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Two Excellent Papers
• Congratulations to authors

• Mathematically challenging

• Will discuss separately
• Longevity Risk

• Aggregate vs individual
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Huang – Affine Mortality Models 
• Continuous annuity:

• Both 𝜇𝜇 and 𝛿𝛿 are complex stochastic processes
• Need to model both to capture risk
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Arbitrage-Free Nelson-Siegel model
• Continuous time force of mortality model
• Closed form

• Components for Level, Slope, and Curvature
• But otherwise not very intuitive

• Consistent modeling of mortality & interest
• Appropriate for aggregate longevity risk

• “Winner” in out of sample forecasting (SMAPE)

4



Cohort Mortality Model
• Advantages

• Mortality patterns likely to be more related
• More relevant for long term obligations

• Annuities, pensions

• Disadvantages:
• Complete cohorts were born a long time ago

• Out of sample data was 1916 birth cohort 

• How relevant to current pensioner mortality?
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Huynh – Multi-population Model
• Many insurance applications!

• Male versus female mortality
• Preferred versus standard mortality

• And multi-level preferred

• Company mortality versus industry mortality
• Insured mortality versus population mortality

• Lengthscale parameter 𝜃𝜃 determines closeness
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Coherent mortality improvement models
• See heat maps on slide 15

• Color scales are different

• Would have been nice for 2015 VBT development
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But Wait!
• Computationally expensive

• Only used ages 70 – 84 to fit models
• Suggested limit of 5 populations

• Covariance stationarity constrains shape
• Suggested modeling age groups separately
• Implicit Gompertz-Makeham assumption?
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Congratulations Again to Authors!
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Introduction

Mortality models have attracted research attention over recent years,
particularly discrete time mortality models (Lee and Carter (1992),
Cairns et al. (2006b), Cairns et al. (2009), Renshaw and Haberman
(2006)).

focus on improvement trends,

impact of uncertainty or volatility of mortality, and

cohort effects.

Continuous time affine cohort mortality models have attracted more
recent research

single cohort models (Milevsky and Promislow (2001), Dahl and Møller
(2006), Biffis (2005), Luciano et al. (2008), Schrager (2006), Cairns
et al. (2006a), Blackburn and Sherris (2013))

multi-cohort models (Jevtic et al. (2013), Xu et al. (2019a), Chang and
Sherris (2018), Huang et al. (2019)).
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Why Continuous Time Affine Models?

Analytical tractability - closed form survival curves for affine class,

Consistency between mortality dynamics and functional form of the
survival curve,

Stability of parameter estimates,

Use of mathematical finance methods for term structure and credit
risk models familiar to financial market participants,

Natural extensions to multi-factor models, capturing differing trends,
volatility and correlations by age,

Arbitrage-free formulation along with real world dynamics to allow
calibration of prices of risk.
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Coverage of this Presentation

Introduce continuous-time affine cohort mortality models -
closed-form expressions for survival curves, dynamics of mortality
rates, AFNS mortality models with factors of level, slope and
curvature for the mortality curve,

Fitting with age-cohort data,

Kalman filter and estimation of the models, highlighting how Poisson
variation can be incorporated into the model estimation,

Comparison of fits and cohort survival curve prediction using historical
US mortality data.
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Survival Curve - Continuous Time Affine Mortality Model

Drawing on term structure of interest rate models - equivalence of
average force of mortality rate to yield to maturity for zero coupon
bond. Use of similar notation as in yield curve modelling.

Survival probability S(x , t,T ) for single cohort aged x at time t for
survival for a duration (T − t) to age x + (T − t), as an affine
function of (latent) factors (3 factor case)

S(x , t,T ) = E [e−
∫ T
t µi (x ,s)ds |Ft ]

= e−µ̄(t,T )(T−t)

= eB1(t,T )X1(t)+B2(t,T )X2(t)+B3(t,T )X3(t)+A(t,T ), (1)

Bj(t,T ) are factor loadings (functional form derived from mortality
dynamics for the latent factors, exponential terms) and Xj(t) are the
latent factors (stochastic parameters).
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Mortality Rate - Continuous Time Affine Mortality Model

Average mortality rate - age-period data or age-cohort data

µ̄ (t,T ) = − 1

T − t
log [S (t,T )] = −B (t,T )

′

T − t
Xt −

A (t,T )

T − t
. (2)

where vector B (t,T ), the factor loadings, and A (t,T ) have explicit
expressions (derivations similar to term structure models).

Canonical form for these (Blackburn and Sherris, 2013), where δjj and
σjj are parameters in the latent factor dynamics (estimated from
historical data)

Bj (t,T ) = −1− e−δjj (T−t)

δjj
, j = 1, 2, 3, (3)

A (t,T ) =
1

2

3∑
j=1

σ2
jj

δ3
jj

[
1

2

(
1− e−2δjj (T−t)

)
− 2

(
1− e−δjj (T−t)

)
+ δjj (T − t)

]
.

(4)
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Mortality Rate - AFNS Mortality model

Mortality model equivalent of the Nelson-Seigel term structure model
in arbitrage-free dynamic implementation (Christensen et al., 2011)

Independent AFNS mortality model - mortality rate curve has level,
slope and curvature factors.

B1 (t,T ) = − (T − t) , B2 (t,T ) = −1− e−δ(T−t)

δ
,

B3 (t,T ) = (T − t) e−δ(T−t) − 1− e−δ(T−t)

δ
,

(5)

A (t,T )

T − t
= σ2

11

(T − t)

6
+ σ2

22

[
1

2δ2
− 1

δ3

1− e−δ(T−t)

T − t
+

1

4δ3

1− e−2δ(T−t)

T − t

]
+

σ2
33

[
1

2δ2
+

1

δ2
e−δ(T−t) − 1

4δ
(T − t) e−2δ(T−t) − 3

4δ2
e−2δ(T−t)

− 2

δ3

1− e−δ(T−t)

T − t
+

5

8δ3

1− e−2δ(T−t)

T − t

]
.

(6)
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Affine Mortality Models - Q Pricing measure

The price of a longevity zero-coupon bond on a specific cohort
currently aged x is

P̄x(t,T ) = EQ
[
e−

∫ T
t (r(s)+µ(x ,s))ds |F(t)

]
= EQ

[
e−

∫ T
t r(s)ds |G(t)

]
EQ
[
e−

∫ T
t µ(x ,s)ds |H(t)

]
= P(t,T )SQ(x , t,T ), (7)

where the dynamics of the mortality rates and the dynamics of the
interest rates are independent.

Dynamics of the mortality rate used to derive the (risk-neutral)
survival probability SQ(x , t,T ).

Use the same methodology of term structure modelling applied to
(pricing) survival probability.
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Affine Mortality Models - Dynamics of Mortality Rates

The affine dynamics of the latent factors Xt follow a system of
stochastic differential equations (SDEs) under the risk-neutral
measure Q (Duffie and Kan, 1996; Christensen et al., 2011):

dXt = KQ
[
θQ − Xt

]
dt + ΣD (Xt , t) dWQ

t , (8)

where KQ ∈ Rn×n is the mean reversion matrix,

θQ ∈ Rn is the long-term mean (usually zero in mortality models),

Σ ∈ Rn×n is the volatility matrix,

WQ
t ∈ Rn is a standard Brownian motion, and

D (Xt , t) is a diagonal matrix with the ith diagonal entry as√
αi (t) + βi

1 (t) x1
t + . . .+ βi

n (t) xnt . α and β are bounded continuous
functions.

Continuous time equivalent of auto-regressive processes for factors.
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Affine Mortality Models - ODEs for Factor Loadings

Under these dynamics the (risk-neutral) survival probabilities for age
x for survival from time t to time T are (see details in Blackburn and
Sherris, 2013):

S (t,T ) = exp
(
B (t,T )

′
Xt + A (t,T )

)
, (9)

Where B (t,T ) and A (t,T ) are the solutions to the following system
of ordinary differential equations (ODEs):

dB (t,T )

dt
= ρ1 +

(
KQ
)′

B (t,T ) , (10)

dA (t,T )

dt
= −B (t,T )

′
KQθQ − 1

2

3∑
j=1

(
Σ
′
B (t,T )B (t,T )

′
Σ
)
j ,j
,

(11)
with boundary conditions B (T ,T ) = A (T ,T ) = 0.
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Affine Mortality Models - Gaussian and CIR Models

Dynamics include Gaussian models (where there is a probability of
negative mortality rates).

These models

are readily estimated with (Gaussian) Kalman filter

are easily simulated

in practice, have very low probabilities of negative mortality rates.

Dynamics also include square root process dynamics with potential to
capture mortality heterogeneity (Cox-Ingersoll-Ross or CIR)

These models

can capture mortality heterogeneity (gamma distributed mortality
rates)

avoid probabilities of negative mortality rates

are more difficult to estimate with the Kalman filter (we use maximum
quasi-likelihood).
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Affine Mortality Models - Historical Mortality Rates

To calibrate models to historical mortality rates (P measure) we need
a link between the risk neutral dynamics and the historical dynamics -
assumption for the price of risk.

Assuming an essentially affine form for the risk premium (Duffee,
2002):

Λt =

{
λ0 + λ1Xt , Gaussian processes;

D (Xt , t)λ0, the CIR model,
(12)

where Λt ∈ Rn×1, λ0 ∈ Rn×1 and λ1 ∈ Rn×n.

The SDEs for factors under the measure P have the same
(auto-regressive) form:

dXt =

{
KP
[
θP − Xt

]
dt + ΣdW P

t , Gaussian processes;

KP
[
θP − Xt

]
dt + ΣD (Xt , t) dW P

t , the CIR model.

(13)

12/33



Affine Cohort Mortality Models - 3-factor Dynamics

The dynamics of the factors (Canonical and AFNS models) are (we
estimate both P and Q measure dynamics):

The independent Blackburn-Sherris model (Blackburn and Sherris, 2013)

 dX 1
t

dX 2
t

dX 3
t

 = −

 δ11 0 0
0 δ22 0
0 0 δ33

 X 1
t

X 2
t

X 3
t

 dt +

 σ11 0 0
0 σ22 0
0 0 σ33


 dW

1,Q
t

dW
2,Q
t

dW
3,Q
t

 . (14)

The independent AFNS model (Christensen et al., 2011). The dynamics of the factors under the Q-measure are given
by:

 dLt
dSt
dCt

 = −

 0 0 0
0 δ −δ
0 0 δ

 Lt
St
Ct

 dt +

 σ11 0 0
0 σ22 0
0 0 σ33


 dW

1,Q
t

dW
2,Q
t

dW
3,Q
t

 . (15)

The dependent Blackburn-Sherris model

 dX 1
t

dX 2
t

dX 3
t

 = −

 δ11 0 0
δ21 δ22 0
δ31 δ32 δ33

 X1
t

X2
t

X3
t

 dt +

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


 dW

1,Q
t

dW
2,Q
t

dW
3,Q
t

 . (16)
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Affine Cohort Mortality Models - 3-factor Dynamics

The dependent AFNS model

 dX 1
t

dX 2
t

dX 3
t

 = −

 δ11 0 0
δ21 δ22 0
δ31 δ32 δ33

 X1
t

X2
t

X3
t

 dt +

 σ11 0 0
σ21 σ22 0
σ31 σ32 σ33


 dW

1,Q
t

dW
2,Q
t

dW
3,Q
t

 . (17)

The CIR model

 dX 1
t

dX 2
t

dX 3
t

 = −

 δ11 0 0
0 δ22 0
0 0 δ33



 θQ1

θQ2
θQ3

−
 X 1

t
X 2
t

X 3
t


 dt

+

 σ11 0 0
0 σ22 0
0 0 σ33




√
X1
t 0 0

0
√

X 2
t 0

0 0
√

X3
t


 dW

1,Q
t

dW
2,Q
t

dW
3,Q
t

 .

(18)
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Model Estimation - Kalman Filter

We model mortality rates but observe deaths - we need a
measurement equation capturing the effects of Poisson variation and
heterogeneity.

Mortality rate curve changes stochastically through time, driven by
latent factors with trend and uncertainty - we need a state transition
equation for the dynamics.

We then filter the values of latent factors from historical data -
deriving means and covariances which are functions of the parameters
in the dynamics.

We can then construct the likelihood (Gaussian) in terms of means
and covariance (a function of parameters to be estimated).

Then numerically select the parameter set that maximises the
likelihood using an iterative process.
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Mortality Data - Estimating Mortality Models

Mortality models are usually estimated with age-period historical data
(life tables) - US data from 1933 to 2015 at ages from 50 to 100 is
shown below.

Cohort mortality rates are required in practice. Age-period models
require forecasting of age-period curves and derivation of cohort
mortality rates from the diagonal as the cohort ages.

0
2020

0.05

2000 100

0.1

901980

0.15

Year

80

Age

0.2

1960 70
601940

50

Figure 1: Average force of mortality of US Males Using Age-Period data,
from 1933 to 2015
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Mortality Data - Estimating Mortality Models

Age-cohort data allows fitting of age-cohort curves directly but
incomplete data for more recent cohorts - see US cohort data below.

0
100

0.05

90

0.1

188080

Age

0.15

190070

Cohort

1920
60 1940

196050

Figure 2: Average Force of Mortality for
Males Born from 1883 to 1965
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Mortality Data - Estimating Mortality Models

Complete age-cohort data for cohorts born in earlier years. US
complete cohort data below.

0
1920

0.05

1910 100
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90

Cohort

1900 80

Age

0.15

701890
60

1880 50

Figure 3: Average Force of Mortality for
Males Born from 1883 to 1915
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Mortality Data - Calibrating Affine Mortality Models

US mortality age-cohort data from the Human Mortality Database
(2017) (HMD) to calibrate and compare the mortality models.

Mortality data of males from ages 50 to 100 for the cohorts born
from 1883 to 1915.

Historical survival probability, S i (x ; t,T ), and the historical average
forces of mortality µ̄i (x ; t,T ) over the period τ = T − t for each
cohort i aged x at time t from the data, using:

S i (x ; t,T ) =
T−t∏
s=1

[
1− qi (x + s − 1, t + s − 1)

]
, (19)

µ̄i (x ; t,T ) = − 1

T − t
log
[
S i (x ; t,T )

]
, (20)

where qi (x , t) is the one year death probability for an individual aged x at
time t in cohort i .
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Affine Cohort Mortality Models - Goodness of Fit

Table 1: Comparison of Affine Mortality Models

The Blackburn-Sherris Model The AFNS Model The CIR Model

Independent-

Factor

Dependent-

Factor

Independent-

Factor

Dependent-

Factor

Log Likelihood 9896.419 9938.696 9665.801 9887.878 10045.70
RMSE 0.00250 7.601e-04 6.856e-04 9.160e-04 5.227e-04
No. of

Parameters 12 18 10 13 18
AIC -19570.837 -19643.392 -19113.602 -19551.757 -19857.40
BIC -18968.292 -19008.277 -18521.914 -18943.783 -19222.29

Probability of

Negative

Mortality 0.02700 1.011e-32 1.722e-31 4.34e-14 -

AFNS model fits historical age-cohort data well. Low negative
mortality probabilities. CIR the best fit.
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Canonical Age-Period Mortality Curve Factors

1940 1950 1960 1970 1980 1990 2000 2010
Year

-4
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14 10-3

X1
X2
X3

Figure 4: Factors in the Blackburn-Sherris Model with Age-Period Data

Factor X2 captures trend change around 1970’s.
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Canonical Age-Period Mortality Curve Factor Loadings
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Figure 5: Factors Loadings in the Blackburn-Sherris Model with Age-Period Data
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AFNS Age-Cohort Mortality Curve Factors
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Figure 6: Factors in the Independent AFNS Model
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AFNS Age-Cohort Mortality Curve Factor Loadings
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Figure 7: Factors Loadings in the Independent AFNS Model
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Affine Cohort Mortality Models - Residual Analysis
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Figure 8: Residuals of Affine Mortality Models
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Affine Cohort Mortality Models - MAPE

Mean Absolute Percentage Error (MAPE) for each age, across all cohorts
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Figure 9: The Models with Gaussian Processes
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Affine Cohort Mortality Models - MAPE
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Figure 10: The CIR Model, the Dependent Blackburn-Sherris Model and the
Independent AFNS Model
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Forecasting Survival Curves

Optimal forecasts, or best-estimate forecasts, are used to project
average forces of mortality and survival probabilities for future cohorts.

At time t, the one step ahead forecast of the average force of
mortality is

µ̄ (t + 1,T + 1) = −B (t,T )
′

T − t
E [Xt+1|Xt ]−

A (t,T )

T − t
, (21)

where B (t,T ) and A (t,T ) depend on the model.

The forcasts of survival probabilities are then:

S (t + 1,T + 1) = exp
(
B (t,T )

′
E [Xt+1|Xt ] + A (t,T )

)
. (22)
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Forecasting Survival Curves

The factor dynamics under measure P in the independent
Blackburn-Sherris model and the 3-factor independent AFNS model
are the same. The conditional expectation of state variables for these
two models are as follows:

E
[
X 1
t+1|X 1

t

]
= e−kP

11X 1
t , E

[
X 2
t+1|X 2

t

]
= e−kP

22X 2
t ,

E
[
X 3
t+1|X 3

t

]
= e−kP

33X 3
t .

(23)

For the independent AFNS model, the conditional mean has the same
structure but with Xt = (Lt ,St ,Ct).

The conditional mean of the CIR mortality model is:

E
[
X 1
t+1|X 1

t

]
= e−kP

11X 1
t + θP1

(
1− e−kP

11

)
,

E
[
X 2
t+1|X 2

t

]
= e−kP

22X 2
t + θP2

(
1− e−kP

22

)
,

E
[
X 3
t+1|X 3

t

]
= e−kP

33X 3
t + θP3

(
1− e−kP

33

)
.

(24)
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Affine Cohort Mortality Models - Forecast RMSE

Table 2: RMSE by Comparing the Actual and Best-Estimate Survival Probabilities
of the 1916 Cohort

The Blackburn-Sherris Model The AFNS Model The CIR Model

Independent Dependent Independent Dependent

RMSE 0.03197 0.00726 0.00668 0.00754 0.01835

AFNS model performs well. CIR model has poorer forecasting
performance. Forecast for a single cohort.
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Affine Cohort Mortality Models - Forecast RMSE
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Figure 11: Actual and Best-Estimate

Survival Probabilities of the 1916

Cohort
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Figure 12: Absolute Percentage Errors

between Actual and Best-Estimate

Survival Probabilities
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Wrap Up

Introduced continuous-time mortality models including an AFNS
cohort mortality model with interpretable latent stochastic factors for
level, slope and curvature of the survival curve.

The model is based on factor loadings multiplied by (latent) factors,
where the factors are equivalent to stochastic parameters and the
factor loadings determine how the factors impact different ages.

Outlined the dynamics of the mortality rates and the affine survival
curves.

Outlined the estimation of the models using the Gaussian Kalman
filter.

Outlined how the models can capture Poisson variation in the
estimation. .
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Some comments on the Models

Empirical results show that the independent-factor AFNS cohort
mortality model:

Is parsimonious, captures the variation in cohort mortality rates in US
data, producing a better fit at older ages than the independent-factor
Blackburn-Sherris model, and has good predictive performance.

Is easy to implement with closed-form expressions for survival
probabilities, and as a Gaussian model is easy to estimate using the
Kalman filter. Negative mortality rates have very low probability.

Has factors that fit historical data dynamics and have intuitive factor
interpretation (Level, Slope, Curvature).

Multi-factor age-cohort models, and particularly the AFNS model, is
well suited for financial and insurance applications - see for example Xu
et al. (2019b).

Work to be done: incorporating imcomplete cohorts inrto estimation,
better capturing Poisson variation, age-dependence in trend and
covariance, CIR model estimation and forecasting.
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Appendix

Discretization of Continuous Model Dynamics

Kalman Filter estimation



Model estimation - Measurement equation

The measurement equation, based on the average force of mortality,
for a given current age to different future survival ages is:

µ̄ (t,T ) = −B (t,T )
′

T − t
Xt −

A (t,T )

T − t
+ εt , (25)

where the measurement error εt is independently and identically
distributed noise and Xt are the latent factors.

We can write this as
yt = BXt + A + εt . (26)



Model estimation - Measurement equation

For a 3-factor affine mortality model, the measurement equation with
N observed average forces of mortality for ages x + 1 to x + N is:


µ̄ (t, t + 1)
µ̄ (t, t + 2)

.

.

.
µ̄ (t, t + N)

 =



−B1 (t, t + 1) −B2 (t, t + 1) −B3 (t, t + 1)

− B1(t,t+2)
2

− B2(t,t+2)
2

− B3(t,t+2)
2

.

.

.

.

.

.

.

.

.

− B1(t,t+N)
N

− B2(t,t+N)
N

− B3(t,t+N)
N


 X 1

t
X 2
t

X 3
t

 (27)

+


−A (t, t + 1)

− A(t,t+2)
2

.

.

.

− A(t,t+N)
N

 +


εt (1)
εt (2)

.

.

.
εt (N)

 , (28)



Kalman Filter - State Transition Equation

The state transition equation is a discretized version of the SDE
dynamics and is given by:

Xt = exp
(
−KP

)
Xt−1 + ηt , (29)

where ηt is the transition error vector.

The structure of stochastic error terms is assumed to be:(
ηt
εt

)
∼ N

[ (
0
0

)
,

(
R 0
0 H

) ]
, (30)

where both the matrix H and matrix R are diagonal, with R being the
covariance matrix of the measurement error and H being the
covariance matrix of the transition error.



Kalman Filter - Error Assumptions

The error matrix R for the state transitions, derived from the
dynamics of the latent factors, in discrete time form is

R =

∫ t

t−1
e−K

P(t−s)ΣΣ
′
e−(KP)

′
(t−s)ds. (31)

Poisson variation is captured in the diagonal of the covariance matrix
H, assumed to have exponential form (reflecting exponential increase
in mortality rate) given by

H (t,T ) =
1

T − t

T−t∑
i=1

[
rc + r1e

r2i
]
, (32)

where the values of rc , r1 and r2 are estimated as part of the optimal
parameter set.



Kalman Filter - Forecasting step

Denote the (average) mortality rates at time t by Yt = (y1, . . . , yt)
and the parameters by ψ.

In the forecasting step we first update the state, Xt−1, and its mean
square error, Σt−1,

Xt|t−1 = E [Xt |Yt−1] = Φ (ψ)Xt−1, (33)

Σt|t−1 = Φ (ψ) Σt−1Φ (ψ)
′

+ R (ψ) , (34)

where Φ = exp
(
−KP

)
and R =

∫ t
t−1 e

−KP(t−s)ΣΣ
′
e−(KP)

′
(t−s)ds.



Kalman Filter - Forecasting step

We then use the historical mortality rate information at time t to
update the forecasts to obtain:

Xt = E [Xt |Yt ] = Xt|t−1 + Σt|t−1B (ψ)
′
F−1
t νt , (35)

Σt = Σt|t−1 − Σt|t−1B (ψ)
′
F−1
t B (ψ) Σt|t−1, (36)

where

νt = yt − E [yt |Yt−1] = yt − A (ψ)− B (ψ)Xt|t−1, (37)

Ft = cov (νt) = B (ψ) Σt|t−1B (ψ)
′

+ H (ψ) . (38)



Kalman Filter - Log-likelihood

The log-likelihood function is then computed as:

log L (y1, . . . , yt ;ψ) =
T∑
t=1

(
−N

2
log (2π)− 1

2
log |Ft | −

1

2
ν
′
tFtνt

)
,

(39)
where N is the number of ages with observed average forces of
mortality.

The log-likelihood function is maximized with respect to ψ to obtain
the optimal parameter set using an iterative process

Start with initial values, use Kalman filter to determine likelihood of
data, update parameter values and iterate until maximum of
likelihood is derived.
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Objectives Gaussian Process Regression Features in Multi-population models via GP Next steps

Multi-population Mortality Modeling

• Mortality changes over time for populations with similar geographic
characteristics are correlated.
I Countries in a region, states in a country, males/females in a country.

◎ Aims:

• Examine the commonality in global longevity.

• Ensure the coherence in long-term projections across populations.

• Limited data → borrowing data from other populations.

• Enhance actuarial credibility from aggregation of multiple datasets.

o Challenges:

• Model complexity and computational challenges.
• Data availability.

I Used aggregated mortality datasets from Human Mortality Database.
I Ages 50–84 and Years 1990–2016 from 10 European countries.
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Objectives Gaussian Process Regression Features in Multi-population models via GP Next steps

Lee & Li Method for Two-population Model

• Treats Age and Year as factors.

• Aggregated data → estimate global age and year factors +
country-specific age and year trend.
• Employs time-series method (e.g.: AR(1)) for mortality projection.

(+) Simple and the parameters are easily interpretable.

(+) Stochastic forecasts with probabilistic prediction intervals.

(−) Smoothing via point estimators, no credible bands.

(−) Number of populations is limited to 2.

(−) Hundreds of parameters needed to be estimated.
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Main Contributions

 Employ spatial statistical framework of Gaussian Process (GP) re-
gression as a machine learning method for multi-population modeling.

Mortality forecast for Age 70 via Joint GP
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Case I: Mean function linear in age
Case II: Mean function linear in age & year
Compromise between Case I & II

• Non-parametric → smoothed mortality
surfaces over Age & Year dimensions.

• Bayesian approach → quantify
predictive uncertainty and generate
stochastic trajectories for predictions.

• Captures the cross-population dependence for mortality from
multiple populations.

• Number of parameters estimated is substantially smaller.

• Can handle more than 2 populations.
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Objectives Gaussian Process Regression Features in Multi-population models via GP Next steps

Multi-population GP Regression

• Assume the output-input relationship:

yn = f (xn) + εn

I Input = xn = (Age, Year, Indicators for population) &
Output = yn = log-mortality.

I f (.): true log-mortality surface as a random variable.

I εn: errors from i.i.d. Gaussian with zero mean and constant variance.

• Specify prior distribution, then compute the posterior distribution after
collecting data: p(f |D) ∝ p(f ).p(y|x, f ) = {prior}.{likelihood}.
I Gaussian prior + Guassian likelihood → Gaussian posterior.

• A Gaussian process defines a prior over functions: any finite sample is a
realization of a Multivariate normal distribution.
I All properties specified via the mean and covariance function.
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Covariance Kernel

• Covariance function describes the influences between data points.

“Everything is related to everything else, but near things are more related
than distant things” – Tobler’s First Law of Geography.

• Consider a squared-exponential kernel:

C (x i , x j) = η2exp

[
−

(x iag − x jag )2

2θ2ag
−

(x iyr − x jyr )
2

2θ2yr

] ∏
{l1,l2}

exp

[
− θl1,l2δ

ij
l1,l2

]

where δijl1,l2 : an indicator whether ith & jth obs. from populations l1 and l2.
I Cross-population correlation is an exponential function of θl1,l2 . Large

value of θl1,l2 → low correlation between two populations.
I η2: process variance, controls amplitude of f ;
I θag & θyr : characteristic lengthscales, determine the spatial smoothness

in Age and Year dimensions.
I Kernel hyperparameters Θ are η, θag , θyr , θl1,l2 , etc.
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§ Fitting GP

• Fitting ≡ learning the hyperparameters.
• MLE: optimization of the marginal likelihood function.

I Used packages DiceKriging and kergp in R.

• Hierarchical approach: specification of the priors for the
hyperparameters (a fully Bayesian approach).

I Quantify model risk - range of GP models consistent with the data via
Bayesian framework.

I Computationally more intensive but quantifies how well the spatial
structure is being learned.

I Stan: free, open-source software for Bayesian statistical inferences.
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Joint model for European Nations
• Incorporate more than 2 populations in the model.

Ò Joint model for Male mortality from 4 European countries: {Denmark,
France, Sweden, UK} ≡ {DNK, FRA, SWE, UK}.
Fitted on Ages 70–84 and calendar Years 1990–2012:

Mean
function

Trend
in	log-mortality
(similar	to
regression)

10%	increases	in	log-mortality	for	each
additional	unit	in	Age.

Sweden	has	lowest	trend	while	Denmark	has
highest	trend.	Mean	difference	is	3%.	

Covariance
function

Cross-population
correlation

   DNK    FRA  SWE  

FRA 0.28

SWE 0.23 0.60

UK 0.91 0.61 0.30   

Common	hyper-parameters	that	determine
spatial	smoothness	in	Age	and	Year

Influences
between 

data points
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Multi-population Models via Bayesian GP

• Utilize aggregated data from multiple populations → provides tighter
hyper-parameter posteriors (reduce the model risk).

• More populations added into the model, the closer at discovering
‘common’ representation of mortality pattern.
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DEN FRA SWE UK DEN 
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DEN 
& UK

DEN 
& FRA

FRA 
& UK
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& UK

ALL 4

95% (outer) CI
80% (inner) CI
Posterior mean
MLE

Length-scale in Age dimension

θyr

5

10

15

20

25

30

35

40

DEN FRA SWE UK DEN 
& SWE

DEN 
& UK

DEN 
& FRA

FRA 
& UK

FRA 
& SWE

SWE 
& UK

ALL 4

95% (outer) CI
80% (inner) CI
Posterior mean
MLE

Length-scale in Year dimension

Nhan Huynh Multi-Population Longevity Models 13 / 20



Objectives Gaussian Process Regression Features in Multi-population models via GP Next steps

Multi-population Models via Bayesian GP

• Utilize aggregated data from multiple populations → provides tighter
hyper-parameter posteriors (reduce the model risk).

• More populations added into the model, the closer at discovering
‘common’ representation of mortality pattern.

θag

8

13

18

23

28

33

DEN FRA SWE UK DEN 
& SWE

DEN 
& UK

DEN 
& FRA

FRA 
& UK

FRA 
& SWE

SWE 
& UK

ALL 4

95% (outer) CI
80% (inner) CI
Posterior mean
MLE

Length-scale in Age dimension

θyr

5

10

15

20

25

30

35

40

DEN FRA SWE UK DEN 
& SWE

DEN 
& UK

DEN 
& FRA

FRA 
& UK

FRA 
& SWE

SWE 
& UK

ALL 4

95% (outer) CI
80% (inner) CI
Posterior mean
MLE

Length-scale in Year dimension

Nhan Huynh Multi-Population Longevity Models 13 / 20



Objectives Gaussian Process Regression Features in Multi-population models via GP Next steps

Multi-population Models via Bayesian GP

• Utilize aggregated data from multiple populations → provides tighter
hyper-parameter posteriors (reduce the model risk).

• More populations added into the model, the closer at discovering
‘common’ representation of mortality pattern.

θag

8

13

18

23

28

33

DEN FRA SWE UK DEN 
& SWE

DEN 
& UK

DEN 
& FRA

FRA 
& UK

FRA 
& SWE

SWE 
& UK

ALL 4

95% (outer) CI
80% (inner) CI
Posterior mean
MLE

Length-scale in Age dimension

θyr

5

10

15

20

25

30

35

40

DEN FRA SWE UK DEN 
& SWE

DEN 
& UK

DEN 
& FRA

FRA 
& UK

FRA 
& SWE

SWE 
& UK

ALL 4

95% (outer) CI
80% (inner) CI
Posterior mean
MLE

Length-scale in Year dimension

Nhan Huynh Multi-Population Longevity Models 13 / 20



Objectives Gaussian Process Regression Features in Multi-population models via GP Next steps

Prediction Performance in Multi-population Models

• Out-of-sample predictions via multi-pop. model are more accurate.
I Symmetric mean absolute percentage error (SMAPE) to assess model

performance.

• Multi-population model provides tighter prediction intervals (more
certain about the future).

I Posterior marginal variance is smaller in multi-population models.

Ò Multi-population model for two Nordic countries: Denmark & Sweden
(Male populations, Ages 70–84 and Years 1990-2012).

Prediction accuracy for Ages 70–84

SMAPE
2013 (1-yr out) 2016 (4-yr out)

Single-pop Multi-pop Single-pop Multi-pop

Denmark 1.58 1.52 1.26 1.22

Sweden 1.05 0.82 2.53 0.83

Posterior S.D. for Sweden

sSWE (.)
2013 (1-yr out) 2016 (4-yr out)

Single-pop Multi-pop Single-pop Multi-pop

Age 75 0.0300 0.0292 0.0399 0.0317

Age 85 0.0330 0.0311 0.0461 0.0351
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• Multi-population model provides tighter prediction intervals (more
certain about the future).
I Posterior marginal variance is smaller in multi-population models.

Ò Multi-population model for two Nordic countries: Denmark & Sweden
(Male populations, Ages 70–84 and Years 1990-2012).

Prediction accuracy for Ages 70–84

SMAPE
2013 (1-yr out) 2016 (4-yr out)

Single-pop Multi-pop Single-pop Multi-pop

Denmark 1.58 1.52 1.26 1.22

Sweden 1.05 0.82 2.53 0.83

Posterior S.D. for Sweden

sSWE (.)
2013 (1-yr out) 2016 (4-yr out)

Single-pop Multi-pop Single-pop Multi-pop

Age 75 0.0300 0.0292 0.0399 0.0317

Age 85 0.0330 0.0311 0.0461 0.0351
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Limitation of Single-population Models

• Often generate divergent long-term forecasts that are inconsistent with
historical patterns.

I Implausible difference in mean forecasts, or excessively fast changes in
relative mortality.

Log-mortality difference in mean forecast between Danish Males and Females
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(a) Single-population models
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Nhan Huynh Multi-Population Longevity Models 15 / 20



Objectives Gaussian Process Regression Features in Multi-population models via GP Next steps

Coherence Forecasts
• Forecasts via multi-pop. models maintain historical characteristics

observed in the data into the future.
• Use the mean function to generate long-term forecasts and enforce

desired coherence.
I Mortality across populations move in unison → strong coherence.

Long-term mortality forecasting in 1990–2060
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(a) Log-mortality
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(b) Improvement factors
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Borrowing latest data

• Opportunities to borrow latest information from other populations to
improve prediction about the recent domestic mortality.

I In HMD, data from different countries arrives non-synchronously.

Ò 2016 (one-year out) forecast in UK:
Baseline ≡ single model for UK up to 2015.
Multi-pop’n models with UK up to 2015 & other populations up to 2016.
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Borrowing latest data (Cont.)

• Improvement in recent mortality prediction via multi-population models
depend on the cross-population correlation.
I SMAPE: difference between forecast and observed log-mortality.
I Continuous Ranked Probability Score (CRPS): difference between

forecast and empirical cumulative distribution function of the observation.

Correlation vs. prediction performance in one-year out cross validation

2-pop’n model with UK Correlation Improvement in SMAPE Improvement in CRPS

Switzerland 0.89 −22.0% −1.7%

Czech 0.84 −12.1% −3.2%

Sweden 0.54 −8.0% −1.6%

Hungary 0.34 −1.7% 1.6%

Latvia 0.03 44.4% 6.9%

Nhan Huynh Multi-Population Longevity Models 18 / 20



Objectives Gaussian Process Regression Features in Multi-population models via GP Next steps

Table of Contents

1 Objectives

2 Gaussian Process Regression

3 Features in Multi-population models via GP

4 Next steps

Nhan Huynh Multi-Population Longevity Models 19 / 20



Objectives Gaussian Process Regression Features in Multi-population models via GP Next steps

Next steps

• Cluster methods to identify groups of populations with similar
characteristics in multi-population models.

• Implementation on 50-state US Mortality Database.

• Modeling cause-of-death mortality.

• Investigate other kernel families to explore spatial covariance structure.

• Computational speed-up to handle larger data sets.
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