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Introduction

Mortality models have attracted research attention over recent years, particularly discrete
time mortality models: (Lee and Carter (1992), Cairns et al. (2006b), Cairns et al.
(2009), Renshaw and Haberman (2006)).

Continuous time affine cohort mortality models have attracted more recent research:

single cohort models - single and multi-factor (Milevsky and Promislow (2001), Dahl and
Møller (2006), Biffis (2005), Luciano et al. (2008), Schrager (2006), Cairns et al. (2006a),
Blackburn and Sherris (2013))

multi-cohort models (Jevtic et al. (2013), Xu et al. (2019), Chang and Sherris (2018), Huang
et al. (2019)).
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Why Continuous Time Multi-factor Multi-Cohort Models?

Based on mathematical finance models for term structure (interest rates) and credit risk
models (default rates) familiar to financial market participants,

Capturing differing trends and volatility by age,

Fitting to age-cohort data,

More realistic correlations across cohorts,

Arbitrage-free formulation along with real world dynamics to allow calibration of prices of
risk,

Analytical tractability - closed form survival curves for affine class,

Consistency between mortality dynamics and functional form of the survival curve,

MLE Estimation, Kalman Filter, Poisson variation, stability of parameter estimates.
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Coverage of this Session

Compare continuous-time multi-factor affine cohort mortality models - with closed-form
expressions for survival curves, including the AFNS mortality model with factors for level,
slope and curvature for the mortality curve,

Fitted with age-cohort data,

Brief overview of Kalman filter and estimation of the models, highlighting how Poisson
variation can be incorporated into the model estimation,

Comparison of fits and prediction using historical US mortality data,

Present estimation results for an affine multi-factor, multi-cohort mortality model,

Quantify the price of mortality risk for the factors using Blackrock CORI indices.
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Survival Curve - Continuous Time Affine Mortality Model

Drawing on term structure of interest rate models - equivalence of average force of
mortality rate to yield to maturity for zero coupon bond. Use of similar notation as in
yield curve modelling.

Survival probability S(x , t,T ) for single cohort aged x at time t for survival for a duration
(T − t) to age x + (T − t), as an affine function of (latent) factors (3 factor case)

S(x , t,T ) = E [e−
∫ T
t µi (x ,s)ds |Ft ]

= e−µ̄(t,T )(T−t)

= eB1(t,T )X1(t)+B2(t,T )X2(t)+B3(t,T )X3(t)+A(t,T ), (1)

Bj(t,T ) are factor loadings (functional form derived from mortality dynamics for the
latent factors, exponential terms) and Xj(t) are the latent factors (stochastic parameters).
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Mortality Rate - Continuous Time Affine Mortality Model

Average mortality rate - age-period data or age-cohort data

µ̄ (t,T ) = − 1

T − t
log [S (t,T )] = −B (t,T )

′

T − t
Xt −

A (t,T )

T − t
. (2)

where vector B (t,T ), the factor loadings, and A (t,T ) have explicit expressions
(derivations similar to term structure models).

Canonical form for these (Blackburn and Sherris, 2013), where δjj and σjj are parameters
in the latent factor dynamics (estimated from historical data)

Bj (t,T ) = −1− e−δjj (T−t)

δjj
, j = 1, 2, 3, (3)

A (t,T ) =
1

2

3∑
j=1

σ2
jj

δ3
jj

[
1

2

(
1− e−2δjj (T−t)

)
− 2

(
1− e−δjj (T−t)

)
+ δjj (T − t)

]
. (4)
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Mortality Rate - AFNS Mortality model

Mortality model equivalent of the Nelson-Seigel term structure model in arbitrage-free
dynamic implementation (Christensen et al., 2011)

Mortality rate curve has level, slope and curvature factors (independent AFNS mortality
model).

B1 (t,T ) = − (T − t) , B2 (t,T ) = −1− e−δ(T−t)

δ
,

B3 (t,T ) = (T − t) e−δ(T−t) − 1− e−δ(T−t)

δ
,

(5)

A (t,T )

T − t
= σ2

11

(T − t)

6
+ σ2

22

[
1

2δ2
− 1

δ3

1− e−δ(T−t)

T − t
+

1

4δ3

1− e−2δ(T−t)

T − t

]
+

σ2
33

[
1

2δ2
+

1

δ2
e−δ(T−t) − 1

4δ
(T − t) e−2δ(T−t) − 3

4δ2
e−2δ(T−t)

− 2

δ3

1− e−δ(T−t)

T − t
+

5

8δ3

1− e−2δ(T−t)

T − t

]
.

(6)
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Model Estimation - Kalman Filter

We model mortality rates but observe deaths - we need a measurement equation
capturing the effects of Poisson variation and heterogeneity.

Mortality rate curve changes stochastically through time, driven by latent factors with
trend and uncertainty - we need a state transition equation for the dynamics.

We then filter the values of latent factors from historical data - deriving means and
covariances which are functions of the parameters in the dynamics.

We can then construct the likelihood (Gaussian) in terms of means and covariance (a
function of parameters to be estimated).

Then numerically select the parameter set that maximises the likelihood using an iterative
process.

9/21



Mortality Data - Estimating Mortality Models

Complete age-cohort data for cohorts born in earlier years. US complete cohort data.
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Figure 1: Average Force of Mortality for Males Born
from 1883 to 1915
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Affine Cohort Mortality Models - Goodness of Fit

Table 1: Comparison of Affine Mortality Models

The Blackburn-Sherris Model The AFNS Model The CIR Model

Independent-

Factor

Dependent-

Factor

Independent-

Factor

Dependent-

Factor

Log Likelihood 9896.419 9938.696 9665.801 9887.878 10045.70
RMSE 0.00250 7.601e-04 6.856e-04 9.160e-04 5.227e-04
No. of

Parameters 12 18 10 13 18
AIC -19570.837 -19643.392 -19113.602 -19551.757 -19857.40
BIC -18968.292 -19008.277 -18521.914 -18943.783 -19222.29

Probability of

Negative

Mortality 0.02700 1.011e-32 1.722e-31 4.34e-14 -

AFNS model fits historical age-cohort data well. Low negative mortality probabilities. CIR
the best fit.
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Affine Cohort Mortality Models - Residual Analysis
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Affine Cohort Mortality Models - MAPE across all cohorts

Mean absolute percentage error (MAPE) - independent AFNS mortality model performs well
at older ages
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Affine Cohort Mortality Models - MAPE

Mean absolute percentage error (MAPE) - independent AFNS mortality model performs
similar to CIR mortality model at older ages
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Figure 4: The CIR Model, the Dependent Blackburn-Sherris Model and the Independent AFNS Model
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Affine Multi-factor Multi-cohort Continuous Time model

The best-estimate survival probability, S Q̄,i (x , t,T ) for cohort i aged x at time t over
duration T − t, has a closed-form solution:

S Q̄,i (x , t,T ) = E Q̄ [e−
∫ T
t µi (x ,s)ds |Ft ]

= eB1(t,T )X1(t)+B2(t,T )X2(t)+B i
3(t,T )Z i (t)+Ai (t,T ), (7)

where

B1(t,T ) = −
1− e−φ1(T−t)

φ1

,

B2(t,T ) = −
1− e−φ2(T−t)

φ2

,

B i
3(t,T ) = −

1− e−φi
3(T−t)

φi
3

,

Ai (t,T ) =
1

2

2∑
j=1

σ2
j

φ3
j

[
1

2
(1− e

−2φj (T−t)
)− 2(1− e

−φj (T−t)
) + φj (T − t)

]

+
1

2

(σi
3)2

(φi
3)3

[
1

2
(1− e−2φi

3(T−t))− 2(1− e−φi
3(T−t)) + φ

i
3(T − t)

]
. (8)
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Multi-cohort Mortality Model Estimation

We use U.S. male mortality data from Human Mortality Database for 1934 to 2013, aged
50 to 100, cohorts born 1884 to 1913.

Restructured on a cohort basis. Common cohort factors estimated with Kalman filter
using all cohorts. Cohort specific factors estimated numerically by grouping cohorts.

Sample survival probability for cohort i aged x at time t over duration T − t is

S̃ i (x , t,T ) =
T−t∏
s=1

(1− q̃ix(t + s − 1)), (9)

where q̃ix(t) is the observed death rate at time t.

Corresponding sample average force of mortality is

µ̃i (x , t,T ) = − 1

T − t
logS̃ i (x , t,T ). (10)
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Multi-cohort Mortality Model Estimation

We use the Kalman filter estimation for the two common factors - parameter estimates
shown in Table 2.

φ1 -0.14313
φ2 -0.07904
σ1 0.00006
σ2 0.00018
ε1(×107) 2.74881
ε2(×107) 1.99699
Log likelihood 24440
RMSE 0.00051

Table 2: Kalman filter parameter estimates, log likelihood and RMSE.
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Multi-cohort Mortality Model Estimation

Parameters for the cohort specific factors are estimated by minimising calibration error in
the model after including the cohort factor.

Grouping by 10 cohorts.

Cohort parameters are shown in Table 3.

i cohort φi3 σi3 Z i (0)

1884-1893 0.06791 0.00558 0.00163
1894-1903 0.05228 0.00719 0.00106
1904-1913 0.05463 0.00122 -0.00079

Table 3: Estimation results for cohort specific factors with 10-year grouping of cohorts.
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Calibrating Price of Risk - Blackrock CoRI

BlackRock introduced the CoRI Indexes in June 2013 to help investors estimate and track
the cost of $1 of annual lifetime income at retirement.

The CoRI consists of twenty indexes corresponding to twenty cohorts born from 1941 to
1960 in U.S.

For cohorts with an age below 65 the index is the discounted cost of purchasing
inflation-adjusted lifetime retirement income at age 65, and for other cohorts it is the cost
of purchasing inflation-adjusted retirement income for remaining life.

The CoRI indexes are constructed based on real-time market data, do not include any fees
or premium taxes that would be associated with the price of an annuity. Available on
NYSE.

Investors can use the CoRI index as a risk metric directly or invest in the BlackRock CoRI
Funds that track the index.
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Implied Price of Longevity Risk based on CoRI indices

The calibrated risk premiums are shown in Table 4.

λ̂µ,1 λ̂µ,2 λ̂1
µ,3 λ̂2

µ,3

0.3601 0.0892 0.1099 0.0973

Table 4: Calibrated market price of longevity risk.

Note that all prices of risk are positive

Prices of risk are consistent with and of similar magnitude to other studies.

Cohort prices of risk calibrated for 1941 to 1950 cohorts (λ̂1
µ,3 ) and 1951 to 1960 cohorts

(λ̂2
µ,3).

There are similar prices of risk for each cohort risk factor across all cohorts.
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Summing Up

Empirical results support the independent-factor AFNS cohort mortality model:

Parsimonious, captures the variation in cohort mortality rates in US data, producing a better
fit at older ages than the independent-factor Blackburn-Sherris model, and has good
predictive performance.

As a Gaussian model it is easy to implement with closed-form expressions for survival
probabilities, easy to estimate using the Kalman filter, and can be readily implemented using
simulation.

Negative mortality rates have very low probability.

Factors (Level, Slope, Curvature) better fit historical data dynamics and have intuitive factor
interpretation.

Multi-factor age-cohort models, and particularly the AFNS model, are well suited for financial
and insurance applications.

Ongoing research: incorporating incomplete cohorts into estimation, better capturing
Poisson variation, age-dependence in trend and covariance, machine learning for model
estimation. 21/21
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