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ABSTRACT

Traditional pension plans assume that at a certain age, the participant
will cease active employment for the plan sponsor and will start receiving a
retirement pension either immediately or at the normal retirement age. In
this paper, we propose a new type of pension scheme where the retirement
of the employee is a gradual event, increasing from 0 to 100% and active em-
ployment correspondingly decreases from 100% to 0. We look at the actuarial
implications of such a retirement scheme from the employer’s point of view in
terms of the normal cost and also from the employee’s side, the total income
(revenue and retirement) he would receive under various gradual retirement
scenarios. We discuss the advantages and disadvantages of this new type of
plan and new issues the actuary will face.

1 Introduction

In Canada, the baby-boomers generation (those born between 1952 and

1966, aged between 40 and 54 in 2006, see Brown (1991)) are now almost all

in the workforce, making it difficult for younger people to become employed or

to obtain permanent positions. Statistics Canada figures show that in 1986,
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the people in the age group 15-24 accounted for a third of the unemployed.

Beaujot (1991) reports that in 1986, 20% of male workers under 45 had more

more than one job versus 9% of workers over 45.

One way of helping the younger people in their job search would be to

reduce gradually the employement of older people; these might find more

attractive the smooth transition from active employement to retirement, as

declining health is often a reason for early retirement. We look at some issues

the employee, the employer and the actuary would encounter with this new

gradual retirement pension plan.

Pension actuaries are well aware of the fact that the normal cost under the

accrued benefit cost method (ABCM) increases steeply with age and that a

projected benefit cost method (PBCM) which keeps the normal cost constant

(either in amount or as a percentage of salary) is therefore preferable for

pension plan sponsors worried about increasing pension costs. Winklevoss

(1977) and McGill (1984) have observed this by calculating the normal cost

for these funding methods for a typical employee of a pension plan; they also

compare various variants of these two methods, but the general conclusions

remain the same. PBCM produce normal costs that are more stable over

the long run. This explains why in this paper, we will only consider these

methods.

Throughout the paper, we will use the notation of Winklevoss (1977) for

pension mathematics, the same typical employee and illustrative plan. The

plan provisions used for the numerical comparisons of section 5 will be the

following. The retirement benefit payable from age 65 as a life annuity will be

equal to 1.5% of the of the final five-year average salary times the number of

years of service. Early retirement is possible at age 55 after 20 years of service
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without actuarial reduction, and there is no late retirement. The mortality

table we will use is the 1979-81 US Life Table, and the service table for ages

20-65 is found in Winklevoss (1977, p.32). The interest rate is set equal to

i = 0.04 and salaries are assumed to increase at 5% per year. The participant

is a male employee who joined the plan at age 30.

The paper is organized as follows.

In section 2, we review some basic concepts of pension mathematics for the

standard entry age normal method. In section 3, we introduce a new concept,

gradual retirement of an employee with the cumulative retirement function,

and its complement, the active employment function from which we define

the total income function from pension and employment for the participant.

We also look at some examples which could serve as typical functions for an

employee who would take a gradual retirement. In section 4, we use these

newly defined functions to define the normal cost for the employee member

of a gradual retirement pension scheme under a modified PBCM. Section 5

computes the normal cost and the total income for the employee under various

cumulative retirement functions, compared to the method presently used. We

look at some issues not considered in our model and present some remarks

and conclusions in section 6.

2 Review of Traditional Entry Age Normal

Cost Method

For the standard entry age normal cost method, also called projected

benefit cost method, we will consider the two versions of the method, one

producing a constant amount (CA) and the other producing a constant per-
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centage of salary (CS) for the normal cost. In both cases, an actuarial equiv-

alence is established at the age of entry of the participant in the pension plan,

equating the actuarial present value of future normal costs to the actuarial

present value of future retirement benefits and soving for the resulting normal

cost, either as a constant amount or a constant percentage of the salary.

For the constant amount version (CAPBCM), this actuarial equivalence

is

CANCx × äy:r−y| = PV FBy,

where CANCx is the constant normal cost, for all x between entry age y and

retirement age r,

PV FBy = Br × vr−y
r−yp

(τ)
y × är is the actuarial present value at age y of the

annual retirement pension Br payable for life from age r (standard actuarial

symbols are defined in Bowers et al. (1997)).

The annual pension could be a flat amount, an amount based on career

earnings or a percentage of the average salary of the best 3 or 5 years of

service times the number of years of service (in our example, 1.5% of the final

5-year average salary per year of service).

For the constant percentage of salary version, the normal cost will the

fraction k of the employee’s salary calculated from the actuarial equivalence

equation

k × sy ×
s äy:r−y| = PV FBy,

where sä is the general symbol for the actuarial present value of an annuity

increasing according to the salary scale,

and sy is the salary at entry age y.

The normal cost at age x is equal to

NCx = k × sx
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Table 1: Normal Cost as a percentage of salary

Age x CAPBCM CSPBCM
30 13.77% 8.21%
40 8.45% 8.21%
50 5.19% 8.21%
60 3.19% 8.21%

and will normally increase as the salary of the employee increases through

merit, productivity and inflation.

For the illustrative plan of section 1, Table 1 gives the normal cost as a

percentage of the salary for attained ages 30, 40, 50, 60 for the 2 versions of

the PBCM.

For an age x between y and r, the actuarial liability at age x is defined

as the actuarial present value of future benefits minus the actuarial present

value of future normal costs, where those two values are calculated at age x.

3 Gradual Retirement

Under any retirement pension plan, an employee, on his retirement day,

would transfer from the active group to the retired group. Full retirement

would happen on that day. In the last few years, many employers have offered

early retirement to selected groups of employees, as a workforce management

tool. In this section, we want to look at a new type of retirement, gradual re-

tirement where the transition from active employment to retired status would

be gradual, not abrupt as it is above. In the next section, we will look at the

actuarial implications of such a gradual retirement.
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3.1 Cumulative retirement and active employment func-

tions

Let x be the current age of the participant in a pension plan, and r be

the normal retirement age for this plan. Under traditional pension plans,

we define the cumulative retirement function R(x), as the indicator function

representing the retired status of an individual,

R(x) =











0 if x < r

1 if x ≥ r.

The active employment function AE(x) is defined as 1 − R(x). It is also

an indicator function

AE(x) =











1 if x < r

0 if x ≥ r.

It shows whether the same individual is an active employee or not. An active

employee is 100% active and 0% retired, while a retired employee is 0% active

and 100% retired. The basic scenario of comparison, denoted Scenario 0, will

be this previous R(x) function with r=65.

However, under gradual retirement, other increasing functions R(x) which

go from 0 to 1 for x between e and l, where e is the earliest retirement age

permitted and l the latest one permitted under the plan, would be allowed.

An employee could partly belong to both groups at the same time.

For example (Scenario 1), for a participant who takes a half-retirement at

age 62 and full retirement at 65, the function R(x) would be defined as

R(x) =



























0 if x < 62

0.5 if 62 ≤ x < 65

1 if 65 ≤ x.
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His active employment function AE(x) would be equal to

AE(x) =



























1 if x < 62

0.5 if 62 ≤ x < 65

0 if 65 ≤ x.

The graph of R(x) is a step function. It is seen that the cumulative

retirement function has the same properties as the cumulative distribution

function FX(x) of a random variable X: it is a non-decreasing function of x

going from 0 to 1. On the other hand, the active employment function AE(x)

is analogous to the survival function SX(x) in statistics: this non-increasing

function of x goes from 1 to 0.

For every individual, at any age x, we must have

AE(x) + R(x) = 1,

where 0 ≤ AE(x), R(x) ≤ 1.

Let us define r1 as the age at which the function R(x) first becomes pos-

itive (age 65 in Scenario 0 and 62 in Scenario 1). We will assume that an

employee stops accruing years of service for his retirement at age r1 and that

the contributions to a pension plan would be made from age y to r1. Under

gradual retirement, an employee would receive a fraction R(x) of his retire-

ment pension at age x, in addition to a fraction AE(x) of his salary as an

active employee.

As another example (Scenario 2), an employee who takes a one third

retirement at age 55, an additional one third retirement at age 60 and fully
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retires at age 65 would have a cumulative retirement function R(x) equal to

R(x) =











































0 if x < 55

0.33 if 55 ≤ x < 60

0.67 if 60 ≤ x < 65

1 if 65 ≤ x,

and an active employment function AE(x) equal to

AE(x) =











































1 if x < 55

0.67 if 55 ≤ x < 60

0.33 if 60 ≤ x < 65

0 if 65 ≤ x.

Let us now define the non-cumulative retirement function p(x) at age x

describing where the jumps in R(x) occur (corresponding to ages where an

additional retirement percentage is taken) and the height of those jumps

p(x) = R(x) − R(x−).

The function p(x) shares the same properties as the probability mass function

of a discrete random variable X. For all elements ri of the domain D =

{r1, . . . , rm} of the function p(x), 0 < p(ri) ≤ 1, and
∑

ri∈D p(ri) = 1. We

assume that at age rm, the employee has fully retired, i.e. R(rm) = 1.

For Scenario 0,

p(x) =











1 if x = 65

0 if not ,

while for Scenario 2,

p(x) =











0.33 for x = 55, 60, 65,

0 for all other ages x.
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This function p(x) will help us in the next section to define the normal

cost under the modified entry age normal cost method. We will use Scenarios

1 and 2 and others defined analogously and compare the normal cost for the

typical employee of section 1.

Note that we will consider Scenarios where the function p(x) is discrete.

We could construct a continuous function for p(x), but this would only be

of theoretical interest, since in practice, employees would be allowed to elect

increased gradual retirement at certain ages only.

3.2 Total income

If sx is the annual rate of salary at age x, The total income the participant

receives at age x, from his work and retirement pension, denoted TI(x), is

equal to

TI(x) = R(x) · Br1
+ AE(x) · sx

= R(x) · Br1
+ (1 − R(x)) · sx

= sx − R(x)[sx − Br1
].

For x < r1, R(x) = 0 and AE(x) = 1, so that the participant only receives

his employment income,

TI(x) = sx, for x < r1.

For r1 ≤ x < rm, R(x) < 1 and sx > Br1
, so that TI(x) is always between

Br1
and sx.

For x ≥ rm, R(x) = 1 and AE(x) = 0: the former employee is fully retired

and receives a full retirement pension

TI(x) = Br1
for x ≥ rm,

assuming that the pension is not indexed to inflation.
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4 Modified Entry Age Normal Cost Method

4.1 Constant amount version

To determine the normal cost under the entry age method, we used

in section 2 the equivalence, at the age of entry of the participant in the

plan, between the actuarial present value of future retirement benefits and

the actuarial present value of future normal costs. Remember that for grad-

ual retirement, we assumed that service would accrue until age r1, and the

contributions would be made from age y until age r1.

Under the constant aount version of the modified PBCM denoted

(CAMPBCM), the actuarial equivalence at entry age y would now become

CAMNCx × äy:r1−y| = Br1





∑

ri∈D

vri−y
ri−yp

(τ)
y × äri

× p(ri)



 .

The difference between the CAPBCM and the CAMPBCM to note are

the following:

the modified normal cost MNCx is now paid from age y until age r1.

the future pension is determined at age r1, since years of service and the final

average salary are determined at that age.

At age r1, the employee would start receiving a fraction p(r1) of that

pension Br1
for life; at age r2 > r1, an additional fraction p(r2) of the amount

Br1
would become payable, etc... It is seen that the total pension payable

at any age x ≥ r1 can therefore be defined using the cumulative retirement

function R(x); it is equal to R(x) · Br1
for all x ≥ r1.

As the percentage of the total pension becoming payable increases, the

income the employee receives from his employment will correspondingly de-

crease as the active employment function AE(x) decreases from 1 to 0. Note

10



however that the employee could still benefit from partial salary increases

through increases in the salary scale function.

In section 5, we will compare for certain Scenarios, the effect of various

cumulative retirement functions R(x) on the normal cost but also on the

retirement pension and employment income the participant receives.

4.2 Constant percentage version

Under the constant percentage version of the modified PBCM denoted

(CSMPBCM), we set up the same equation of value at the entry age, between

the actuarial present value of future normal costs and the actuarial present

value of future retirement benefits

mk × sy ×
s äy:r1−y| = Br1





∑

ri∈D

vri−y
ri−yp

(τ)
y × äri

× p(ri)



 .

The modified normal cost in dollars at age x is therefore equal to this new

calculated fraction mk times the salary at age x

CSMNCx = mk × sx.

Again, the modified normal cost will only be paid until age r1, the first age

at which partial retirement starts.

5 Numerical Illustrations

In this section, we will analyze a few Scenarios for the cumulative retire-

ment function R(x). The basic Scenario 0, defined in section 3, represents

retirement at the normal retirement age. Under Scenario 1, gradual retire-

ment starts earlier than under Scenario 2 (age 55 versus age 62).
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Table 2: CANC as a percentage of salary

Age x Scenario 0 Scenario 1 Scenario 2 Scenario 3
30 13.77% 13.10% 10.91% 15.14%
40 8.45% 8.04% 6.70% 9.29%
50 5.19% 4.94% 4.11% 5.71%
55 4.07% 3.87% 0 4.47%
60 3.19% 3.03% 0 3.50%
62 2.89% 0 0 0
65 0 0 0 0

Table 3: CSNC as a percentage of salary

Scenario 0 Scenario 1 Scenario 2 Scenario 3
8.21% 8.08 % 7.30% 9.33%

30 ≤ x < 65 30 ≤ x < 62 30 ≤ x < 55 30 ≤ x < 62

Full early retirement at age 62 is defined in Scenario 3:

R(x) =











0 if x < 62

1 if x ≥ 62.

We will be able to compare Scenarios 1 and 2 involving two different retire-

ment functions and also compare gradual retirement with respect to normal

retirement (Scenarios 1 and 2 versus Scenario 0) or early retirement versus

normal retirement (Scenario 3 versus Scenario 0).

Table 2 gives the calculated normal cost for all scenarios under the constant

amount PBCM at various ages.

Table 3 is the corresponding table for the normal cost calculated under

the constant percentage version of the PBCM.

Another interesting function to compute is the total income function for
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each scenario. Under Scenario 0,

TI(x) =
{

0.525 · FAE65 for x ≥ 65.

where FAEx represents the 5-year final average earnings caclculated at age

x.

Under Scenario 1, TI(x) = R(x)Br62
+ (1 − R(x))sx, so that

TI(x) =











































.5Br62
+ .5s62 for x = 62

.5Br62
+ .5s63 for x = 63

.5Br62
+ .5s64 for x = 64

Br62
for x ≥ 65.

The employee benefits from partial salary increase between ages 62 and 65.

Under Scenario 2, TI(x) = R(x)Br50
+ (1 − R(x))sx, and

TI(x) =



























1/3Br55
+ 2/3sx for 55 ≤ x < 60

2/3Br55
+ 1/3sx for 60 ≤ x < 65

Br55
for x ≥ 65.

From age 50, the total income starts decreasing each year, until age 65, where

it remains constant.

Under Scenario 3, TI(x) = 0.48 · FAE62 for x ≥ 62. The total income

would be lower than under Scenario 0 because of the smaller number of years

of service (32 versus 35) and also the smaller 5-year final average salary (s62

versus s65).

6 Remarks and Conclusions

If the idea of gradual retirement appeals to both the employer and the

employees, the plan sponsor could offer different gradual retirement scenarios,
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and the employee could choose the one that best meets his total income

function objective for the future.

Another possibility would be that the employer would only define the age

at which gradual retirement can start and the ages where increases in pension

can occur. The employee would be free to choose the value of those jumps

(p(ri) at age ri). He could do so according to a desired total income function.

For example, an employee who joined the plan defined in section 1 at age

24, who would want to retire according to the following total income function

in mind

TI(x) =











C × FAE56 for 56 ≥ x < rm

0.48 × FAE56 for x ≥ rm,

where C is a fraction, would calculate his retirement function R(x) as follows.

The minimum percentage of pension ultimately desired (48% of FAE56

in this example) defines the age r1 at which pension service stops accruing.

After 32 years of service (32 × 1.5% = 48%), the participant who joined the

plan at age 24 could retire, i.e. at age 56.

To start enjoying retirement at age 56 with a fraction C of his FA556×s56

we will need to set R(56) such that

TI(56) = C × FAE56

= R(56) × 0.48 × FAE56 + AE(56) × s56

= R(56) × 0.48 × FAE56 + (1 − R(56)) × s56,

so that

R(56) =
(C × FAE56) − s56

(0.48 × FAE56) − s56

, where C > 0.48.

The employee can still define the age rm where full retirement is taken.

Note that with existing plan provisions, certain scenarios are not possible.

An employee who wants a minimum ultimate pension could not retire before
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a certain age. Imposing constraints on the total income function at specified

ages sets bounds on the retirement function at those ages.

In this simple plan, we have not considered any ancillary benefits such as

death benefits or disability pension. The normal form of annuity was a straight

life annuity. In practice, the annuity could have a 10 or 15-year garantee or

be a last-survivor pension payable to a spouse. The actuary would have to

evaluate each fraction of the pension payable from age ri with the remaining

garantee if any.

If the employee is offered many possible retirement functions to choose

from, the age r1 of first gradual retirement is unknown at entry age. The

actuary can not therefore compute the normal cost necessary to fund the pen-

sion from entry age to r1. He could assume a certain percentage of employees

would choose each retirement function. Or he could select the minimum pos-

sible age of retirement (rmin) among all scenarios and fund the the pensions

for all employees from entry age to rmin. According to the actual retirement

function selected by the employee, an actuarial gain or loss would emerge.

Another possibility would be to calculate the normal cost NCi payable

from age y to ri, i = 1, . . . , m, necessary to fund the increase in pension from

age ri. The total normal cost for an employee would be the sum

NC =
∑

i

NCi.

With the notation already defined, it would be possible to extend the

method for calculating the normal cost to the aggregate version of the pro-

jected benefit cost method by using:

for the constant amount version

∑

i

R(xi), the total number of retired employees at a certain time,
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∑

i

AE(xi), the total number of active employees at a certain time,

and for the constant percentage version

∑

i

AE(xi) · sxi
, the total salary mass at a certain time.

One other actuarial issue that comes up with gradual retirement versus

total retirement pension plans is the cecrement table to be used. Currently,

there are two types of decrement tables available: a service table for active

employees who face death, disability and withdrawal, and a mortality table for

fully retired employees. A participant partly active and partly retired would

probably experience mortality close to that experienced by the employees who

take a full early retirement.
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