

Article from

Forecasting and Futurism

Month Year July 2015
Issue Number 11

46 | FORECASTING & FUTURISM JULY 2015

A ‘Hot Date’ with Julia: Parallel
Computations of Stochastic Valuations
By Charles Tsai

computer may have four Central Processing Units (CPUs)
in resemblance to a soccer team with four members. Pro-
grammers can leverage Julia’s multiprocessing environment
to specify certain tasks to those CPUs on the bench. On the
one hand, the art of scheduling may be a bulk process for
infrequent and smaller tasks. On the other hand, the flex-
ibility to pass messages to multiple processors may be one’s
niche in strategic scalability and performance. Actuaries
may then manage disparate layers of stochastic simulations
via a multiprocessing environment. Shorter runtimes may be
a doomsday for a few students who use waiting time as an
opportunity for studying. However, such efficiency opens
doors to comprehensive iterations and widens windows of
perspectives.

IS JULIA A DISRUPTIVE INNOVATION?
Julia has several features2 that supplement its power in par-
allelism and distributed computation. Some features are for
specialists like Sheldon Cooper (of The Big Bang Theory)
while others may be easier for amateurs like me to appreci-
ate.

•	 First, it is free and open sourced as licensed by MIT.
Actuaries can share research results seamlessly at
SOA/CAS events without worrying about whether the
audiences have access to the same tools to review (and
build upon) the findings.

•	 Second, users can define composite types that are equiv-
alent to “objects” in other languages. These user-defined
types can run “as fast and compact as built-ins”.3

•	 Third, users can call C functions directly, and their pro-
grams’ performances can approach those of languages
like C. Such speed makes it a considerable alternative
to proprietary computational software tools.4

•	 Fourth, one does not need to be a genius like Gaston Ju-
lia in order to learn the language. Justin Domke’s blog
post “Julia, Matlab, and C”5 presents a crystal clear
comparison of syntactic and runtime complexity trad-
eoffs. Learning Julia is like learning Matlab® and C++
for Towers Watson MoSes® simultaneously.

M eet “Julia,” a free programming language li-
censed by MIT that may help you with paral-
lel computing. It may be an alternative tool for

those who are interested in nested stochastic processes for
actuarial research (if not for regulatory compliance).

Nested stochastic processes may become more relevant and
prevalent as stakeholders consider a broader spectrum of
possible outcomes. Such “stochastic-in-stochastic” anal-
yses often add color to actuaries’ palette of tail risks and
conditional tail dependencies (if any). However, they also
introduce issues of runtime and memory allocation. The
article “Nested Stochastic Pricing”1 provides a comprehen-
sive summary of nested stochastic applications in response
to recent regulatory reforms. IFRS seems to require a com-
prehensive range of scenarios that reflects the full range of
possible outcomes for calculating fulfillment cash flows.
Economic capital calculations may likewise require sto-
chastic-in-stochastic simulations. A practice that may have
been previously deemed as a costly bonus may evolve into a
minimum expectation for actuaries in the near future.

Nested stochastic processes may become more acceptable
with parallel computations. One may boil down “parallel
computing” to daily applications with an analogy. Imagine
an investment banker who is planning a date with a lady. He
barely has enough time to smoke, and he has completing
the following four tasks in mind: 1) dress up, 2) buy flow-
ers, 3) research a restaurant’s menu, and 4) fold a thousand
origami cranes. He has made these preparations in solo for
all of his previous dates. Would it not be nice for him to have
friends help him perform the latter three tasks simultane-
ously? Delegation may take some time, but it may be more
efficient than performing all four tasks in sequence. Parallel
computing is a form of dividing and conquering problems
using multiple processes concurrently. It may help actuaries
slam-dunk tasks like traversing a thousand scenarios, even
if the tasks already take less time than folding a thousand
origami cranes.

Julia allows users to distribute and execute processes (such
as nested stochastic valuations) in parallel. In essence, a

JULY 2015 FORECASTING & FUTURISM | 47

CONTINUED ON PAGE 48

A SIMPLIFIED GMMB CASE STUDY
I have drafted an exemplary Julia application of an actuarial
model. It is available at https://github.com/Chuckles2013/
GMMB_RSLN2_Julia, and is an independent project for
educational purposes only. All parameters and values have
been arbitrarily chosen. The case study involves calculating
the present values of liabilities for an extremely simplified
Guaranteed Minimum Maturity Benefit (GMMB).

The scale of the project can be partitioned into two major
layers. The first layer involves simulating parameters for N
world scenarios. For simplicity, I have structured all key pa-
rameters to be the same across all N world scenarios. It is
easy to see that one can simply modify the codes to utilize
simulated parameter inputs for considering different world
scenarios and economic environments. The second layer in-
volves simulating fund returns for 1000 funds, from which
one can derive a conditional tail expectation of liabilities.
Both layers provide N figures of conditional tail expecta-
tions, from which one can extract a maximum level.

The superimposed bar graph below compares runtimes for
non-parallel versus parallel computations under various
numbers (N) of world scenarios. Four processors performed
the parallel computations. The absolute values of the excess
time elapsed are evident in the divergent gap.

•	 Last but not least, Julia is a functional programming
language like OCaml, which is adopted by niche firms
like Jane Street. Functional programming frameworks
can help actuaries adapt to and master recursions.

Julia also has several Achilles’ heels that may significantly
jeopardize its adoption among actuaries.

•	 One obstacle is communication. Due diligence may
be lost in translation. A few know how to use and in-
terpret proprietary actuarial software products due to
limited availability. Fewer know how to read and re-
view (or even find) its generated C++ codes. In a like
manner, few have learned (or are willing to learn) the
Julia language, and its graphical features are still under
development. Some actuaries may still prefer parallel
computations via multiple Microsoft Excel® sessions.
Calibrations of Julia programs with validated Microsoft
Excel® workbook models might just have exceeded
paychecks.

•	 Another hindrance is the language’s relative immatu-
rity. Development commenced in 2009.6 Its scale of
recognition seems to be light years from the tipping
point for a stabilized discussion ecosystem to exist. On-
line inquiries for relevant debugging notes make pass-
ing bills during gridlocks look easy. A tool may only be
as valuable as its received appreciation.

•	 Lastly, the manipulation of processes in parallel com-
putations requires an acute awareness of read-write
conflicts. In light of the previous analogy, the banker
may wish to match his suit with the flowers purchased,
or the flowers purchased with the restaurant’s cuisine.
Tasks may not be completely independent from each
other. Inexperienced users may inadvertently manipu-
late and designate processes in manners inconsistent
with intentions.

Runtime Comparisons Across Different Numbers of
Scenarios (When 4 CPUs Are Available)

48 | FORECASTING & FUTURISM JULY 2015

NEXT STEPS
One’s vision for Julia in actuarial science can be the devel-
opment of packages. A few companies were bold enough
to have utilized R, and none has adopted (or even plan to
leverage) Julia to my knowledge. Full adoption of Julia
among actuaries within the next decade may be more of a
fantasy than a reality, just as few actuaries have learned Py-
thon since its inception in 1991.7 Nevertheless, open-source
packages for broader usage are lower hanging fruit for in-
trigued actuaries to consider. To the best of my knowledge,
there are no Julia packages similar to the lifecontingencies
and actuar packages in R libraries. Templates of actuarial
functions in Julia may capture more attention and apprecia-
tion for the beauty of parallel computations for nested sto-
chastic valuations.

ENDNOTES

1	 “Nested Stochastic Pricing: The Time Has Come” by
Milliman®’s Craig Reynolds and Sai Man is available at http://
www.milliman.com/insight/insurance/pdfs/Nested-stochastic-
pricing-The-time-has-come/

2	 http://julialang.org/
3	 http://nbviewer.ipython.org/github/bensadeghi/julia-

datascience-talk/blob/master/datascience-talk.ipynb
4	 Professor Fernández-Villaverde’s “A Comparison of

Programming Languages in Economics”, which is available at
www.econ.upenn.edu/~jesusfv/comparison_languages.pdf

5	 http://justindomke.wordpress.com/2012/09/17/julia-matlab-
and-c/

6	 web.maths.unsw.edu.au/~mclean/talks/Julia_talk.pdf
5	 This is a rather fun proof left for the reader. First, prove that

each row of (I – S) sums to zero. What does this imply about the
triangularized matrix?

7	 http://svn.python.org/view/*checkout*/python/trunk/Misc/
HISTORY

Charles Tsai

Charles Tsai, ASA, is a Life Actuarial Analyst at AIG in Shanghai, China. He
can be reached at charles-cw.tsai@aig.com.

A ‘HOT DATE’ WITH JULIA … | FROM PAGE 47

