Tort Reform and Physician Moral Hazard

Juan Zhang

Center for Insurance Policy and Research (CIPR)
National Association of Insurance Commissioners (NAIC)

55th Actuarial Research Conference (ARC 2020)
Research Question

- States have been enacting tort reforms that reduce the liability of physicians who conduct malpractice

- Whether physicians exhibit moral hazard after tort reform?
 - Moral hazard: Physicians become more careless due to reduced financial liability
 - Use a regression-based actuarial model to predict incurred losses
Motivations

- Individual-level data are hard to obtain
- Insurance data are an aggregate of the individual-level data and may serve as a representative
- Medical malpractice insurers are the primary payer of medical malpractice claims
 - They have the *data* and *ability* to predict the behavioral changes of physicians and patients
 - Explore research question through the lens of medical malpractice insurers
Background of Tort Reform

- States have been *enacting* and *repealing* tort reforms
 - Most occurred before 2005, but there were still some after 2005
 - Study 5 types of tort reforms
 - Caps on noneconomic damages
 - Caps on punitive damages
 - Reforms to punitive damage evidence rules
 - Reforms to the collateral source rules
 - Reforms to the joint and several liability rules
Hypothesis

- Physicians exhibit moral hazard after tort reform
 - Physicians bear fewer costs of malpractice risk
 - Take fewer precautions and/or become more careless due to reduced liability
 - This can cause more malpractice claims and adversely affect patients’ benefits
 - Patients must bear more costs of medical malpractice risk
 - Have to take more precautions, e.g., spend more time searching for a reliable physician or communicate more carefully with their doctor to decide an appropriate treatment
 - Once file a claim, the expected payment is reduced
Three-Factor Model

\[X_t = F_{Dt} \ast F_{Pt} \ast S_t \]

Expected loss of malpractice insurance

\[X_t = F_{Dt} \ast F_{Pt} \ast S_t \]

Positive Net LR Revisions

- Decompose the effects of three factors (undone)
Positive Net LR Revision

Expect to observe *positive net LR revisions* if Physician Moral Hazard dominates the other two factors.
Data

- Firm-level data
 - NAIC Property-Casualty Annual Statements, 1993-2015
- State-level data
 - Tort reform data
 - Database of State Tort Law Reforms (2012, DSTLR 5th)
 - 2017 American Tort Reform Association (ATRA) Tort Reform Record
 - State control variables: various sources
- Screening
 - Drop DPW <= 0, trim outliers at the 1% and 99% levels
Incurred Losses Prediction Method

- What are the loss reserves in absence of tort reform?
 - Predict future reserves using past information and actuarial model

- Idea of FIRR method (Grace and Leverty, 2017)
 - Full Information Reserve Revision (FIRR) = Reported Reserves (t) – Predicted Reserves (t)
 - Predicted Reserves (t) are made using data of year t-1 and a forward-looking, regression-based model
 - Around treatment year: FIRR is reserve revision after tort reform

FIRR Method

- Regression (on year t-1 data)

\[
\log(\text{IncurredLosses})_{mn} = \alpha + \sum_{m=2}^{10} \lambda_m \text{Row}_m + \sum_{n=2}^{10} \delta_n \text{Col}_n + \varepsilon_{mn}
\]

- Prediction (using year t data)

\[
\text{IncurredLosses}_t = e^{\alpha + \lambda_m + \delta_{12-n}}
\]

- Full Information Reserve Revision (FIRR)

\[
\text{FIRR}_t = \text{ReportedIncurredLosses}_t - \text{IncurredLosses}_t
= \sum_{m=2}^{10} (\text{ReportedIncurredLosses}_{mt} - \text{IncurredLosses}_{mt})
\]
Example of FIRR

\[
\log(\text{IncurredLosses})_{mn} = \alpha + \sum_{m=2}^{10} \lambda_m \text{Row}_m + \sum_{n=2}^{10} \delta_n \text{Col}_n + \varepsilon_{mn}
\]

Panel A: Reporting Year 1994

<table>
<thead>
<tr>
<th>Accident Year</th>
<th>col1</th>
<th>col2</th>
<th>col3</th>
<th>col4</th>
<th>col5</th>
<th>col6</th>
<th>col7</th>
<th>col8</th>
<th>col9</th>
<th>col10</th>
</tr>
</thead>
<tbody>
<tr>
<td>row1 1985</td>
<td>222135</td>
<td>197291</td>
<td>178868</td>
<td>155055</td>
<td>148120</td>
<td>135776</td>
<td>124453</td>
<td>116916</td>
<td>104418</td>
<td>101709</td>
</tr>
</tbody>
</table>
| row2 1986 | 212791| 213042| 168307| 156990| 134873| 115985| 105829| 95486 | 91773 | α + λ₂ + δ₁₀
| row3 1987 | 271404| 172330| 177027| 146324| 120119| 111173| 94104 | 89484 | α + λ₃ + δ₉
| row4 1988 | 183638| 168941| 154539| 130901| 122902| 109151| 101216| α + λ₄ + δ₈
| row5 1989 | 196963| 180051| 153666| 141629| 121042| 112140| α + λ₅ + δ₇
| row6 1990 | 196639| 169779| 153772| 135711| 120996| α + λ₆ + δ₆
| row7 1991 | 173433| 167964| 160731| 142990| α + λ₇ + δ₅
| row8 1992 | 190764| 186226| 147255| α + λ₈ + δ₄
| row9 1993 | 194654| 153910| α + λ₉ + δ₃
| row10 1994 | 163462| α + λ₁₀ + δ₂

Panel B: Reporting Year 1995

<table>
<thead>
<tr>
<th>Accident Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>212791</td>
<td>213042</td>
<td>168307</td>
<td>156990</td>
<td>134873</td>
<td>115985</td>
<td>105829</td>
<td>95486</td>
<td>91773</td>
<td>84937</td>
</tr>
<tr>
<td>1987</td>
<td>271404</td>
<td>172330</td>
<td>177027</td>
<td>146324</td>
<td>120119</td>
<td>111173</td>
<td>94104</td>
<td>89484</td>
<td>76401</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>183638</td>
<td>168941</td>
<td>154539</td>
<td>130901</td>
<td>122902</td>
<td>109151</td>
<td>101216</td>
<td>90953</td>
<td>49354</td>
<td>34728</td>
</tr>
<tr>
<td>1989</td>
<td>196963</td>
<td>180051</td>
<td>153666</td>
<td>141629</td>
<td>121042</td>
<td>112140</td>
<td>99575</td>
<td>49354</td>
<td>50209</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>196639</td>
<td>169779</td>
<td>153772</td>
<td>135711</td>
<td>120996</td>
<td>102761</td>
<td>48553</td>
<td>27047</td>
<td>30929</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>173433</td>
<td>167964</td>
<td>160731</td>
<td>142990</td>
<td>124264</td>
<td>68616</td>
<td>42400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>190764</td>
<td>186226</td>
<td>147255</td>
<td>136364</td>
<td>83389</td>
<td>30929</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>194654</td>
<td>153910</td>
<td>150357</td>
<td>96151</td>
<td>19372</td>
<td>30929</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>163462</td>
<td>162036</td>
<td>116930</td>
<td>28113</td>
<td>19434</td>
<td>30929</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>169988</td>
<td>135902</td>
<td>153618</td>
<td>14455</td>
<td>8398</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel C: Summary

\[
\text{incurred losses reported} = 1027648 \quad \text{(1995 data)}
\]
\[
\text{incurred losses predicted} = 787260 \quad \text{(1994 data)}
\]
\[
\text{FIRR} = 240388 \quad \text{1995 FIRR}
\]
Allocate FIRR to State Level

• Pure sample
 ▶ Medical malpractice insurers operating in only one state
 ▶ 283 firms and 1,224 firm-year-state observations
 ▶ 18% incurred losses and 17% direct premiums of full sample
 ▶ *Biased toward small mutual insurers and RRGs*

• Full sample
 ▶ All insurers, 497 firms and 50,580 firm-year-state observations
 ▶ Allocate *FIRR to state level* using the proportion of premiums for each state
 ✦ *FIRR*$_{st}$ = *FIRR* * %DPW$_{s}$
Diff-in-Diff Model

- Two-way fixed effects DiD regression

\[
FIRR(st)_{ist} = \sum_{j=1}^{5} \beta_j Reform_{j,st} + \alpha_i + \delta_s + \gamma_i + \lambda X_{it} + \eta Z_{st} + \epsilon_{ist}
\]

- \(FIRR(st)\) is \(FIRR\) for the single-state sample or \(FIRRst\) for the full sample, both scaled by the average total admitted assets

- \(Reform\) is a dummy for each of five types of tort forms

- Physician moral hazard prevails if \(\beta_j > 0\)

 - Firm-level control variables \(X\): managerial incentives for reserve management, firm size, group dummy, org form

 - State-level control variables \(Z\): GSP per capita, personal healthcare expenditures, \# of EEs of insurance carriers/hospitals, \# of lawyers, average ratio of Republican in lower & upper house
Result of DiD Model

<table>
<thead>
<tr>
<th>Dependent Var =</th>
<th>Single-State Sample</th>
<th>Full Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FIRR_occ</td>
<td>FIRR_clm</td>
</tr>
<tr>
<td>Tort Reform Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caps on Noneconomic Damages</td>
<td>-0.007</td>
<td>0.002</td>
</tr>
<tr>
<td>(0.013)</td>
<td>(0.014)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Caps on Punitive Damages</td>
<td>0.005</td>
<td>-0.011</td>
</tr>
<tr>
<td>(0.011)</td>
<td>(0.029)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Punitive Damage Evidence</td>
<td>-0.020</td>
<td>0.074**</td>
</tr>
<tr>
<td>(0.028)</td>
<td>(0.032)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>Collateral Source Rules</td>
<td>-0.067</td>
<td>0.043</td>
</tr>
<tr>
<td>(0.054)</td>
<td>(0.033)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>Joint and Several Liability</td>
<td>0.005</td>
<td>0.019</td>
</tr>
<tr>
<td>(0.009)</td>
<td>(0.015)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Observations</td>
<td>809</td>
<td>1,068</td>
</tr>
<tr>
<td>Overall R-squared</td>
<td>0.649</td>
<td>0.574</td>
</tr>
<tr>
<td>Fixed Effects</td>
<td>Firm, State, Year</td>
<td>Firm, State, Year</td>
</tr>
</tbody>
</table>

Note: The table reports robust standard errors clustered by states in parentheses.

- **Magnitude:** $4.6\% = 32.8 million, $0.1\% = $2.8 million

- **Why these reforms?**
 - Punitive damages may unpredictably lead to a catastrophic jury verdict against the physicians.
 - Joint and several liability rules may also cause a significant liability.
Decomposition of LR Revision (future work)

- Partial derivatives

\[\Delta X = \Delta F_D \cdot F_{P0} \cdot S_0 + \Delta F_P \cdot F_{D0} \cdot S_0 + \Delta S \cdot F_{D0} \cdot F_{P0} \]

\[= (F_{D1} - F_{D0}) \cdot F_{P0} \cdot S_0 + (F_{P1} - F_{P0}) \cdot F_{D0} \cdot S_0 + (S_1 - S_0) \cdot F_{D0} \cdot F_{P0} \]

- NPDB data

 - Medical malpractice payment records, 1993 to 2014
 - Patient (yearly average count) \(\rightarrow F_{P1}, F_{P0} \)
 - Severity (yearly average payment) \(\rightarrow S_1, S_0 \)

 - Adverse action records, 1997 to 2018
 - Physician (yearly average count) \(\rightarrow F_{D1}, F_{D0} \)
Conclusion & Contribution

- This paper investigates the prevalence of physician moral hazard after tort reform using medical malpractice insurers’ reserve data.

- I find that physician moral hazard significantly exists after reforms to punitive damages and to joint and several liability rules.

- Contribution:
 - Provide the first empirical evidence of physician moral hazard due to tort reform
 - Add new evidence regarding the downside of tort reform
All comments are appreciated!

Email: juan.zhang@temple.edu

THANK YOU VERY MUCH!