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INTRODUCTION 

ECENT developments in the field of accident and sickness insurance 
have introduced a complexity and variety of claim cost con- 
siderations into actuarial research which dearly call for improved 

tools if any practical degree of standardization and simplification is to be 
achieved. This is particularly the case in the medical insurance field: 
complex benefit structures, involving a wide assortment of formulas for 
covering hospital, surgical, and other medical costs, frequently in combi- 
nation with a "deductible" concept, can easily lead to problems of claim 
cost derivation that are almost hopelessly involved. 

This basic problem confronting the actuary may be separated into two 
elements. The first concerns the determination of appropriate assump- 
tions as to claim rates among active lives. The second is the analysis of 
the claim pattern itself. This latter problem may usually be solved by 
developing a "continuance" table showing the probabilities of claim con- 
tinuance to various discrete durations or amounts. For example, disabil- 
i ty continuance can be expressed basically as the number remaining dis- 
abled at the end of t days (or months or years) out of an assumed initial 
radix, or number disabled. Hospital confinement may be expressed in the 
same manner. A major medical continuance table could express the prob- 
ability that claim expense will equal or exceed t dollars. From such tables, 
the average size of claim, or "claim annuity" if interest discount is intro- 
duced, may be computed which in combination with the rate of claim 
produces the basic S, function sought. 

This is simple enough where only a single elementary benefit is to be 
valued, such as income disability, but when benefits are combined in 
various ways, with a multitude of elimination periods or deductibles and 
maximum benefit limits, an exceedingly complex problem emerges. 

The object of this paper is to present a theoretical basis for the mathe- 
matical graduation of continuance data for both elementary and com- 
bined benefits, and to demonstrate methods of utilizing the theory to 
derive claim costs for a wide variety of benefits. 

I. ANALYSIS OF TIlE BASIC CONTINUANCE FUNCTION 

1. The Typical Continuance Pattern 

Let us examine the typical pattern of claim continuance by expressing 
the continuance table in the form p(,t), where this symbol denotes the 
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confined (adult males). (Gingery, "Group Hospital Expense Insurance Experience," 
TSA IV, 87, Table VI-], 10× Miscellaneous Benefit 31-Day Plans.) 
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probability that disability incurred at age x will continue to a duration of 
t units (of either time or money), showing the data in graphical form. 
Figure 1 shows two such patterns, one for continuance of time loss dis- 
ability, the other for hospital confinement. 

As would be expected, both curves exhibit the same basic pattern: 
rapid termination over the shorter durations, followed by a sharp bend 
and leveling out of the curve as the acute disabilities terminate in re- 
covery or death. The remaining lives are the long-term or "permanent" 
disabilities, the disability function tapering off over a much longer period 
of time than the confinement function. 

2. The Force o/Terminat ion 

In order to make a mathematical analysis of these continuance curves, 
we define the force of termination, ~r~) : 

~r~') = - D, (log, p~(')). (I-l) 

This definition is precisely parallel to that of the force of mortality, #,, 
except that the variable here is duration, t. (In the remainder of the paper, 
"ha" will denote log,, and "log" will denote logto.) 

Let us assume that a hypothetical continuance experience is subject to 
a constant force of termination, k. Then: 

D,(ln p~')) = --k 

l n p ( ~ ) = f - - k d t =  -- kt + c 

p~t~ = e-kt+,. 

Since p(O~ _ 1, c = 0 and we have: 

f-'~ = e-~' .  (I-2) 

If we attempt to fit formula (I-2) to an actual experience of either type 
shown in Figure 1, we find that a decreasing value of k is obtained as we 
apply the formula with increasing values of t; in other words, the force of 
termination is a function that decreases with increasing values of t. What 
we require is a function that fulfills this condition but at the same time 
is simple enough to be easily derived and easily applied in practical use. 
As will be shown later, the most practical function is one which remains 
reasonably simple upon being carried through two successive integrations. 

A general class of functions which fulfill these requirements is either of 
the following (dropping, for the moment, the age designation x): 

( a )  7rOt) a a - o r  ( b )  ~.~t~ _ ( I - 3 )  
~ +  bt ~ ( a +  bt) ~" 
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If a completely generalized expression for the integral, ha p(O, of either 
of these expressions is worked out, the result is a very cumbersome ex- 
pression which is inconvenient and, moreover, not integrable a second 
time in terms of simple elementary functions. Accordingly, we shall con- 
fine our investigation to the class of special cases of (a) or (b) obtained 
by setting c = 1: 

~. ( t )  _ ( I - 4 )  
a +  bt" 

No further loss of generality results by also setting b = 1, for if we 
divide numerator and denominator of (I-4) by b, we obtain an expression 
of the form: 

~t 
~(t) 

a'+t"  

We therefore investigate the simplified function 

7r(t) - (I-5) 
I t + t  

to determine whether this provides a usable basis for expressing con- 
tinuance data mathematically. 

Deriving p(O, we have: 

Dt(ln p(t)) = a + t  

ln ptt)= -- f --~-st dt= --a ln (a+t )  + c. 

Setting In p(0) = O, we obtain c = a In a, and therefore 

I t  a 

This function (I-6) will be referred to as the "Alpha" function. 
A simple method exists of determining both whether a given body of 

data is likely to be satisfactorily graduated by this formula and, if so, 
what the approximate values of the constants must be. I t  is obvious that 
formula (I-6) cannot work, without some revision, for lifetime disability 
continuance, since eventually the force of termination must begin to in- 
crease because of the advancing death rate at higher ages. We will deal 
with this problem later, but for the moment we will confine ourselves to 
continuance in which the termination rate does decline with duration. 
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3. Graduation of Elementary Data 

In order to proceed with the description of the method of testing for 
possible graduation and determination of the constants, several definitions 
will be convenient. 
(1) Elementary Function. A continuance function defined by a single 

function of the type I-6. 
(2) Compound Function. A continuance function requiring two or more 

elementary functions for its definition. 
(3) Graduation Constants. 

Attenuat ion-- the  constant exponent a in formula (I-6). 
Range-- the  constant a in formula (I-6). 

(4) Logarithmic line, or logarithmic asymptote. A curve which appears as a 
straight line when exhibited on a full-logarithmic graph. A logarith- 
mic asymptote is such a curve defining the limiting position of the 
curve of an Alpha function, i.e., of a function of the form (I-6). 

a. The Equation of the Logarithmic Line 

In order to appear as a straight line on a logarithmic graph, a curve 
must have an equation of the form 

log y = c log x-t- b or y = B x  c . 

If c is negative, we may  write this expression with a positive exponent 
as 

y = ( i - 7 )  

where 
a = - - C ,  c~ ---- B I/a, I = X .  

As a probability function, this is simply formula (I-6) with the substitu- 
t ion t  p =  t + a :  (o)o 

P ( " - ° ~ =  ~ • 

The function (I-7) is the limiting curve for (I-6) as t increases, as is 
readily seen by  writing each expression in logarithmic form: 

1) log pC,) = a[log a -- log (a + t)] 

2) log y - a [log a -- log t] 

Subtracting (1) from (2), 

log y -- log p(O = a[log (a q- t) -- log t] .  

As t increases indefinitely, the expression on the right approaches zero, 
hence p(o approaches y. 
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b. Inspection of Data for Alpha Function Graduation 

The fact that the Alpha function possesses a logarithmically linear 
asymptote is very useful, for it makes possible a simple preliminary in- 
spection of crude or tabular data for the purpose of determining whether 
an Alpha function is likely to approximately reproduce them. The data are 
simply graphed in the form p(*~ on logarithmic paper and examined to 
determine whether there is a more or less smooth downward curvature that 
gradually straightens. If the slope of the curve does not steadily decrease 
toward a fairly constant negative value, or, in the case of crude data, if 
the underlying function may not be presumed to do this, the data cannot 
be successfully graduated by an elementary Alpha function. I t  may be 
necessary to perform a preliminary graduation by any of the standard 
methods in order to smooth crude data containing severe fluctuations. 

If the necessary characteristics appear to be satisfied, approximate 
values of the range and attenuation may be easily obtained by simply 
drawing in the asymptote in its estimated position. 

The range ¢t is the abscissa at the intersection of the line with the 
ordinate p = 1. 

The attenuation a is the numerical value of the negative slope of the 
line. Note that a, as used in formula (I-6), is positive. Figure 2 on page 656 
illustrates the method. 

This quick approximation will not give very accurate results unless the 
data can be followed through at least 3 and preferably 4 cycles of either 
p or t on the graph. In particular if the slope is steep the investigator will 
find it ditficult to estimate the position of the asymptote accurately. For 
this reason, this technique should not usually be relied upon for more than 
a preliminary test. 

c. 3-Point p~t> Graduation 
The Alpha function involves but two constants, ~t and a, and therefore 

can be fitted exactly to only 2 arbitrary points along a curve, which must 
be carefully selected to achieve a good average fit. For all a and a, if t 
is set = 0, p(~ -- 1 and hence the point (0, 1) is common to all functions 
of the form (I-6). 

By abandoning this requirement it is possible to introduce a third 
constant which usually enables the investigator to improve the fit. In 
fact, the data usually encountered will be found to fit the Alpha function 
poorly in the early values and by fitting a function through 3 points, 
one of them a suitable selection in the early range of the curve, a decided 
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improvement may usually be obtained. To get 3 constants into the 
formula, (I-6) is replaced by the more general expression 

O, a 

which henceforth will be regarded as the general form of the Alpha func- 
tion. This form of expression is obtainable from (I-6) by the substitution 
t' =- t -4- a -- a' and thus is equivalent to a translation of the vertical axis. 
Associated with this refined expression is the formula for the force of 
termination: 

a 
~r('~ - (1-9) 

a' "4-t" 

The effect of the transformation (1-8) is to introduce the notion of a 
"minimum duration" into the theory, so that all disabilities are regarded 
as continuing to a certain duration and only then beginning to terminate. 

This minimum duration, ~-, has the value a --  a',  for when t = a -- a' 
is substituted in (I-8) we get p(~-~') = 1. A complete definition of the 
Alpha function must therefore be the following, since p"~ obviously can- 
not exceed 1: 

for O < t <__ a - -  a '  , p~t) = l 

(I-lO) 
for t >  a - - a '  pct) = ( - ~ - ~ t t ) "  

While we may sometimes refer to the Alpha function as (I-8) only, it is 
to be understood that (I-10) is actually the complete definition. 

The introduction of tt' into the function does not alter the asymptotic 
relation, so that a class of functions which vary only in the value of a' all 
approach the same asymptote 

Figure 2 has been drawn with a -- a' = 1, and the curve will be seen 
to pass through (1, 1), thus having a minimum duration of 1 unit. 

The following technique may be used to graduate a body of data by 
fitting an Alpha function through 3 values of p(O, where these values are 
chosen to define the smooth curve assumed to underlie the data, and hence 
are not necessarily points falling on the graph of the crude data itself. 

(1) Select p(=~, p(,~, and  p(~) so that a smooth curve through these 
points will as far as possible lie in an average position among fluctuations 
in the data, and also so that 

p(~ has a value near 1, 
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p(~) is just beyond the range in which the curve is bending most sharply, 
p(w) is well out along the curve, near the assumed asymptote if possible. 
(2) Solution for the value of a' may be obtained as follows: 
Dividing p(~) by p('), and pCv) by p(~), we obtain: 

p(~) _ ( , '  + v y  p(', ( o '  + wh° 
1) p - ~ = X - k A + u  / 2) ~-63=g=~,-~-~-- ; . /  

3) log X = a[log (a' + v) -- log (~' + u)] 
(I-11) 

4) log Y = a [log (A + w) -- log (ct' + v)] 

5) log X I o g ( d + v )  - l o g ( # + u )  
log Y l o g ( a ' + w )  - - l o g ( d + v )  " 

This equation may be solved by inserting trial values of a', starting 
with an estimate obtained from the graph: 

The estimated asymptote intersects the ordinate p = 1 at a. 
The estimated smooth curve intersects the ordinate at a -- a'. Succes- 

sive test values will usually narrow down the value of a' fairly rapidly. 

¢u: --10 

1.0 ~ d = LOG 1.0- LOG .001 

LOG" T--LOG oc 

= 3 
LOG 230.5- LOG 10 

= 2,2 
0.1 

pro 

0.01 

0.001 
1 10 100 T lO0O 

t 
FIG. 2 
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(3) Having determined a' to an acceptable degree of accuracy, a is 
obtained from equation 3 or 4 and finally a from any of the original 
values p"). 

These solutions must then be checked by computing p(~), p('), and p(~), 
and tested against the data by computing a series of values p(t). I t  is 
usually satisfactory to take t = 2.5, 5, and 10 in each of the first 3 cycles 
or so and check the ratio of the computed value to the corresponding value 
on the smooth curve originally estimated and from which p(~), p(o, and 
p(~) were taken. 

This check is only partially adequate and a ~urther summation test 
using values of the continuance integrals, to be discussed in a later sec- 
tion, is also desirable. 

Another approach which lends itself conveniently to slide-rule solution 
proceeds as follows: 

We have, as before: 

a ' +  v 
3) log X = log a' + u 

2) 

O, t -q-2V 
4) log Y - - l o g a , + v  

a t - - I  - 73 
l°g a , + u  

l o g X  6) log a ' + w { l ° g  X'~ " a' + v (I-12) 
5) log V - ~' + w ~ k . l o - ~ )  = , o g ,  ~ u  

log a ' +  v 

7) \~-r--~--~/ - ~' + u 

( a ' +  Y 
8) d + u =  

In equation 8, the exponent is a known constant and the solution of a' 
may be rapidly obtained by successive approximation using a slide rule. 

I t  may happen that equation 5 of (I-11), or 8 of (I-12), is insoluble for 
a'. If this occurs, the selected points violate the condition that 7r ~t) be a 
decreasing function. This is easily tested. 

Since ~.(l) = - D t ( l n  p")) and we are dealing with continuous single 
valued functions, there exist, by the Theorem of Mean Value, values ~1 
and ~Q such that (1) u < ~P~ < v and v < ~Q < w, and (2) lr (¢~) = log X ~  
(v - u) log e and ~-(~,) -- log Y / ( w  - v) log e. Since ~r($,) must exceed 
~r($,) for an Alpha function, 

~r($,) ( w -  v)log X 
~r($,)- ( ~ - - u )  1o~ ff > 1. (I-13) 
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If this test fails, different values of p must be tried which give a success- 
ful '%-" test, or else the data under study cannot be graduated by the 
Alpha function and require a different function, the Lambda function, 
which will be discussed in paragraph e. 

d. Graduation by One Point of p(o and Two Points of ~(t) 

An alternate method of graduation which does not give as much con- 
trol as the 3-point p(o method, but which is much quicker, is graduation 
by equating to one value of p(O and to two values of v(t). The advantage 
is that this leads directly and easily to an approximate solution without 
recourse to trial values in obtaining the first constant. 

Approximate values of T ~o are readily obtained from the logarithmic 
graph. The slope, z C°, of the p¢O curve at any point is given by 

d d 
z(0 - d (log t-----~ log p(0 = d (ln t) in p¢t), (I-14) 

from which we obtain directly 

Z(t) 
~(0 = - -  ( I - 1 5 )  

l 

To obtain z ~° approximately, we carefully strike the logarithmic 
tangent to p(O at the desired point and extend it sufficiently to give a good 
ratio of the logarithmic lengths. Then if the line is defined by the points 

(Pb tl) and (p~, t,) 

we have the relation 

z(O = log P2 --log Pl 
log Is - log ti " 

Obtaining two such values, z (v) and z C~), we have: 
g(~) a 

m = 7 1 - ( 9 )  - -  a ~ 
1 )  v + v  

~ - 1 6 )  
g (w) a 

2 )  - = r c - )  = . ~  
aP --~ 7/3 ' 

from which a and a' are easily obtained. We find a from the third value, p~: 

O. a 

by inserting the values of a and ~'. 
I t  is of the utmost importance to the success of this method that u, v, 

and ~ be carefully chosen, u must be taken so that f " )  is near 1.00, at 
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least .85, say. v and w are taken by first selecting points d and w' as though 
using the 3-point pO) method. Then v and w are selected so that 

• l o g u + l o g  v' 
log v 2 

(I-17) 
log w" log v' + l o g  w' 

2 

This will ordinarily produce results that equate the values of pO) to the 
data at points not too much different from v' and w'. 

e. The Lambda Function 

As discussed in paragraph c, it is not always possible to find a set of 
3 points of a decreasing p function that can be fitted by an Alpha func- 
tion. In order to have a general technique, we therefore introduce the 
Lambda function, defined by the following expression for ~r"): 

l 
~(') = ~-~-t-- t" (I-18) 

Integrating to obtain p(O, we have: 

In p(t) = l In (X' - -  t) + v 

and, setting In p(O = 0 when t = X' -- X, we have 

c= -- f in  X, 
or 

1) p( '~= when X ' - X _ < t _ < X  

2) p ( O = l  for O _ < t < X ' - - X  
(Io19) 

3) p ( q = O  for t > X ' .  

We will sometimes refer to the Lambda function in terms of formula 
(I) only, but it is to be understood that equations 1, 2, and 3 of (I-19) 
constitute the complete definition. 

I t  will be seen that this function has an increasing force of termination 
and therefore enables us to fit 3 points of a curve for which the a- test 
(I-13) is less than 1. I t  is peculiar in that p(') reaches zero at the finite 
value X', and for this reason it can be used only when it appears reason- 
able that the continuance function should vanish at  a definite finite 
limiting value. 

The Lambda function constants may be solved for directly by equa- 
tions (I-11). However, it is sometimes possible to employ a simple short 
cut. If the limit value X' can be estimated fairly accurately from the 
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graph, we can adopt this value for the constant. We then require two 
other equations, and for one of these we may  take p~) = 1, for which r 
is also usually easy to estimate. The other, p(~, should be taken at  the 
point of sharpest curvature where the slope of the curve begins to turn 
steeply downward. We then have: 

A = X t -  r B =  k ' - - u  C=p¢~)  

and (I-20) 

- -1  = C ,  

from which the unknowns, l and X, are easily obtained. 
A casual inspection would suggest that there is no particular relation 

between the Alpha and Lambda functions. However, a simple algebraic 
transformation shows that the functions may  be expressed in the forms: 

,p(o = (b + ct)--" Xp~o = (b --  ct)" , (I-21) 

so that each is actually only a restricted case of the more general binomial 
expression (b + ct) ~ in which the constants may take either sign. The 
form (I-21), while more general, will not usually be used in this paper 
because, in the author's opinion, it is less convenient numerically than 
(I-10) and (I-19), and the use of the functions requires clarity as to 
which of the two is involved in any particular case. 

The two functions are also connected by another interesting and useful 
relationship. The values of the "complete integrals" of either function 
(to be discussed in detail in a later section) are as follows: 

" F -  ~ ~ F -  X 
a - - 1  l + l "  

We make use of these equations in the following theorem. 
Tm~om~.  The class of Alpha and Lambda functions defined by the 

conditions that  the minimum duration be r, and that all complete inte- 
grals shall have the fixed constant value F, possess the same limiting 
curve, the exponential e -t/F , as their constants are allowed to vary and 
increase without limit. 

Proof: 
L e t  ~ = F(a  - 1) and X = F(l  + 1); then, translating the p axis 

through a distance r so that • = a t, or X = X': 

]° iF(l+1) -q,  
L F ( a -  1) + t ]  and x p ( t ) =  k - - f f ( ~ - l )  J 

2) ln"p(t) = a [In F ( a - -  1) - - ln  ( F a - - F + t ) ]  

In xp(8) = 1 [ln (Fl + F  --  t) - -  In F (l + 1) ] .  
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When a and l increase without limit, these become indeterminate. We 
therefore write them as fractions of the form o ~ and differentiate numerator 
and denominator with respect to a and to l: 

1 F 
3) a - - 1  F a - - F + t  

lira In -p(0 = lim a -  ~ 

4) 

s) 

o r  

F 1 
F I + F - - t  l + 1  

lira In xp( t )  = m _ l_ ~ 
l---~ o~ 

lim in .p(O = l i m [ _  ~_2 { \F~=~_F_~+_ ta + ~ : ~ )  ] F a - F + t - - F a + F  

lim lnXp,O =lim[_/__~12 ( FI+F--FI--F+t 5] 
\ F l  2 + 2Fl -- tl + F 2_ t / J  

lim In .p(O = _ t /F  lira In Xp(O = _ t /F  

in the limit. 
This relationship will 

,p(o = XpCO = e-t/e 

be used later in developing techniques for 
evaluating "composite" functions. 

IL COMPOUND GRADUATION 

More often than not, it will be found that a continuance experience 
is too complex to be satisfactorily graduated by a single elementary 
Alpha or Lambda curve. If it is not essential to have a graduation that is 
reasonably accurate at nearly all durations, an elementary graduation 
may suffice, but the usual experience encountered will contain inflection 
points or sharp bends that defy elementary graduation of any accuracy. 

It is usually possible to handle such cases with excellent success by 
means of a "compound" graduation, which is simply based on the 
assumption that the curve is the sum of two or more components, each 
of which is itself an elementary function. The rationale involved here is 
that the total continuance experience under investigation is composed 
of more than one class of disabilities, each class being subject to its own 
characteristic force of termination. I t  will usually be found in a two- 
element compound experience that one element fits well what would be 
expected from a group of acute disabilities out of which rapid termination 
occurs through recovery or death but at a decreasing rate (i.e., an 
Alpha function with a high attenuation), while the second element 
consists of long-term or permanently disabled lives from which termina- 



662 CONTINUANCE FUNCTIONS 

tion occurs primarily by death and at an increasing rate (Lambda function 
with large value of range, X'). Neither concept will be entirely precise 
at all durations, to be sure, but the combination usually produces highly 
satisfactory results, and the advantages of the type of mathematical 
graduation we are investigating make it well worth the attempt. 

1. Two-Element Compound Curves ("6-point" graduation) 
One means of working up a two-element graduation is by the "6-point 

graphic" method. The method consists in inspecting the appearance of the 
continuance data as displayed on full-logarithmic paper, in order to esti- 
mate the general position and nature of the underlying elements. From 
this graphic inspection, 3 points are adopted for the element that appears 
to control the extreme portion of the curve, and the constants are ob- 
tained by the 3-point p<O method (section I-3c) or by the method of 
section I-3d, Values of this element are then plotted and the curve 
subtracted from the data curve, thus exposing the values of the other 
element which is then likewise plotted. If  it appears to be a good candidate 

1.0 i ~ i 
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FIG. 3.--1952 Disability Table, Age 27½--Benefit2. ~point Graduation 
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for a final elementary graduation, it too is solved by the 3-point p(*) 
method. The results, of course, must be checked by comparing sums of 
elementary values at the same duration with the values of p(O for the 
original compound data curve. 

We will illustrate the method by converting the 1952 Disability Table 
at central age 27½ into a two-element mathematical graduation. Figure 3 
shows the plotting, setting p(o = 1 at 3 months, where the table begins. 

The steps: 
1. By referring to the general shape of the data curve and the loca- 

tion of the sharp bend B, we decide upon a • curve estimate: the dotted 
k* curve, which is a carefully drawn but merely preliminary estimate. 

2. Subtracting this curve from the data curve, we derive the estimated 
curve ct* in order to determine whether its values should have any effect 
at the extreme right-hand part of the curve that we assume to be con- 
trolled almost entirely by the ;~ element, and also to determine whether 
it appears to have the approximate shape of an elementary function. If 
it does not, we attempt adjustments in X* to improve the shape of a*. 

3. From the X* and a* estimates in Figure 3, we conclude that reason- 
able values for the 3 ~, points are (with t in years): 

1. p(~O) = .11 
2. p ( ~ ) =  .0528 
3. p(~o> = .009. 

Solving by the "3 points of p"  method, we obtain: 

xp(0 = ( 8 6 . 2  -- !'~3.35 
\ 147.4 / " 

(This solution gives an ~ of 27.5 + 86.2 = 113.7, somewhat high.) 
4. This curve is graphed as the X curve, and subtracted from the data 

curve to obtain the a curve. To solve this we take: 
4. p(0.3) = . 78 
5. p(2) = .193 
6. p(,0) = .00174 

and solving, obtain: 
,p(t)__- ( 2 . 5 4  t )  2"914 

\ 2 . 4 6 5  + " 

5. A final test gives these ratios of the mathematical compound, 
• p(,) = ,p<o + xp(o, to the original data curve: 

t (Years) Ratio ~ Wears) Ratio 
0.25 ............... 98.9% 5.0 ............... 90.1% 
0.5 ................ 107.6 I0.0 ............... 92.0 
1.0 ................ 111.3 25.0 ............... 101.7 
2.0 ................ 97.0 50.0 ............... 100.5 
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In step (4), if the subtracted k curve does not reveal a likely a curve, it 
may be necessary to modify the points in step (3) to achieve a better 
solution. Alternatively, the balance curve may sometimes be broken 
down itself into elements, yielding a three-element compound. In fact, 
the 6-point graduation illustrated in Figure 3 may be considerably im- 
proved by moving to a 3-element (9-point) graduation. In such a case, 
the solution points of the 3rd element are obtained by deducting the first 
two elements from the data curve. In Figure 3, the X curve would have 
been solved by the same equations at t = 10, 25 and 50. The second curve, 
however, would then be solved by points closer together, such as t = 1, 
5, and 20. The 3rd element would be used to obtain the fit in the short 
ranges t < l, and will generally prove to be another k curve. There is 
seldom any justification for going beyond three, unless the investigator 
is aiming at a mathematical set of curves intended to reproduce the data 
very precisely. 

The formulas obtained for the age 27.5 curve may be employed to ex- 
tend the data backward to t = 0, although this leaves unanswered any 
question of unknown peculiarities in the short range. The reasonability 
of the values in the duration 0 to 3 months should therefore be:compared 
to short-range experience from other sources. Such an extrapolation 
should not be used, in particular, unless the slope of the ~ curve is nearly 
equal to that of the data curve at 3 months. In the Figure 3 example, 
this condition can only be met with a 3-element graduation. The method 
of extrapolation is simply that of computing p{0) (which will exceed 1.0, 
this being the value for p{0.~s)) and modifying the range constants so as to 
introduce the factor 1 / p  ¢°) into all values of p¢O thus setting p{0) = 1.0: 

o." = ,,(p(o))-t/, , ,  X" = k(p¢°)) 1/~, ~ , ,  = ~(pco))~/,,, ( I I -1)  

where ~ pertains to the third element. 
These values a", k", and ~", are then adopted as the final values of 

a, ~,, and/~ to be used in the mathematical formulas. It  is important to 
keep the rate of claim, r, consistent with these adjustments. If r is the 
rate of claim showing the rate of disability lasting at least 3 months out 
of the exposure, then r must likewise be modified: 

r"  = rp C°) , (II-2) 

where p{0) is the original value > 1. 
Note that under these assumptions there is no "minimum duration" 

(see I-3c). Attenuation sets in immediately at duration zero. 
In cases where this method is used with data that can actually be fol- 

lowed from duration zero, it will be necessary to determine the value of 
the "minimum duration," "r. This will be the value of t at which ~p") -- 
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1.0 and is most easily determined by graph, or alternatively by trial and 
error solution for r in the equation (assuming an a and a X element): 

• p(,:, + Xp(,) = 1.  (II-3) 

From this, we establish the complete definition of "p"): 

1) "p( ' )=  1.0 

2) "p('~ = "p('~ + xp.~ 

3) "p(') = "p(') 

2. Select and Ultimate Graduation 

(0 < t < "~) 

('~ < t < X') (11-4) 

(t >__ X'). 

Instead of using the two-element compound method described in the 
previous section, it is often possible to achieve excellent results by gradu- 
ating disability data in two segments, one covering the select period and 
the other the ultimate durations. This approach is also easier to work out, 
leads to simpler evaluation of final values, and corresponds better to the 
usual type of experience study which merges all data at durations beyond 
some reasonable select period into a single body of ultimate data. 

In order to achieve a smooth transition from the select to the ultimate 
period, it is convenient to use the one point of p, two points of z, technique 
of section I-3d. 

We first solve for the element that approximates the ultimate period, 
which will ordinarily be a Lambda function. To illustrate, we will turn 
again to the 1952 Disability Table. 

The ultimate portion of this table begins after 15 years. We obtain k' 
and I for the ultimate function by graphically deriving two r values, 
using ultimate attained age less 40 as the age variable, x, in order to 
spread out the data for accurate determination of the logarithmic tangent: 

zl0 _ l -- .0458 7 
(")xrs° ---- 10 ),' -- 5~ 

Z.o_ l - - . 1 2 7 9 7  
40 X' -- 80 

Solving, we obtain: 

1 = 2.145 X '=  96.76. 

k is left unsolved, since this constant will be used to equate the select 
and ultimate values of p(o at duration t = 15 for each disability age. 

We then set up equations for the select curve, using central age 27.5 
again for illustration: 

Z(I) 
(,),~(0.z~)r27.b = 1 (')~x~) 5. = 1 - .5039 (~)"Tr(~27.s = (~)xr42.~ = . 0 3 9 5 3 .  
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<')~r Ct6> is equated to ~"~Tr for smooth transition into the ultimate curve. 
Solving these equations we get: 

= . 4 4 1 8  C = .1918 a = . 6 0 0 5  . 

To obtain k for disability age 27.5, we then set 

(,)~,6~ = ~a)xp,,.b = ( X ' - - 4 2 . 5 )  z 
-27.~ . . . . .  .1 1 9 ,  

which gives k --- 146.7. 
The same values of X' and l will thus apply for all disability ages, but 

)~ must be solved for each age to join the select and ultimate portions of 
the curve, which will make a smooth juncture since the juncture values 
of ," have also been equated. In the select period, t is in terms of duration, 
and thereafter in terms of attained age, unless k' be adjusted to give 
terminal duration rather than terminal age co. 

We have the following ratio test of the mathematical values of p<o to 
those of the data: 

t (Years of Duration) Ratio  ~ (Years of Duration) Ratio 
0 . 2 5  . . . . . . . . . . . . . . .  100 % 5 . 0  . . . . . . . . . . . . . . .  1 1 4 . 5 %  
0 . 5  . . . . . . . . . . . . . . . .  1 0 2 . 6  1 0 . 0  . . . . . . . . . . . . . . .  1 1 6 . 1  
1 . 0  . . . . . . . . . . . . . . . .  1 0 8 : 4  2 5 . 0  . . . . . . . . . . . . . . .  1 4 5 . 5  
2 . 0  . . . . . . . . . . . . . . . .  1 0 6 . 8  5 0 . 0  . . . . . . . . . . . . . . .  1 6 0 . 0  

These ratios show a considerably poorer fit than those of the two-element 
graduation of the previous section. The reason is that we have equated 
the mathematical curve to the absolute value of the data curve only 
once: at p(0.2~ = 1, relying only on 7r values thereafter. By sacrificing 
the requirement that the select and ultimate forces of termination be 
equal at 15 years duration, we could have materially improved the fit by 
solving for the select curve entirely on select values. The curves may also 
be determined by 3-point p~o graduation, which, with its better control 
of the absolute p values, would produce a better fit throughout. In addi- 
tion, compound graduation may be applied to either select or ultimate 
periods, or both. 

Before leaving this illustration, it should also be mentioned that the 
Lambda constants will often be materially affected by the selection of the 
points, depending on how well the ultimate data really fit a Lambda 
curve. The same, of course, is true of the Alpha select curve. Some ex- 
perimentation with the equation points may therefore lead to great im- 
provement in the over-all fit. The above example is only illustrative of 
method. These particular results would need to be improved in actual 
practice. 
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3. General Methods of Compound Graduation 
The graphic method described in section 2 is a powerful graduating 

tool and has wide application, and can be used for compounds of more 
than two elements by simply extending the technique as far as required. 
The principal talent that must be acquired is sufficient familiarity with 
elementary and compound curve-forms so as to be able, without too much 
trouble, to break the data into the acceptable number and types of ele- 
ments needed. Steps 1 and 2 are 90% of the job in the graphic method. 

The 1952 Disability Table can be handled quite well with 3-element 
a, X, ~ compounds. The Group Hospital Experience developed by Gingery 
(TSA IV) and the closely similar hospital continuance data summarized 
by Bartleson and Olsen (TSA IX) are well represented by means of com- 
pounds involving two a elements. 

Tables of values for these and other experiences are shown in the Ap- 
pendixes. Some have been refined by further techniques yet to be dis- 
cussed, but all are basically derived by the graphic technique of section 1, 
or that of section 2. 

IIL CONTEWUANCE INTEGRALS 

We now reach the most important objective of our investigation, which 
is the evaluation of the average size of claim, or the "claim annuity" in 
disability continuance where interest discount becomes significant. In 
discussing the basic nature of continuance functions, we stated that a 
practical mathematical function should produce reasonably simple ex- 
pressions when carried through two successive integrations. The first of 
these was carried out in the derivation of the formula for #ct~. The second 
is now required in obtaining the average size of claim, for which we will 
adopt the symbol F. 

1. Incomplete Continuance Integrals 
The average size of claim for a continuance experience truncated at 

duration T is given by the relation: 

Fr= fo rp(t)dt= fo'dt-t- f rp(')dt, (III-1) 

since po) = 1 for t < r. In the case of an Alpha function, we have: 

and 

1) "Fr fT ,  for 0 _ < T <  ¢ 

f 2) "F r = r+ dt, for T >  T 
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T n a I O*a l--a] :__a., 

° ° [ ,  , ] 
"a~--t o-i  a = 1 (a '  + T )  

a - - 1  1 k ~ ' + T }  J 

This development does not, of course, apply when a - I, a situation 
which would almost never occur in practice. In this case, we get: 

oF ' r=  - r - ~  dt  = ~ [in ( ¢  + Z) ] f_. ,  

= a [ln (a '  + T )  -- In al = In . 

"F 'r, the value of the definite integral alone, is called the "incomplete" 
integral. Allowing T to increase without limit in the expression for "F '~, 
we obtain the "complete" integral, "F' (for a > 1): 

" F ' ( = " F  '°~) - a 
a - - l '  

a delightfully simple expression. I t  is thus quite easy to describe the 
average size of claim for Alpha functions. The complete definitions are: 

1) ~ F ' -  a 2) " F = ~ a  - F r  (III-2) 
a - - 1  a - - 1  

[ - f  " Y-'I " F ' ~ = " F  ' 1 \ a ' + T ]  J '  f o r T >  r (III-3) 

1) "F T =  T ,  f o r 0 <  T <  r 
(III-4) 

2) -F r = - F  ' ~ - I - r ,  f o r T >  r .  

In (III-3), the fractional quantity, called the "root," is denoted by the 
symbol "R T, and this quantity raised to the power a - 1 is denoted by 
f,r. We thus have the convenient expressions: 

~ T - -  a a' + T  (ILLS) 

.pC. _- (.Rr). (III-6) 

-1'* = (-R*)o-' ( m - 7 )  

° F  = 1 - °I  ' r  ( m - s )  

°F 'r  = "F' . , j r .  (III-9) 
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For Lambda functions, we have: 

r r /X '  - tx '  1 [ (X' - e) ~+q ~-x 
F ' r = ~  ~ , ~ ) d t =  X' (l-l- 1) 

1 [ ) d + l - - ( X ' - - T )  ,+1] X [ ( ~ _ T ) , + I ]  
x, (lq- i) ~ 

From this we have the complete definition: 

X 
1) xF' =xF'x' -- 2) 

l + 1  

XF'r---~F' [ 1 -  (~----T)Z+l]  , 

1) XFr=  T ,  

2) xFr = ~F ' r  + r ,  

3) XFr = XF , 

XF = X l + l q - r  (III- lO) 

for r<_T<X' ( I I I - I1)  

f o r 0 < T < r  

for r < T < X' (III-12) 

for T > V .  

I t  should be noted that xF' -- xF'x', while .17, = ~F ,°~. 
The subsidiary expressions are: 

V - - T  
x R r - _ _  

X 
(III- 13) 

Xpm = ~Rr), (III-i4) 

y ' =  eRO '+, (m-~5) 

xft = 1 -- y r  (III-16) 

~F,r __ xF, .  ~]v, (III-17) 

setting xff = 1 for T > k ' .  

We are often interested in the average size of claim included between 
two values of t, as, for example, when we desire the value of a disability 
benefit with a 30 day elimination period payable for a maximum dura- 
tion of i year. The desired expression, called a "bounded" continuance 
integral, is given by- 

lvr,lr, = F ~', -- Fr ,  = F ' ( / ' r ,  - - f i r , )  . (III-18) 

The pre-superscripts are not shown because the formula as expressed 
here is identical for Alpha and Lambda functions. In the bounded integral, 
there is no distinction between F and F'  so long as the limits lie between 
r and co for Alpha functions, and between r and X' for Lambda functions. 
If either limit lies outside of these boundaries, the proper adjustment 
must be made. 
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From the desired F value, the value of S follows immediately: 

S~ t ; r '  = r ,Frt ;r ' ,  (III- 19) 

2. Adjustment for Discrete Experience 
The expressions of section 1 assume that the benefit involved is of 

a continuous nature. This is not in general the case, since in the actual 
situation a person will be "disabled," as a rule, for a complete day or 
none, or be charged a full day's hospital room and board charge, or none. 
I t  is easy to approximate the necessary adjustment. In Figure 4, the value 

1.0 

pftJ 

STEP NATURE OF THE 
ACTUAL DISCRETE BENEFIT 

I i I I I I I I I 
1 2 3 4 5 6 7 8 q 10 

DAYS CONFINED 

FIG. 4 

of the discrete benefit is represented graphically, using here, for the sake 
of clarity, rectangular units. A hospital confinement function is assumed. 

Assuming that the mathematical function was developed from crude 
data showing the number confined at the beginning of each tth day, we 
have the situation shown in the graph, where the values of successive 
days' benefits are represented by a series of diminishing rectangles. 

I t  may be seen that the area (the continuance integral) under the 
curve exceeds the actual benefit by the value of a series of approximate 
triangles, whose combined area out to any day T is given by the ex- 
pression: 

A - ½(1 - ~ < ~ ) ,  

since the base of each triangle equals 1 unit. 
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Hence we have the adjusted "discrete" approximations: 

F T - F  ' r + r -  ½q~ 

Fr,;r ,  - F'( f fr ,  _ f i r , )  _ ½(p<r,> _ p ( T , ) ) .  
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(IIi-20) 

(IIi-21) 

I t  is important to bear in mind here that the discrete unit must be the 
same as the unit of the variable t in the formulas. In disability continu- 
ance, where the unit of the variable may be months or years whereas the 
discrete breaks ordinarily occur daily, this adjustment may usually be 
ignored. I t  may be of consequence in a Waiver of Premium benefit, however. 

3. Expressions for Compound Functions 

The F function for a compound function is simply the sum of the ap- 
propriate elementary integrals: 

°F r = *F '*;T + ~F '*;T + . . .  + XF";r + ~F '~:T + . . .  + ~-c. (III-22) 

I t  is of importance here to recognize the possible differences in the 
limits of integration of each element. The lower limit is always "r, which 
gives a bounded, not an incomplete integral. The upper limit depends, in 
the case of Lambda functions, upon whether or not T exceeds the X' 
constant. For example, in a two-element a, X compound, 

"F T = ' F " ; r + X F ' * ; ~ ' + ~ r  , for T >  k' . ( III-23)  

4. The Disabled-Life Annui ty  

Where we wish to take account of interest, the value of the claim 
annuity is given by: 

FT = fo  rp(t) v 'd t .  (III-24)  

For an Alpha function this becomes: 

, f r/~ a y 
"Fr = fo v'dt + j ,  \a-r---~t./ v 'd t .  (III-25)  

The second term of this expression cannot be evaluated in terms of any 
elementary mathematical functions, so that we must resort to approxi- 
mate methods if we are to avoid carrying out an entire summation of 
commuted values in order to get the annuity value--labor that our 
methods are intended to avoid. 

The function we are dealing with here, p~ov t, can usually be approxi- 
mated quite well by simply using elementary Alpha or Lambda functions 
to approximate discounted elementary functions. This approach gives 
excellent accuracy so long as the attenuation of p~o is greater than about 
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1.2, which is almost always the case, and so long as i is less than about .05, 
again usually the case. The ratios of the approximated to the true values 
can be made very close to unity over nearly all of the significant range of 
the curve, with the approximation curve beginning to overstate toward 
the extreme range of the curve when an Alpha function is used, and 
slightly understating with a Lambda function. 

I t  is usually quite satisfactory, and very quick, to employ the method 
of section I-3d, i.e., one point of p and two points of ~r, to obtain the con- 
stants of an elementary function approximating the discounted curve. 
We have these relations, assuming an Alpha function for the undis- 
counted continuance: 

(~) 
a~ . t__  _ D ,  lnp( t )v ,=  - - D , [ t l n v q - a ( l n a - l n ~ ' + t ) ]  

(III-26) 
= *~-(o -b In (1 + i)  = ~'r (°  q- 3 .  

For a Lambda function, we have the similar result 

x(~(o = xr(0 -k ~. (III-27) 

I t  will be evident that the force of termination for a discounted Alpha 
function decreases with t, and for a Lambda function increases. Hence a 
discounted Alpha function will be approximated by an Alpha function, 
and a discounted Lambda function by a Lambda function. The con- 
stants are solved by taking, assuming an Alpha function, 

1) (O*p(~')=.p(")v" 

2) (q"r(") = aTr(") -k- 

3) (q~,r(,~) =,,re.o}+ 8 . 

The selection of u, v, and w and the solution of the function are ac- 
complished by the methods of I-3d. I t  is important to remember that 
must correspond to the effective rate of interest over the same unit period 
as the time unit of the continuance function. 

We then have for the claim annuity, 

(i) f0"r f r  T *F r :- (i).F T --. vtdt q- (q~p(Odt 
( I I I -28)  

• 11- Y-'I 
-. a ~ + ~ -a--Z-~_ ~ L \ c, ' + t l J t 

where the (i) pre-superscript indicates the altered constants of the ap- 
proximate discounted Alpha function. 
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If r is small, as will usually be the case, the first term may be taken 
simply as r. Also, if the time-unit is years, or even months, any adjust- 
ment for the discrete nature of the experience by days may be ignored. 
With waiver of premium, the adjustment may become significant. (See 
section III-2.) 

In the case of lifetime benefits, where some terminal age co is usually 
assumed, the lifetime annuity may be evaluated with the complete 
integral or with an incomplete integral with upper limit co. The dif- 
ference will usually be negligible, and it is ordinarily preferable (and 
simpler) to use the complete integral, which in effect means that no 
terminal duration or limiting age of the disabled life table is assumed for 
Alpha functions. I t  should be noted that using continuance integrals for 
the evaluation of the disability claim annuity is equivalent to assuming 
disabled life values that are select at all durations unless select and ulti- 
mate segments are employed. This is no problem when continuance 
integrals are used, since the functions are so concisely defined. 

Where greater precision is desired in evaluating discounted functions, 
as may occasionally be necessary in the evaluation of reserves on dis- 
ability claims, recourse may be had to approximation of the discounted 
curve in segments, using two or more elementary functions. Where the 
original undiscounted curve is an Alpha function, this is often best ac- 
complished by employing an exponential curve (with constant ~r ~) = 

+ ~) for the long range, and an Alpha function for the short range. In 
such a case, the resulting exponential function will be of the form 

• p(e) = e-|(~+,)~+kl , (111-29) 

where ~ = some 7r (~) within the long range segment. Where a select and 
ultimate curve (see section 1I-2) is discounted, each segment must be sep- 
arately approximated. 

5. Error of Approximation of Discounted Functions 
In approximating discounted elementary functions by means of ele- 

mentary functions, it is important to have some idea of the degree of 
error involved. This may be done by fitting a series of functions to 
succeeding segments of the curve and comparing the results to those ob- 
tained with a simple elementary approximating function. Two or three 
successive segments will generally provide very high precision, and the 
sum of the integrals of each of these, between the proper limits, will give a 
highly accurate approximation. In most cases it will be found that the 
single element approximation is quite adequate. 

When long term disability continuance is required, the selection of the 
equating points u, v, and ~v must be such that the approximating curve 
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will not begin to diverge materially for a considerable duration. For  ex- 
ample, in approximating the 3% discount of the a element of the 1952 
Disability curve for age 27.5 (see section II-1), if we take 

u =  . 2  

v =  1.2 

w =  10 

the resulting approximation will not  begin to diverge greatly before 
about 40 years of duration, which is enough to insure fair accuracy even 
in evaluating lifetime benefits. This curve will serve as a good illustration 
of the error of approximation. 

The function, discounted, is: 

C.,,).. ( 2 .54 t) 2.9t4 
"Pg!s = 1.o3- ,  \Y-.4-~ q- • 

First, obtaining the single element approximation, we have: 

°('~')c0.~) = .864 *('~')o.2) = .795 + . 0296  = .8246  

,('~')(xQ) = .234  + .0296  = . 2636  

These relations yield the single function ~ 

(.03)*(3.00, 2.93, 3.41). 

Evaluation of the complete integral gives: 

3 
c.°3)F" . 0 7 + 2 . 4 1 - 1 . 3 1 5 .  

Next,  making a 3-segment approximation over the intervals 

(1) < 0 , 2 >  (2) < 2 , 1 5 >  (3) <15,  oo> 

we have, for (1): 

"C'~')~ o.~) = .864 , 

yielding 

for (2): 

*C'~')~ 2°) = .  1829 , 

~('~-'ko.4) = 1 .0171  + . 0296  = 1 .0467  , 

~c~r'){~.3} = . 7740  + .0296  = .8036  

c.°s)~ (2 .648 ,  2 .575 ,  3 .114)  ; 

• C'~'}{ ~-o) = . 4507  + .0296  = .4803 , 

J'~.')cl00) = . 2 3 3 8 +  .0296  = .2634  

1 See Appendix A, System of Notation, 2 f (3). 
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yielding 
(-°3)a(3.255, 3.286, 3.499) ; 

for (3) : 

a( 'p ')(lb'O) = .00233 , 
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,('~.')~3o.o) = .0898 + .0296 = .1194 ,  

,('~')Ooo.o) = .0284 + .0296 = . 0580 ,  
yielding 

(.°3)~(23.72, 36.12, 7 .895) .  

The evaluation of F is then: 

2 .648r  (2.648y."*] 
F -- .0 73 + 2.-7i--~ [ 1 -- \~:g-~-g / j over (0 ,  2)  

+3.255F/3 .255"V ..9~ ( 3 . 2 5 5 " ~  2-409] 
2.-74-~L~,5.-~) - - \ 1 8 . 2 8 6 /  _l over (2 ,  15) 

23.72 r/23.72M.89~1 
6.-Tg-~LC5--J-7~.l 2 )  J over ( 15, oo ) 

= . 0 7 3 + . 8 7 0 6 + . 3 7 0 7 + . 0 1 7 2  = 1 .332  , 

so that the difference here from the single element approximation is 
+.017. Since the single element overstates in the extreme range, the error 
will be slightly greater for evaluations of the incomplete integral. 

6. Time Units, and Conversion of Units 

Thus far, we have dealt with disability continuance and discount using 
a time unit of one year. The numerical values of the functions given are 
for annuities of $1 annually payable continuously. Any unit may be 
used, of course, and it is of value to consider how a given function may 
be transformed to convert units. 

Given the constants for a function in units of, say, one year, we must 
have the following relation for the equivalent function where t' is in 
months: 

f a YI"" Y1 "°' 
ka-r-~-T/J = Lk~'  + t V  J ' 

where t' = 12t. 
The equality will obviously hold for all t' if we have: 

B = 12a 

8' ~ 12a ' ,  

so that we have the very simple rule that to convert from a unit t to a 
new unit t/x, the range constants are all multiplied by the factor x, the 
attenuation remaining unchanged. 



676 CONTINUANCE FUNCTIONS 

In the settlement of accident and sickness disability claims, the 
typical procedure where income is payable monthly is to regard a day 
as 1/30 of a month, and, hence, as 1//360 of a year, so that the indemnity 
for a period equal to a fraction of a month at  the end of a disability is 
equal to 

X 
3--0 X Monthly Income, 

where the fraction is x days. 
This is the practice followed in my Company for reasons of simplicity, 

and it is evident that we are dealing here with a "day"  that is not quite 
the same as a calendar day, and is, in fact, a variable unit depending on 
the dates of the year over which claim is paid. To distinguish this unit 
from a calendar day, we record our claim experience in units of one mar- 
shall, defined thus: 

1 marshall = 1 day, for fractions of a month .  
30 marshalls = 1 month, for any month of the year .  

360 marshalls = 1 year, either ordinary or leap year .  

This provides a convenient and consistent record of experience which is 
readily summarized and converted to monthly or yearly units in morbid- 
i ty investigations, from which experience continuance functions are 
derived. 

7. F-Function Testing of Graduation 
In  discussing the testing of a graduation of the p(O function (section 

I-3), mention was made of the necessity of testing the continuance 
integral. This test consists in comparing values of F r computed by 
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Col. 5 + 
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$23,946 
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69,544 
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73,164 
73,436 
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(Col. 4) (Col. 6) 
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(= (~(tl)-~) (=F t) 

1.000 $24.48 
.914 44.24 
.676 58.13 
.461 66.24 
.271 71.11 
• 144 73.27 
• 059 74.81 
.017 75.09 
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formulas against the crude values obtained by summation of the crude 
data. The crude data may be conveniently processed as shown in the table 
on the opposite page, assuming that the experience as first summarized is 
of the form exhibited in columns 1-3. This hypothetical example might 
be the means of dealing with a body of data giving miscellaneous hospital 
expense experience by size of claim. For the sake of brevity, we will assume 
that the experience expires at $250. 

The columns are self-explanatory with the possible exception of 
column 6, which gives the total amount of claim included within the 
first St, in the experience sample. Column 8 then gives the crude values of 
F t. Column 7 gives p(O, offset one line. The function obtained by graduat- 
ing column 7, having been tested against column 7 or a preliminary 
graduation of this column, must then be integrated using formula (Ill-4) 
or (III-12) and rafioed to column 8. These ratios are a further test of the 
graduation; and if any values are much under 100%, or if the trend in the 
ratios moves consistently upward or downward with increasing t, the 
graduation is defective. Short of a perfect fit, the best results are values 
running between 100~  and a slightly higher value. 

The F-function may be used itself as the basis of graduation, and this 
approach has the double advantage of (1) employing a crude function 
that contains a measure of "natural" graduation, being a summation 
function, and (2) directly assuring more reasonable F-function tests. I t  
can have the disadvantage of being less faithful to the values of pCO 
which is not too important unless the derived function is to be used as a 
basis of computing open claim reserves, to be referred to later, or used to 
derive a wide variation of bounded values, which requires that the func- 
tion give acceptable accuracy over all intervals needed. 

8. Graduation on the F-Function 

Solution of the constants by using the F-function is a more difficult 
problem than is the case with the p-function, since the unknowns cannot 
be readily eliminated from the equations. Probably the easiest technique 
is the following, using the Alpha function as illustration: 

We have: 

and 

F~=a: l [ l_ l"  a____.~'~ "-1] \ a '  + T ]  J + T 

f( Y-'-- ( Y-q 
a 1 L\d----+-~# \ = '  + T #  J 

r( ' Y - ' l  i 
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We obtain data values of Fr,;r,,  Fro;r,, and Fr,;r,,  and set up the following 
equations in a' and a: 

(__L_I y - ,_ (  1 _y-, 
Fr,;r~ \ a ' + T t ]  \a'+T~/ 

[ _ L _ y - l _ f  l__!__y -1 
\ ,~' + T# \ ,~' + T# 

(III-30) 
( 1 y-' ( 1 h'-' 

( 1 y - l _ (  1 y-," 

This yields two equations in two unknowns, but the expressions are not 
in a form such that one unknown may be readily eliminated, and we have 
a situation where simultaneous trial and error in two unknowns confronts 
us. To simplify the problem, we obtain a preliminary solution of the 
constants by means of the data p function. This may be done either by 
the 3-point p(O method using the p data, or else by graphically construct- 
ing tangents to a graphically smoothed F curve, employing the proper 
adjustments to the value of the slope if the work is done on logarithmic or 
semilogarithmic paper, from which approximate values of p may be easily 
obtained. The p values so determined are also useful in determining 
whether an Alpha or a Lambda function is required, by employing the 
r-test (formula (1-13)). 

From this preliminary solution, we take the constant a and solve for a' 
in the first of equations (III-30), using the preliminary a' value as an 
initial test. Let this result be a*. 

Substituting a and ct* in the second of equations (III-30), we inspect 
the resultant inequality. If the substitution yields a value less than the 
data ratio, a is too large. The opposite inequality means that a is too 
small. A new trial value of a must then be adopted from these results, and 
equations (III-30) used again, the process being repeated, with the aid of 
interpolation when possible to get improved trial values, until acceptable 
approximation is achieved. 

The constant a may then be easily obtained from the absolute value of 
Fr~ ;r, (or either of the other two bounded values). 

By abandoning the requirement that the constant addition to F 'T ,  to 
give F r, be r = a - a ' ,  it is possible to obtain a formula of 4 constants for 
F r so that we can equate to all four values, at T~, T~, T,, and T4, thus 
employing a 4-point F graduation. We simply solve for the constant ,  in 
the following formula equated to the data value of F T, (or any of the 
other data values): 
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= i Y-q Fr -d-'Z--fl[ -- \~ '  - t 'T/  J q- ~" (III-31) 

This is then used as the F formula, which should be checked to verify that 
it reproduces the data values at all 4 values of T. I t  must be remembered 
that this, in effect, may introduce a slight inconsistency into the under- 
lying p curve of which F is the integral. To minimize this inconsistency 
and to obtain a proper fit over most ranges of F, T1 should be taken 
near the value of r, T, and Ta at moderate to intermediate durations, and 
T, at the longest duration for which any significant data remain. 

When a compound graduation appears to he desirable, the easiest 
procedure is to graduate one element on the more easily handled p curve, 
and deduct the integral of this curve from the data to get the F values for 
the second, which can then be solved on its F-function if this is desired. 
More laborious and refined methods can be devised to yield equality at 
more than 4 values of T, but this is not usually necessary. Compound 
p-graduations generally produce acceptable results without laborious 
solution of multiple F-values. 

iv. com~osrrE •tmCTIONS 

We will now turn to what is perhaps the most complex basic problem 
confronting the accident and sickness actuary: the evaluation of claim 
costs for multiple medical benefits subject to common deductibles and 
maximums. These are features usually found in modern medical expense 
policies, especially the major medical type. 

The great variety of possible benefit combinations inherent in medical 
coverage makes the combined problems of reduction of experience data, 
consistency, standardization, and equitable evaluation of costs enormous- 
ly difficult. Conceivably, we could analyze each of the basic plans in force 
as though each involved an independent body of experience. It is, how- 
ever, far better if some practical interrelationship can be set up, so that 
experience on a variety of plans can be reduced to a fairly simple assort- 
ment of basic costs and rates from which the basic values for any desired 
multiple benefit plan may be constructed with reasonable simplicity and 
accuracy. 

We therefore seek methods which will be of help in meeting each of the 
following criteria: 

(1) Reduction of data. If possible, we want to be able to combine ex- 
perience from different plans into a single basic body of experience 
values, or at least a limited assortment of basic values, in order to 
provide the advantages of volume experience and of simple basic 
tables. 
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(2) Consistency. A corollary of criterion (1) is consistency among plans. 
We can only be vaguely assured of consistency between plans that 
cannot be related mathematically to the same basic measures. 

(3) Standardization. A further corollary is the standardization of basic 
values, both for premium computation and, especially, for reserve 
valuation purposes, where it is desirable to achieve uniform basic 
minimum standards for intercompany use, without resorting to 
voluminous and complex published tables. 

(4) New requirements. I t  is obviously helpful if the cost of new benefit 
combinations can be constructed with some confidence from existing 
basic values, which may in themselves be derived from experience on 
plans not entirely identical with what is sought. 

The techniques now to be described are aimed at answering each of 
these considerations. We will not attempt to develop mathematically 
exact formulas, but resort instead to several convenient approximate 
techniques which are easily derived and fairly simple to use. 

1. System of Notation 
In the several illustrative examples that will be described, the System 

of Notation of Appendix A will be employed. I t  is recommended that 
some familiarity with this be acquired, so that notational expressions may 
be readily interpreted and manipulated. 

2. Terminology 
Several new definitions are convenient. 

a) Coinddence. Two benefits are coincident if they occur simultaneously, 
that is, on the same disability. 

b) Exclusion. Benefits that are not "coincident" are "exclusive." Thus we 
may have surgery requiring hospitalization, and surgery that does not 
involve hospitalization, assuming that both do not occur together in 
one disability. 

c) Correlation. Benefits that are coincident may be correlated to varying 
degrees. By a correlation of 1.0 between two benefits, we will mean that 
continuances of equal probability are everywhere coincident. In other 
words, if, say, continuation of $100 under one benefit is associated 
with a probability of 0.1, and a second, coincident continuation of $50 
under another benefit has a probability of 0.1, then the second $50 
continuance never occurs except in conjunction with $100 continu- 
ance under the other benefit. While purely hypothetical, this complete- 
ly dependent relationship will be shown to have very practical value. 

By a correlation of zero, we will mean that any continuance under 
one benefit may occur coincidentally with any continuance whatever 
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under a second coincident benefit. Thus all possible coincident condi- 
tions involve correlation ranging from zero to one. We will assume 
that negative correlation is nonexistent in coincident medical benefits, 
although instances of this doubtless exist. 

d) Relative disability rate, ep~. The relative disability rate is the ratio of 
incidence of any particular coincident set of benefits to the total rate 
for all benefits. Thus the disability rate for a particular coincident set 
is equal to °v=r=. 

e) Composite function. A "composite" function is a function composed of 
two or more coincident elements. This is not the same as the compound 
function discussed in Part ILTha t  function involves exclusive elements, 
and the two are treated by completely different techniques. 

3. Analysis of tke Incidence of the Elements 
The first problem presented by a multiple benefit risk where the bene- 

fits are subject to common limits is the analysis of the incidence of the 
various elements included. All possible coincident sets must be isolated, 
so that the distribution of expected claims is reduced to mutually exclu- 
sive sets of coincident combinations. For example, if we are dealing with 
benefits providing for hospital room and board, miscellaneous hospital 
expense, and surgery, there will be three exclusive sets, assuming the two 
types of hospital expense to be invariably coincident: 
a) Hospitalization without surgery. 
b) Surgery without hospitalization. 
~) Hospitalization with surgery. 

Later in the chapter, an approximation that ignores this analysis will 
be described, but we will begin by considering the effect of the incidence 
of benefits. 

Having determined or assumed the number of exclusive sets, we must 
assign to each its relative rate of claim either by analysis of existing ex- 
perience or by assumption, and knowing the total rate of claim, we then 
have the rate for each set. Thus a general formula for the average amount 
of cost for multiple benefits is: 

~F = ',(OF) + °'(OF) + . . .  + '-(oF) (IV-l) 

and for the annual cost of disability: 

"S= = °(,F)=. (IV-2) 

We have thus expressed the multiple average cost as a sum of terms 
each representing the average cost for one exclusive set. I t  is neither 
necessary nor practical to attempt to distinguish every conceivable exclu- 
sive set. For example, a multiple benefit including private nursing care 
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might be evaluated by loading the hospital room and board cost to 
recognize the added cost of nursing care, without regarding the latter as a 
separate benefit element. A doctor benefit may sometimes be treated in 
the same way. The cost of out-of-hospital drugs and supplies could be 
loaded onto out-of-hospital examination costs, and so forth. 

I t  is also possible, in certain cases, to assume that a certain benefit ap- 
pearing in several different sets is defined in each case by the same con- 
stants. This must be done, however, with caution. For example, it would 
be most unwise to assume that the same continuance curve defines both 
hospitalized and nonhospitalized surgery, since the latter, involving less 
serious cases, will obviously exhibit a much smaller average amount of 
cost. 

Considerable research and experience is still needed to adequately 
solve this question of relative incidence. It would appear, however, that 
these four exclusive groups may provide an adequate basis for reasonably 
accurate evaluation of multiple costs: 

(I) Hospitalization, surgery not involved. 
(2) Hospitalization, surgery involved. 
(3) Surgery and treatment without hospitalization. 
(4) Diagnosis and treatment without surgery or hospitalization. 

In our examples, we will assume this to be a sufficient breakdown. In 
using these, the fact must not be overlooked that sets (I) and (2) will in- 
volve some expense of the same type as set (4) when this expense is in- 
curred on the same disability as the expense classified in sets (1) or (2). 
We will meet this consideration by loading the elements used in (I) and 
(2). 

4. Adjustment for Unit Rates 
When working with a single element, we need not be concerned with 

the unit rate of benefit until the final step of calculation. In fact, this need 
not be introduced until the K,  function is evaluated. 

When working with composite functions, however, all elements must 
be reduced to a common monetary measure of continuance. Thus, when 
working with hospital continuance alone, we may take days as the con- 
tinuance unit, but when this is taken into combination with other con- 
tinuance elements, it must, along with all other elements, be converted 
to monetary units. 

This is very simply done. Let a hospital continuance element be de- 
fined as follows, where I day is the unit of duration: 

n a 
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If now the daily room and board rate is x, we have ' 

where t ~ = xt and t' is then the monetary unit. Thus the conversion is 
exactly the same as that required for converting time units, discussed in 
section III-2. There is one important difference, however, when it is 
desirable to adjust for discrete experience. The change in units here 
carries with it a corresponding change in the discrete interval, since the 
steps still occur at a daily rate. The discrete adjustment therefore is given, 
approximately, by: 

A " 2 (p(r ' )  _ p(r,)) 

so that we have the formula 

v"';" r/ Y - '_ (  : Y-"I 
a - ] 'L \0 '  + TI , I  k~ '  + T 2 ]  J 

(IV-3) 
x (per,) _ p(r,)) 3' • 

- - 2  ; 3 = x a ,  = xa'  

When the minimum duration must be taken into account, this is: 

v '  = x (¢~ - -  ¢t ' )  . ( I V - 4 )  

Corresponding adjustment of the range constants is required with 
Lambda functions. 

5. Coincident Benefits wittt Correlation 1.0 

The evaluation of completely correlated benefits is quite simple. We 
have these relations by definition: 

,p( r )  = e,p(~ = o,p~) ,  (IV-5) 
where T = u "4- v. 

The algebraic determination of u and v corresponding to any given 
duration T is somewhat troublesome, so it is usually better, and quite 
satisfactory, to obtain the values graphically. 

We merely construct the curves e,p(O and o,pu) on the same graph and 
add values of t for equal values of 0,p and S,p to plot the composite curve. 
The desired u and v for any given composite duration T are then easily 
read off and we have: 

"F r,; r ,  = O,F~,;~, + O,F~,;o, . (IV-6) 

Either benefit itself may be a compound curve. Figure 5 illustrates 
such a situation, where Benefit h is compounded of two Alpha elements, 
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without truncation, and Benefit m is an Alpha element truncated at 
duration k. Thus we have: 

c'FT == aFu ~ - a F ~ 2 v  " F  ~ , (IV-7) 

a result quite readily obtained. 
The truncation of m presents no problem. If  we wish to evaluate the 

average size for duration W, beyond the point of truncation, we have 
simply: 

"F w = ~Fu +aFu + "nFk ; W = y +  k . 

o c  -,,~ 

I I 
I ! 

COINCIDENCE WITH 
CORRELATION 1 .0  

u + v = T  

k+y=w 

| I 

¢ ¢ A , 

uvk T 
FIG. 5 

6. Coincident Benefits with Correlation Zero 

\ t  
~t 

! 

! 

y W  

I f  all coincident sets were fully correlated, we would have little to 
worry about. Unfortunately, this is not the case, and we must consider 
correlations other than 1. 

Let us assume that two coincident benefits have a zero correlation. 
The composite probability may then be given by: 

f' ~p~,~=o~p~t~+ o,(Tr(,~p(°)) .o...p~t-°)ds, (IV-8) 
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or any of several alternative expressions. I t  is not possible to express ,p~o 
in a form that may be directly evaluated by any elementary methods of 
integration--except in the unlikely case where the attenuation constants 
are integers, when standard binomial reduction formulas may be applied. 
Probably the simplest means of approximate integration of the second 
term of (IV-8) is by Simpson's rule. 

If several examples of zero correlated benefits are worked out, it will be 
found that the composite probability exceeds that which would be ob- 
tained for correlation 1 over the lower range of the curve, and eventually 
becomes and remains less, a result which one might expect. We can easily 
prove that the initial portion of the noncorrelated curve will always 
exceed the correlated curve by means of the following existence theorem. 

Tr~EORE~. If tWO coincident continuance functions are uncorrelated, 
then there exists some finite value T, such that for all continuance less 
than T the composite probability associated with the uncorrelated bene- 
fits exceeds the composite probability of the same continuance were the 
sarde functions fully correlated. 

Proof: 
Let the uncorrelated case be U, the correlated case be C. Then, ex- 

pressing the probabilities by means of the q-function, we have: 

f0' (V)~q(t) = O,q(t-~) .o, (~r(~)p(,)) d s ,  (e)~q(t) = o, (r(')p(")) d s .  

Since we have made no restriction in these expressions concerning the 
identity of 0x or 02, let 02 be the function which, in Case C, involves the 
initially higher duration unless the durations be equal: that is, u > t/2. 

Now the function °,(~r(*~p('~) is a decreasing function (except for l < 1 
of a Lambda function), since we have: 

a o ,  a 

" ( r ( ' ~ p ( ' ~ )  - ( ~ , +  s ) ~ +  ~ 

and 
l (X' - s )  z - i  x (r( ')p( ')) Xz ; 

when l --- 1, x(,r~"~p('~) is constant for all s < X'. 
Hence in all cases except l < 1, we have for Case C: 

1 r t 
c C),qC,) > ~ j o  0. (~(,)pc.)) d $ ,  

since 
u t 
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When l is less than 1, we have: 

u u l 
fo °'(Tr(s)P('))ds> fo ) j )~l_,ds 

and 

f. f0 o, (~.(,)p(,)) d s < X t (X' - t) l-z 

so that 

ds,  

f~ 1 (X'--t'~'-' f'  o, (~(.)p~.)) d s > ~ \ - ~ - - ) ,  -to o~ (Tr(')p(')) d s 

= ½ h i  ° re, t.(.)p(.)) d s ,  

where k is a positive finite fraction provided that t does not approach ),'. 
Thus for all correlated cases we must have 

£' (C),q(,) > ½ k 0, (lr(')p(')) d s .  

For Case U, we have: 

£' (eloq(t) < O~q(tl.O,(~(.lp(,)) ds .  

Since continuance functions are continuous and single valued over a 
finite interval above t = 0, and since a,q(0) = 0, we can always find some 
finite value T of t such that 

O,q(r) < ½k. 

Hence 
W)¢q(t) < (e)¢q(t) for t < T ,  

and the theorem is proved. 
Since (U)'F~ must equal (e)*F~, there must also be values (v),,p(o 

< (e).p(O, and it is evident that there will be one intersection point, all 
values to the right giving 

(V)~p(O < (C).p(t), 

although we will not give here a rigorous proof of this. 
These relations suggest the possibility of attempting to approximate 

(u),p(t) by some distortion of the elementary curves, the distorted curves 
being treated as correlated. This can be done, in fact, with rather good 
results, and it is evident that the very great simplification of labor in the 
computation of such an approximate equivalence is a desirable end, for 
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even if values of "p") be computed by a method such as Simpson's rule, 
we have some further laborious approximate process to go through to 
compute the F-functions required. 

If  a number of examples of (V),p(o be worked out, and we then deduct 
the abscissas of the element of lesser attenuation, the resulting "corre- 
lated" curve will turn out to be a curve approximating a distortion of the 
other original curve obtained by increasing the attenuation and holding 
F ~° constant. What is needed, then, is a means of estimating the change in 
the original constants needed to give the best approximation to this dis- 
tortion. For this purpose, we will discuss measurement of the attenuation 
of continuance functions. 

7. The I n d e x  of Attenuation,  i f  ° or f 'l 

While the constant a or l is called the "attenuation," it is not in itself a 
good measure of attenuation, i.e., the rapidity with which the continuance 
function diminishes into insignificant values. For this purpose we use a 
particular value of the function f ' .  

As defined in section I I I - l , f  't is given by the relations: 

"f" ( ~ Y - ' .  "f"= e-('-='>:' , ' x ' - t " , ' + ,  =\<<,+,/ , ; • 

For each of these three fundamental functions, let us evaluate / 'v ,  i.e., 
the value for which t is equal numerically to F °°. 

We have: 

"S ' v  = e - ( v ' + " - " ) l  v ' =  e -1 = . 3 6 8 .  (IV-9) 

~f,~,= .x' l+  l -- 1-1-~-f k V ~ f l  " 
X 

These results are [unctions of the attenuation only. Moreover, re- 
calling the Theorem in section I-3e, values for Alpha functions decrease 
from ! at a = 1 down to the limit of .368 at  a = ~ ; values for Lambda 
functions decrease from the limit of .368 when I = co down to the ex- 
treme limit of 0 when l = 0. Thus we have a convenient measure varying 
continuously from 1 to 0 through the Alpha function, the exponential and 
finally the Lambda function. We call this measure the "index of attenua- 
tion," and use the s y m b o l s f ' ° , f f  ", o r f ' Z , f  '~ having the constant value .368 
to 3 decimals. 
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8. The Index of Compression, I 
In section IV-6 we discussed the idea of finding a "distortion" of one 

of the original elements that will provide a "correlated" curve to approxi- 
mate the actual composite curve produced by uncorrelated coincidence. 
We will use the index of attenuation f,a as a basis for measuring the 
amount of distortion. This distortion is always such as to decrease the 
value o f f  " while holding F '~ constant, and will be called "compression" 
of the curve, the resulting "compressed" curve being symbolized by 

(1)01 
where the original is 

Ot. 

No precise and explicit means of measurement has been developed, but 
the following empirical formula gives results of reasonable accuracy: 

,')0 T - . [ (°'F' ~) "s~-°~ga ] 
~ ] , , - ( e ~ , % ) I  1.185 a.O621(%FtT+%r_O,r).31 (IV-10) 

where e,r  > 0tr, 

or  

(e,.%)I' 1 .185 [  ( e ' F ' r + ° ' r - - % r )  .~1-.o39,] 

where °,r > %r. 

In this formula T is chosen such that o,ffz = .01, and the constant a is 
the attenuation of the function 01, i.e., the function of greater attenuation, 
which is the function being compressed. 

This value ~°,.%~I, called the "index of compression," may be computed 
directly from known values determined by the constants of the two origi- 
nal elements. The formula was derived by Mr. William Hoop. 

Having thus determined approximately a measure of the "compres- 
sion," we are now able to solve for the constants of the compressed 
curve. We have: 

fie. 

or (IV-11) 

(1) f , ,  =. I f ' " ,  

from which the nature of the compressed curve as an Alpha or a Lambda 
function may be determined and the constant of attenuation obtained. 
Table 7 may be used for this purpose, first difference interpolation being 
sufficient. Lambda functions always compress into Lambda functions, of 
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course. Alpha functions may compress into Lambda functions under 
some combinations. 

For the other two constants, we have: 

o r  

since F'  is unchanged, and 

(z)a = [( lqa-  l lF '  

(r);k = [(r)l + 1]F' 

(iv-12) 

cz)a' = (Z)a- r (IV-13) 

o r  

q)k' = (z)k + r 

since ~ aho remains unchanged. 
The element to be compressed is always the element with the greater 

original index of attenuation. This is because the composite curve will al- 
ways approach the curve with the lesser index of attentuation as t in- 
creases, so there is no need to tamper with this element. 

The compression technique may be used repeatedly where more than 
two elements are involved, although the accuracy of the procedure will 
diminish with repeated application. I t  is nevertheless to be preferred to 
the enormous labor of more straightforward methods of approximate 
evaluation. With more than two elements, we first take the pair of lowest 
attenuation. After determining the first compression, we move to the 
curve of next higher attenuation, computing the compression index on 
the sum of the appropriate F values of the first two curves, and so on. 

Finally, values of °F are computed from the compressed curves assum- 
ing them to possess a correlation of 1.0, using the method described in 
section IV-5. 

9. Coincident Curves of Intermediate Correlation 

In actual practice, practically every coincident set will involve correla- 
tion intermediate to the extremes of zero and one. We therefore use such 
experience as we have available, or else make assumptions as to the frac- 
tional value of (°,,e,)I to be used, since such situations will call for com- 
pression lying somewhere between that associated with zero correlation, 
and no compression at all with correlation 1. If practically nothing is 
known of the correlation, the best guess is probably to take from 33% to 
50% compression. Thus, for 500"/0 compression, we have s°%I = .5(I + I). 
(*)f" computed from this relation then gives an intermediate index of 
attenuation. An example of numerical evaluation, using the tables in 
Appendix C, will be given in section 11. 
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10. Simplified Approximation 
While the compression technique previously described is not difficult, 

it is evident that it can become prolonged in complex situations involving 
multiple elements and several exclusive sets where claim costs must be 
derived for several plans at a number of ages. Where costs for a wide 
range of ages are needed, it is usually sufficient to compute the composite 
values at decennial or quinquennial ages and interpolate for annual 
v a l u e s .  

In some cases, the careful and detailed evaluation involved in the com- 
pression-exclusive set technique may not appear to be necessary, and it 
is useful to have some quick alternative method of approximate evalua- 
tion available. 

a. Single element approximation 

When the benefit structure is not so complex as to render the method 
altogether inaccurate, several elements may sometimes be replaced by a 
single substitute element approximating a composite function or even 
several exclusive functions. The method can sometimes give very mis- 
leading results, however, when a wide range of bounded values are re- 
quired, and is not to be resorted to rashly. 

The technique is to assume that at some fairly large value of t, the value 
frt for the curve involving the higher attenuation of a pair, becomes ef- 
fectively zero. I t  is usually sufficient for the purpose to take any value 
T for which f ' r  is actually less than .01. Correlation less than 1.0 may be 
roughly accounted for by taking T somewhat smaller than that for which 
fr  _ _  .01. 

Thus we have, for a coincident set: 

,F , r  - 0,F, + 0,F'r 

°F' = e'F' + °'F' (IV-14) 

a T ~ Ot T -~- Ot T . 

From these equations, the constants for the approximating element are 
derived with little difficulty. 

For an exclusive set: 

"F ' r  - "(OF') + °,(oF'r) 

• F'  = ' ,OF ' )  + ' ,(pF') (zv-15) 

,~ - , , (p , )  + ° , ( p , ) ,  

where etp + e,p = 1 .0 .  
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A little reflection will show that the approximation resulting from this 
gives the correct value for "F% 

In the case of exclusive sets, the compound curve is so easy to evaluate 
that there is seldom any need to derive a single element approximation. 

I t  will be apparent how the technique is extended to more than two 
elements, since each succeeding pair is reduced to one. The process should 
begin with the lowest attenuations. 

b. Approximation by curve segments 

Another, more accurate approximation begins in the same manner as 
the previous method. We assume that at point T, e,f,r = 0; we then evalu- 
ate the remainder of the ez curve: 

°,F~ °° = °,IF' . f ' q ;  

from this, we set (for a coincident pair): 

°,F r = "F - °,F ~;~ 

°,p(~ = °,p(Z) (IV-16) 

OIT ~ OIT "]- °S'l" 

and solve for the constants of the approximating curve 0~. This curve 
joins 02 at point T, so that we have a segmented compound similar to the 
select and ultimate graduation described in Part  II.  A similar technique 
may be readily devised for an exclusive pair. 

c. Approximation on the "lesser attenuation" 

An approximation using a single element which gives a somewhat 
different distribution of the cost than method (a) is to take for the con- 
stant of attenuation the value of the lesser constant of a pair. We then 
set: 

"F' = °,F' + °,F' 

CT ~ OIT -Jl- O~T 

and by these two equations, with substitution of the constant already 
known, we derive the other constants. 

Method (c) understates bounded F values in the shorter ranges, over- 
stating in the longer ranges. Method (a) does the opposite. Accordingly, 
improved accuracy can sometimes he obtained by computing the desired 
bounded values by both methods, and taking the average. Comparison of 
the two methods is also useful in giving some idea of the maximum error, 
since the values computed by each method will in many cases (but not 
always !) lie on each side of the true value. 
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A variety of other approximations are obviously possible. These will 
serve as examples. Usually, the investigator will find it possible, either by 
quick methods or by the more refined technique of compressed curves, to 
evaluate complex benefits with consistency and acceptable accuracy, and 
without excessive labor. Thus the basic experience may be assembled in 
the form of elementary functions and disability rates, and almost any 
sort of combination evaluated confidently using appropriate techniques 
and careful assumptions. 

11. Numerical Example of Composite Evaluation 
The method of evaluation by compressed curves will become more clear 

by working out a specific example. 
Let us evaluate the claim cost, using the tables of Appendix C, for the 

following major medical benefit for the year of age 40, male: 
Covered medical expenses are defined to include: 

1. Hospital room and board up to $25 daily. 
2. In-hospital doctor calls up to $10 daily. 
3. A California Relative Value Surgery Schedule of 5 units ($500 top fee), 

which allows in addition to the basic fee up to 15°-/o of the amount of 
the schedule limit for anesthesiologist's fee, and up to 15% for as- 
sistant surgeon's fee. 

4. 80% of other medical expenses. 
Benefits are payable for covered medical expense in excess of a $250 

deductible, subject to a maximum benefit of $7,500. 
Symbolically, we may express the desired cost as: 

2fih:lOe:s' :m S 2fi0;77~i0 
o~* : oo : 500:80¢7v 4 0 ( m )  

To compute this cost, we will require six continuance functions from 
the tables: 

hi = *(19.11, 17.21, 3.8) (-h)s = *(28.99, 26.99, 6.5) 

h2 = -(27.78, 25.88, 1.4) (h)m - ~(445.4, 415.0, 5) 

(h)s = "(I01.2, 95.2, 5) (-h)m = *(94.93, 89.93, 3.68) 

The computation then involves the following steps. 

Step 1. Conversion of units 

We must first alter the basic functions to agree with the units of cover- 
age in the desired benefit. 
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a. h functions 

The $10 doctor call benefit we will assume to be equivalent to $4 daily 
room. Hence we have $25 ~- $4 = $29 as a daily equivalent unit. Con- 
verting the h functions for $29 daily units gives: 

29h~ = ~(554, 499, 3.8) 29h~ = ~(806, 751, 1.4) 

b. (h)s function 

We will assume full utilization of the basic benefit and the anesthesiolo- 
gist benefit and 33°fc utilization of the assistant surgeon benefit. Thus, for 
utilization of the Complete benefit, we have the factor 1 -I- .15 -t- (.33 X 
.15) = 1.2. Multiplying by 5 units, we have a conversion factor of 1.2 X 
5 = 6, so that we get: 

(h)s' = 4(607,571, 5) .  

c. (--h)s function 

For out-of-hospital surgery, we will assume full utilization of the basic 
benefit, 330-/0 for anesthesiologist, and none for assistant surgeon. This 
gives a factor of (1 q- .05). In order to avoid undue multiplicity of com- 
posite combinations, we will assume an additional 20 ~  to cover nonsurgi- 
cal miscellaneous out-of-hospital expense, giving a complete factor of 
(1 -b .05) )< 1.2. Multiplying by 5 units, we have (1 -t- .05) X 1.2 X 5 
= 6.3, giving 

( - h ) s '  ~ o(183, 170, 6.5). 
d. (h)m function 

Let  us assume that the basic tabular function is adequate for an area 
of $15 prevailing room charges, and that the miscellaneous cost level 
varies as v'x/15, where x is the cost level in the area where we expect our 
plan to be sold. For this, then, we get an "area cost" factor of x/25-~-5, or 
1.291. 

Next, let us assume that this is a reasonable function to modify to ac- 
count for the cost of private nursing care, assuming, moreover, that such 
care increases in incidence with increasing size of miscellaneous hospital 
expenses. We can approximate this by loading the constant of attenua- 
tion. Assuming that the average nursing care claim is $250.00 and that 
such care occurs on 20% of the hospital claims, we must load the attenua- 
tion to increase (^)~F by $50.00. 

Next, we must assume some out-of-hospital miscellaneous cost to be 
coincident with hospital claims. We will assume that an additional 33% 
loading in the conversion factor will cover this, to avoid complicating 
the number of exclusive composite sets we have to deal with. 
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Finally, our benefit provides 80% insurance. Thus, accounting for all 
but the nurse benefit, we have a factor of 1.291 X 1.33 X 0.80 = 1.373. 
This gives (h)m' = a(612, 570, 5). 

(h~'Ft has the value 612/4 = 153, so to get the loaded constant a* 
accounting for the nurse benefit, we have: 

153 
a * =  ( a - -  I ) - i - ~  I = 4.1 7 , 

where 193 = 153 -4- (.8 X 50). 
Hence our final converted (h)m function is: 

(h)m' = "(612, 570, 4.17). 

e. ( - h ) m  function 

We have already accounted for the coincident occurrence of this bene- 
fit along with hospitalization or out-of-hospital surgery. Therefore all that 
is left is (--hs)m, i.e., such expense occurring without coincident hospital 
or surgical costs. This residue will be evaluated by proper choice of the 
partial claim rate from Table 1, not by modification of the basic function. 

Assuming the same "area cost" factor as for (h)m, and 80% insurance, 
we have the factor 1.291 X 0.8 = 1.034, giving 

( -hs )m = "(98.2, 93.0, 3.68). 

Summarizing, we now have the converted functions 

29hl = "(554, 499, 3.8) (--h)s' = "(183, 170, 6.5) 

29h~ = ,(806, 751, 1.4) (h)m' = "(612, 570, 4.17) 

(h)s' = "(607, 571, 5) (--hs)m = "(98.2, 93.0, 3.65). 

Step 2. Derivation of Compressed Curves 

We must now carry out the compression of curves involved in coinci- 
dent sets in order to evaluate the composite curve. There are 4 such sets. 

a. The set [(h)m', 29hl] 

To evaluate T in the compression formula, which will compress the 
(h)m' function, we have: 

612 ~s.~7 
~-~b~_-~j = .01,  g iv ingT=  2 ,057 .  

¢h~"'F'~" = 193 (1 -- .01) = 191.1, with Ch~'r = 42.  

2~h,F'r= 198 1--  = 1 9 5 . 2 ,  witb**h,r = 5 5 .  
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Hence for the compression formula, we have: 

l (h )m"~9/~ l l ]  :'-" 1.185 (191.1)  .~1-.0~9x4.17 _ .4528.  
4.1 7 '°821 × 208.2.31 

Assuming an intermediate correlation giving 50% compression, we 
have 

6°%I - -  .5(1 4- .4528) = .7264, 

whence 

(~(h),,~f,t = .7264 X .420 = .305, a Lambda index. 

Interpolating in Table 7, we have (~l -- 2.36. Since F '  and r are not 
altered by compression, we have: 

(z~k = 193 X 3.36 = 648, and (~k' -- 648 4- 42 = 690. 

Thus the compressed function is: 

(~(h)m' = x(648, 690, 2.36) . 

This function and the 29hl function are then plotted and carefully 
graphed. The composite ~r function is then plotted by adding pairs of 
abscissas with equal ordinates, i.e., values of p(O (section IV-5), and from 
this graph the required limits of integration of the elements can be ob- 
tained to evaluate the composite function between any desired limits. 

b. The set [(h)s', (h)rn', 29hl] 

Fortunately, the set is compressed in the order (h)m', (k)s', so that we 
can employ the results of set (a), and go directly to the compression of the 
last element, (h)s'. 

To obtain T, we have: 

607 "~'= ~ I ~ T /  .01, T-1,350 

(~)"F 'T -- 152 (1 -- .01) = 150.5, with ~h).'~ = 36. 

From the graph of [(h)~', 29hl] we obtain: 

[(h)m', 29hl]F?T ~___ (I)(h)m'FlS~5 4-  S9hlFlSl5 ~ 272, and ((h)m', 29h,] r = 97.  

Hence the compression formula is: 

15 0 .5"s l - ' °s '×s  
(h) , , ,  [(h),,, , ,  ~gh,11" :..- 1 . 1 8 5  

5 "°621 X 3 3 3  "31 " 

Again assuming 500/o compression to result from partial correlation, 
we have 

~°%I -- .5(1 4- .316) -- .658, 
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whence 
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(r~f,~ = .658 X .410 = .270, 

(r)X = 2.3 X 152 = 349, 

and  (t)l = 1.3 

(i)),, = 349 -b 36 = 385 ,  

so t h a t  we have  

a)(h)s'  = x(349, 385, 1 .3 ) .  

This  can  then  be p lo t t ed  on the same g raph  wi th  [(h)m',  29hl] to o b t a i n  
the  3-e lement  compos i t e  [(h)s' ,(h)m',  29h~]. 

c. T h e  set  [(h)m',  29h2] 

As in set  (a) ,  T = 2,057, and  (h)m'F'T = 191.1. 

~ g h , F , T = 2 0 1 5 [ l _ (  8 0 6  -~.4] 
7 5 1 + 2 0 5 7 /  J = 7 9 2 '  

and  29h:r -- (hV"'Z = 13 

giving the compress ion  fo rmula  

t(h)r,', 2~h~I I - -  . 296 ,  50%1 = .648.  

Hence  (t)fn = .648 X .420 = .272, q)l = 1.34 

(z)X = 2.34 >( 193 = 452, (t)XP = 452 + 42 = 494 ,  

so t h a t  we have ,  in this  case:  

a)(k)m'  = ×(452,494,  1 .34) .  

d. T h e  set [(h)s' ,  (h)m',  29h21 
Again ,  we can use the  resul ts  of set (c), and  need on ly  to de t e rmine  

~(h)s'. 
As in set  (b),  T = 1,350, ¢h~"'F'r = 150.5 .  
F r o m  the g raph  of set  (c), we get :  

t(h~.,', 29h,lF'r = (l)(h),~'F,293 .q_ 29h,FqO57 = 720 

a n d  [(h~,,'. 2~aJr _ ( ~ " r  = 6 1 .  

Thus  the  compress ion  index is given b y :  

oh),', tCh),~'.29h,l I ~ . . 2 4 8 5 ,  5°%I = .6242 .  

Therefore ,  (t)f,t = .6242 )< .410 = . 256 and  (t)l = 1.08 

(r)), = 2.08 X 152 = 316, cry),, = 316 -t- 36 = 352, giving 

a~(h)s' = x(316, 352, 1 .08) .  
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Step 3. Evaluat ion of Bounded Integrals 

a. [(h),n, 29hl] 
From the graph, the limits of integration for t~h)~. 2~h,~Fso;~75o are: 

138 and 665 for (~(h)m', 
112 and 7,085 for 29hl.  

(The actual readings cannot,  of course, be so accurate. The  readings have 
been adjusted to equal the desired total  limits.) 

Evaluat ing and adding the integrals gives: 

[(h~. 29h0F~50;77~0 = 262.7. 

We need a discrete adjus tment  for the room benefit equal to: 

- -  .5 X 29 (pll~) _ p(70ss>) = - - .5  X 29 X .7 = - 1 0 . 1 5 ,  

so tha t  the final value is 262.7 --  10.15 --- 252.55. 

b. [(h)s p, (h)m', 29h~] 

The  limits of integration are: 

for (~>(h)s' : 76 and 378 
for a)(h)m' : 93 and 660 
for 29hl : 81 and 6,712 

Tota l :  250 7,750. 

The  discrete ad jus tment  for 29hl will be - . 5  X 29 X .825 = - 11.97. 
Evaluat ing,  we obtain: 

t(h~,'.(^)~', 20h0F25O;77~o = 422.5. 

c. [(h)m', 29h2] 

The  limits are: 
a)(h)m' : 95 and 452 

29h2 : 155 and 7,298. 

The  discrete adjus tment  for 29h2 is --11.73, giving: 

t~h)~', 29h,~F2SO;VTso = 1,251. 

d. [(h)s', (h)m', 29h2] 

The  limits are: 
a)(h)s '  : 57 and 336 
a)(h)~n' : 73 and 448 
29hz : 120 and 6,966 

Total :  250 7,750. 
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The discrete adjustment on 29h2 is --12.42. Evaluating, we have: 
[(h)#', (h)m', 29hl]Fg.50;7750 = 1,419. 

e. ( -k ) s '  
Evaluating the single element function gives: 

¢-h>,/m0;7760 _ .343, almost negfigible. 

f. ( - ~ ) , n  

The single element integration gives: 

(-~*~'F ~°;775° = 1.283. 

Step 4. Evaluation of "S 
The remaining step is to evaluate the final composite S, function. To 

do this we simply multiply each exclusive F value by its associated 
partial claim rate from Table 1. Hence: 

25h:10c: a r :m ~ 2b0;7750 ~:~:5o0:s0%o,o(,~) = 2 5 2 . 5 5 X . 0 4 5 + 4 2 2 . 5 X . 0 3 5 4  

+1,251 X .00263 + 1,419 X .00205 + .343 X .0371 

+ 1.283 X .251 = $32.86. 

Thus the derivation is quite complex for a benefit of this type. In prac- 
tice, the values could be obtained in this manner for decennial ages, and 
the entire scale by age obtained by any suitable method of interpolation. 
Any of the simplified approximations of section 10 could be employed, 
but the results would be much less reliable. 

The compression technique can be appfied to a wide variety of combi- 
nation benefits. When "inside maximums" are involved, a slight addi- 
tional step is needed. For example, if we are to evaluate the hospital claim 
cost 

l~h: (h) m q~O; co 
90:15o "Jx 

in which room and board is covered up to 90 days, miscellaneous hospital 
expenses up to $150, all subject to a $50 deductible, the steps are all 
exactly equivalent to those of the preceding example (though much 
simpler!) except that now truncated elements are involved in the com- 
posite. When (h)m is compressed, the truncation point, k, of the com- 
pressed curve must be chosen so that 

(x)Ch~,~F~ = (h),~Fis0 . 

The necessary value is readily obtained by solving from the equating 
value (t)f,~. 

In all other respects, the computation proceeds along exactly parallel 
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lines. Some additional error, however, is involved here. The modified 
composite curve obtained by adding the abscissas of these artificially 
"correlated" elements, when these are truncated, will deviate somewhat 
from the true composite at points beyond either point of truncation, and 
the error will be greater in the case of continuance points beyond the point 
of truncation of the uncompressed element. Usually, however, we need 
only to compute the claim cost excluded by the deductible in cases of 
inside maximums, and if the limits in the elements lie to the left of the 
truncation points, this error will not be involved. 

v. MlSCEL~Am~OUS CossmE~TIONS 

1. Effect of Boundaries on Utilization 
Before simply accepting the mathematical results of computation for, 

say, a given bounded F value to be used in rate computation, the actuary 
should consider the possible need to provide loading for a change in 
utilization resulting from the elimination period or deductible amount. 
I t  is well known that such limitations on the benefit have an effect on 
utilization. For example, the rate of entrance upon claim for time loss 
benefits with 90 day elimination periods is apt to be less than is the prob- 
ability of a 90 day disability on policies with first day coverage. Similar 
influences may affect the rate of utilization of major medical benefits as 
compared to first dollar or low deductible coverage. These influences 
should not be overlooked, and it is especially important to know the 
nature of the experience from which continuance constants have been de- 
termined. 

2. Heterogeneity in Combinations 

It is also highly important to weigh the distorting effects which may be 
introduced through combining basic elementary values into composites, 
which may in themselves create new variables or conditions not consistent 
with the elementary functions when considered separately. For example, 
a coverage providing diagnostic benefits outside of the hospital will very 
likely affect the claim value of another benefit paying for such services 
during hospital confinement. Many such situations may develop, and the 
actuary cannot afford to lose sight of these underneath the mathematical 
manipulations that represent the costs of these benefits. 

3. SimplificaH~ns in Deriving Commutation Columns 
Occasionally, ff the ] '  and r values are quite similar over a range of 

ages, the K,  function over the range may be computed for unlimited 
benefits, and the boundary adjustment for deductibles or maximums 
computed directly from the K~ function. This simplification is taken ad- 
vantage of by Bartleson and Olsen in their paper dealing with reserves on 
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hospital and surgical insurance (TSA IX). In some cases, considerable 
labor can be saved in this way. 

4. Methods of Intrinsic Loading 
Frequently it will be desirable to build some loading factor into the 

basic continuance constants. I t  is worth while to consider the effect of 
loading each of the severM constants. 

a. Claim Rate, r. Increase in this constant obviously distributes the 
loading effect over all ranges of continuance. 

b. Attenuation Constants, a or I. Decrease in a provides a greater 
loading the longer the duration of continuance. Decrease in l does the 
same up to the limit of continuance, X', which is inherent in the Lambda 
function. 

c. Range Constant a. Increase in this constant distributes loading 
over the entire continuance curve except for the very short durations, 
where its effect is negligible. If a' is unchanged, the "minimum duration," 
however, will be increased, adding to the short duration loading. 

d. Range Constant ),. Decrease in this constant will increase loading 
in the middle ranges. The formula for XF°~ might suggest the contrary, but 
the effect works out this way because of the shift in T or else in the lower 
limit of integration with respect to the lower limit used to compute ×F °~. 

e. Range Constant a'. Decrease in a' will increase loading slightly in 
the short durations, by increasing the "minimum duration." 

f. Range Constant k'. Increase in ),' will increase the "minimum 
claim" and also the intrinsic limit of continuance, thus having an increas- 
ing effect for longer durations. 

5. Open Claim Reserves 
Where open claim volume is sufficiently large to justify it, continuance 

formulas may be employed to evaluate unpaid claim liability on either 
medical or loss of time benefits. 

a. Individual Claim Reserves 

I t  will be evident that the unpaid liability on a claim still pending at 
continuance t (t being a monetary or a time unit) is given by: 

V , ; r s _ F  t;T~ 
(V-l) p(t) , 

without commutation,/ '2 being the benefit limit, and 

(0 Vt;T 2 (i)Ft;T~ 
- ( V - 2 )  (qptq ' 

with commutation. 
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With commuted benefits approximated by an elementary function, 
it may happen that the error is significant when the duration has become 
large. In such a case, some revision may become necessary. 

b. Aggregate Valuation 

Where there is a large volume of claims on similar benefits, aggregate 
valuation may be practical. Assuming a "stationary population" of 
claims, the aggregate liability is given by: 

N T2 .(t)~t;T2.. 
L ~  19 P at p(r,) (V-3) 

N being the constant number just entering upon claim at any given 
moment. On a per claim basis, 

T~ . ( t ) ~ t ;  T~.  
J r ,  r at P 

vTI;T2 
.... = , (V-4) 

fT r 'p( t)dt  
1 

whence 
~g.V = n X ~,,.V rl;T' , 

n being the total number of claims pending under the benefit. 
I t  is of interest to work out the per claim value for the hypothetical 

case where the deductible = r, with no upper limit. We have, using the 
Alpha function: 

f F ( ° Y  o ~°P(*)F*;~dt = -~@-t ~ - - 1  k,a' + t ]  dt 

f ° (ov  a 1 k,-aT-~tt] d t -  a--la2a ( a ' + t )  1-2~dt 

a 2 - [  (c~' + t )  2-,,~]~o , 
-- (a- -~l )  2 - - 2 a  j ,  =~F'~ 

assuming a > 1; also, 

f =p(t)dt = F ' ,  

so that V ";~ ~ ' ~v~. -- ~F ,  each claim being thus, on the average, halfway 
settled. The theoretical assumption here is continuous and instantaneous 
payment of benefits. The normal lag in payment might be accounted for by 
such an adjustment as: 
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fT'p(,)FT';2"dl-k_ fk T'p(,)FT'+'-';T'dt 
aw. vTj;T~ 

f f~p(¢)d l 

where the assumption is a lag of k units between incurment and payment. 
k may be adjusted to reflect both the lag in reporting and in processing of 
the claim. 

6. Aggregate Benefit Limits 
Frequently policies contain aggregate limitations on benefit. For ex- 

ample, a major medical plan may provide up to $5,000 of benefit for each 
illness prior to age 65, and an aggregate benefit of $5,000 for all illnesses 
incurred after age 65. 

During the aggregate period, there will begin to develop within the 
insured population a considerable number of lives whose maximums for a 
current disability will be effectively reduced to some figure moderately 
below the limit, since these lives will have had small claims. A very small 
number of lives will be included who have only a very limited residue of 
benefit remaining. 

The effect of this will be to progressively distort the continuance func- 
tion for each successive year in the direction of a higher attenuation. This 
effect may be approximately expressed by the following alteration of the 
formula for the force of termination: 

k(2-z~)a 
C'~'} 7r~-O - a' + t ' 

where x is the current age and x~ the age at which the aggregate limitation 
takes effect, k will be a value slightly greater than 1 determined by judg- 
ment or analysis of the probability distributions involved in successive 
years of tabular or actual experience. The approximation, while rough, 
provides a simple means of giving some weight to the attrition in the 
aggregate benefit. 

7. Use of Statistical Measures to Determine Constants 
While no methods have been demonstrated in this paper which depend 

upon statistical measures to obtain values of the constants for an elemen- 
tary function, it is possible to use these in cases where the entire continu- 
ance is to be graduated by a single elementary function. For this purpose, 
such measurements as the sample mean and variance and the moments of 
the distribution may be employed to develop equations for solution of 
the constants. This approach is only mentioned here, and will not be de- 
veloped further in this introductory study of continuance theory. 
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CONCLUSION 

This paper has been prepared as an experimental venture into the 
adaptation of mathematical graduation to disability and medical con- 
tinuance, in order to achieve simplicity and compactness in the presenta- 
tion and manipulation of data, and to suggest a basis for standardization 
of tabular values such as may be used for reserve standards. 

Doubtless very much by way of improvement and new technique will 
occur to others, and the author will feel much rewarded if this theo- 
retical study stimulates further experimentation and if it provides some- 
thing of practical utility. This study is basically theoretical, and the 
methods will lend themselves to various practical situations with varying 
degrees of success. We have found that the methods can be mastered well 
by clerks who are capable of learning to use the log log slide rule. 

The author is extremely grateful to the staff of patient associates who 
have prepared the several tables in the Appendixes, and in particular to 
Messrs. James Steinkraus and Stanley Bates, who spent much labor in 
preliminary research with the functions, and to Mr. William Hoop, who 
supervised the preparation of the tables. 

1. Basic Symbols 

r ! 

p 

Or 

F 
F '  

f 
f, 
S 

a, 8, ~ . . . .  

a, b, g . . . .  Generalized symbols 
functions 

APPENDIX A 

SYSTEM OF NOTATION 

Force of termination 
Probability of continuance of claim 
Probability of termination of claim 
Slope of the logarithmic tangent of p 
Annual rate of morbidity 
Absolute annual rate of morbidity 
Relative morbidity rate; i.e., 0p= fraction of total rate r in- 

volving specific benefits 0 
Partial claim rate, i.e., Or -- r.°p 
Average size of claim 
Value of complete continuance integral 
Ratio of incomplete to complete integral 
Complement of f ;  i.e., f '  = 1 - f 
Annual cost of claim 
Generalized symbols for range constants of Alpha functions. 

The symbols also represent the generalized benefits repre- 
sented by the functions. 

for attenuation constants of Alpha 
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X, #, v , . . .  Generalized symbols for range constants of Lambda func- 
tions. The symbols also represent the generalized benefits 
represented by the functions. 

l, m, n , . . .  Generalized symbols for attenuation constants of Lambda 
functions 

T Minimum duration of claim, i.e., p(O = 1.0 for t < T 
¢ Range constant of an elementary approximation to a com- 

posite function, also used to indicate the nature of benefits 
as composite, or as compound 

s Attenuation constant of an elementary approximation to a 
composite function 

0 General symbol for a benefit or function without reference to 
its nature as an Alpha or a Lambda function 

R Root of a continuance function, i.e., the root of the fraction 
f ' .  A table of (Rt) • values may also be used to determine 
p(O. 

I Compression index for uncorrelated coincident benefits 

The symbols H, K,  P, A, V, N, and D are reserved for use in their custo- 
mary sense. 

2. Significance of Subscripts and Superscripts 
a. Post-subscript symbols 

These are used in their usual sense to mean age. In addition, sex 
is identified in this position. 
(1) x(m) refers to male aged x. 
(2) x(f) refers to female aged x. 

b. Post-superscript symbols 

These symbols are used in their customary Sickness notation to 
mean the limits of continuance, with a slight revision. 
(1) The symbol tl;t~ signifies the continuance interval included 

within the durations tl and t~. Hence the period of benefit = 
t ~ -  tl, and not t2, as has been customary. I t  is the author's 
opinion that this is a more logical and convenient meaning, 
since in the formulas these are the constants that are actually 
employed. 

(2) The absence of any symbol is to be taken to mean the same as 
the symbol 0;o~, i.e., the limits of the complete function. 

c. Pre-superscript symbols 

(1) These symbols identify the benefits represented by the function. 
In generalized discussion, the symbols are a, 0, % . - . ,  for 
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Alpha functions; X, #, v,..., for Lambda functions; 0~, 0~ .... , 
for unrestricted functions; ~ for composite or compound func- 
tions. 

(2) For specified benefits, these are used: 
d income disability 
h hospital room and board 
m miscellaneous expense 
c doctor calls 
e diagnostic examinations 
s surgery 
n nurse 
p pregnancy 

(3) Primed symbols indicate some special or nonstandard definition 
or restriction of the benefit, 

(4) Where the type of function is to be shown as well as the specified 
benefit, the symbols a or X are shown as pre-superscripts inside 
parentheses. 

(5) Pre-superscripts are used in condensed notation to identify the 
numerical values. See section f below. 

d. Pre-subscript symbols 

These symbols describe any inside limits that control specified 
benefits and are shown in the exact sequence of the benefit symbols. 
The symbol oo indicates "no inside limits" when an unrestricted 
benefit is in combination with other restricted benefits. This nota- 
tion will become clear in the examples in section e. 

e. Examples of the Notation 

(1) 10h:(h).~ ~s0;~ _ Average size of claim for a male aged forty 90:100:800~40(ra) 
for medical benefits with a $50 deductible outside limit, provid- 
ing the following: 
(a) $10 per day for daily hospital room and board, up to 90 

days 
(b) Miscellaneous hospital expense up to $100 
(c) A surgical schedule with top fee of $300 

(2) 25h:o~:5o0:oo:so%os0o,)8' :5 . . . .  ¢~50;7750 = Annual claim cost for a female aged 30 
for major medical benefits with outside limits of $250 deduc- 
tible and $7,500 maximum benefit, and the following inside 
restrictions: 
(a) Covered expense for hospital room and board limited to 
$25 daily 
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(b) Covered surgeons' fees limited by a $500 schedule with 
special provisions (may be assistant surgeon or anesthesi- 
ologist fee provisions) 

(c) Covered doctor call expenses limited to $5 daily 
(d) Covers 80% of other expense 

(3) ~ ~000~ 75%/'60cm~ = Probability that covered expense in a claim on a 
male aged fifty will reach $5,000 when the coverage is 75% of 
all medical expenses. (Note that the outside limits of deductible 
or maximum are not directly relevant to the probability func- 
tion.) 

(4) ~ct,;t,> Probability that a woman aged 40 at date of dis- g 4 0 ( / )  ~-" 

ablement and still disabled at duration t~, will continue to be 
disabled at duration t~ from the date of disablement. 

(5) fo;o -__ f o  = Probability that disability will continue to dura- 
tion t (where t may be in time or monetary units). 

These examples illustrate the considerable descriptive power of 
the system. 

Condensed Notation for Continuance Definition 

I t  is convenient to employ a condensed shorthand notation to 
define the continuance data for a certain benefit. For this purpose, 
pre-superscript symbols are used together with defining values en- 
closed in parentheses. The enclosed values invariably follow the 
sequence (r), (p, =, a', a) or (r), (p, X, )J, 1). 

(1) For example, the notation (.06), °(1.0, 44.3, 39.7, 2.3) complete- 
ly describes the S function defined by a claim rate of .06 and a 
single Alpha function in which a -= 44.3, a' = 39.7, and a = 
2.3. 

(2) The notation ~[(.12)," (.9, 2.6, 2.56, 3.0) " ' ,  x(.1, 84.8, 85, 3.4)~.] 
completely describes the income disability S function which is 
a compound function composed of an Alpha and a Lambda ele- 
ment with claim rate .12 and constants shown, and in which the 
continuance time unit is one year. 

(3) Where the function is the approximation to a similar function 
discounted at interest, the pre-superscript symbol (i) is added, 
thus: 

<.~'(5.7, 5.4, 2.6). 

This defines an Alpha function which approximates another one 
discounted at 2%. When only 3 numbers appear, (a, ¢', a) is indi- 
cated and pr is not defined. 
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Where the exact discounted function is meant, the symbol (i) is 
written over the function instead of as a pre-superscript, thus: 

(...,) _ ,(" a____y 
(.o2s).p(q~.. p ( t )= (1.025) \ a ' + t / "  

(4) With coincident functions, a brace rather than a bracket is used 
to distinguish these from compound functions. The difference 
may also usually be inferred by inspecting the p constants of 
each element. Thus we may have: { (.09), "(1.0, 37.2, 36.8, 2.16), 
a(1.0, 17.4, 17.3, 3.7) } where the relative rates of both elements 
evidently overlap. 

(5) Pre-superscripts may also be used in connection with combina- 
tions 0f algebraic notational symbols enclosed in parentheses, 
thus: 

"F, = ',(pV), + °,(pV), 

= e,p.. S,F * + o,p.. e,F * , 

so that the p and F of each term are different quantities. 



APPENDIX B 

SUMMARY OF BASIC FORMULAS 

O1 ~ FUNCTION 

F O ~ V ~  

a • 

1. p"), probability of 
continuance 

2. ~"), force of termi- 
nation 

3. ",r" test, to deter- 
mine type of func- 
tion from 3 p(O 
values 

4. F', the complete 
continuance integral 

5 .  F ~T, the incomplete 
continuance integral 

6. F r, the average size 
of claim within T 
units 

7. Index of Attenua- 
tion 

8.t ( 6 , , 0 , ) i  _ c1)0,f~ 
e2 f t a  

~ - 7  , q - > ~ - ~ ' )  

a 

~ ' + t  

(w-- v) log X > 1 where X = pC") 
( v - -  u) log Y p-~ 

and Y - pCe) 
pC 'o ) 

o Ct)d t - -  
- ,  a- -1  

T (1, a - - 1  

e - c , - , ' v F '  , (t > ,~') 

1 

F' 

= 1  

£ ~ep(t)dl = F' 

f~, r'p(t)dl =F' [ 1 -- e - ( r -" ' ) /F ' ]  

F ' r + ~ - a ' = F  ' r + T , ( T > T )  

/ , o  = 

• 1.185 (e,F*r) m-.0a~ 
a 0621 ( 0 , F *  r )  3~ 

F ' r + a ' ,  (T>~ ' )  

f "  = .368 

F values may be directly evalu- 
ated by integration 

t The index of compression, where T is such that  e z f , r  = .01. a ffi attenuation of Oz, and * means that the difference between Olr and 01~. 

(X~'X-~t)*, ( h ' - X < t < X ' )  

l 
X / - t 

< 1  

s added to the function of greater r. 

• X 
£ ~ ; P ( ° d t - l +  1 

( r  < X') 

F ' r + x ' -  X= F 'r + r , ( T > , )  

j , , _ _ ( l y + '  
\~---47/ 

No formula developed, but case is 
rare in practice 
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A P P E N D I X  C 

M E D I C A L  A N D  D I S A B I L I T Y  C O N T I N U A N C E  TABLES 

Seven  t ab l e s  are p r o v i d e d  in  th is  A p p e n d i x  which  def ine the  bas ic  

c o n t i n u a n c e  f u n c t i o n s  a s soc i a t ed  w i th  each  bas ic  med i ca l  a n d  d i s ab i l i t y  

benef i t .  T h e  med ica l  f u n c t i o n s  are  des igned  as  f a r  as poss ib le  for  con-  

s i s t ency  w i t h  t he  1956 I n t e r c o m p a n y  H o s p i t a l  a n d  Surg ica l  Tab les .  T h e  

d i sab i l i t y  f u n c t i o n s  a re  b a s e d  o n  the  1952 D i s a b i l i t y  S t u d y .  

TABLE 1 

PARTIAL MEDICAL MORBIDITY RATES BASED ON 
1956 INTERCOMPANY TABLES 

Total 
Medical 

Age and Sex Mor- h~rz i-a)'hr= h~r z (-*)h~r. "~)ar z ( -~)mvz 
bidity 

Rate, rz 

Child . . . . . . . . . .  3878 .0572 .0328 .00000 .00000 .0278 ,2700 

20 . . . . . . . . . . .  3379 .0423 .03Zl .00223 .00168 .0364 .2232 
25 . . . . . . . . . . .  3316 .0383 .0330 .00211 .00180 .0350 .2214 
30 . . . . . . . . . . .  3252 .0367 .0337 .00201 .00184 .0354 .2155 
35 . . . . . . . . . . .  3382 .0357 .0372 .00201 .00209 .0360 .2252 
40 . . . . . . . . . . .  3732- .0354 .0450 .00205 .002'63 .0371 .2510 
45 . . . . . . . . . . .  4180 .0354 .0546 .00214 .00330 .0388 .2838 
50 . . . . . . . . . . .  4764 .0367 .0655 .00232 .00413 .0417 .3261 
55 . . . . . . . . . . .  5505 .0386 .0791 .00255 .00524 .0454 .3796 
60 . . . . . . . . . . .  6442 .0418 .0953 .00291 .00662 .0505 .4471 
65 . . . . . . . . . . .  7139 .0427 .1085 .00312 .00796 .0525 .4991 
70 . . . . . . . . . . .  7536 .0425 .1162 .00329 .00900 ,0525 .5301 
75 . . . . . . . . . .  : .7719 .0423 .1189 .00347 .00975 .0525 .5450 
80 and over.. .7812 .0422 .1194 .00367 .01038 .0525 .5531 

~Vomcn 
20 . . . . . . . . . . .  3851 .0575 .0341 .00119 .00071 .0251 .2665 
25 . . . . . . . . . . .  4467 .0691 .0356 .00159 .00081 .0317 .3079 
30 . . . . . . . . . . .  4937 .0736 .0412 .00179 .00101 .0351 .3410 
35 . . . . . . . . . . .  5353 .0724 .0513 .00199 .00141 .0364 .3718 
40 . . . . . . . . . . .  5734 .072~ .0594 .002'24 .00186 .0382 .3997 
45 . . . . . . . . . . .  6069 .0696 .0683 .00247 .00243 .0393 .4248 
50 . . . . . . . . . . .  6370 .0648 .0788 .00262 .00318 .0394 .4482 
55 . . . . . . . . . . .  6653 .0601 .0885 .00275 .00405 .0398 .4701 
60 . . . . . . . . . . .  6926 ,0561 ,0968 .00293 .00507 .0410 .4907 
65 . . . . . . . . . . .  7198 .0522 .1044 .003]7 .00633 .0429 .5108 
70 . . . . . . . . . . .  7440 .0522 .1079 .00353 .00737 .0429 .5301 
75 . . . . . . . . . .  , .7623 .0514 .1104 .00400 .00860 .0429 .5450 
80 and over . .  .7716 .0510 .1106 .00442 .00958 .0429 .5531 

I .  E x p l a n a t i o n  o f  the  T a b l e s .  

a. T a b l e  1 shows  to t a l  m e d i c a l  m o r b i d i t y  r a t e s  b y  age  a n d  sex, t o g e t h e r  

w i th  t he  " p a r t i a l "  r a t e s  a s soc i a t ed  wi th  each  bas ic  exc lus ive  se t  of co-  

i n c i d e n t  benefi ts .  T h e  s y m b o l s  h a v e  these  m e a n i n g s :  
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his: Surgery coincident with Element 1 of the compound hospitali- 
zatioal table (Table 2). 

(-s)h~: Hospitalization under Element 1 without coincident surgery. 
h2s: Surgery coincident with Element 2 of the compound hospitali- 

zation table. 
(-s)hz: Hospitalization under Element 2 without coincident surgery. 
(-h)s: Nonhospitalized surgery in which no hospitalization occurs on 

the same disability. Out-of-hospital surgery occurring in the 
same disability with hospitalization is counted either under h~s 
or h~s. 

(--hs)m: Miscellaneous nonhospital medical expense occurring with nei- 
ther hospitalization nor surgery on the same disability. Where 
such expense occurs in the same disability with hospital or 
surgery expense, it is counted under the other partial rate 
which is involved. 

The partial rates were derived by obtaining values of 0 for each set 
from sampled claims of Occidental experience, and applying these rela- 
tive rates to the 1956 Intercompany Hospital and Surgical rates to derive 
the partials. The "total" rate is the sum of the partials shown, and re- 
mains exclusive of maternity. Very limited data were available for the 
(-- hs)m benefit. 

The fact that the intercompany tables reach level, equal values for 
men and women at 65 for surgery and at 80 for hospitalization resulted in 
some inconsistencies between male and female partial rates. Rather than 
reconcile these, we have "let the chips fall where they may" for the 
present, so that the male and female partial rates shown do not reach 
complete equivalence at stipulated ages as in the 1956 Intercompany 
Tables. 

b. Table 2 gives hospital confinement continuance in the form of a 
2-element Alpha compound table. The constants of each element are 
determined to give o ° = 1 independently of the other element, the rela- 
tive incidence of the two elements being given by means of the partial 
morbidity rates h,r and h,r. The unit is one day. 

c. Table 3 gives miscellaneous hospital expense in the form of single 
element Alpha curves. The unit is one dollar. 

The table also presents miscellaneous nonhospital medical expense. 
This includes a/l miscellaneous medical costs not included in hospital, 
miscellaneous hospital, surgical-anesthesiologist benefits, private nurse, 
or doctor call benefits. I t  therefore covers out-of-hospital diagnostic ex- 
aminations, drugs and supplies, and miscellaneous medical care and serv- 
ices other than surgery, anesthesia, private nurse, or hospital doctor 
calls. The unit is one dollar. 



TABLE 2 

1956 INTERCOMPANY T A B L E - - H o S P I T A L  CONFINEMENT CONTINUANCE 

(Unit One Day) 

Age 
and Sex 

=hild.. 

~'[en 
20 . . . .  
25 . . . .  
30 . . . .  
35 . . . .  
40 . . . .  
45 . . . .  
50 . . . .  
55 . . . .  
60 . . . .  
65 . . . .  
70 . . . .  
75 . . . .  
80 . . . .  

Tornen 
20 . . . .  
25 . . . .  
30 . . . .  
35 . . . .  
40 . . . .  
45 . . . .  
50 . . . .  
55 . . . .  
60 . . . .  
65 . . . .  
70 . . . .  
75 . . . .  
80 . . . .  

M,v z 

1000 

.07438 

.07309 

.07045 

.07290 

.08042 

.08996 

.1022 

.1177 

.1371 

.1512 

.1587 
• 1612 
. 1 6 1 6  

.09163 
• 1047 
• 1 1 4 8  

.1237 
• 1314 
• 1379 
.1436 
• 1486 
.1529 
.1566 
• 1601 
. 1 6 1 8  

. 1 6 1 6  

~ht Function h2r z i aht Function 

(3.360, 2. 200, 1.98), Effiffi .906 0 

(15.00, 13.10, 4.00) .003915 (24.68, 22.78, 1,500) 
(14.76, 12• 86, 3.95) • 1303910 (25.49, 23.59, 1.475) 
(15.05,13.15,3.90) .003855 (26.32, 24.42, 1.450) 
(16.74, 14.84,3.85) .004103 (27.08, 25.18, 1.425) 
(19.11, 17• 21,3.80) .004680 ' (27.78, 25.88, 1.400) 
(22.33, 20.43,3.75) .005441 : (28.50, 26.60, 1. 375) 
(25.06, 23.16, 3.70) .006455 , (29.07, 27.17, 1.350) 
(26.16,24.26,3.65) .007785 (29.75,27.85, 1.325) 
(25.81, 23.91,3.60) .009529 (30.29, 28.39, 1.300) 
(27.04,25.14,3.55) .01108 (30.86,28.96, 1.275) 
(30.96,29•06,3.50) .01229 (31.39,29.49, 1.250) 
(49.18,47.28,3.45) .01322 (31.88,29.98, 1.225) 
(65.29, 63.39,3.40) .01405 (32.41,30.51, 1.200) 

(181.0, 179.6,32.0) .001870 
(183.9, 182.5, 31.5) .002356 
(195.0, 193.6, 31.0) .002822 
(205•3,203 •9,30.5) .003432 
(215.8, 214.4, 30. O) .004065 
(226.6, 225.2, 29.5) .004855 
(237.0, 235.6, 29.0) .005827 
(249.0,247.6, 28.5) .006838 
(264.0, 262.6, 28.0) .008045 
(288.0, 286.6, 27.5) .009468 
(329.0,327.6, 27.0) .01094 
(492.0, 490.6, 26.5) .01256 
(629.0, 627.6, 2i5.0) .01405 

(178.0, 176.6, 5.70) 
(178.4, 177.0, 5,66) 
(178.9, 177.5,5.61) 
(179.4, 178.0, 5• 56) 
(180.0, 178.6, 5.50) 
(180.7, 179.3, 5.43) 
(181.4, 180.0, 5 •36) 
(182.2, 180.8, 5.28) 
(183.0, 181.6, 5.20) 
(183.9, 182.5,5.11) 
(184.9,183.5,5.01) 
(185.9, 184.5,4.91) 
(187.0, 185.6,4.80) 

TABLE 3 

MISCELLANEOUS EXPENSE CONTINUANCE 
(Unit One Dollar) 

[ Age O)mr~ a(h)rn Function (-A)'nr~ e(-k)nt  Function 

2hild. .1000 (444.0,440.0,7.00) 

.~0.. 

.~5.. 
;0 . .  
;5 . .  
10.. 
1-5.. 
~0.. .  
55.. .  
) 0 . . .  
) 5 . . .  
TO... 
75. . .  
~0.. .  

Men Women 

.0783 .0935 

.0770 .1071 

.0743 .1176 
• 0770 .1271 
.0851 .1355 
.0954 .1428 
• 1087 .1494 
.1255 1554 
• 1466 1609 
• 1623 1661 
• 1710 1710 
• 1744 1744 
• 1756 1756 

(489.5,485.1, 6.00) 
(482.3, 471. O, 5.75) 
(472.1,454.3, 5.50) 
(460.3,436.2, 5.25) 
(445.4,415.0,5.00) 
(431.8,395.8, 4.75) 
(415.4,373.7,4.50) 
(398.2,351.1, 4.25) 
(380.1,327.7,4.00) 
(361.2,303.8, 3.75) 
(341.0,270.0,3.50) 
(308.0, 225.0,3.25) 
(312.0,224.0,3.00) 

• 3730 ](86.30,81.30,5.022) 

Men 

.3115 
• 3084 
• 2998 
•3122 
.3461 
.3892 
.4448 
.5151 
.6037 
.6714 
.7111 
.7294 
.7387 

Women 

3 7 0 0  

.4250 
• 4686 
.5089 
.5452 
• 5776 
• 6076 
• 6355 
. 6 6 1 6  

.6869 

.7111 

.7294 
• 7387 

(85.70, 80.70, 4. 350) 
(89.82, 84.82,4• 182) 
(92.47,87.47,4.015) 
(94.23, 89.23,3. 848) 
(94.93,89.93,3.680) 
(94.94, 89.94,3.512) 
(94 AXe, 89.03,3.345) 
(92.37, 87.37,3. 178) 
(89.98, 84.98,3.010) 
(86.97, 81.97, 2• 842) 
(86• 85, 81.85, 2.675) 
(82.87, 77.87, 2.508) 
(81.74, 76.74, 2.340) 
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d. Tab le  4 gives surgical expense con t inuance  for a $100 California 
Rela t ive  Value Schedule. Hospi ta l ized surgery (either his, or h2s) is sepa-  
ra ted f rom nonhospi ta l ized  [ ( - h ) s ]  and  each is g radua ted  b y  a single ele- 
m e n t  Alpha  funct ion .  Th i s  table is therefore based on surgical benefits 
differing from those of the " s t a n d a r d "  schedule of the 1956 I n t e r c o m p a n y  

TABLE 4 

SURGERY C O N T I N U A N C E  

$100 C A L I F O R N I A  R E L A T I V E  V A L U E  S C H E D U L E  

(Unit One Dollar) 

Age 
and Sex 

Child . . . . . . .  

M e n  
2 0  . . . . . .  

30 . . . . . .  
35 . . . . . .  
40 . . . . . .  
45 . . . . . .  
50 . . . . . .  
55 . . . . . .  
60 . . . . . .  
65 . . . . . .  

Women 
20 . . . . . .  
~5 . . . . . .  
30 . . . . . .  
35 . . . . . .  
4 0  . . . . . .  
45 . . . . . .  
50 . . . . . .  
55 . . . . . .  
60 . . . . . .  
65 . . . . . .  

(M~rz 

.0572 f 

.04455 I 

.04038 

.03872 

.03763 

.03715 

.03743 

.03894 

.04119 

.04474 

.04577 

• 05866 
.07085 
.07535 
.07455 
.07418 
.07196 
.06741 
• 06285 
.05900 
• 05547 

a(h)s Function 

(50.55,44.55, 6.00) 

(90.75, 84.75, 5. 500) 
(92.95, 86.95, 5.375) 
(94.38, 88.38, 5. 250) 
(97.33, 91.33, 5.125) 
(101.2,95.22, 5.000) 
(112.3,106.3,4.875) 
(125.2, 119.2,4. 750) 
(135.5, 129.5, 4. 625) 
(135.5,129.5,4.500) 
(135.0,129.0,4.375) 

(87.14, 80.14, 6.000) 
(101.0, 93.98, 6.246) 
(120.1,113.1,6.406) 
(139.1,132.1, 6.488) 
(155.7,148.7, 6.500) 
(159.6, 152.6, 6.449) 
(152.3,145.3, 6.344) 
(145.0, 138.0, 6.191) 
(140.4, 133.4, 6.000) 
(135.1,128.1,5.777) 

I 

( -h )% z [ 
I 

a ( _ h ) s  Function 

.0278 [ (19.75,17.75,7.5) 

.03645 [ (26.89, 24.89, 7.000) 

.035021 (28.43,26.43,6.875) 

.0.3538 (28.75, 26.75, 6. 750) 

.03607 (28.87, 26.87, 6. 625) 

.03715 (28.99,26.99,6.500) 

.03887 (31.13, 29.13, 6.375) 

.04176 (33.78,31.78,6.250) 

.04541 (35.95, 33.95, 6.125) 

.05046 (35.66,33.66,6.000) 

.05253 (35.61,33.61,5. 875) 

.02514 

.03165 

.03515 

.03645 

.03822 

.03934 

.03949 
• 03985 
.04100 
.04283 

(9.410, 7 410, 2 800) 
(9.060, 7.06O, 2. 700) 
(9. 500, 7. 500, 2. 600) 
(10.10, 8. 100, 2.5O0) 
(10.67, 8. 670, 2.400) 
(10.56, 8.560, 2.300) 
(9.870, 7.870, 2.200) 
(9310, 7.310, 2. 100) 
(8.930, 6.930, 2.000) 
(8.450, 6.450,1.900) 

TABLE 5 

Hospital Confinement Continuance by days: 
1952 Group Hospital Study: 31 day plans, 10)< Miscellaneous Benefit (TSA 
IV, 87, 89, 93) 

The functions graduate Col. 3, excluding 0 days 
hlp ahl 

Child . . . . . . . . . . . . . . . .  1.0 (3.36, 2.2, 1.98), 
e = .  906 

MMe . . . . . . . . . . . . . . . . .  945 (17.825, 15.925, 
3. 784(}) 

Female (Nonmaternity) .966 (191.4, 190, ,34) 

h~p aht 

0 0 

.055 (28.43, 26.53, 
1.397) 

.034 (185.4, 184, 
5.7) 



TABLE 6a 

1952 DISABILITY TABLE--PERIOD 2, BENEFIT 2 
(Unit One Month) 

Central 
Age x 

17.5 
22.5 
27.5 
32.5 
37.5 
4 2 . 5  
4 7 . 5  
52.5 
57.5 

1,000 

[ 
.156~ 

[ . 251(  
, . 4 1 2 ~  

• 547(  
I .782~ 

1.728 
3.049 
5.056 

10.83 

d~ Function 

(939.2,942.2,2. 199) 
(883.6, 886.6, 2. 222) 
(862.9, 865.9, 2. 705) 
(714.8,717.8, 1.829) 
(686.2,689.2, 1.859) 
(683.8,686.8, 2.727) 
(605.7,608.7, 2.616) 
(549.9,552.9, 2.600) 
(518.0,521.0,3.20O) 

1,000 

.0112 

.2272 

.0328 

.0911 

.2530 

.1896 

.3325 
•7369 
.7206 

Xdt Function 

(822.5,825.5, 1.379) 
(401.7,404.7, 3.045) 
(667.8, 670.8, I. 649) 
(714.2, 717.2, 3. 143) 
(558.6,561.6, 2.304) 
(485.9,488.9,. 6027) 
(427.3,430.3, .5888) 
(372.1,375.1, .7278) 
(386.7,389.7,. 8321) 

1,000 
d,,; .  

•.  240~ 
.6844 
.3244 
0 

• 5577 
• 6585 

2.464 
1.361 

• 7617 

kda Function 

(484.0,487.0, 3.410) 
(653.4, 656.4, 22.83) 
(396• 5, 399.5, 4.324), 

0 
(263.3,266.3,4.134) 
(157.3,160.3,2.982) 
(777.8, 780.8, 33.40) 
(154.0, 157.0, 2.955) 
(297.3,300.3,. 2874) 

1,000 
d4r~ 

• 3806 
0 
0 
0 

1 .071  
2,252 

0 
2.999 
3. 562 

hd~ Function 

(219.4,222.4, 4,721) 
0 
0 
0 

(58.67, 61.67, 2.640) 
(80.02, 83.02, 5. 765) 

0 
(72.47, 75.47,4.115) 
(11.61, 14.61, 2.940) 

1 )000 

1,651 
1.277 
2.160 
2.513 
1.766 
1 . 4 9 0  
3.495 
3.418 
5. 767 

d6 Function 

4(165.7,162.7, 17.08) 
~(22.99, 19.99, 4.610) 
a(287.5, 284.5, 21.48) 
4(49.62,46.62, 3. 177) 
X(25.45, 28.45, 5. 737) 
X(7. 133, 10. 133, 1.926) 
~(35.05,32.05, 7.372) 
X(14.81, 17.81, 3.420) 
4(1661., 1658., 87.15) 



TABLE 6b 

"MODIFIED )' 1952 DISABILITY TABLE--PERIOD 2, BENEFIT 2 
(Unit One Month) 

Central I 
Age 

X 

17.5 
22,5 
27,5 
32,5 
37.5 
42,5 
47.5 
52,5 
57.5 
62.5 
67.5 

1,000 

• 1691 
• 2534 
,4495 
.6443 

1 , 0 4 6  
I. 878 
3 . 4 2 1  
6.077 

12,51 
24.11 
39.76 

~'d~ Function 

(990.0,990.0,2.324) 
(930.0, 930.0, 2.381) 
(870.0,870.0, 2.530) 
(810.0, 810.0, 2.346) 
(75O.0,750.0, 2 •354) 
(69O.0, 69O.0, 2.406) 
(630.0,630.0, 2.428) 
(570.0,570.0, 2.481) 
(510.0,510.0, 2. 753) 
(450.0, 450. O, 2.844) 
(39O. 0, 39O. 0, 2.48O) 

1,000 

• 2457 
• 2325 
• 2936 
•4230 
.5839 
.6985 
• 7049 
0 
0 
0 
0 

~dt Function 

(486.0,486.0, 3. 399) 
(426•0,426.0, 3.262) 
(366.0,366.0, 3. 295) 
(306.0,306.0, 3.592) 
(246.0,246.0, 3. 736) 
(186.0, 186.0,3.628) 
(126.0, 126.0, 4 •327) 

0 
0 
0 
0 

1,000 
% 

2.501 
2.485 
2.784 
3.168 
4.218 
5.697 
8.284 

11.84 
12.35 
13.22 
13.83 

nd~ Function 

(217.7,217.7, 15.0O) 
(186.5,186.5, 14.60) 
(176.6, 176.6, 13.80) 
(148. I, 148. I, 12.70) 
(87.71,87.71, 11.40) 
(72.94, 72.94, 10.00) 
(59.87, 59.87, 8.6OO) 
(50.47, 50.47, 7.300) 
(67.81, 67.81, 6.200) 
(I04.0,104.0, 5 A0O) 
(130.7, 130.7, 5.0O0) 

Additional Extension Function for 1st 90 days (All Ages) a,r'= .5 d( Function = ~(1.633, 1. 633, 6.6) 
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Tables, but we decided on this course since our available experience was 
largely on the California Relative Value basis. The unit is one dollar. 

e. Table 5 presents functional graduations of the hospital continuance 
derived from the 1952 Intercompany Hospital Study compiled by Mr. 
Gingery. The values shown are derived from the data for 31 day plans 
with 10X miscellaneous benefits. The unit is one day. 

f. Table 6a presents an extremely precise functional graduation of the 
1952 Disabled Life data (TSA 1952 Reports), using Tables 7 and 8 of 
that  report which give 1930-1950 terminat ion rates under  Benefit 2. The 
uni t  is one month  and the constants are adjusted to give p(3) = 1 for each 
element, so that  the functions are intended for use with disability rates 
giving the rate of entering upon  the 90th day of disability, such as the 
Period 2 rates given in Table 2 of the 1952 Reports. 

Table 6b is a modification of 6a providing a simplified set of functions 
and with a function included for extension of the table to elimination 
periods of less than 90 days. This table, in relation to the 1952 Tables, 
thus serves a similar purpose to the Conference Modification of the 1926 
Class 3 Table. The constants in Table 6b give p(0) = 1 and the uni t  is one 
month.  

g. Table 7 gives values o f f  '° for various values of a, useful in comput-  
ing "compression" constants. 

a 

1.00 
1.01 
1.02 
1.03 
1.04 
1.05 
1,06 
1.07 
1.08 
1•09 
1•10 
1.15 
1.20 
1.30 
1.40 
1.50 
1.60 
I.70 

fta 

1.000 
• 955 
• 924 
• 899 
• 878 
.858 
.841 
• 826 
.812 
.798 
• 787 
• 737 
.698 
.644 
• 606 
• 577 
• 555 
.537 

TABLE 7 

VALUES OF INDEX OF ATTENUATION ffa OR 

G 

1.80 
1.90 
2.00 
2.50 
3.00 
3.50 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 

10.00 
20.00 
30.0O 

100.00 

f 6  

.522 

.510 
,500 
,465 
•445 
.432 
.422 
•410 
.402 
.396 
•393 
.390 
.387 
.377 
.374 
.370 
.368 

co 

100.00 
30.00 
20.00 
10.00 
9.00 
8.00 
7.00 
6.00 
5.00 
4.00 
3.50 
3.00 
2•50 
2.00 
1.90 
1.80 
1.70 
1.60 
1.50 
1.40 
1.30 

fd 

.368 

.366 

.365 

.356 

.350 

.349 
•347 
.344 
.340 
.335 
•328 
.323 
.316 
.308 
• 297 
.294 
.290 
.286 
.283 
.280 
• 275 
•270 

l f a  

.264 
•257 
•250 
•241 
•232 
.221 
.209 

1.2oo 
i .192 

183 
.40 1D 
.35 162 
.30 149 
.25 134 
.2O 117 
• 15 .096 
• 10 •072 
.075 .057 
.050 .041 
.025 .022 
,01 .0095 
,00 .0000 

1 • 2 0  

1.10 
1.00 

.90 

.80 
• 70 
•60 
.55 
.50 
•45 
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2. Method of Derivation of the Tables 

a. Table 2 

Table 2 was obtained by using a preliminary functional graduation of 
Gingery's 1952 data as a starting point. The Gingery graduation for 
children was adopted directly; this is a single element curve with an e 
value to adjust the values of F. We assumed the adult data to be reason- 
ably representative of experience near age 40. Occidental experience was 
sampled by age groups to get an approximate idea of the shift in the con- 
tinuance pattern by age. From this we prepared graduated values of the 
attenuation for both elements, the relative incidence of the elements, and 
the range constants for the ks element, at quinquennial ages up to 80. 
The range constants for the hi element were then solved from the F 9° 
values given in the 1956 Intercompany Hospital Tables, so that the 
functions of Table 2 are consistent with the 1956 tables in giving equal 
F 9° values. 

There appears to be some question as to the necessity of the two- 
element graduation used for adults. The extrapolation of the 1952 data 
beyond 31 days, which is largely responsible for the introduction of the 
second element, is obtained from data not fully homogeneous with the 
first 31 days. We nevertheless retained the compound graduations 
because the results obtained from the two-element compound function 
are more consistent with Table B of the paper, "Reserves for Indivi- 
dual Hospital and Surgical Expense Insurance" (TSA IX), by Bartleson 
and Olsen, than is the ease when single element graduation is attempted. 
This question of validity, however, is sufficient to call for caution in any 
attempt to use the compound graduations given here where extended 
continuance is involved. 

b. Table 3 
Table 3 gave us considerable trouble. We attempted a straight-forward 

F-function solution of the constants by using the 1956 Intercompany 
Tables directly, which give'values of F ~n, F ~°, F ~°°, F 1~°, and F 25°. The 
resulting solutions tested out exceptionally well, but with one disturbing 
defect--there was absolutely no orderly progression by ascending ages 
in the values of the constants. The constants of each curve appeared to 
be completely independent of its neighbors, possibly because of the high 
sensitivity of the constants to small changes in their underlying equa- 
tions. We finally simply adopted a rather arbitrary scale of attenuation 
constants graduated by constant first differences only, and solved for the 
remaining values on F ~°, F 1°°, and F 1~°, obtaining results that tested out 
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within 9% of any other value in the 1956 tables. These results were 
adopted, except that we adopted r rather than e for F values. 

The out-of-hospital portion of Table 3 is based on extremely limited 
data, primarily experience with diagnostic benefits alone. We were forced 
to make very broad comparisons between hospital and nonhospital mis- 
cellaneous costs and then to derive the (-h)m functions by appropriate 
modification of the miscellaneous hospital functions. In general, the modi- 
fications assume that the nonhospital morbidity rate is approximately 
400% of the hospital, whereas the average size of claim is approximately 
250-/0 of the miscellaneous hospital average claim. I t  was finally assumed 
that about 750-/0 of such claims are incurred without coincident hospital 
or surgical expense, in computing (-h*~mrx for Table 1. 

c. Table 4 

To obtain Table 4, we sampled Occidental experience by hospitalized 
versus nonhospitalized surgery to obtain the continuance patterns and 
relative incidence. The resulting pairs of graduation functions were grad- 
uated by age to give smoothly progressing constants, and then adjusted 
to equate to the 1956 table values of F as modified to fit the California 
Relative Value Schedule. 

d. Table 5 

The 1952 functions shown in this table are the basic curves underlying 
Table 2. These curves were obtained by 6-point graphic graduation (2-ele- 
ment compounds) of the 1952 continuance tables presented by Mr. 
Gingery. 

e. Table 6 

Table 6a is a direct functional graduation of the Benefit 2 termination 
rates in the 1952 Disability study (TSA 1952 Reports), using either 12- 
or 15-point graduation (i.e., 4 or 5 elements). The resulting functions pro- 
vide an extremely faithful reproduction of the 1952 Tables except for 
some deviation at the extreme ends of the disability curves. 

Table 6b is a modification aimed at reducing the number of elements, 
for greater computing convenience. The method of derivation was to 
group the elements at each age in 6a according to similarities in the curve 
values and combine various pairs of elements by substituting for each 
combined pair a single element producing r' and F'  values equal to the 
sum of those of the pair. The values of r' in the table are adjusted for a 
duration of zero rather than the 3 months duration of the 1952 rates. 
The constants of each element produce ep(0) = 1. 

Table 6b also provides an extension of values for central ages 62.5 and 
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67.5. In addition, an extra function is supplied to extend the table 
values back to durations under 3 months. A single function for all ages 
appears to be sufficient for this purpose. Thus any claim annuity evalua- 
tions for eliminations of less than 90 days will involve compound func- 
tions of 4 elements through age 47.5 and 3 elements for higher ages. 

The functions can be readily discounted for any rate of interest by the 
methods of section III-4. 

3. Limitations in the Tables 

As has been pointed out, the tables are at some points based on ex- 
tremely limited data. This is particularly true of the graduations of the 
constants by age, which vary from graduations assuming constant third 
differences down to graduations that merely assume constant first dif- 
ferences in some cases. Thus, while the medical tables as a whole conform 
very closely to the 1956 Intercompany Hospital and Surgical Tables, 
they still cohtain arbitrary features and should be used with caution, 
especially in evaluating benefits such as major medical that involve 
extrapolation of benefits beyond the data on which the tables are based. 
This paper is primarily theoretical, and the medical tables are not intend- 
ed to be an authoritative graduation of reliable experience in large volume. 
The 1952 Disability functions, however, reproduce the 1952 Tables quite 
faithfully. 



DISCUSSION OF PRECEDING PAPER 

~'OHN H. MILLER: 

Mr. Barnhart is to be congratulated on an excellent paper presenting 
techniques for constructing and graduating continuance tables for which 
there has been a very definite need. 

It  would bc very desirable if, in the discussion of this paper, some mem- 
ber of the Society should present a historical account of the development 
of the continuance table. Doubtless Mr. Cammack's classic paper in 
Volume VII of the Proceedings of the Casualty Actuarial Society, in which 
he presented a modification of the old Manchester Unity Sickness Tables, 
would stand out as an important landmark in this development. 

(AUTHOR'S REVIEW OF DISCUSSION) 

E. PAUL BARNHART: 

I greatly appreciate Mr. Miller's kind remarks concerning the paper, 
and I hope that the techniques described will prove as useful to him and 
others as they have to me in my own work with continuance data. 

Two questions were asked of me repeatedly by individuals discussing 
the paper with me and, while they have not been raised through written 
discussion, I will nevertheless attempt to provide some answer to these 
inquiries: 

1. Do I have available any recent disability continuance data graduated 
by the techniques described? 

2. How practical are the continuance functions when it comes to con- 
structing claim costs by electronic computer? 

In answer to the first, we conducted at Occidental a study of the expe- 
rience under commercial disability policies during the years 1953 and 
1954. Because of limitations in the exposure size of various subgroups, all 
occupational classes were thrown together, so that the results were an 
average of all occupational classes accepted by the Company. 

These two years proved to be extremely favorable experience years 
for the Company, and it was therefore decided that a minimum safe level 
for a table representing expected rates and continuance of commercial 
disability claims should be about 150~o of this 1953-54 experience. 

719 
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The study was limited to the first year of claim duration, and beyond 
the first year the graduation was very slowly merged into the Benefit 2, 
Period 2, data of the 1952 disability study by altering the functions in 
Table 6b of the paper, which presents the "modified" 1952 Table, to make 
these functions reproduce approximately 150% of the first year experi- 
ence in the study. We found that it was possible to accomplish this by 
using two elementary functions, one of them the long term dt function 
from the Modified Table, the other an adjustment function to fit the 
total continuance to the first year study data. 

The following table resulted as a composite of experience under elimi- 
nation periods ranging from zero to ninety days. Because of this com- 
posite nature of the table, it appeared adequate for elimination periods 
of 30 days or longer, but not necessarily adequate for shorter eliminations. 

B A S I C  C O M M E R C I A L  D I S A B I L I T Y  T A B L E  

( U n i t  O n e  M o n t h )  

Central Age 
x 

17.5 . . . . . . .  
22.5 . . . . . . .  
27,5 . . . . . .  
32.5 . . . . . . .  
37.5 . . . . . . .  
42  5 . . . . . . .  
47.5 . . . . .  
52  5 . . . . . . .  
57.5 . . . . .  
62.5 . . . . .  
67.5 . . . . . .  

1 000 

.169l 

.2534 

.4270 

.5799 

.8368 
1.333 
2292  
3.889 
9 1 3 2  

19.53 
35.78 

Xdt Function 

(990.0, 990.0, 2.324) 
(930.0, 930.0, 2.381) 
(870.0, 870.0, 2.530) 
(810 O, 810.0, 2.346) 
(750.0, 750 O, 2.354) 
(6900,  690.0, 2.406) 
(6300 ,  630.0, 2.428) 
(570.0, 570.0, 2.481) 
(510.0, 510.0, 2.753) 
(450.0, 450.0, 2.844) 
(390.0, 390.0, 2.480) 

1,000 
alS~ 

50.36 
69.70 

105.2 
140.4 
187.1 
270.0 
421.2 
636.8 

1,241.0 
2,286.3 
4,009.8 

~t 

500.0 
500.0 
500.0 
500.0 
500.0 
550.0 
5 8 0 0  
620.0 
650.0 
675.0 
700.0 

1,000 a& Function a~S ~ 

( .327, .327, 2.0) 163.5 
( .388, .388, 2.2) 161.7 
( .448, .448, 2 4 )  160.0 
( .509, .509, 2.6) 159.0 
( .808, .808, 3.5) 161.6 
(1.020, 1.020, 4 4 )  165 0 
(1.458, 1458,  6 0) 169.1 
(1.633, 1.633, 6 6 )  180.8 
(1.633, 1.633, 6.6) 189.5 
(1.633, 1.633, 6 6 )  1 9 6 8  
(1633,  1633,  6.6) 204.1 

The exposure was also limited by the fact that none of it was older 
than the fifth policy year. Exposure in the first policy year was excluded. 
Consequently, we concluded that the experience was hardly ultimate, 
and that it was reasonable to assume that it would understate an ulti- 
mate experience to an increasing extent with advancing age. Accordingly, 
the d2 adjustment function was modified by progressively increasing the 
value of d,S~ Up tO the oldest central age of 67.5, using a completely 
arbitrary ratio scale with constant third differences. The attenuations of 
each function were then lowered to spread more of the continuance be- 
yond the first two or three months, since the original d2 function of the 
table attenuates extremely rapidly into insignificant values. Finally, the 
ranges were modified so as to preserve the S ° values already determined. 

The final table, which we named the "Occidental 1956 Commercial 
Disability Table," is as follows. The table includes values of o, from which 
accident only values may be computed by applying the p, ratios to the 
desired values from the main table. 
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OCCIDENTAL 1956 COMMERCIAL DISABILITY TABLE 
(Unit One Month) 
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Central 
Age x 

17.5 . . . . . .  
22.5 . . . . . .  
27.5 . . . . . .  
32.5 . . . . . .  
37.5 . . . . .  
42.5 . . . . .  
47.5 . . . . . .  
52.5 . . . . . .  
57.5 . . . . . .  
62.5 . . . . . .  
67 .5  . . . . . .  

1 0 0 0  

• 2 5 3 4  
.4270 
.5799 
.8368 

1.333 
2 . 2 9 2  
3 .889  

9.132 
19.$3 
35.78 

xd l Ftmctlon 

(990.0,  990.0 ,  2.324) 
(930.0,  930.0 ,  2.381) 
(870.0,  870.0 ,  2.530) 
(810.0,  810.0 ,  2.346) 
(750.0,  750.0,  2.354) 
(690.0,  690.0 ,  2.406) 
(630.0,  630.0 ,  2.428) 
(570.0,  570.0 ,  2.481) 
(510.0,  510.0 ,  2.753) 
(450.0,  450.0 ,  2.844) 
(390.0,  390.0 ,  2.480) 

,1,000 
~S~ 

69.7( 
105.2 
140.4 
187. i 
270.0 
421.2 
636,8 

1241.0 
2286.3 
4009.8 

1 0 0 0  

500.0 
500.0  
500.0 
525.0 
550.0 
580.0  
620.0 
650.0 
675.0  
700.0 

adz Function 

.327 , .327 , 2000) 

.3588, .3588, 2.100) 

.4592, .4592, 2.400) 

.6112, .6112, 2.835) 

.7862, .7862, 3.340) 

.9690, .9690, 3.850) 

t 1.142 , 1.142 , 4.300) 
1.334 1.334 4.625) 

(1.491 1 .49 l  4.760) 
(1.571 , 1.571 , 4 .640) 
(1.516 , 1.516 , 4 .20  ) 

163.5 
163.1 
164.0 
166.5 
176.4 
187.0 
200.7 
228.2 
257.8 
291.3 
331.6 

t , t V a l u e s  o f  ( acc . )  p x ,  *.e., h e  
/ fraction of rz assumed 

to arise from accident 
claims 

Central Age I (acco'%: 
17.5  . . . . . . . . . . . .  | . 300  
2 2 . 5  . . . . . . . . . . . . . .  { 270  
2 7 . 5  . . . . . . . . . . . .  ] •243 
32.5 . . . . . . . . . . . . . .  | 219 
3 7 . 5  . . . . . . . . . . . .  [ .198 
47.5  . . . . . . . . . .  165 
52.5 . . . . . . . . . .  153 
57.5 . . . . . . . . . .  144 
62.5  . . . . . . . . . .  138 
67.5 . . . . . . . . . .  135 

(a¢¢.) %,  

.200  
• 195 
• 190  

• 185  

. 180  

•175 
•170 
• 165 
• 160 
.155 
.150  

Since the table is not based on known ultimate disability experience, 
it is obviously not to be relied upon as a recent table suitable for either 
reserves or gross premium computation. Nevertheless it may have con- 
siderable value to other actuaries as a comparison against their own 
experience data or assumptions. 

In answer to the second question, the functions are nicely adapted to 
computer use. In fact, convenient computer application was one of the 
reasons for the attempt to develop a mathematical basis for continuance 

graduation. 
To perform computer calculations with the functions, the basic prob- 

lem is to find a suitable technique for digital approximation of the expo- 
nential expressions involved. Any of several methods may be employed, 
but the most efficient is probably one of these two: 

1. A storage table of 4 or 5 place logarithms to 3 place arguments, thus 
requiring storage of 1,000 table values. 
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2. Approximation using the binomial expansion. 

Method 1 

This technique consumes very little computer time and is sufficiently 
accurate for most purposes. Since the roots requiring evaluation are 
quantities between 0 and 1, it is ordinarily preferable to store the loga- 
rithms in their negative form. 

Method 2 

This approach is more accurate than Method 1, since the computations 
may be carried out to any desired deffcee of accuracy. I t  also releases 
much of the storage capacity tied up by the log table in Method 1. The 
computations, however, require more computer time. 

The technique is to evaluate any required root, R ~', and then con- 
sider the desired value o f f  '~" in the form (1 - s) ~, where s = 1 - R. 

By the binomial expansion we then have the series 

a ( a -  1) a ( a -  1 ) ( a -  2) 
- -  S 2 ~ S 3 ~ . . • 

2! 3! 
/ ' =  1 - a s - f  

wherein any term 
a - n + 1  

T . + I  = - s T .  
n 

Thus the series may be conveniently generated by obtaining each suc- 
cessive term from the preceding one. Moreover, a very simple test is 
available whereby the limit of the maximum error involved by stopping 
at any given term may be computed. 

By performing the ratio test for a convergent series, we find: 

T,+I 
lira s, 

t~---9 ¢t~ " ~ - ' ~  - n  m~- 

so that the maximum value of the series beyond any given stopping term, 
T. = k, is of the form: 

k ( s +  s2+ s 3 + . . . )  
o r  

k s  
-i-~--~s" 

Thus the value of s/(1 - s) may be computed and each value of T, 
readily tested to determine whether sufficient terms have been computed 
for the desired degree of accuracy. Usually 12 to 18 terms will develop 
results accurate within .00001, which is more than sufficient. The method 
is the suggestion of Mr. William Hoop. 


