2704 \\ 324 \\ 3 \\ 0 \end{array}$ | $\begin{array}{r} 1679 \\ 580 \\ 127 \\ 12 \\ 0 \\ 0 \end{array}$ |
| 26 | 1 2 3 4 5 6 | 94381 88969 58853 19389 324 0 | 87755 70782 42948 11642 161 0 | 75373 5072 28054 5903 63 0 | 50607 30498 12015 1843 15 0 | 14885 6686 1896 209 2 0 | 1017 335 70 6 0 0 |
| 27 | 2 3 4 5 6 | $\begin{array}{r} 93602 \\ 82351 \\ 56355 \\ 17623 \\ \mathbf{2 5 0} \\ 0 \end{array}$ | 85040 68162 40093 10245 119 0 | 72160 51310 25076 4921 44 0 | 45304 2623 9793 1388 10 0 | 11353 4861 1301 133 1 0 | 595 188 37 3 0 0 |
| 28 | 1 2 3 4 5 6 | 92730 8020 58828 15970 193 0 | 83181 6541 37299 8981 88 0 | 68698 47484 22247 4070 30 0 | 39978 22205 7857 1029 6 0 | 8448 3451 872 82 0 0 | 336 102 19 1 0 0 |
| 29 | 1 2 3 4 5 6 | $\begin{array}{r} 91759 \\ 78777 \\ 51281 \\ 14427 \\ 148 \\ 0 \end{array}$ | 81174 62655 34575 7842 65 0 | 65001 43627 19580 3338 21 0 | 34733 18498 6001 750 4 0 | 6127 2389 571 50 0 0 | $\begin{array}{r} 184 \\ 53 \\ 10 \\ 1 \\ 0 \\ 0 \end{array}$ |
| 30 | 1 2 3 4 5 6 | $\begin{array}{r} 90683 \\ 76822 \\ 48723 \\ 12993 \\ 113 \\ 0 \end{array}$ | $\begin{array}{r} 79011 \\ 59780 \\ 31924 \\ 6818 \\ 47 \\ 0 \end{array}$ | $\begin{array}{r} 61092 \\ 39775 \\ 17808 \\ 2714 \\ 14 \\ 0 \end{array}$ | 29682 15151 4811 538 2 0 | $\begin{array}{r} 4327 \\ 1612 \\ 365 \\ 30 \\ 0 \\ 0 \end{array}$ | 97 27 5 0 0 0 |
| 31 | 1 2 3 4 5 6 | $\begin{array}{r} 89496 \\ 7460 \\ 49167 \\ 11664 \\ 86 \\ 0 \end{array}$ | $\begin{array}{r} 76682 \\ 56825 \\ 29348 \\ 5898 \\ 34 \\ 0 \end{array}$ | $\begin{array}{r} 56997 \\ 35963 \\ 14782 \\ 2186 \\ 10 \\ 0 \end{array}$ | 24939 12197 3669 379 1 0 | 2973 1059 227 17 0 0 | 49 13 2 0 0 0 |

TABLE C-Continued

| n | 5 | Age at Entry |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 27 | 37 | 47 | 57 | 67 |
| 32 | 1 | 88195 | 74185 | 52763 | 20592 | 1986 |
|  | 2 | 72597 | 53800 | 32236 | 9649 | 678 |
|  | 3 | 43626 | 26854 | 12669 | 2751 | 138 |
|  | 4 | 10438 | 5075 | 1744 | 263 | 10 |
|  | 5 | 65 | 25 | 6 | 1 | 0 |
|  | 6 | 0 | 0 | 0 | 0 | 0 |
| 33 | 1 | 86777 | 71519 | 48442 | 16699 | 1288 |
|  | 2 | 70341 | 50717 | 28636 | 7498 | 421 |
|  | 3 | 41111 | 24451 | 10757 | 2027 | 82 |
|  | 4 | 9312 | 4343 | 1378 | 180 | 5 |
|  | 5 | 49 | 18 | 4 | 0 | 0 |
|  | 6 | 0 | 0 | 0 | 0 | 0 |
| 34 | 1 | 85241 | 68692 | 44077 | 13291 | 810 |
|  | 2 | 67997 | 47597 | 25194 | 5719 | 254 |
|  | 3 | 38631 | 221.50 | 9041 | 1467 | 47 |
|  | 4 | 8280 | 3696 | 1077 | 120 | 3 |
|  | 5 | 37 | 13 | 3 | 0 | 0 |
|  | 6 | 0 | 0 | 0 | 0 | 0 |
| 35 | 1 | 83579 | 65699 | 39710 | 10372 | 494 |
|  | 2 | 65570 | 44445 | 21931 | 4279 | 149 |
|  | 3 | 36193 | 19952 | 7516 | 1042 | 26 |
|  | 4 | 7338 | 3125 | 833 | 79 | 1 |
|  | 5 | 28 | 9 | 2 | 0 | 0 |
|  | 6 | 0 | 0 | 0 | 0 | 0 |
| 36 | 1 | 81789 | 62.542 | 35380 |  | 292 |
|  | 2 | 63052 | 41272 | 18866 | 3136 | 85 |
|  | 3 | 33800 | 17860 | 6172 | 725 | 14 |
|  | 4 | 6479 | 2624 | 636 | 51 | 1 |
|  | 5 | 21 |  | 1 | 0 | 0 |
|  | 6 | 0 | 0 | 0 | 0 | 0 |
| 37 | 1 | 79869 | 59226 | 31127 | 5926 | 167 |
|  | 2 | 60485 | 38093 | 16014 | 2249 | 47 |
|  | 3 | 31464 | 15879 | 4998 | 494 | 7 |
|  | 4 | 5700 | 2187 | 478 | 32 | 0 |
|  | 5 | 15 |  | 1 | 0 | 0 |
|  | 6 | 0 | 0 | 0 | 0 | 0 |
| 38 |  | 77821 | 55768 | 27002 |  | 92 |
|  | 2 | 57849 | 34931 | 13394 | 1576 | 25 |
|  | 3 | 29193 | 14017 | 3986 | 329 | 4 |
|  | 4 | 4996 | 1808 | 354 | 20 | 0 |
|  | 5 | 11 | 3 | 0 | 0 | 0 |
|  | 6 | 0 | 0 | 0 | 0 | 0 |
| 39 | 1 | 75644 | 52187 | 23071 | 3082 | 49 |
|  | 2 | 55162 | 31807 | 11027 | 1078 | 13 |
|  | 3 | 26991 | 12279 | 3128 | 214 | 2 |
|  | 4 | 4361 | 1483 | 258 | 12 | 0 |
|  | 5 |  |  | 0 | 0 | 0 |
|  | 6 | 0 | 0 | 0 | 0 | 0 |
| 40 | 1 | 73335 | 48508 | 19399 | 2140 | 26 |
|  | 2 | 52428 | 28746 | 8931 | 720 | 6 |
|  | 3 | 24861 | 10688 | 2415 | 136 | 1 |
|  | 4 | 3791 | 1205 | 185 | 7 | 0 |
|  | 5 | 6 |  | 0 | 0 | 0 |
|  | 6 | 0 | 0 | 0 | 0 | 0 |
| 41 |  |  |  |  |  | 13 |
|  | 2 | 49647 | 25771 | 7114 | 468 | 3 |
|  | 3 | 22802 | 9190 | 1833 | 85 | 0 |
|  | 4 | 3279 | 970 | 131 | 4 | 0 |
|  | 5 |  |  | 0 | 0 | 0 |
|  | 6 | 0 | 0 | 0 | 0 | 0 |
| 42 | 1 | 68294 | 40982 | 13050 | 953 | 0 |
|  | 2 | 46828 | 22911 | 5571 | 296 | 0 |
|  | 3 | 20819 | 7845 | 1368 | 51 | 0 |
|  | 4 | 2821 | 774 | 91 | 2 | 0 |
|  | 5 |  |  | 0 | 0 | 0 |
|  | 6 | 0 | 0 | 0 | 0 | 0 |

## TABLE C-Continued

Number Living of 100,000 Entrants Originally
in Strata 1-6-White Males
Derived from U.S. Life Tables 1949-51

## $\boldsymbol{i}_{1 \times 0}=$



TABLE C-Continued


TABLE D

## $3 \frac{1}{2} \%$ Commutation Columns-White Males <br> Sets in Strata 1-6

Derived from U.S. Life Tables 1949-51

| Age 27 at Entry |  |  |  |  |  |  |  |  |  | Age 37 at Entey |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | $s$ | M ${ }^{*}$ | $N^{*}$ | $D^{*}$ | \# | 5 | $M^{*}$ | $N^{*}$ | $0^{*}$ | $n$ | $s$ | $M^{*}$ | $N^{*}$ | $D^{*}$ | n | 5 | $M^{*}$ | $N^{*}$ | $D^{*}$ |
| 0 | 1 | 8540 | 915561 | 39501 | 30 | 1 | 6840 | 175130 | 12762 | 0 | 1 | 7863 | 595561 | 28003 | 25 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $\begin{array}{r} 6140 \\ 5644 \\ 3907 \\ 1241 \\ 23 \\ 0 \end{array}$ | $\begin{array}{r} 127919 \\ 89942 \\ 45118 \\ 9471 \\ 89 \\ 0 \end{array}$ | $\begin{array}{r} 10466 \\ 8685 \\ 5433 \\ 1562 \\ 26 \\ 0 \end{array}$ |
|  | 2 | 11067 | 840833 | 39501 |  | 2 | 6546 | 126127 | 10811 |  | 2 | 9801 | 538276 | 28003 |  |  |  |  |  |
|  | 3 | 15815 | 700436 | 39501 |  | 3 | 4695 | 63936 | 0857 |  | 3 | 13079 | 441336 | 28003 |  |  |  |  |  |
|  | 4 | 23975 | 459126 | 39501 |  | 4 | 1414 | 12251 | 1828 |  | 4 | 18155 | 291218 | 28003 |  |  |  |  |  |
|  | 5 | 33044 | 190943 | 39501 |  | 5 | 14 | 58 | 16 |  | 5 | 23660 | 128445 | 28003 |  |  |  |  |  |
|  | 6 | 37713 | 52882 | 39501 |  | 6 | 0 | 0 | 0 |  | 6 | 26735 | 37489 | 28003 |  |  |  |  |  |
| 5 | 1 | 846.3 | 731116 | 33187 | 33 | 1 | 6.328 | 138612 | 11015 | 5 | 1 | 7791 | 464821 | 23510 | 28 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $\begin{array}{r} 5572 \\ 4776 \\ 2961 \\ 776 \\ 8 \\ 0 \end{array}$ | $\begin{array}{r} 98113 \\ 65613 \\ \mathbf{3 0 3 3 3} \\ 5443 \\ 31 \\ 0 \end{array}$ | 88906995398696090 |
|  | 2 | 10723 | 656903 | 32937 |  | 2 | 5695 | 95613 | 8929 |  | 2 | 9494 | 407944 | 23289 |  |  |  |  |  |
|  | 3 | 14285 | 518807 | 31829 |  | 3 | 3694 | 45070 | 5218 |  | 3 | 11785 | 312784 | 22362 |  |  |  |  |  |
|  | 4 | 17423 | 287595 | 27149 |  | 4 | 930 | Ti460 | 1182 |  | 4 | 12941 | 170257 | 18699 |  |  |  |  |  |
|  | 5 | 10639 | 57996 | 12600 |  | 5 | 5 | 22 | 6 |  | 5 | 7137 | 35362 | 8333 |  |  |  |  |  |
|  | 6 | 39 | 55 | 41 |  | 6 | 0 | 0 | 0 |  | 6 | 28 | 39 | 29 |  |  |  |  |  |
| 10 | 1 | 8365 | 576208 | 27850 | 35 | I | 5942 | 117143 |  | 10 | 1 | 7645 | 355203 | 19657 | 30 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | $\begin{array}{r} 5149 \\ 4201 \\ 2415 \\ 536 \\ 4 \\ 0 \end{array}$ | $\begin{array}{r} 80841 \\ 52148 \\ 22776 \\ 3674 \\ 15 \\ 0 \end{array}$ | 78835964318568050 |
|  | 2 | 10315 | 503731 | 27349 |  | 2 | 5120 | 78345 | 7770 |  | 2 | 8967 | 300030 | 19113 |  |  |  |  |  |
|  | 3 | 12637 | 373171 | 25256 |  | 3 | 3101 | 35113 | 4289 |  | 3 | 9991 | 211589 | 17146 |  |  |  |  |  |
|  | 4 | 11974 | 171714 | 17781 |  | 4 | 691 | 5268 | 870 |  | 4 | 8177 | 92533 | 11307 |  |  |  |  |  |
|  | 5 | 3204 | 16687 | 3768 |  | 5 | 3 | 11 | 3 |  | 5 | 1909 | 8972 | 2212 |  |  |  |  |  |
|  | 6 | 0 | 0 | 0 |  | 6 | 0 | 0 | 0 |  | 6 | 0 | , | , |  |  |  |  |  |
| 15 | 1 | 8206 | 446336 | 23300 | 38 | , | 5306 | 89041 | 8317 | 15 | 1 | 7367 | 263821 | 16289 | 35 | 123456 | $\begin{array}{r} 3955 \\ 2821 \\ 13.33 \\ 221 \\ 1 \\ 0 \end{array}$ | $\begin{array}{r} 46249 \\ 26994 \\ 10135 \\ 1240 \\ 2 \\ 0 \end{array}$ | 55193733167626310 |
|  | 2 | 9740 | 376957 | 22487 |  | 2 | 4266 | 56664 | 6183 |  | 2 | 8145 | 212186 | 15321 |  |  |  |  |  |
|  | 3 | 10741 | 258718 | 19490 |  | 3 | 2.326 | 23475 | 3120 |  | 3 | 7901 | 135452 | 12482 |  |  |  |  |  |
|  | 4 | 7735 | 97286 | 11025 |  | 4 | 432 | 3026 | 534 |  | 4 | 4739 | 46867 | 6324 |  |  |  |  |  |
|  | 5 | 914 | 4527 | 1067 |  | 5 | 1 | 4 | 1 |  | 5 | 475 | 2110 | 547 |  |  |  |  |  |
|  | 6 | 0 | 0 | 0 |  | 6 | 0 | 0 | 0 |  | 6 | 0 | 0 | 0 |  |  |  |  |  |
| 20 | 1 | 7935 | 337925 | 19363 | 40 | 1 | 4851 | 72913 | 7317 | 20 | 1 | 6884 | 188543 | 13259 | 40 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$ | 265415296267300 | $\begin{array}{r} 22964 \\ 11948 \\ 3804 \\ 348 \\ 0 \\ 0 \end{array}$ | 343120337558500 |
|  | 2 | 8922 | 273355 | 18165 |  | 2 | 3716 | 44786 | 5231 |  | 2 | 7012 | 142667 | 11836 |  |  |  |  |  |
|  | 3 | 866.3 | 171627 | 14466 |  | 3 | 1886 | 17508 | 2480 |  | 3 | 5790 | 81243 | 8537 |  |  |  |  |  |
|  | 4 | 4689 | 52089 | 6450 |  | 4 | 309 | 2042 | 378 |  | 4 | 2531 | 21992 | 3275 |  |  |  |  |  |
|  | 5 | 244 | 1148 | 283 |  | 5 | 1 | 2 | 1 |  | 5 | 108 | 454 | 124 |  |  |  |  |  |
|  | 6 | 0 | 0 |  |  | 6 | 0 | 0 | 0 |  | 6 | 0 | 0 | 0 |  |  |  |  |  |
| 25 | 1 | 7498 | 248215 | 15892 |  |  |  |  |  | 23 | 1 | 6469 | 150484 | 11558 |  |  |  |  |  |
|  | 2 | 7847 | 190454 | 14287 |  |  |  |  |  |  | 2 | 6209 | 109125 | 9899 |  |  |  |  |  |
|  | 3 | 6594 | 108066 | 10248 |  |  |  |  |  |  | 3 | 4518 | 57570 | 6569 |  |  |  |  |  |
|  | 4 | 2669 | 26197 | 3555 |  |  |  |  |  |  | 4 | 1667 | 13416 | 2121 |  |  |  |  |  |
|  | 5 | 61 | 270 | 70 |  |  |  |  |  |  | 5 | 43 | 172 | 49 |  |  |  |  |  |
|  | 6 | 0 | 0 | 0 |  |  |  |  |  |  | 6 | 0 | 0 | 0 |  |  |  |  |  |

* For age $\{x(s)]+\pi$, where $x$ is age at entry.


[^3]TABLE E
Entrants at Age 37-White Males
Specimen Distributions of Sets Corresponding to Different y-Ages of Population

| $-\frac{\langle y\rangle:}{n}$ | 13 | 17 | 18 | 19 | 27 | 37 | 44 | 47 | 57 | 67 | 77 | 87 | 94 | 95 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Deaths per Class of $1,000-d_{[x]+n-1}$ for $\{y\} / x$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1. | . 76 | 1.33 | 1.45 | 1.53 | 1.69 | 2.94 | 5.79 | 7.71 | 18.82 | 40.00 | 87.89 | 188.98 | 289.06 | 305.53 |
| 2. | . 88 | 1.51 | 1.62 | 1.73 | 1.90 | 3.22 | 6.05 | 7.84 | 17.19 | 32.09 | 58.76 | 99.53 | 128.59 | 132.63 |
| 3. | 1.02 | 1.72 | 1.84 | 1.95 | 2.14 | 3.53 | 6.37 | 8.10 | 16.57 | 28.76 | 47.58 | 69.36 | 78.49 | 79.20 |
| 4. | 1.19 | 1.96 | 2.09 | 2.21 | 2.41 | 3.87 | 6.74 | 8.44 | 16.33 | 26.89 | 41.75 | 55.90 | 58.74 | 58.51 |
| 5 | 1.39 | 2.23 | 2.37 | 2.50 | 2.72 | 4.25 | 7.15 | 8.83 | 16.25 | 25.60 | 37.78 | 47.75 | 48.05 | 47.54 |
| 6. | 1.62 | 2.35 | 2.70 | 2.84 | 3.07 | 4.69 | 7.63 | 9.28 | 16.32 | 24.68 | 34.78 | 41.82 | 40.75 | 40.12 |
| 7 | 1.88 | 2.89 | 3.05 | 3.21 | 3.45 | 5.14 | 8.12 | 9.75 | 16.43 | 23.91 | 32.26 | 37.01 | 35.01 | 34.33 |
| 8 | 2.19 | 3.28 | 3.45 | 3.62 | 3.88 | 5.63 | 8.64 | 10.24 | 16.59 | 23.29 | 30.16 | 33.03 | 30.34 | 29.62 |
| 9. | 2.52 | 3.70 | 3.88 | 4.06 | 4.33 | 0.16 | 9.19 | 10.76 | 16.79 | 22.80 | 28.39 | 29.72 | 26.49 | 25.76 |
| 10. | 2.91 | 4.18 | 4.37 | 4.56 | 4.84 | 6.73 | 9.78 | 11.33 | 17.06 | 22.43 | 26.91 | 26.95 | 23.30 | 22.56 |
| 11. | 3.36 | 4.70 | 4.91 | 5.10 | 5.41 | 7.35 | 10.41 | 11.93 | 17.36 | 22.15 | 25.65 | 24.61 | 20.64 | 19.90 |
| 12. | 3.85 | 5.28 | 5.49 | 5.70 | 6.01 | 8.01 | 11.06 | 12.55 | 17.68 | 21.92 | 24.54 | 22.60 | 18.40 | 17.65 |
| 13. | 4.39 | 5.90 | 6.12 | 6.33 | 6.66 | 8.69 | 11.73 | 13.17 | 18.00 | 21.72 | 23.56 | 20.86 | 16.49 | 15.75 |
| 14 | 4.98 | 6.55 | 6.78 | 7.00 | 7.34 | 9.41 | 12.41 | 13.81 | 18.33 | 21.56 | 22.69 | 19.36 | 14.88 | 14.15 |
| 15 | 5.64 | 7.28 | 7.52 | 7.75 | 8.09 | 10.18 | 13. 14 | 14.48 | 18.69 | 21.45 | 21.94 | 18.06 | 13.51 | 12.79 |
|  | Rates of Mortality $-1,000 \%(x)+n-1$ for $\langle y\rangle / x$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1. | . 76 | 1.33 | 1.43 | 1.53 | 1.69 | 2.94 | 5.79 | 7.71 | 18.82 | 40.00 | 87.89 | 188.98 | 289.06 | 305.53 |
| 2. | . 88 | 1.51 | 1.62 | 1.73 | 1.90 | 3.23 | 6.08 | 7.91 | 17.52 | 33. 42 | 64.42 | 122.72 | 180.88 | 190.98 |
| 3. | 1.02 | 1.72 | 1.84 | 1.96 | 2.15 | 3.55 | 6.44 | 8.23 | 17.19 | 30.99 | 55.76 | 97.48 | 134.79 | 140.97 |
| 4. | 1.19 | 1.97 | 2.10 | 2.23 | 2.43 | 3.91 | 6.87 | 8.65 | 17.24 | 29.91 | 51.81 | 87.06 | 116.58 | 121.24 |
| 5. | 1.39 | 2.24 | 2.38 | 2.52 | 2. 74 | 4.31 | 7.34 | 9.12 | 17.46 | 29.35 | 49.46 | 81.45 | 107.96 | 112.09 |
| 6. | 1.63 | 2.57 | 2.72 | 2.87 | 3.11 | 4.77 | 7.89 | 9.68 | 17.84 | 29.15 | 47.90 | 7767 | 102.62 | 106.54 |
| 7. | 1.90 | 2.92 | 3.09 | 3.25 | 3.50 | 5.26 | 8.46 | 10.26 | 18.29 | 29.09 | 46.67 | 34.52 | 98.25 | 102.02 |
| 8. | 2.21 | 3.32 | 3.50 | 3.68 | 3.94 | 5.79 | 9.08 | 10.89 | 18.80 | 29.18 | 45.75 | 71.86 | 94.42 | 98.05 |
| 9. | 2.55 | 3.77 | 3.96 | 4.14 | 4.43 | 6.37 | 9.74 | 11.58 | 19.40 | 29.42 | 45.13 | 69.66 | 91.04 | 94.52 |
| 10. | 2.95 | 4.27 | 4.47 | 4.67 | 4.97 | 7.01 | 10.47 | 12.33 | 20.10 | 29.82 | 44.80 | 67.90 | 88.11 | 91.43 |
| 11. | 3.41 | 4.83 | 5.04 | 5.25 | 5.58 | 7.71 | 11.26 | 13.14 | 20.88 | 30.36 | 44.70 | 66.52 | 85.60 | 88.75 |
| 12. | 3.92 | 5.44 | 5.67 | 5.89 | 6.23 | 8.46 | 12.10 | 14.01 | 21.71 | 30.99 | 44.78 | 65.44 | 83.42 | 86.40 |
| 13. | 4.50 | 6.11 | 6.35 | 6.59 | 6.95 | 9.26 | 12.99 | 14.91 | 22.60 | 31.69 | 45.00 | 64.64 | 81.59 | 84.40 |
| 14. | 5.12 5.83 | 6.84 | 7.09 | 8.34 | 8.71 | 10.12 | 13.92 | 15.87 | 23.54 | 32.48 | 45.38 | 64.12 | 80.13 | 82.78 |
| 15. | 5.83 | 7.65 | 7.92 | 8.18 | 8.57 | 11.06 | 14.94 | 16.91 | 24.58 | 33,40 | 45.96 | 63.94 | 79.10 | 81.60 |


[^0]:    ${ }^{1}$ Based on equation (11), and assumption (2) in paragraph 34.

[^1]:    ${ }^{2}$ The principle would apply if the mortality of those withdrawing were heavier, as it might be, say, among those released from military service for reasons of health.

[^2]:    -M. A. Linton, 'Returns under Agency Contracts," RAIA XIII, 287.

[^3]:    * For age $[x(s)]+n$, where $x$ is age at entry.

