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Abstract 

The uncertainty in future mortality rates is typically quantified by stochastic mortality models. To 
this end, the time dependent parameters in these models are projected by stochastic 
processes. Thus, the choice of these processes and their calibration have a crucial impact on 
estimates of future uncertainty. Since the commonly applied random walk with drift process has 
some structural shortcomings (see e.g. Börger et al. (2014)), alternative processes with random 
changes in the long-term mortality trend have been proposed by several authors. Such trend 
changes can be observed in the historical data for almost every population. However, data on 
such trend changes is sparse, and thus, the parameter estimation of these trend processes 
involves a significant degree of uncertainty.  

In this paper, we explain how data on trend changes from several populations can be combined 
in order to improve the reliability of trend process calibrations for individual populations. We 
discuss different assumptions on the “similarity” of parameters for different populations and 
implement those assumptions for the case of the trend change process proposed by Börger 
and Schupp (2018). In a numerical example we find that the impact on parameter estimates 
can be substantial. Thus, relying on the sparse data for individual populations only can lead to 
significant misestimation of future mortality and its uncertainty.  
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1. Introduction and Motivation

Annuity providers, pension funds, life insurers, and social security systems heavily rely on 

forecasts of future mortality. For risk management purposes in particular, stochastic mortality 

models are required in order to quantify the uncertainty in future mortality rates. Therefore, a 

large number of such models have been developed over the last decades, e.g. the models of 

Lee and Carter (1992) and Cairns et al. (2006). Most of these models contain one or more time 

dependent parameters, often referred to as period effects. These parameters are typically 

projected into the future by stochastic trend processes in order to generate scenarios of future 

mortality. Obviously, the choice of a specific stochastic trend process has a crucial impact on 

the forecasts, both in terms of the central, median, or best estimate projection scenario as well 

as in terms of the uncertainty around this scenario. 

Often, a random walk with drift is applied. It is a simple process with a clear parameter 

interpretation, and it nicely extrapolates the rather linear trends which have been observed in 

the period effects for many populations over the last decades. However, the random walk with 

drift also has some structural shortcomings. Most prominently, long-term uncertainty is often 

underestimated since the drift is fixed and stochasticity is only contained in the annual 

innovations (see, e.g., Börger et al. (2014) or Börger and Schupp (2018)). This issue is 

illustrated by Figure 1 which shows the logarithm of probabilities of death for 65-year old males 

in different countries from all over the world; the data has been obtained from the HMD (2019). 

We observe the aforementioned rather linear trends in most recent decades, but we also see 

that the drifts/trends in the log probabilities of death have also changed significantly once in a 

while in the past. A random walk with fixed drift is not able to generate such patterns, and in 

particular, it does not adequately allow for the uncertainty which arises from potential trend 

changes.  
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Figure 1: Logarithm of probabilities of deaths for 65-year old males in selected countries 

For this reason several authers have proposed trend processes which explicitly allow for trend 

changes. Hainaut (2012) uses a random walk with drift where the parameters of the random 

walk (and its drift in particular) can switch between different regimes. Hunt and Blake (2015) 

allow for a continuous range of future mortality trends by simulating drift changes by a Pareto 

distribution. Other authors like Sweeting (2011) and Börger and Schupp (2018) have skipped 

the random walk concept entirely and have instead proposed trend stationary processes with 

piecewise linear trends where the slope of the linear trend changes randomly over time. 

However, all these different approaches to stochastic modeling of trend changes have one 

thing in common: Data on trend changes and their magnitudes is sparse, and therefore, 

uncertainty in the estimation of the processes’ parameters is substantial in general. Even for 

populations with rather long data histories, typically only a few historical trend changes can be 

observed. For populations with shorter data histories, e.g. starting after World War II, reliable 

parameter estimations are often impossible. This clearly limits the applicability of trend process 

with random trend changes so far. This paper addresses the issue of parameter estimation for 

these processes and makes propositions how reasonable calibrations can be obtained also for 

populations with short data histories.  

A common concept for reducing parameter uncertainty is to enlarge the data base for 

parameter estimation by aggregating data from several populations. In this paper, we analyze 

how this idea can be applied in order to improve the parameter estimation of trend change 

processes. Exemplarily, we do this for the trend process proposed by Börger and Schupp 

(2018) and further refined in Schupp (2019). This allows us to illustrate different data 

aggregation approaches which could easily be applied to other trend change processes, too. 
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The remainder of this paper is structured as follows: In the following section, we introduce the 

trend process of Börger and Schupp (2018) and its application within the CBD mortality model 

of Cairns et al. (2006). We briefly summarize the parameter estimation in a single population 

setting and discuss the issue of parameter uncertainty. Finally, we provide a concrete example 

of the trend process for the population of US males. In Section 3, we compare parameter 

estimates as well as the respective uncertainties for different populations. Possible approaches 

to improving parameter estimates and reducing the associated uncertainty are then presented 

in Section 4. The theoretical discussion of these approaches is complemented by a numerical 

example in Section 5. Finally, Section 6 concludes.  

2. Trend Change Mortality Process

2.1 Specification of Trend Change Process 

Börger and Schupp (2018) and Schupp (2019) apply their trend change process to the time 
dependent parameters in the well-known CBD mortality model of Cairns et al. (2006). In the 
CBD model, annual probabilities of death are described as 

𝑙𝑜𝑔𝑖𝑡(𝑞𝑥,𝑡) ≔ log (
𝑞𝑥,𝑡

1 − 𝑞𝑥,𝑡
) = 𝜅𝑡

(1)
+ 𝜅𝑡

(2)
∙ (𝑥 − �̅�),

where �̅� is the average age of the age range under consideration. The time dependent 
parameter 𝜅𝑡

(1) determines the general level of mortality, whereas the slope parameter 𝜅𝑡
(2)

describes the increase of mortality with age.  

Building on the observations from Figure 1, Börger and Schupp (2018) and Schupp (2019) 
propose a trend process which projects piecewise linear trends with random changes in slope. 
For any future year 𝑡, the “observable” processes 𝜅𝑡

(1) and 𝜅𝑡
(2) are modeled as the sums of

underlying but unobservable true mortality processes and random noise terms: 

𝜅𝑡
(𝑖)

= �̂�𝑡
(𝑖)

+ 𝜀𝑡
(𝑖)

, 𝑖 = 1, 2.

The noise terms 𝜀𝑡
(𝑖) account for annual fluctuations which are, e.g., due to flu waves, very hot

summers, or catastrophes. The vector 𝜀𝑡 = (𝜀𝑡
(1)

, 𝜀𝑡
(2)

)
′
 is assumed to follow a two-dimensional

Normal distribution with mean zero and covariance matrix Σ.1 

The underlying mortality processes �̂�𝑡
(𝑖)

, 𝑖 = 1, 2 are projected linearly with current slopes
�̂�𝑡

(𝑖)
, 𝑖 = 1, 2:

�̂�𝑡
(𝑖)

= �̂�𝑡−1
(𝑖)

+ �̂�𝑡
(𝑖)

, 𝑖 = 1, 2.

The slopes remain unchanged until the next trend change occurs:

1 Note that the covariance matrix is assumed constant over time even though heteroscedasticity can 
usually be observed in the historical data (see Figure 1). However, since the noise does not impact long-

term mortality evolutions (in contrast to the innovations in the random walk), this simplification appears 
appropriate. In the parameter estimation, heteroscedasticity is accounted for though. 
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�̂�𝑡
(𝑖)

= {
�̂�𝑡−1

(𝑖)
, 𝑖𝑓 𝑛𝑜 𝑡𝑟𝑒𝑛𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝑖𝑛 𝑡 − 1 

�̂�𝑡−1
(𝑖)

+ 𝜆𝑡−1
(𝑖)

, 𝑖𝑓 𝑎 𝑡𝑟𝑒𝑛𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 𝑏𝑦 𝜆𝑡−1
(𝑖)

 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝑖𝑛 𝑡 − 1
. 

The trend change intensities 𝜆𝑡
(𝑖)

, 𝑖 = 1, 2, are derived as the product of their absolute
magnitudes 𝑀𝑡

(𝑖) and their signs 𝑆𝑡
(𝑖):

𝜆𝑡
(𝑖)

= 𝑆𝑡
(𝑖)

∙ 𝑀𝑡
(𝑖)

, 𝑖 = 1, 2.

Based on analyses of historical trend changes, Börger and Schupp (2018) propose modeling 
the magnitudes 𝑀𝑡

(𝑖) by Lognormal distributions 𝐿𝑁(𝜇(𝑖), 𝜎(𝑖)). For the signs 𝑆𝑡
(𝑖), they use

Bernoulli distributions with attainable values -1 and 1 and probability 0.5 each. The probabilities 
of observing trend changes in �̂�𝑡

(𝑖) in any particular year are denoted by 𝑝(𝑖), 𝑖 = 1, 2. Moreover,
trend changes in �̂�𝑡

(1) and �̂�𝑡
(2) are assumed to occur independently as indicated by the 

occurrences of trend changes in the historical data for a large set of populations (see Börger 
and Schupp (2018)). 

The decomposition of the trend change intensity into absolute magnitude and sign has several 
convenient implications. First, the distribution of future trend changes is symmetric, i.e. the 
slope increases and decreases with equal probability and magnitude. Thus, the prevailing trend 
(even though unobservable)2 is always the best estimate for the trend at any future point in 
time. Furthermore, the distribution of 𝜆𝑡

(𝑖) has no probability mass at zero and only very little

mass around zero. Thus, simulated trend changes can be considered as rather “significant”. At 
the same time, the heavy tail of the Lognormal distribution implies that strong trend changes 
can occur which is in line with some of the trend changes we observe in Figure 1 (e.g. for 
Sweden around 1980). 

2.2 Parameter Estimation and Uncertainty 

In this subsection we explain how the parameters of the trend processes 𝜅𝑡
(𝑖) can be estimated

from data for an individual population, and we particularly discuss the uncertainty involved. We 
assume that historical realizations 𝜅𝑡

(𝑖)
, 𝑡 ≤ 𝑡0 are given, where 𝑡0 denotes the final year of the

historical data, i.e. the starting point of a simulation. The parameters to be estimated are: 

 the probabilities of observing a trend change in a certain year, 𝑝(𝑖)

 the parameters of the Lognormal distributions for the trend change magnitudes, 𝜇(𝑖) and
𝜎(𝑖),

 the starting values for the underlying but unobservable trend processes �̂�𝑡𝑜

(𝑖), 

 the prevailing slopes of these trend processes, �̂�𝑡0

(𝑖), 

 and the covariance matrix Σ of the two-dimensional noise vector 𝜀𝑡.

2 See Börger et al. (2018) for a thorough discussion on the observability of mortality data and trends as 
well as implications for mortality modeling in practical applications. 
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The parameter estimation is carried out separately for each 𝜅𝑡
(𝑖) process, and the covariance

matrix Σ is estimated in the very last step. As Schupp (2019) explains, parameter estimation is 
complex due to the common dependence of realized 𝜅𝑡

(𝑖)
, 𝑡 ≤ 𝑡0 on potential but unknown trend

changes in previous years. In particular, a full maximum likelihood estimation of all model 
parameters seems impossible from a practical point of view. Therefore, we rely on the pseudo 
maximum likelihood approach proposed by Schupp (2019). An iterative algorithm determines, 
for any fixed number of trend changes 𝑘, (a) the specific realization of the underlying trend 
process with 𝑘 trend changes, �̂�𝑡,𝑘

(𝑖)
, 𝑡 ≤ 𝑡0, which is closest to the actual data 𝜅𝑡

(𝑖)
, 𝑡 ≤ 𝑡0 in terms

of likelihood, and (b) parameter values as (pseudo) maximum likelihood estimates which are 
consistent with this trend process realization. More precisely, starting with some initial 
parameter values, the best possible trend process realization �̂�𝑡,𝑘

(𝑖)
, 𝑡 ≤ 𝑡0 is determined. Then

the parameter values are updated based on this realization and the contained trend changes in 
particular. Next, these updated parameter values are applied in an update of �̂�𝑡,𝑘

(𝑖)
, 𝑡 ≤ 𝑡0. This

iterative algorithm typically converges after only very few steps, and we refer to Schupp (2019) 
for more details. 

From the sets of (pseudo) maximum likelihood estimates 𝑝𝑘
(𝑖), 𝜇𝑘

(𝑖), 𝜎𝑘
(𝑖), �̂�𝑡𝑜,𝑘

(𝑖) , �̂�𝑡0,𝑘
(𝑖) , and Σ(𝑖,𝑖),𝑘

for different numbers of trend changes 𝑘, the final parameter estimates and their respective 
uncertainties can be determined as follows (a numerical example is provided in the next 
subsection). The trend change parameters 𝜃(𝑖) = (𝑝(𝑖), 𝜇(𝑖), 𝜎(𝑖)) are computed as weighted
averages of the estimates 𝜃𝑘

(𝑖)
= (𝑝𝑘

(𝑖)
, 𝜇𝑘

(𝑖)
, 𝜎𝑘

(𝑖)
):

𝜃(𝑖) = ∑ 𝑤𝑘
(𝑖)

⋅

𝑘

𝜃𝑘
(𝑖)

, (1) 

where the weights 𝑤𝑘
(𝑖) sum up to one and are based on a relative likelihood measure similar to

Bayesian weights. Thus, most weight is applied to the 𝜃𝑘
(𝑖) for which the respective best

possible trend process realization fits the actual data best; for more details on these weights, 
we refer to Schupp (2019). Even though 𝑘 can range from zero to the number of data points in 
theory, in practice only a few values for 𝑘 need to be considered since most weights 𝑤𝑘

(𝑖) are

effectively zero. 

In estimating the trend change parameters, uncertainty mainly arises from two sources: First, 
the actual number of historical trend changes cannot be determined exactly as the random 
noise affects the search for the best possible trend process realizations �̂�𝑡,𝑘

(𝑖)
, 𝑡 ≤ 𝑡0. In other

words, the trend process realizations which are found for different numbers of trend changes 𝑘 
may fit the actual data similarly well in terms of likelihood. This issue is already taken into 
account above when deriving the central parameter estimates as weighted averages. 
Nevertheless, the uncertainty around these central parameter estimates must not be neglected. 
The second source of uncertainty lies in the estimation of the trend change parameters from a 
limited (and typically small) number of trend changes 𝑘, even if we assume to know the exact 
number. 
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In order to quantify the overall parameter uncertainty, we search for a combined (approximate) 
standard error for both sources of uncertainty. With respect to the second source of uncertainty, 
the (pseudo) maximum likelihood estimation provides covariance matrices of (approximate) 
standard errors for each value of 𝑘 which we denote by 𝑆𝐸𝑘

(𝑖). Moreover, we assume that this
component of parameter uncertainty in 𝜃𝑘

(𝑖) can be expressed by some distribution 𝐹𝑘
(𝑖).

Concerning the unclear number of actual trend changes, the weights 𝑤𝑘
(𝑖) provide probabilities

for each possible number of trend changes 𝑘. Therefore, we assume that the overall parameter 
uncertainty in 𝜃(𝑖) is described by the distribution 𝐹(𝑖) = ∑ 𝑤𝑘

(𝑖)
⋅ 𝐹𝑘

(𝑖)
𝑘 . Then it can be shown that

the covariance matrix of overall standard errors is given by  

𝑆𝐸(𝑖) = ∑ 𝑤𝑘
(𝑖)

⋅ (𝑆𝐸𝑘 + (𝜃𝑘
(𝑖)

− 𝜃(𝑖)) ⋅ (𝜃𝑘
(𝑖)

− 𝜃(𝑖))
′
)

𝑘

. (2) 

To summarize the estimation of the trend change parameters, we have central estimates 
according to Equation (1) and a covariance matrix of standard errors according to Equation (2). 
Thus, when projecting the future mortality evolution, parameter uncertainty can be taken into 
account by randomly drawing, for each simulation path, parameter values from a suitable 
distribution with according mean vector and covariance matrix.  

For the estimation of the starting values of a simulation, �̂�𝑡𝑜

(𝑖) and �̂�𝑡0

(𝑖), and the associated

uncertainty, we follow a different approach. Parameter uncertainty here mainly arises from the 
uncertainty when the most recent trend change has occurred. When determining the best 
possible trend process realizations �̂�𝑡,𝑘

(𝑖)
, 𝑡 ≤ 𝑡0, a trend change in recent years may be detected

for some values of 𝑘 but not for others. In order to confirm the (non-)occurrence of such a trend 
change, a couple of additional years of data would be required. As long as this data is not 
available, however, uncertainty with respect to the starting values may be substantial, 
depending on the magnitude of the potential trend change.3 In a simulation of future mortality, 
obviously both cases, i.e. with and without the potential trend change, should be taken into 
account. However, since the potential trend change either has occurred or not, we cannot 
specify central parameter estimates. Instead, we have different estimates for �̂�𝑡𝑜,𝑘

(𝑖)  and �̂�𝑡0,𝑘
(𝑖)  with

different probabilities/weights 𝑤𝑘
(𝑖), and for each simulation path, starting values should be

drawn randomly from this empirical distribution. A numerical example is provided in the next 
subsection. 

A central estimate for the covariance matrix Σ of the noise vector 𝜀𝑡 can be derived analogously 
to Equation (1). If we denote by Σ𝑘,𝑚 the sample covariance matrix for the case of 𝑘 trend 
changes in 𝜅𝑡,𝑡≤𝑡0

(1) and 𝑚 trend changes in 𝜅𝑡,𝑡≤𝑡0

(2) , the final estimate is given as 

Σ = ∑ ∑ 𝑤𝑘
(1)

⋅ 𝑤𝑚
(2)

⋅

𝑚𝑘

Σ𝑘,𝑚. 

3 In comparison, when the most recent trend change is assumed to be known, i.e. for a fixed 𝑘, the 

uncertainty in regressing the starting values from the available data appears negligible. 
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Compared to the uncertainty in the trend change parameters, the uncertainty in Σ is negligible 
as it is estimated from rather large samples of residuals. Furthermore, the impact of the noise 
vector 𝜀𝑡 in projections of future mortality is very limited. Therefore, parameter uncertainty can 
be ignored here. 

2.3 Example Calibration 

In this subsection we present a full model calibration for US males including specifications of 
the parameter uncertainties involved. We use the entire data set which is available in the HMD 
(2019) for ages 60 to 109, i.e. from 1933 to 2016.  

Figure 2 shows the historic trend processes 𝜅𝑡
(1) and 𝜅𝑡

(2) and the best possible realizations for
the underlying trend processes, �̂�𝑡,𝑘

(1) and �̂�𝑡,𝑘
(2), for the relevant numbers of trend changes 𝑘, i.e.

for those 𝑘 with 𝑤𝑘
(𝑖)

> 0. Table 1 and Table 2 provide the corresponding parameter estimates

and weights/probabilities. We find that the number of actual trend changes is very likely to lie 
between 2 and 5 or 6, respectively. While some parameter values are very similar for different 
𝑘, e.g. the 𝜇𝑘

(𝑖), others vary substantially. Unsurprisingly, this particularly holds for the trend 
change probabilities 𝑝𝑘

(𝑖). This observation clearly underlines why it is important to account for 

the fact that one cannot clearly observe the exact number of trend changes. 

By applying Equation (1), the central parameter estimates can then be derived: 

𝜃(1) = (𝑝(1), 𝜇(1), 𝜎(1)) = (0.0451, −4.4867, 0.2290)

𝜃(2) = (𝑝(2), 𝜇(2), 𝜎(2)) = (0.0480, −7.3466, 0.3932).

Furthermore, from Equation (2) we obtain the following covariance matrices of standard errors: 

𝑆𝐸(1) = (
6.906 ⋅ 10−4 −1.245 ⋅ 10−3 2.812 ⋅ 10−4

−1.245 ⋅ 10−3 2.695 ⋅ 10−2 2.047 ⋅ 10−3

2.812 ⋅ 10−4 2.047 ⋅ 10−3 8.691 ⋅ 10−3

) , 

𝑆𝐸(2) = (
5.929 ⋅ 10−4 −2.127 ⋅ 10−4 −1.108 ⋅ 10−4

−2.127 ⋅ 10−4 4.469 ⋅ 10−2 −1.534 ⋅ 10−3

−1.108 ⋅ 10−4 −1.534 ⋅ 10−3 2.396 ⋅ 10−2

). 

Comparing the (one-dimensional) standard errors, i.e. the roots of the diagonal entries of the 
SE(i), with the central parameter estimates, we find coefficients of variation between 40% and
60% for the p(i) and σ(i). Thus, parameter uncertainty is huge for these parameters. For the
μ(i), on the other hand, the coefficients of variation are only around -3%.
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Figure 2: Historical trend processes 𝜿𝒕
(𝟏)

(top) and 𝜿𝒕
(𝟐)

 (bottom) for US males and best possible realizations 

for the underlying trend processes, �̂�𝒕,𝒌
(𝟏)

and �̂�𝒕,𝒌
(𝟐)

𝒑𝒌
(𝟏)

𝝁𝒌
(𝟏)

𝝈𝒌
(𝟏) �̂�𝒕𝒐,𝒌

(𝟏)
�̂�𝒕𝟎,𝒌

(𝟏)
𝒘𝒌

(𝟏)

𝐤 = 𝟐 0.0244 −4.2823 0.1993 −2.3957 −0.0118 0.214 
𝐤 = 𝟑 0.0366 −4.4642 0.0814 −2.4133 −0.0182 0.034 
𝐤 = 𝟒 0.0488 −4.5431 0.2414 −2.4148 −0.0184 0.668 
𝐤 = 𝟓 0.0610 −4.3970 0.3033 −2.3959 −0.0128 0.008 
𝐤 = 𝟔 0.0732 −4.5850 0.2607 −2.3981 −0.0132 0.076 

Table 1: Estimates for trend change parameters 𝒑𝒌
(𝟏)

, 𝝁𝒌
(𝟏)

, 𝝈𝒌
(𝟏)

and starting values �̂�𝒕𝒐,𝒌
(𝟏)

, �̂�𝒕𝟎,𝒌
(𝟏)

 for different 

numbers of trend changes 𝒌 and corresponding best possible realizations �̂�𝒕,𝒌
(𝟏)

 for the underlying trend 

process 
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𝒑𝒌
(𝟐)

𝝁𝒌
(𝟐)

𝝈𝒌
(𝟐) �̂�𝒕𝒐,𝒌

(𝟐)
�̂�𝒕𝟎,𝒌

(𝟐)
𝒘𝒌

(𝟐)

𝐤 = 𝟐 0.0244 −7.0009 0.2368 9.259 ⋅ 10−2 −4.753 ⋅ 10−4 0.024 
𝐤 = 𝟑 0.0366 −7.3783 0.5627 9.259 ⋅ 10−2 −3.739 ⋅ 10−4 0.079 
𝐤 = 𝟒 0.0488 −7.3497 0.3858 9.132 ⋅ 10−2 −9.440 ⋅ 10−4 0.839 
𝐤 = 𝟓 0.0610 −7.3972 0.3294 9.166 ⋅ 10−2 −7.885 ⋅ 10−4 0.057 

Table 2: Estimates for trend change parameters 𝒑𝒌
(𝟐)

, 𝝁𝒌
(𝟐)

, 𝝈𝒌
(𝟐)

and starting values �̂�𝒕𝒐,𝒌
(𝟐)

, �̂�𝒕𝟎,𝒌
(𝟐)

 for different 

numbers of trend changes 𝒌 and corresponding best possible realizations �̂�𝒕,𝒌
(𝟐)

 for the underlying trend 

process 

The figure and tables also show substantial parameter uncertainty for the starting values �̂�𝑡𝑜

(𝑖)

and �̂�𝑡0

(𝑖). For 𝜅𝑡
(1) and 𝑘 = 3, 4, the most recent trend change is detected in 1999; the probability

for this being the most recent actual trend change is about 70%. However, there is also a 30% 
chance that the most recent trend change occurred in fact in 2009 or 2010 as detected for 
𝑘 = 2, 5, 6.4 Similarly, we find the most recent trend change in 𝜅𝑡

(2) in 2004 or 2006 (for 𝑘 = 2, 3

and with probability of about 10%) or in 2010 or 2011 (for 𝑘 = 4, 5 and with probability of about 
90%). In both cases, the �̂�𝑡0,𝑘

(𝑖)  differ with 𝑘 in particular, and this uncertainty should be taken

into account in projections of future mortality. In contrast to the example at hand, the most 
recent trend change may be very clear for other populations and/or at other points in time. 
Thus, parameter uncertainty in the starting values is highly case specific and may even be 
negligible in some cases. 

Also the question whether parameter uncertainty in the starting values can be reduced by 
combining insights from several populations can only be answered individually for each specific 
case. Possibly, a potential trend change for one population can be confirmed by detecting 
similar trend changes for other populations with likely the same reason of occurrence. However, 
trend changes may also be specific to a single population such that insights from other 
populations can even be misleading. Due to this need for a case specific analysis, we will not 
discuss this question further in this paper.  
For completeness, the estimate for the covariance matrix of the noise vector is  

Σ = (1.773 ⋅ 10−4 3.401 ⋅ 10−6

3.401 ⋅ 10−6 2.092 ⋅ 10−7).

In order to illustrate the issue of parameter uncertainty, Figure 3 shows projections of remaining 

period life expectancies of 65-year old US males with and without parameter uncertainty. 

Parameter uncertainty in the starting values is taken into account by randomly drawing from the 

empirical distribution of starting values as given in Table 1 and Table 2 for each simulation 

4 Due to the noise it is obviously difficult to exactly date a trend change. Therefore, we assume that the 
same trend change may be detected in subsequent years for different 𝑘. 
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path. For the case without parameter uncertainty, the starting values with the largest probability 

𝑤𝑘
(𝑖) are considered. The path dependent trend change parameters 𝑝(𝑖), 𝜇(𝑖), and 𝜎(𝑖) are drawn

from correlated (one-dimensional) Beta, Normal, and Gamma distributions, respectively.5 The 

Beta and Gamma distributions are chosen in order to ensure that the trend change probabilities 

always lies between zero and one and that the standard deviations of the trend change 

magnitudes are always positive. Slight inconsistencies with the standard errors being derived 

under the assumption of Normality are accepted. 

We find that the mean projection changes significantly in the case where parameter uncertainty 

is taken into account. The reason is that, for both 𝜅𝑡
(1) and 𝜅𝑡

(2), the most recent trend change

could not be clearly determined and that different starting slopes are assigned significant 

probabilities in particular. The prediction intervals widen only slightly when allowing for 

parameter uncertainty. This is somewhat surprising at first sight given the substantial standard 

errors above. However, the parameters 𝑝(1) and 𝜇(1) are negatively correlated for US males

which means that in case the likelihood of trend changes is higher (larger 𝑝(1)), their magnitude 

is likely to be smaller (smaller 𝜇(1)). For other populations, however, we have found positive

correlation between these parameters leading to significantly wider prediction intervals when 

allowing for parameter uncertainty. This illustrates once again that it is reasonable to combine 

observations from different populations. The case with (population specific) parameter 

uncertainty will also be the benchmark in the numerical example later on. 

Figure 3: Mean projections (solid lines) and 90% prediction intervals (dashed lines) of remaining period life 
expectancies for 65-year old US males with and without parameter uncertainty  

5 More precisely, for each simulation path, a three-dimensional Normal vector with mean equal to the 
central parameter estimates and covariance matrix 𝑆𝐸(𝑖) is generated, and the first and third component 

of the Normal vector are then transformed to Beta and Gamma distributed values with unchanged mean 
and variance. 
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3. Comparison of Population Specific Trend Process Calibrations 

We commence our multi-population analysis with a comparison of population specific estimates 

of the trend change parameters 𝜃(𝑖) = (𝑝(𝑖), 𝜇(𝑖), 𝜎(𝑖)), 𝑖 = 1, 2 and their associated uncertainty. 

To this end, we calibrate the CBD model and subsequently the trend process from Section 2 to 

the male and female populations from the following countries: Australia, Austria, Canada, 

Denmark, England & Wales, Finland, France, Italy, Japan, the Netherlands, New Zealand (non-

Maori), Norway, Sweden, Switzerland, the United States, and West Germany.6 For each 

population we use the entire HMD data history for ages 60 to 109, as long as it is not explicitly 

marked as unreliable in the HMD (as e.g. for Sweden before 1860).  

Figure 4 shows, for each of the 32 populations, the central estimates and 95% confidence 

intervals for the trend change parameters. The confidence intervals are derived from Beta, 

Normal, and Gamma distributions, respectively, which have been calibrated to the population 

specific central parameter estimates and covariance matrices of standard errors (as explained 

for US males in Subsection 2.3). We find that uncertainty is substantial for most parameters 

and populations. This particularly holds for the trend change probabilities. In fact, the central 

parameter estimates lie within the confidence intervals for most other populations. In 

comparison, uncertainty in 𝜇(1) and 𝜇(2) is smaller which is in line with our findings for US 

males in Subsection 2.3. Nevertheless, the central parameter estimates are rather similar 

between the different populations, in particular for 𝜇(1). The parameter uncertainty in 𝜎(1) and 

𝜎(2) is exceptionally large for a few populations, but again the central parameter estimates lie 

within the confidence intervals for most other populations. 

Given the similarities between parameter estimates for many populations and given the 

substantial parameter uncertainties, there is reason to believe that parameter calibrations can 

be improved by aggregating data from different populations. Thus, the question arises which 

populations should be considered, i.e. which populations can provide insights for the population 

one is particularly interested in. When modeling multi-population mortality, typically populations 

with close economic and political links are taken into account, which have thus experienced 

similar historical mortality evolutions. However, this may not always be a suitable approach 

when calibrating trend change processes. Populations which are very closely linked may have 

essentially experienced the same trend changes. Thus, in order to substantially enrich the data 

base on trend changes, also populations with weaker links and different historical trend process 

patterns should be considered. In that case, some assumption needs to be made with respect 

to the similarity (or even equality) of the underlying trend change parameters. We will address 

this issue in the following section.  
                                                
6 Other countries for which data is available in the HMD have been omitted for different reasons: The 

populations are so small that the noise is too strong to detect trend changes (e.g. Iceland), reliable data 
is only available for a few decades (e.g. Portugal), or data is missing for some years (e.g. Belgium). 
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Figure 4: Central estimates and 95% confidence intervals for the parameters 𝒑(𝟏), 𝝁(𝟏), 𝝈(𝟏) (left) and 𝒑(𝟐), 𝝁(𝟐),

𝝈(𝟐) (right) for males (blue) and females (orange).
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4. Trend Process Calibrations to Multi-Population Data

In this section, we will explain different approaches how data from multiple populations can be 

combined to obtain calibrations for the trend change parameters 𝜃(𝑖) = (𝑝(𝑖), 𝜇(𝑖), 𝜎(𝑖)). This can

be particularly helpful for populations with insufficient data for an individual trend process 

estimation and also to reduce parameter uncertainty for populations with longer data histories. 

These data aggregation approaches can be categorized according to whether the trend change 

parameters for different populations are assumed to be equal or only to come from the same 

distribution. The assumption of equal parameters for all populations can be motivated by the 

observations from Figure 4. Parameter uncertainty is huge for most populations and 

parameters, and it cannot be ruled out that the trend change parameters are equal for all 

populations. Nevertheless, one may want to relax this assumption, in particular if substantial 

data is available for the population one is particularly interested in and this data indicates that 

the population’s parameters may be different from those of other populations. 

For the remainder of this paper, we assume that data is available for a set of populations 𝑃, and 

the index ⋅𝑝 denotes specific parameter estimates etc. for population 𝑝 ∈ 𝑃. Moreover, let 𝑁𝑝 

denote the number of data points for population 𝑝. Finally, let 𝑝∗ ∈ 𝑃 be the population whose 

future mortality evolution one wants to project. A numerical example for the proposed data 

aggregation approaches is provided in the next section. 

Parameter estimation from entire data set 

Assuming equal parameters for all populations, the most consistent approach certainly is to 

estimate the parameters from data for all populations simultaneously. This would stabilize the 

parameter estimation and should reduce parameter uncertainty substantially. However, even 

though this is a desirable approach from a theoretical perspective, it can be difficult to 

implement for a large number of populations in practice. For the estimation algorithm proposed 

in Subsection 2.2, we have found this to be hardly feasible.  

Parameter estimation from observed trend changes 

Alternatively, the trend change parameters can be estimated from the historical trend changes 

for all populations. These trend changes, more precisely their occurrences and magnitudes, are 

determined for each population individually. This obviously implies a slight distributional 

inconsistency as the historical trend changes are not assumed to be generated by the same set 

of trend change parameters, but it makes the approach practically feasible. Given the historical 

trend changes, the trend change parameters are then estimated e.g. via a maximum likelihood 

approach. Denoting by |𝜆(𝑖)|
𝑝,𝑘

 the vector of absolute trend change magnitudes for the case of

𝑘 trend changes for population 𝑝, the following likelihood function should be maximized: 
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𝐿(𝜃(𝑖)) = ∏ ∏ (𝐿𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (|𝜆(𝑖)|
𝑝,𝑘

;  𝜇(𝑖), 𝜎(𝑖)) ⋅ 𝐿𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑘; 𝑝(𝑖)))
𝑤𝑝,𝑘

(𝑖)𝑁𝑝

𝑘=0𝑝∈𝑃

= ∏ ∏ (∏ 𝑓𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 ((|𝜆(𝑖)|
𝑝,𝑘

)
𝑗

;  𝜇(𝑖), 𝜎(𝑖))

𝑘

𝑗=1

⋅ 𝑝(𝑖)𝑘
⋅ (1 − 𝑝(𝑖))

𝑁𝑝−𝑘
)

𝑤𝑝,𝑘
(𝑖)

𝑁𝑝

𝑘=0𝑝∈𝑃

, 

where 𝑓𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 denotes the probability density function of the lognormal distribution, and the 

weights 𝑤𝑝,𝑘
(𝑖) account for the “relevance” of the different trend change realizations. The 

maximum likelihood estimation also provides a covariance matrix of (approximate) standard 

errors as a representation of the remaining parameter uncertainty.  

Weighted average of population specific parameter estimates 

Instead of equal parameters for all populations, we now assume that the parameter values for 

each population only come from the same distribution of possible parameter values. In this 

case, the simplest approach to obtain a set of parameter values for population 𝑝∗ is to take the 

average of all population specific parameter estimates 𝜃𝑝
(𝑖)

= (𝑝𝑝
(𝑖)

, 𝜇𝑝
(𝑖)

, 𝜎𝑝
(𝑖)

). This approach is

particularly applicable if hardly any information is available on the true trend change parameters 

for population 𝑝∗. A weighted average can be applied in order to account for the relevancy of 

each population or the credibility of its parameter estimates. A larger weight would then be 

assigned to a population if, e.g., it is expected to be very informative for population 𝑝∗ or it has 

a comparably long data history. Denoting by 𝑣𝑝 the weight for each population, the common 

parameter estimates would be  

𝜃(𝑖) = ∑ 𝑣𝑝 ⋅ 𝜃𝑝
(𝑖)

𝑝∈𝑃

, 

with weights e.g. according to the data history, 𝑣𝑝 = 𝑁𝑝 ∑ 𝑁𝑞𝑞∈𝑃⁄ . The uncertainty associated

with these parameter estimates can be determined as the (weighted) sample covariance matrix 

of the population specific parameter sets 𝜃𝑝
(𝑖). For a simulation of future mortality, the same

approach as in Subsection 2.3 can then be applied. 

Parameter sampling from empirical distribution 

Alternatively, a (three-dimensional) empirical distribution can be derived from the population 

specific parameter estimates 𝜃𝑝
(𝑖), and parameter values can be drawn randomly from this

distribution for each simulation path. In analogy to the weighted average above, the different 

parameter sets in the empirical distribution can be assigned different probabilities. We denote 

this empirical distribution by 𝐹𝜃(𝑖) with 𝑃(𝜃𝑝
(𝑖)

) = 𝑣𝑝 for 𝑝 ∈ 𝑃 and zero otherwise. The outcomes

of this approach should be very similar to those for the weighted average approach. The means 
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of the randomly drawn parameter values are the same by construction, and also the simulated 

uncertainty in the parameter values should be comparable if the set of populations is large. In 

that case, the empirical distribution should be reasonably similar to the (theoretical) distribution 

parameters are drawn from in the weighted average approach.  

Credibility approach 

In the previous two approaches we assumed that hardly any information is available on the true 

trend change parameters for population 𝑝∗. However, typically at least some information is 

available, e.g. in form of the 𝜃𝑝
(𝑖) for all populations 𝑝 ∈ 𝑃. Hence, when simulating mortality for

population 𝑝∗, the parameter estimates 𝜃𝑝∗
(𝑖) should be assigned a larger probability than

parameter estimates which are significantly different. This can be achieved rather easily in a 

credibility approach where the probability 𝑣𝑝∗ is increased to emphasize the population specific 

information. Thus, this approach represents a compromise between the uncertain estimates for 

the true population specific parameters and a larger reference group of parameter sets which 

may differ from the true population specific parameters. 

Bayesian approach 

Alternatively to the credibility approach, a Bayesian approach can be applied. We again 

assume that the parameter values for all populations come from the same, but unknown 

distribution. This is the prior distribution in the Bayesian setting, and we approximate it by the 

empirical distribution 𝐹𝜃(𝑖). Without any further knowledge about population 𝑝∗, parameter

values would be drawn from this prior distribution as in the sampling approach above. The 

realized 𝜅𝑡,𝑝∗
(𝑖) processes however provide additional information on likely parameter values 𝜃𝑝∗

(𝑖). 

Unfortunately, we cannot specify the likelihood 𝐿 (𝜅𝑡,𝑝∗
(𝑖)

, 𝑡 ≤ 𝑡0|𝜃) for the realized 𝜅𝑡,𝑝∗
(𝑖)  process 

being generated by some parameter set 𝜃. Therefore, in line with the parameter estimation in 

Subsection 2.2, we instead consider likelihoods for best possible trend process realizations for 

different numbers of trend changes 𝑘 which should be approximately proportional to 

𝐿 (𝜅𝑡,𝑝∗
(𝑖)

, 𝑡 ≤ 𝑡0|𝜃): 

𝐿 (𝜅𝑡,𝑝∗
(𝑖)

, 𝑡 ≤ 𝑡0|𝜃) = ∑ 𝐿 (𝜅𝑡,𝑝∗
(𝑖)

, 𝑡 ≤ 𝑡0|𝜃, 𝑘)

𝑁𝑝

𝑘=0

∝ ∑ �̂� (�̂�𝑡,𝑝∗
(𝑖) (𝜃), 𝑡 ≤ 𝑡0|𝜃, 𝑘)

𝑁𝑝

𝑘=0

. 

Here 𝐿 (𝜅𝑡,𝑝∗
(𝑖)

, 𝑡 ≤ 𝑡0|𝜃, 𝑘) denotes the likelihood under the condition that the data has been 

generated with 𝑘 trend changes and �̂� (�̂�𝑡,𝑝∗
(𝑖) (𝜃), 𝑡 ≤ 𝑡0|𝜃, 𝑘) is the likelihood as defined in

Schupp (2019). In order to avoid the computationally expensive iterative algorithm to obtain the 

latter likelihood for any parameter set 𝜃, we approximate the best possible trend process 
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realizations �̂�𝑡,𝑝∗
(𝑖)

(𝜃), 𝑡 ≤ 𝑡0 by those from the individual parameter estimation, �̂�𝑡,𝑝∗
(𝑖)

(𝜃𝑝∗
(𝑖)

), 𝑡 ≤ 𝑡0.

Even though the latter have been determined under different parameter estimates, we can 

assume them to be reasonably similar to those for the parameter set 𝜃 since we have observed 

that the optimal positions of the 𝑘 trend changes are the same for almost all reasonable 

parameter sets in general. Thus, we have 

𝐿 (𝜅𝑡,𝑝∗
(𝑖)

, 𝑡 ≤ 𝑡0|𝜃) ∝ ∑ �̂� (�̂�𝑡,𝑝∗
(𝑖)

(𝜃), 𝑡 ≤ 𝑡0|𝜃, 𝑘)

𝑁𝑝

𝑘=0

≈ ∑ �̂� (�̂�𝑡,𝑝∗
(𝑖)

(𝜃𝑝∗
(𝑖)

) , 𝑡 ≤ 𝑡0|𝜃, 𝑘)

𝑁𝑝

𝑘=0

=: �̂�𝑝∗
(𝑖)

(𝜃).

Finally, we can derive the posterior distribution 𝐹
𝜃(𝑖)|𝜅

𝑡,𝑝∗
(𝑖) , i.e. the probability for parameter set 

𝜃𝑝
(𝑖) is

𝑃 (𝜃𝑝
(𝑖)

|𝜅𝑡,𝑝∗
(𝑖)

, 𝑡 ≤ 𝑡0) =
1

𝑐
⋅ 𝑣𝑝 ⋅ �̂�𝑝∗

(𝑖)
(𝜃𝑝

(𝑖)
),

where 𝑐 is a constant such that the probabilities sum up to one. This posterior distribution 

describes the remaining population specific parameter uncertainty, and in a simulation, path 

dependent parameter values should be drawn from this distribution.  

5. Numerical Example

In this section we apply the different data aggregation approaches from Section 4 to the case of 

US males. Our set of reference populations 𝑃 consists of the 32 populations which we already 

considered in Section 3 and the weights/probabilities 𝑣𝑝 are derived according to the number of 

available data points. In the credibility approach we set 𝑣𝑝∗ = 0.5 and reduce all other 

probabilities proportionally. 

Figure 5 shows the central estimates of the trend change parameters and their 95% confidence 

intervals for the individual calibration for US males and the different data aggregation 

approaches. We see that the central parameter estimates can vary between the approaches 

and that parameter uncertainty is not necessarily reduced compared to the individual 

calibration. We will now explore why this is the case.  

Starting with the maximum likelihood estimation based on all historical trend changes, we find 

that the central estimates of the trend change probabilities 𝑝(𝑖) are considerably smaller when

data is aggregated. A comparably large number of trend changes has been observed for US 

males and this is now compensated for. Parameter uncertainty reduces substantially for all 

three trend change parameters as expected. This means that the same trend change 

probability and Lognormal distribution may be assumed in order to generate trend changes for 

different populations. The comparably large central estimates for the 𝜎(𝑖) compensate for the
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fact that the mean of the trend change magnitudes is now derived from all trend changes and 

not only those of a particular population. 

The results for the weighted averages and the sampling from the empirical parameter 

distribution are very similar as expected. The trend change probabilities 𝑝(𝑖) are reduced again

compared to the individual calibration, and also parameter uncertainty is smaller. In contrast, 

parameter uncertainty in the magnitude parameters 𝜇(𝑖) and 𝜎(𝑖) has increased. However, this

is primarily uncertainty which arises from the assumption of a distribution for population specific 

parameter values instead of the assumption of one fixed parameter set for all populations. 

Thus, it is systematic uncertainty as opposed to rather unsystematic uncertainty arising from 

parameter estimation from limited data. Only a small portion of the depicted parameter 

uncertainty can be credited to the randomness in the 32 population specific parameter 

estimates which are used to approximate the true but unknown distribution of parameter 

values. 

Also the results from the credibility and the Bayesian approaches are rather similar. Both 

approaches build on the assumption of an unknown distribution for population specific 

parameters and determine some trade-off between the population specific parameter estimates 

and those from other populations. In the credibility approach, 50% probability is assigned to the 

parameter estimates for US males, while it is about 40% for 𝜃𝑝∗
(1) and 11% for 𝜃𝑝∗

(2) in the

Bayesian approach. The remaining probability is assigned to other parameter sets, though

based on different principles. Again we find reduced trend change probabilities, but less

reduced than for the other aggregation approaches due to the substantial weight for the US

male parameter set. The same applies to the magnitude parameters which also lie between the

individual estimates and the parameter values from the other aggregation approaches. We also

observe that, for all parameters, uncertainty remains substantial or even increases compared to

the individual calibration. Again, this is primarily systematic uncertainty arising from the

assumption of a distribution for population specific parameter values. Given the limited data on

trend changes for US males, substantial uncertainty still remains with respect to the credibility

of the population specific parameter estimates.
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Figure 5: Central estimates and 95% confidence intervals for the parameters 𝒑(𝟏), 𝝁(𝟏), 𝝈(𝟏) (left) and 𝒑(𝟐), 𝝁(𝟐), 

𝝈(𝟐) (right) for US males based on multi-population data. 

 
Finally, we compare the different data aggregation approaches by projecting remaining period 

life expectancies for 65-year old US males. In each case, parameter uncertainty is accounted 

for by drawing from Beta, Normal, and Gamma distributions with case specific 

parametrizations. The starting values are modeled as explained in Subsection 2.3 in any case.  

Figure 6 shows the 90% prediction intervals for all approaches considered. The widest 

prediction intervals can be observed for the population specific calibration. This is in line with 

the comparably large central parameter estimates for 𝑝(𝑖) and 𝜇(𝑖) which we observe in Figure 

4. The maximum likelihood approach yields the most narrow prediction intervals, mainly due to 

comparably small central parameter estimates for 𝑝(𝑖) and 𝜇(𝑖) and the small parameter 

uncertainty for all parameters. Prediction intervals for the weighted parameter averaging and 
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the parameter sampling are very similar which is again in line with observations from Figure 4. 

The widths of the prediction intervals are between those for the aforementioned approaches. 

Thus, uncertainty is particularly reduced compared to the individual calibration where the trend 

change probabilities may have been overestimated simply by chance. The credibility and the 

Bayesian approach yield prediction intervals between the individual calibration and the 

sampling approach as they define a kind of “mixture” of parameter estimates from these 

approaches.  

Figure 6: 90% prediction intervals for remaining period life expectancies of 65-year old US males based 
on different trend process calibrations  

6. Conclusion

In this paper, we have discussed the issue of parameter uncertainty in mortality processes with 
trend changes. Due to the limited number of observed historical trend changes, parameter 
uncertainty is substantial in general. This particularly holds for those parameters which 
determine future trend changes as part of stochastic projections. We have identified the main 
sources of this uncertainty and have explained how it can be quantified for the trend process of 
Börger and Schupp (2018). A comparison of 32 populations shows that central parameter 
estimates can vary considerably when trend processes are calibrated for each population 
individually. However, due to the substantial uncertainty associated with these estimates, it is 
not clear whether this is mainly due to random effects in the few trend changes which have 
been observed for each population. 

In order to improve the reliability of trend process calibrations, we have then discussed different 
approaches for aggregating data on trend changes from several populations. This includes 
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approaches which assume the true parameter values to be equal for all populations under 
consideration as well as approaches where the parameter values for different populations are 
only assumed to come from the same, but unknown distribution. A maximum likelihood 
parameter estimation based on the historical trend changes for all populations shows that the 
assumption of equal trend change probabilities and magnitudes for all populations may be 
reasonable. Parameter uncertainty can be reduced substantially here.  

When allowing for different parameter values from the same underlying distribution for each 
population, parameter uncertainty reduces only slightly or even increases compared to the 
population specific calibrations. Depending on how different the population specific parameter 
estimates are, the uncertainty in the empirical distribution build from these estimates can be 
larger than the uncertainty in estimating the population specific parameters in the first place. 
Nevertheless, central parameter estimates can change substantially when aggregating 
parameter estimates in a common distribution. As we have seen in a numerical example, this 
may prevent overestimation (underestimation) of the uncertainty in the future mortality evolution 
in case the population specific parameter estimates may have been rather large (small) simply 
by chance.  

In conclusion, we have found that parameter uncertainty can be much better understood when 
data from different populations is aggregated. Furthermore, the reliability of trend process 
calibrations can be improved by reducing random effects in population specific parameter 
estimates. Whether this leads to more narrow or wider prediction intervals for the quantities of 
interest like future life expectancies, depends on several factors: most importantly, the 
population specific parameter estimates, the set of reference populations, and the assumption 
on how the parameter values for different populations relate to each other.  
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