ASSET-LIABILITY MANAGEMENT OF LIFE INSURERS IN THE NEGATIVE INTEREST RATE ENVIRONMENT

Yijia Lin
University of Nebraska - Lincoln
Sheen Liu
Washington State University
Ken Seng Tan
Nanyang Technological University Xun Zhang*

Central University of Finance and Economics

2020 Actuarial Research Virtual Conference
August 12, 2020

Negative Interest Rates

Japanese government bond yields
In percent

Trend of U.S. Interest Rates

FRED - Effective Federal Funds Rate

Motivation

\square Research on the effect of a negative interest rate policy (NIRP) on the insurance industry is limited (Alberts, 2020).
\square Whether some widely adopted duration measures (e.g. the Macauley and modified durations) can be used in the negative interest rate environment remains poorly understood.

Modified Duration (D^{M})

Contributions

\square We provide initial evidence that a decline in interest rates in the negative interest rate environment produces a much more serious consequence on life insurers than that in the positive interest rate environment.
\square We add to the asset-liability management (ALM)
literature by studying a life insurer's optimal decision with a duration constraint based on the Vasicek interest rate model (1977).

Presentation Outline

\square Empirical analyses
D Duration based on Vasicek model
\square Basic ALM framework for life insurers
\square Numerical illustration
\square Conclusion

Empirical Analyses

\square Data: 38 Japanese life insurers and 2-,3-,5-,7- year Japanese government coupon bonds' yearly YTM from 1999 to 2018.
\square OLS Regressions

$$
\begin{align*}
& R O A_{i, t}=\beta_{0}+\beta_{1} \text { Interest rate variable } n_{n, t} \\
& +\Gamma^{\prime} \text { Control variable } i, t+\text { Firm Effect }{ }_{i}+\epsilon_{i, t} \tag{2}
\end{align*}
$$

OLS Model (1)

\square Interest rate-return association analysis

Variable	(1)	(2)	(3)	(4)	(5)
$Y T M_{n, t}$	$\sqrt{ }$				
Indicator variable of $Y T M_{n, t}$		$\sqrt{ }$			
Positive $Y T M_{n, t}$			\checkmark		$\sqrt{ }$
Negative $Y T M_{n, t}$				\checkmark	\checkmark
Premium Growth Rate $_{i, t}$	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$
$\log (\text { Total Asset })_{i, t}$	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark
Firm Effect ${ }_{i}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

OLS Model (1) Result

Table 3: The impact of interest rate on Japanese life insurers' performance

Variable	(1)		(2)		(3)		(4)		(5)	
Intercept	$\begin{gathered} \hline-0.2555 \\ (-7.66) \end{gathered}$	***	$\begin{gathered} -0.2438 \\ (-7.96) \end{gathered}$	***	$\begin{gathered} \hline-0.2544 \\ (-7.63) \end{gathered}$	***	$\begin{gathered} -0.2437 \\ (-7.97) \end{gathered}$	***	$\begin{gathered} \hline-0.2535 \\ (-7.65) \end{gathered}$	***
5-year Japanese government bond YTM (\%)	$\begin{aligned} & 0.0077 \\ & (3.51) \end{aligned}$	***								
$=1$ if 5-year Japanese government bond $\mathrm{YTM}<0 ; 0$ otherwise			$\begin{aligned} & -0.0052 \\ & (-3.24) \end{aligned}$	***						
Positive 5-year Japanese government bond YTM (\%)					$\begin{aligned} & 0.0077 \\ & (3.25) \end{aligned}$	***			$\begin{aligned} & 0.0053 \\ & (1.75) \end{aligned}$	*
Negative 5-year Japanese government bond YTM (\%)							$\begin{aligned} & 0.0432 \\ & (3.03) \end{aligned}$	***	$\begin{aligned} & 0.0313 \\ & (2.22) \end{aligned}$	**
Premium growth rate	$\begin{gathered} 0.0045 \\ (0.82) \end{gathered}$		$\begin{gathered} 0.0029 \\ (0.52) \end{gathered}$		$\begin{gathered} 0.0046 \\ (0.86) \end{gathered}$		$\begin{gathered} 0.0029 \\ (0.54) \end{gathered}$		$\begin{gathered} 0.0038 \\ (0.69) \end{gathered}$	
Log(total assets)	$\begin{gathered} 0.0163 \\ (7.94) \end{gathered}$	***	$\begin{gathered} 0.0158 \\ (8.18) \end{gathered}$	***	$\begin{gathered} 0.0162 \\ (7.92) \end{gathered}$	***	$\begin{gathered} 0.0158 \\ (8.18) \end{gathered}$	***	$\begin{gathered} 0.0163 \\ (7.95) \end{gathered}$	***
R^{2}	0.6989		0.6983		0.6976		0.6981		0.7007	
Firm-fixed Effect	Yes									
No. of Obs	282		282		282		282		282	

Note: t-statistics based on standard errors clustered at the year level are reported in parentheses.*, **, and *** indicate significance at the $0.10,0.05$, and 0.01 levels.

OLS Model (2)

\square Interest rate-return association analysis

Variable	(1)	(2)	(3)	(4)	(5)
$Y T M_{n, t}$	\checkmark				
Indicator variable of $Y T M_{n, t}$		\checkmark			
Positive $Y T M_{n, t}$			\checkmark		\checkmark
Negative $Y T M_{n, t}$				\checkmark	\checkmark
Premium Growth Rate $i_{i, t}$	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	\checkmark
$\log (\text { Total Asset })_{i, t}$	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$
Firm Effect ${ }_{i}$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark

Model (2) Result

Table 3: The impact of interest rate on Japanese life insurers' performance

Variable	(1)		(2)		(3)		(4)		(5)	
Intercept	$\begin{gathered} -0.2555 \\ (-7.66) \end{gathered}$	***	$\begin{gathered} -0.2438 \\ (-7.96) \end{gathered}$	***	$\begin{gathered} -0.2544 \\ (-7.63) \end{gathered}$	***	$\begin{gathered} -0.2437 \\ (-7.97) \end{gathered}$	***	$\begin{gathered} -0.2535 \\ (-7.65) \end{gathered}$	***
5-year Japanese government bond YTM (\%)	$\begin{aligned} & 0.0077 \\ & (3.51) \end{aligned}$	***								
$=1$ if 5 -year Japanese gov- ernment bond YTM $<0 ; 0$ otherwise			$\begin{aligned} & -0.0052 \\ & (-3.24) \end{aligned}$							
Positive 5-year Japanese government bond YTM (\%)					$\begin{aligned} & 0.0077 \\ & (3.25) \end{aligned}$	***			$\begin{aligned} & 0.0053 \\ & (1.75) \end{aligned}$	*
Negative 5-year Japanese government bond YTM (\%)							$\begin{aligned} & 0.0432 \\ & (3.03) \end{aligned}$	***	$\begin{aligned} & 0.0313 \\ & (2.22) \end{aligned}$	**
Premium growth rate	$\begin{aligned} & 0.0045 \\ & (0.82) \end{aligned}$		$\begin{gathered} 0.0029 \\ (0.52) \end{gathered}$		$\begin{aligned} & 0.0046 \\ & (0.86) \end{aligned}$		$\begin{aligned} & 0.0029 \\ & (0.54) \end{aligned}$		$\begin{gathered} 0.0038 \\ (0.69) \end{gathered}$	
\log (total assets)	$\begin{aligned} & 0.0163 \\ & (7.94) \end{aligned}$	***	$\begin{aligned} & 0.0158 \\ & (8.18) \end{aligned}$	***	$\begin{gathered} 0.0162 \\ (7.92) \end{gathered}$	***	$\begin{aligned} & 0.0158 \\ & (8.18) \end{aligned}$	***	$\begin{aligned} & 0.0163 \\ & (7.95) \end{aligned}$	***
R^{2}	0.6989		0.6983		0.6976		0.6981		0.7007	
Firm-fixed Effect	Yes									
No. of Obs	282		282		282		282		282	

Note: t-statistics based on standard errors clustered at the year level are reported in parentheses.*, ${ }^{* *}$, and ${ }^{* * *}$ indicate significance at the $0.10,0.05$, and 0.01 levels.

OLS Model (5)

\square Interest rate-return association analysis

Variable	(1)	(2)	(3)	(4)	(5)
$Y T M_{n, t}$	$\sqrt{ }$				
Indicator variable of $Y T M_{n, t}$		\checkmark			
Positive Y TM $M_{n, t}$			\checkmark		$\sqrt{ }$
Negative $Y T M_{n, t}$				$\sqrt{ }$	$\sqrt{ }$
Premium Growth Rate $_{i, t}$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$
$\log (\text { Total Asset })_{i, t}$	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$
Firm Effect ${ }_{i}$	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$

Model (5) Result

Table 3: The impact of interest rate on Japanese life insurers' performance

Note: t-statistics based on standard errors clustered at the year level are reported in parentheses. ${ }^{*}$, ${ }^{* *}$, and ${ }^{* * *}$ indicate significance at the $0.10,0.05$, and 0.01 levels.

Implications

A decrease in interest rates in the negative interest rate environment imposes a much more serious consequence on life insurers than that in the positive interest rate environment.

We need to investigate a new ALM model for life insurers in the negative interest rate environment.

Duration Based on Vasicek model $\left(D^{V}\right)$

$$
\begin{align*}
& d r_{t}=a\left(b-r_{t}\right)+\sigma_{r} d W_{r}(t) \tag{3}\\
& P(0, t)=A(0, t) \exp \left(-B(0, t) r_{0}\right) \tag{4}\\
& P_{c}(0, T)=c \sum_{t=1}^{T} P(0, t)+P(0, T) \tag{5}\\
& D^{V}=-\frac{d P_{c}(0, T)}{d r_{0}} \frac{1}{P_{c}(0, T)} \\
& \quad=\frac{c \sum_{t=1}^{T} B(0, t) P(0, t)+B(0, T) P(0, T)}{P_{c}(0, T)} \tag{6}
\end{align*}
$$

Modified Duration vs. Duration Based on Vasicek Model

c	0.0100
a	0.0506
b	0.0692
σ_{r}	0.0100
T	30

Basic ALM Framework for Life Insurer

\square Mortality model
$>$ Lee and Carter (1992)'s model:

$$
\begin{equation*}
\ln q_{x, t}=\alpha_{x}+b_{x} k_{t}+\varepsilon_{x, t} \tag{7}
\end{equation*}
$$

\square Annuity contracts
$>$ Consider a life insurer only has the annuity business.
$>$ Total liability at time t :

$$
\begin{equation*}
L(t)=N_{0}\left(x_{0}+t\right) \cdot E \cdot a_{x_{0}+t} \quad t=0,1,2, \ldots \tag{8}
\end{equation*}
$$

Total Assets

\square 30-year Japanese government bond

$$
d r_{t}=a\left(b-r_{t}\right)+\sigma_{r} d W_{r}(t)
$$

\square Asia-Pacific corporate bond index

$$
\begin{equation*}
d B(t)=B(t)\left[\mu d t+\sigma_{B} d W_{B}(t)\right] \tag{9}
\end{equation*}
$$

\square Brownian motions of these two assets are correlated

$$
\begin{equation*}
d W_{B}(t) d W_{r}(t)=\rho d t \tag{10}
\end{equation*}
$$

\square Total assets at time t :

$$
\mathrm{A}(t)= \begin{cases}C_{0}+N_{0}\left(x_{0}\right) \cdot E \cdot a_{x_{0}} \cdot\left(1+l_{p}\right) & t=0 \tag{11}\\ A\left(t^{-}\right)-E \cdot N_{0}\left(x_{0}+t\right) & t=1,2, \ldots\end{cases}
$$

Total Surplus

\square The insurer's total surplus at time t :

$$
S(t)= \begin{cases}C_{0}+N_{0}\left(x_{0}\right) \cdot E \cdot a_{x_{0}} \cdot\left(1+l_{p}\right)-N_{0}\left(x_{0}\right) \cdot E \cdot a_{x_{0}} & t=0 \tag{12}\\ A\left(t^{-}\right)-E \cdot N_{0}\left(x_{0}+t\right)-N_{0}\left(x_{0}+t\right) \cdot E \cdot a_{x_{0}+t} & t=1,2, \ldots\end{cases}
$$

Basic Optimization Problem

$$
\begin{array}{r}
\text { Maximize } \tag{13}\\
\omega_{1}, \omega_{2}, N_{0}\left(x_{0}\right)
\end{array} S\left(t^{*}\right)
$$

Subject to

$$
\begin{gathered}
\operatorname{VaR}_{\alpha}[S(t)] \geq \mathrm{R}, \mathrm{t}=1,2, \ldots, t^{*} \\
\omega_{1}+\omega_{2}=1 \\
0 \leq \omega_{i} \leq 1, i=1,2 \\
N_{0}\left(x_{0}\right)>0 \\
\text { Duration Constraint }
\end{gathered}
$$

- ω_{1} : weight in 30-year Japanese government bond
- ω_{2} : weight in corporate bond index.

Duration Constraint
 \square Duration strategy 1

$$
\begin{equation*}
>D_{0}^{S}=0 \tag{14}
\end{equation*}
$$

where

$$
D_{t}^{S}=\left\{\begin{array}{c}
\omega_{1} D_{t}^{M_{30}}+\omega_{2} D^{M_{B I}}-D_{t}^{M_{L}}, \text { for Modified duration } \tag{15}\\
\omega_{1} D_{t}^{V_{30}}+\omega_{2} D^{V_{B I}}-D_{t}^{V_{L}}, \text { for Vasicek duration }
\end{array}\right.
$$

- Duration strategy 2
$>\gamma_{1} \leq D_{t}^{S} \leq \gamma_{2}, t=0,1, \ldots, \quad t^{*}$
where γ_{1} and γ_{2} are constants that control for the size of duration mismatching in subsequent periods.

Numerical Illustration

C_{0}	1000
l_{p}	0.18
E	1
$V_{a} R_{\alpha}[S(t)] \geq \mathrm{R}$	$\operatorname{VaR}_{0.01}[S(t)] \geq 0$
c	0.8%
r_{0}	-0.2%
t^{*}	10
Average maturity of corporate bond index	4
Average annual coupon rate of corporate bond index	1.36%

Parameter Estimation of Lee-Carter Model

\square Data: Japanese male population mortality tables (1950 2017) from the Human Mortality Database.
\square Estimates

Parameter Estimation of Vasicek Model

\square Data: monthly yield data of Japanese government zero coupon bonds with 1-month,1-, 5-, $7-, 10-, 15-, 20-$, and 30-year maturities from April 2010 to April 2020.
\square Estimates

a	$0.0970^{* * *}$
b	$0.0120^{* * *}$
σ_{r}	$0.0028^{* * *}$

Parameter Estimation of Geometric Brownian Motion

\square Data: monthly total return index of Bloomberg Barclays Asia-Pacific 3-5 year corporate bond index from April 2010 to April 2020.
\square Estimates

μ	0.0527
σ_{k}	0.1119

\square The correlation of the Brownian motions between the Japanese government zero coupon bond index and Bloomberg Barclays Asia-Pacific 3-5 year corporate bond index

Difference in the Size of Duration Mismatching

Table 8: Vasicek Optimal Solution			
Vasicek	$N_{0}\left(x_{0}\right)$	ω_{1}	ω_{2}
strategy 1	198.9856	0.4837	0.5163
strategy 2	181.4330	0.4201	0.5799

Table 9: Modified Optimal Solution

Modified	$N_{0}\left(x_{0}\right)$	ω_{1}	ω_{2}
strategy 1	159.6332	0.3209	0.6791
strategy 2	155.0015	0.2972	0.7028

Duration Mismatching
[-1.100,-0.260]

Difference in Portfolio Weights

Table 8: Vasicek Optimal Solution				Weight in	
Vasicek	$N_{0}\left(x_{0}\right)$	ω_{1}	ω_{2}	bond index	
strategy 1	198.9856	0.48	0.5		
strategy	181.4330	0.42			
Table 9: Modified Optimal Solution ${ }^{\text {a }}$ (-year					
Modified	$N_{0}\left(x_{0}\right)$	$\omega_{1} \quad \omega_{2} \quad$ Japanese			
strategy 1	159.6332	government bond			
strategy 2	155.0015				

ω_{1} and ω_{2} denote the weights in 30-year Japanese government bond and corporate bond index, respectively.

Difference in Annuity Units

$N_{0}\left(x_{0}\right)$ denotes the annuity units.

Conclusions

\square Our empirical analysis shows that a decrease in interest rates in the negative interest rate environment produces a much more serious consequence on life insurers than that in the positive interest rate environment.
\square We propose an optimization framework to derive the optimal decision of a life insurer with a duration constraint based on the Vasicek interest rate model.
\square The life insurer will assume more risk and will suffer a higher downside risk and greater duration mismatching if they use a modified duration constraint to implement their ALM.

Thank You!

