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Theoretical Background

Data variables

yt =


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t )


I Data dimenstion: n = 5, t = 1, ..., 55-65 years

I Cause-specific mortality rates are not stationary

I ∆yt = yt − yt−1 are stationary, but loss of information

I Cointegration relation = linear combination of
non-stationary variables that is stationary

I Information on the long-term equilibrium between the causes
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Theoretical Background

Model

Error Correction Model representation for the cause-specific
mortality rates vector yt :

∆yt = c + dt + αβ′yt−1 +

p∑
n=1

Γi∆yt−i + εt

I Equation valid only if αβ′yt−1 is stationary
I β is a matrix of rank r where r is the number of cointegration

relations
I α is a loading matrix

I Long-term dynamics via the cointegrated term αβ′yt−1

I Short-term dynamics via the matrices Γi
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Applications

Algorithm

Following procedure was applied to every dataset :

I Test formally for unit roots

I Test for the number of lags in a vector ECM

I Test for the number of cointegration relations r and the form
of the deterministic elements (Johansen, 1994)

I Calculate the matrices α, β and Γi

I Check the residuals for autocorrelation and normality
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Applications

Example of a vector ECM - US males

The following model was chosen as the best describing the data:

∆yt = c + dt + Γ1∆yt−1 + αβ′yt−1 + εt =

=


-2.772
−0.150
−0.243
-2.057
0.156

+


0.010
0.000
0.000
0.005
0.000

 t +


−0.121 −0.707 −0.188 0.174 0.323
−0.004 0.015 -0.166 −0.008 0.133
−0.043 −0.121 0.034 −0.089 0.196
−0.135 −0.294 −0.085 -0.381 1.119
0.042 −0.323 0.198 -0.146 0.227

∆yt−1

+


-0.033
−0.002
−0.003
-0.026
0.002

 [1.772 −5.499 −18.602 13.217 14.132
]

yt−1 + εt

Significant coefficients (at 5% significance level) are in bold.



Short- and Long-Term Dynamics of Cause-specific Mortality Rates using the Cointegration Analysis 14 / 23

Applications

Impulse-response analysis (1)
I What is the response of every cause-specific mortality rate to a

shock from a particular cause (e.g. IP)?

→ Vector of starting values: y0 = (sdt.dev(IP), 0, 0, 0, 0)

→ All causes show weak reaction to the shock from IP mortality rate
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Applications

Impulse-response analysis (2)

I Alternative way: how sensitive is a particular cause-specific mortality
rate (e.g. IP) to a random shock from other causes (one at a time)?

→ IP mortality rate shows important reaction to the shocks from every
other cause
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Applications

Short- vs. long-term dynamics

What drives this behavior of the IP mortality rate?

I Not the short term: the corresponding coefficients in the Γ1

matrix are not significant

I Long-term: the cointegration relation enters the equation for
the IP mortality rate with a significant coefficient α1
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Applications

Overview : impulse-response analysis

I Same procedure applied to the rest of the datasets

I High-level summary of responses of the mortality rate Y to
the shock given to the rate X:

X \ Y IP Cancer Circulatory Respiratory External

IP — Low Low Low Low

Cancer High — Med High High

Circulatory High Low — High Med

Respiratory Med Low Low — Low

External High Low Low High —
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Applications

Overview: the short term

Γ1 coefficients which are significantly different from zero, significance
level of 5%:

Dataset ∆IPt ∆Canct ∆Circt ∆Respt ∆Extt
US/M - Circ,Ext - Resp,Ext Resp

JP/M - Canc Resp Circ,Resp -

FR/M - - Resp Circ,Resp Circ,Resp

E&W/M Ext - - IP,Circ, Resp Ext

AU/M IP Canc, Ext Circ - Ext

US/F Canc,Ext Ext Canc Resp Canc,Resp

JP/F IP,Resp - Resp - Circ,Resp,Ext

FR/F Canc,Circ - - Canc,Circ,Resp IP

E&W/F - - Resp Resp Resp

AU/F IP,Resp Canc Circ Circ,Resp -
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Applications

Overview: the long term

Equations to which the long-term component (i.e., cointegration relation)
enters with a coefficient αi significantly different from zero, significance
level of 5%:

Country Males Females

US αi ∆IPt , ∆Respt ∆IPt , ∆Canct ,∆Circt , ∆Respt
JP α1i ∆IPt , ∆Canct ∆Circt , ∆Respt

α2i ∆IPt , ∆Canct , ∆Respt ∆IPt , ∆Canct ,∆Circt , ∆Respt
FR αi ∆IPt , ∆Canct , ∆Respt -

αi - ∆IPt , ∆Canct , ∆Respt
E&W αi ∆Canct , ∆Respt , ∆Extt ∆IPt , ∆Circt , ∆Extt
AU αi - ∆IPt , ∆Circt , ∆Extt

αi ∆IPt , ∆Circt , ∆Respt -
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Conclusion

Concluding remarks
In the short term

I Development of Circulatory, Respiratory, and External mortality rates
depends on other cause-specific mortality rates;

I IP and Cancer mortality rates seem to be less impacted by other causes.

In the long term

I IP and Respiratory mortality rates are the most impacted by the
cointegration relation;

I Cancer and Circulatory mortality rates are less impacted;

I External causes seem to be totally independent from it.

Objective

I Set more informed assumptions on the future development of mortality.

Next steps

I Study common stochastic trends shared by the cause-specific mortality
rates.
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Introduction
• If human lifetimes are three years longer than 
expected (in line with underestimations in the 
past), costs of aging will increase by 50% of 
GDP in advanced economies and 25% of GDP  
in emerging economies (IMF, 2012). 

• Mortality forecasting is invaluable for actuaries. 
• Model assumptions may make a huge difference 
in the long run! 
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Contents
1.  Time-invariance assumption of the  

Lee−Carter (1992) model 
2.  Rotation of the age pattern of mortality 

improvements (Li−Lee−Gerland, 2013) 
3.  Proposed methodology to assess rotation 

(Vékás, 2019) 
4.  Results on EU data 
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Lee−Carter (1992) model 
• “Gold standard” of mortality forecasting. 
• Log-mortality rates modeled as 
                                  . 
• As kt declines over time, the coefficients bx 
regulate the rates of improvement by age. 

• Age-specific improvement rates bx assumed to be 
independent of time (not bxt)!  

5 

lnmxt = ax + bxkt + "xt



Rotation
• Rotation of the age pattern of mortality 
improvements (Li−Lee−Gerland, 2013):         
mortality improvements tend to slow down in 
younger ages and speed up in older ages. 

• Possible reasons:  
•  little room left for spectacular advances in preventing child 
mortality, 

•  improved, costly medical technology to cope with serious 
illness and extend life. 
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Illustration
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Rotation in theory and practice
• Plenty of sporadic evidence for rotation in the 
literature, mostly based on ad hoc methods. 

• Li−Lee−Gerland (2013) have created the LC 
model including rotation (LCR variant). 

• Applied by Vékás (2018) on Hungarian data to 
see the long-term impact of rotation. 
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Rotation of bx in LCR model "
(Hungary, 2018-2100)!
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Projection with and without rotation 
(Hungary, 2018-2100) 
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Substantial impact! "
(Hungary, rates in 2100 with/without rotation)
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To rotate or not to rotate?
• Forecasts ignoring rotation systematically 
underestimate longevity risk! 

• Errors may be tremendous in the long run.  
• It is crucial to assess whether there is rotation. 
• Vékás (2019) proposes a methodology to 
measure and statistically test rotation and applies 
it on historical data of 28 EU countries. 
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Mortality improvement rates"
and acceleration rates

• Mortality improvement rates                         
(x: age, t: period, c: country, g: gender) 

 
 

• Long-term acceleration = slope of linear trend of 
mortality improvement rates over time: 

13 



Strength of rotation
• Measured by Spearman’s ρ between acceleration 
and age, weighted by population sizes of age 
groups: 
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Data

• UN World Population Prospects 2017 
• Mortality rates, life expectancies at birth and 
population counts 

• 22 age groups, both genders 
• 13 periods (1950−1955 up to 2010−2015) 
• 28 member states of the EU 

15 



Strength of rotation "
by country and gender
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Strongest rotation: Cyprus "
(earliest vs. latest periods)
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Potential predictors of rotation
• Gender 
• Former political bloc (East or West) 
• e0 (Li−Lee−Gerland, 2013: rotation is more 
prevalent in low-mortality countries) 

• Possibly also e60, or improvement of e0 between 
1950 and 2015 

18 



Impact of gender and political bloc
• Significantly more rotation in women’s data!  
• More rotation in the former Eastern bloc, but 
difference is not significant. 

19 



Rotation only correlated with e0 in the East

20 



Conclusions
• New, simple, data-driven methodology to 
assess rotation and its relationships with other 
variables. 

• Rotation is far from universal: only in some 
member states. 

• More rotation in women’s data. 

21 



Conclusions
• Somewhat more in rotation in former Eastern 
bloc. 

• Only related to e0 in the East. 
• Methodology may be used to decide whether to 
use LC model or LCR variant. 

22 



 
 

Thank you very much
for your attention!

23 



References
•  Bohk-Ewald C, Rau R (2017) Probabilistic mortality forecasting with varying age-specific survival improvements. 

Genus J Popul Sci 73(1):15. https://doi.org/10.1186/s41118-016-0017-8 
•  Bongaarts J (2005) Long-range trends in adult mortality: Models and projection methods. Demography. 42(1):23–

49. https://doi.org/10.1353/dem.2005.0003 
•  Booth H, Tickle L (2008) Mortality modelling and forecasting: a review of methods. Ann Actuar Sci. 3(1–2):3–43. 

https://doi.org/10.1017/S1748499500000440 
•  Booth H, Maindonald J, Smith L (2002) Applying Lee-Carter under Conditions of Variable Mortality Decline. 

Population Studies 56(3):325–336. https://doi.org/10.1080/00324720215935 
•  Cairns AJG, Blake D, Dowd K, Coughlan GD, Khalaf-Allah M (2011) Bayesian stochastic mortality modelling for 

two populations. ASTIN Bull 41(1):29–59 
•  Carter LR, Prskawetz A (2001) Examining structural shifts in mortality using the Lee -Carter method (working 

paper). Max Planck Institute for Demographic Research. 
https://www.demogr.mpg.de/Papers/Working/wp-2001-007.pdf 

•  Christensen K, Doblhammer G, Rau R, Vaupel JW(2009) Ageing populations: the challenges ahead. Lancet 
374(9696):1196–1208. https://doi.org/10.1016/S0140-6736(09)61460-4 

•  Cleveland WS, Devlin SJ (1988) Locally-weighted regression: an approach to regression analysis by local fitting. 
J Am Stat Assoc 83(403):596–610. https://doi.org/10.2307/2289282 

24 



References
•  De Beer J, Janssen F (2016) A new parametric model to assess delay and compression of mortality. Popul Health 

Metr 14:46. https://doi.org/10.1186/s12963-016-0113-1 
•  Dion P, Bohnert N, Coulombe S, Martel L (2015) Population Projections for Canada (2013 to 2063),Provinces 

and Territories (2013 to 2038): technical report on methodology and assumptions. Technical report, Statistics 
Canada. https://www150.statcan.gc.ca/n1/en/catalogue/91-620-X 

•  Haberman S, Renshaw A (2012) Parametric mortality improvement rate modelling and projecting. Insur Math 
Econ 50(3):309–333. https://doi.org/10.1016/j.insmatheco.2011.11.005 

•  Horiuchi S, Wilmoth JR (1995) The aging of mortality decline. In: Annual meeting of the population Association of 
America, San Francisco, CA 

•  Hyndman RJ, Ullah MS (2007) Robust forecasting of mortality and fertility rates: a functional data approach. 
Comput Stat Data Anal 51(10):4942–4956. https://doi.org/10.1016/j.csda.2006.07.028 

•  Hyndman RJ, Booth H, Yasmeen F (2013) Coherent mortality forecasting: the product-ratio method with 
functional time series models. Demography 50(1):261–283. https://doi.org/10.1007/s13524-012-0145-5 

•  IMF (2012). Global Financial Stability Report. Chapter 4: The financial impact of longevity risk. International 
Monetary Fund, Washington D.C. http://www.imf.org/external/pubs/ft/gfsr/2012/01/pdf/text.pdf 

•  Lee RD, Carter LR (1992) Modeling and forecasting US mortality. J Am Stat Assoc 87:659–671. 
https://doi.org/10.2307/2290201 

25 



References
•  Kannisto V, Lauritsen J, Thatcher AR, Vaupel JW (1994) Reductions in mortality at advanced ages: several 

decades of evidence from 27 countries. Popul Dev Rev 20(4):793–810. https://doi.org/10.2307/2137662 
•  Lee R (2000) The Lee–Carter method for forecasting mortality, with various extensions and applications. North 

Am Actuar J 4(1):80–93. https://doi.org/10.1080/10920277.2000.10595882 
•  Lee R, Miller T (2001) Evaluating the performance of the Lee–Carter method for forecasting mortality. 

Demography 38(4):537–549. https://doi.org/10.1353/dem.2001.0036 
•  Li H, Li JS (2017) Optimizing the Lee–Carter approach in the presence of structural changes in time and age 

patterns of mortality improvements. Demography 54(3):1073–1095. https://doi.org/10.1007/s13524-017-0579-x 
•  Li N, Gerland P (2011) Modifying the Lee–Carter method to project mortality changes up to 2100. In: Annual 

meeting of the population Association of America, Washington, DC 
•  Li N, Lee R (2005) Coherent mortality forecasts for a group of populations: an extension of the Lee–Carter 

method. Demography 42(3):575–594. https://doi.org/10.1353/dem.2005.0021 
•  Li N, Lee R, Gerland P (2013) Extending the Lee–Carter method to model the rotation of age patterns of 

mortality-decline for long-term projection. Demography 50(6):2037–2051. 
https://doi.org/10.1007/s13524-013-0232-2 

•  Mitchell D, Brockett P, Mendoza-Arriaga R, Muthuraman K (2013) Modeling and forecasting mortality rates. Insur 
Math Econ 52(2):275–285. https://doi.org/10.1016/j.insmatheco.2013.01.002 

26 



References
•  Pinto da Costa J (2015) Rankings and preferences – new results in weighted correlation and weighted principal 

component analysis with applications. Springer, Berlin. ISBN 978-3-662-48343-5 
•  Pitacco E, Denuit M,Haberman S, Olivieri A(2009) Modelling longevity dynamics for pensions and annuity 

business. Oxford University Press, Oxford ISBN: 9780199547272 
•  R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna 
•  Rau R, Soroko E, Jasilionis D, Vaupel JW(2008) Continued reductions in mortality at advanced ages. Popul Dev 

Rev 34:747–68. https://doi.org/10.1111/j.1728-4457.2008.00249.x 
•  RussolilloM,Giordano G, Haberman S (2011) Extending theLee–Carter model: a three-way decomposition. Scand 

Actuar J 2011(2):96–117. https://doi.org/10.1080/03461231003611933 
•  Ševčíková H, Li N, Kantorová V, Gerland P, Raftery AE (2016) Age-specific mortality and fertility rates for 

probabilistic population projections. In: Schoen R (ed.) Dynamic demographic analysis, vol 39. The Springer Series 
on Demographic Methods and Population Analysis. Springer, Switzerland, pp 69–89 

•  Tuljapurkar S, Li N, Boe C (2000) A universal pattern of mortality change in the G7 countries. Nature 405(6788):
789–792 

•  United Nations Population Division (2018). World Population Prospects 2017 (maintained by Ševčíková, H.). 
https://CRAN.R-project.org/package=wpp2017 

27 


	Cover Page
	Viktoriya Glushko
	Vekas

