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Like Peas in a Pod: Ideas 
in Cluster Analysis
By Michael Niemerg

Cluster analysis is easy to grasp conceptually. You simply 
“group like things together.” The fundamental algorithms 
like k-means and hierarchical clustering are also relatively 

easy to understand and don’t require much background besides 
a little understanding of algebra. Despite such an intuitive 
premise, things can quickly become sophisticated. To that 
end, let’s explore some extensions of cluster analysis beyond 
the vanilla approaches to understand ways we can improve our 
analysis and to get a broader sense of what’s possible. 

First, let’s define more clearly what cluster analysis is. Cluster 
analysis is an unsupervised data-mining technique used to assign 
data into groupings whereby observations within a grouping (i.e., 
cluster) will be similar to each other. It is unsupervised because 
the algorithm does not have access to any label or response 
information when training. Instead, the model learns the 
relationships from the data itself without having access to any sort 
of “correct” answer (usually—we’ll come back to this point). 

Without a correct answer to judge the results by, how do we 
determine what makes a good cluster in the first place? This 
turns out to be a surprisingly tricky question. We are trying 
to create groupings that exhibit similar characteristics. Two 
natural consequences of this are that observations within a 
cluster should be similar to each other and observations within 
different clusters should be less similar to each other. While 
there are a variety of evaluation metrics in cluster analysis, most 
are ways of measuring and comparing these two ideas. The 
silhouette score is an illustrative example. For each data point, 
it measures the distance between the current data point and all 
the other observations within the same cluster and compares 
that to the average distance between the current data point and 
all observations for the nearest neighboring cluster. The closer 
the current data point is to the other observations within its 
own cluster center, and the farther away it is from the nearest 
cluster’s observations, the better. 

While in cluster analysis you don’t use labels in training your 
model (with exceptions as noted later), you can be in the lucky 
situation of having access to a cluster assignment label to evaluate 
the model. If this is the case, there are a few methods that can 
evaluate cluster quality, many of which are closely related to the 
types of error metrics you would look at for classification tasks. 
Even if you don’t have access to true cluster labels, another way 
to use this idea, called supervised clustering, is by using proxy 
features that you think the cluster model should be able to do a 
good job of classifying. For instance, you might want to group 
people with similar health profiles together. If you know what 
their health care claim costs are, you might be able to use this as 
a proxy of health. 

Now that we’ve established some concepts behind cluster 
evaluation, we’ll discuss some ideas that might be useful in 
practice. The ideas that follow are presented roughly in order 
of practicality.

DATA PREPROCESSING 
Modeling is always about the data and its representation. Data 
is the foundation upon which everything rests. One of the first 
things to try, even before creating a model, is to make sure you 
preprocess your data in a meaningful way. Because clustering 
relies on the distance between features, you will often want to 
normalize all the data so that it is all represented on a similar 
scale. One way to do that is to standardize the features to be 
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performing better than another requires considerable thought. 
It is not as straightforward as the supervised learning case. 

FEATURE AND CLUSTER SELECTION
Irrelevant features in cluster analysis can slow down model 
training and unnecessarily bloat model size. Worse, they have 
the potential to degrade model performance. Feature selection 
can be tricky though and is a bit of a catch-22. If you already 
know what features matter, you would have already applied that 
knowledge and wouldn’t need to do feature selection. And if 
you don’t, and you lack a ground-truth label, how do you judge 
whether a feature matters?

Of course, the simplest form of feature selection is simply 
applying domain understanding. While qualitative, this form of 
feature selection is highly valuable. We can pick features that 
likely correlate to behaviors we are interested in and remove 
redundant, uninteresting, or highly correlated features. Barring 
that, there are also specialized algorithms that deal in feature 
selection. For instance, a feature selection algorithm might pick 
the features that most contribute to cluster compactness. 

Intelligently selecting the number of clusters (for algorithms 
that don’t do this automatically) is another way to improve 
the analysis. Several different metrics are useful, including the 
gap statistic, average silhouette score, and the elbow method. 
Conversely, the number of clusters selected may not involve 
any of these methods and may be informed by the use case. 
As an example: fifty clusters might be too unwieldy from an 
implementation perspective but five clusters might not be 
granular enough to give interesting insights. 

CONSENSUS CLUSTERING
Consensus clustering is a way to (potentially) improve cluster 
analysis by creating multiple cluster models and then combining 
them. Effectively, consensus clustering is a way to create 
ensembles, similar to how we might for supervised learning (not 
surprisingly, this approach is also called ensemble clustering). 
The reason it works is similar to the intuition for ensembles in 
the supervised case, with a few new wrinkles added in. One of 
those wrinkles is that different clustering methods divide the 
feature space in very different ways geometrically, so combining 
algorithms can be a bit risky and isn’t as easy as it might be in the 
supervised learning case. 

There are several ways to create consensus models. Some possible 
methods include relabeling/voting, a co-occurrence matrix, and 
median partition methods. My experience is primarily with 
relabeling/voting methods so I’ll expound upon that method for 
illustrative purposes. 

One thing to remember with consensus clustering is that, unlike 
in supervised learning, there is no response value in clustering, 

within the range [-1,1]. This should effectively give every feature 
in your data set an equal “vote” in the model-building process. 
Without normalization, features with large absolute values will 
be overweighted. You might also do the opposite and transform 
the scales of certain columns to have more influence in the 
clustering algorithm. In adjusting the weights, you can express a 
preference for how large of a vote each feature gets in the model.

Another step that is beneficial is to perform label encoding for 
categorical features, i.e., represent your categories as numbers. 
To do this, you need to be a little thoughtful and treat ordinal 
and categorical data differently. If you have three distinct 
categories and you assign them to values 1, 2, and 3, then the 
clustering algorithm will treat two records coded with 1 and 2 as 
more similar than two records coded with 1 and 3. This might 
make sense if your data is naturally ordinal. If not, you might try 
one-hot encoding, where you create a single indicator feature 
for each category in the original feature. 

Lastly, you can perform impact encoding. The idea here is that 
you replace each categorical value in a feature with a numerical 
value derived from some outcome of interest. For instance, if you 
have ZIP code as a feature it will have high cardinality and may 
not be useful in a model—it takes on too many values, mostly 
non-credible. You could instead create a feature that encodes 
the average income, mortality rate, or per member per month 
(PMPM) health care claim cost within that ZIP code. 

ALGORITHMIC POTPOURRI
One possible way to improve clustering model results is 
simply by trying out different model types. A myriad of 
different algorithms exist out there for clustering—literally 
hundreds. Yet, just like in the supervised learning case, the 
number of really useful algorithms is much smaller. K-means 
and hierarchical clustering are the obvious choices. Gaussian 
mixture models, density-based spatial clustering of applications 
with noise (DBSCAN), spectral clustering, and clustering large 
applications (CLARA) are some more common alternatives. 
To select the right algorithm there are two options—learn 
about the differences between them and carefully select the 
appropriate algorithm based upon the problem at hand (for 
instance, k-medoids is more robust to outliers than k-means 
while spectral clustering is more resistant to noise), or simply 
try out multiple algorithms and evaluate the results. Given the 
lack of a ground-truth label, knowing when one technique is 

One possible way to improve 
clustering model results is 
simply by trying out different 
model types.



PREDICTIVE ANALYTICS AND FUTURISM | 3Copyright © 2020 Society of Actuaries. All rights reserved.

Like Peas in a Pod: Ideas in Cluster Analysis

SHAP values were initially introduced as a model interpretation 
method, where we allocate how much each feature in a 
supervised learning task contributes to the difference between 
the prediction for that particular observation and the overall 
average. As an example, the SHAP value in a linear regression 
is actually the coefficient for that feature multiplied by the 
feature value—because this value in a regression equation tells 
us how to move that record’s prediction away from the overall 
average, conditional on all the other features. Things get more 
complicated in the nonlinear case of a gradient-boosted machine 
or random forest. That is where SHAP values really add insight. 
SHAP values are extremely useful, so if this has piqued your 
interest, I highly suggest you read more about them (for instance, 
see Lundberg 2017). 

So how can we use SHAP values in clustering? Well, because 
SHAP values deconstruct each individual prediction into the 
contribution from each feature, a data set with n observations 
and m features would generate a matrix of n x m SHAP values. 
This means that we have a new matrix that can effectively replace 
every feature in our data set with a new feature for our clustering 
model. Why is this interesting? Because it puts everything on a 
consistent interpretation and scale. It can also help us preprocess 
our data in desirable ways when dealing with categorical data, 
especially if the feature has high cardinality (in a way similar to 
impact encoding). Additionally, to the extent that the supervised 
model’s response corresponds to the types of behaviors you wish 
to use your cluster model on, it could result in tighter clusters.

The clear challenge with this approach is the requirement to 
first build a supervised model from which to get the SHAP 
values. This is a luxury that we often don’t have, but if we do, we 
should exploit it. 

SEMI-SUPERVISED CLUSTERING
There has been promising research on incorporating outside 
knowledge into the clustering process. Semi-supervised clustering 
is an approach that can be used either when we have partially 
labeled data or when we want to enforce prior knowledge into 
the model. Typically, this prior knowledge is represented by 
specifying a constraint that two observations must be in the same 
cluster or conversely that two observations can’t be in the same 
cluster. Semi-supervised clustering can be particularly useful 
when labeling instances is expensive or when you have a strong 
desire to enforce constraints based upon the business context 
of the model. How this works is that the algorithm takes user-
provided input in terms of labels or constraints and accounts for 
it in the model-building process. As an example, imagine building 
a clustering model using age bands. You might want to enforce 
a constraint that records with younger age bands should not be 
in the same cluster as records with older age bands while still 
desiring to use age as a way to measure similarity between records. 

so the output of a cluster model is an arbitrary label, usually an 
integer. That is, there is no guarantee in any set of clustering 
models that the fifth cluster in one model corresponds to the 
fifth in another model. The label is just a placeholder, so you 
can’t simply look up the fifth cluster in two different models and 
expect them to have any correspondence with each other. 

Relabeling/voting takes care of this problem for us. First, it 
determines label correspondence between the base models. It 
does this by checking the labels and switching them so that the 
labels in all the base models of the ensemble refer to the same 
cluster. With all our labels on a consistent basis, we can now create 
the ensemble’s prediction with either a hard or soft (probabilistic) 
classification of cluster membership for each observation. To do 
this we give each base cluster in the ensemble a vote as to which 
cluster it thinks the data point should belong to. For instance, if 
we had five different models with cluster predictions of 2, 2, 2, 
3, and 2, then by way of voting we would label this instance as 
belonging to the second cluster for a hard classification. For a soft 
classification, we would view this point as having a 0.8 weight or 
probability of being in the second cluster and a corresponding 
weight of 0.2 of it being in the third cluster.

PREPROCESSING WITH SHAP VALUES
Let’s now take things back a few steps, before applying any 
algorithms, to when we preprocessed our data. Instead of using 
the preprocessed data “as is,” let’s explore a new possibility: 
Shapley additive explanations (SHAP) values. SHAP values are 
derived from a classification or regression model. To explain 
how we can use SHAP values in clustering, let’s first dive into 
what they are. 
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CONCLUSION
In many clustering problems, simple approaches like k-means 
can provide “good enough” results, and in my anecdotal 
experience they often provide strong baselines that can be hard 
to improve upon. However, by digging a little deeper you may 
find ways to take your results to the next level. 

Although clustering is not always as clear-cut as classification or 
regression problems, it doesn’t mean that all answers are equally 
good. More often than not, in the real world you will be creating 
clusters as a tool to achieve a goal, and a good clustering model 
should be measured by how well it helps you achieve that goal. 
There may not be a way to unambiguously measure whether or 
not you have “the best” model, but the end goal should inform 
all your modeling decisions. n

Michael Niemerg, FSA, MAAA, is predictive 
modeling manager at Milliman IntelliScript. He can 
be contacted at michael.niemerg@milliman.com.
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Get Plugged in–New 
InsurTech Partnership
 
 

The SOA and Plug and Play relationship will allow Insur- 
Tech start-ups to validate their technology and modeling 
processes with actuaries. In turn, SOA members will have 

an exclusive look inside the world of emerging technologies. 
These efforts will help with the development of fair and finan-
cially sound insurance products to better serve consumers.

 The strategic partnership with Plug and Play demonstrates the 
SOA’s commitment to providing its members with dynamic 
learning experiences, rewarding volunteer opportunities, and 
collaborative events where they can learn from the experiences 
and ideas of peers around the world. Through this partnership 
SOA members and start-ups can share best practices and advance 
ideas for the benefit of the insurance industry, regulators and 
the public. The SOA and Plug and Play officially announce 
this partnership to support an exchange of knowledge between 
actuaries and start-ups. ■

https://www.soa.org/resources/announcements/press-releases/2020/plug-and-play-soa/
https://www.soa.org/resources/announcements/press-releases/2020/plug-and-play-soa/
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1. Sifting through combinations of factors is labor intensive, 
and it is probable that some important factors and 
combinations will be missed. 

2. When to stop looking for factors is left to judgment. The 
risk is that the modeler could either stop too early and miss 
important factors, or stop too late and waste valuable time.

3. Factors are not fit simultaneously. If there are dependencies, 
estimates may change when using its related factors. For 
example, if smoking status isn’t distributed identically 
by gender, the Smoker factor may pick up some signal 
belonging to Gender.

4. It can happen that different types of models suit different 
parts of the data. For example, an interaction of dimensions 
in one section of the data might be unneeded in another.

The manual recipe does not scale with volume. Automated 
approaches are needed to fill the gap. A variety of predictive 
models can offer relief, including GLMs (generalized linear 
models), GAMs (generalized additive models), decision trees/
forests, elastic nets, gradient boosting, etc.

This paper introduces a hybrid approach, the GLM tree, to an 
actuarial audience. 

While GLM trees are not the only tool that can deal with 
these issues, they have the advantage of being intuitive and 
easy to explain. This cannot be said of random forest, elastic 
net regression, or boosting methods. As you will see, they get 
an actuary to an answer more efficiently than other methods all 
while remaining explainable.

Toiling in the Actuarial 
Vineyards: Accelerating 
Traditional Experience 
Analysis With GLM Trees
By Philip Adams

The ever-increasing volume and diversity of data available to an 
actuary is both exciting and terrifying. Exciting because of the 
amazing and unexpected findings waiting to be discovered, 

and terrifying because of the drudgery and disappointment to be 
endured along the way. And time is of the essence.

Technology rewards us with a mess of data and helps us sift 
through it with numerous open-source solutions.

BRIEF HISTORY OF ANALYSIS
Actuaries have traditionally analyzed data manually. Even with 
technology, an actuary is manually reviewing, evaluating and 
judging the fitness of data for its intended purposes. Generally, 
the traditional approach often follows a similar recipe for 
mortality analysis:

1. Look through the dimensions of the data to find 
statistically significant factors driving mortality.
a. One dimension is considered at a time.
b. Optionally, two or more can be considered at the 

same time.
c. Filters can be introduced at any point.

2. Develop a set of factors for that dimension/combination  
of dimensions.

3. Do one of the following:
a. Adjust experience with the new factors.
b. Don’t adjust.

4. Repeat 1–3 as needed.
5. Finally, check for reasonableness and fit.

The recipe works, but not without shortcomings.
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In the case of model-based recursive partitioning, that last part 
about residual variation looking like noise is the key. For an 
ordered dimension (like age), under the null hypothesis where 
the residuals are independent, identically distributed random 
variables, the running sum of the residuals is distributed as 
a Brownian bridge (a random walk starting and ending at 0), 
subject to appropriate scaling. In the unordered case (e.g., 
categories), a Chi-square goodness-of-fit test is applied to the 
residuals for that dimension.

The dimension with the most variation wins. The algorithm 
searches for the best binary subdivision for that dimension. For 
an ordered dimension, each break point in the data is tested 
sequentially. For an unordered dimension having n levels, the 
algorithm tries all of the binary subdivisions of the dimensions. 
There are 2n-1-1 possible subset breaks to check. In both cases, 
the partition that maximizes the likelihood the most wins.

Now that the data have been broken into subsets, the algorithm 
starts the process over on the smaller pieces. Eventually, the 
procedure stops, either because there is nothing to improve or 
the analyst specified a stopping rule.

A CONCRETE EXAMPLE
Since mortality trend is among the most important topics for life 
insurance, I attempted several model types, both regression and 
tree-based. As it happens, only GLM trees were able to discover 
what subsets of the data had meaningful differences in mortality 
levels and trends.

I used the Poisson regression model:

Number of Deaths ~ β_0+β_1 Experience Year+log(Expected Claims 2015VBT)

The partitioning variables are everything else. Because some 
variables are insurance plan specific, I carried out the analysis 
separately for term and perm products. This example follows 
the algorithm/results for the term analysis. Since this is an 
exploratory exercise, no training/test split is performed.

Note that I emphasize intuitive understanding in my example 
and not technical understanding. Therefore, I am combining 
the parameter fluctuation test with the subset testing.

The algorithm starts by fitting the regression model to the data 
(Fig. 1). Mean trend is semi-significantly positive. 

There are 12 variables to test. We demonstrate the first three 
and stop with face amount band. The first variable is gender. In 
Figure 2, we see the models for a potential split. While there is 
unmodeled trend variation for females, there is less for males. 
The mean mortality level has small variation. The second is age 
basis. In Figure 3, this appears to be a promising split, with ANB 
showing deterioration yet small variation for mean mortality.

DESSERT BEFORE DINNER
In the fall of 2018, the Society of Actuaries issued a challenge 
whereby the Individual Life Experience Committee (ILEC) 
released experience data from 2009 to 2015 and invited parties 
to submit the best data analysis solution. The top three entrants 
were awarded fabulous cash prizes.

Consider the following findings for term experience:

1. The mortality experience for term business having at most 
one preferred class (two-class) deteriorated significantly 
over the study period.

2. Experience for 3- and 4-risk class systems improved 
significantly.

3. Term experience with face amounts below $100,000 
deteriorated.

GLM TREES
In the early days of my mortality modeling, GLMs and GAMs 
were the best available tools. In some cases, today’s algorithms had 
not been invented yet (or at least not revealed to a wide audience). 

Model fitting with GAMs can be a chore. Stepwise feature 
selection as implemented for GLMs does not work with 
splines. Instead, I searched for methods for automated feature/
interaction detection. One can find many approaches, including 
chi-square automatic interaction detection (CHAID) and other 
decision tree types. CHAID had many of the features I wanted 
yet appeared to be incompatible with the A/E and qx analyses. 

In 2008, Achim Zeileis, Torsten Hothorn and Kurt Hornik 
introduced a rigorous theoretical framework built on research 
into combining parametric models such as GLMs with decision 
tree models. The algorithm relies heavily on parameter 
fluctuation tests (method to detect whether there is unmodeled 
variation in the residuals).

If you were building a model by hand, you might check how well 
the model fits the data by examining one or more dimensions. 
For example, if you fit a constant percentage and then look at 
fluctuations of actual-to-model mortality, you might note some 
residual variation for some dimensions. The visual variation may 
look like noise, or it might show some patterns in the actual-to-
model mortality.

In the early days of my mortality 
modeling, GLMs and GAMs were 
the best available tools.
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Figure 1
First Regression Model on Term Data
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Variation Analysis—Actual Claim Count vs. GLM Predicted Claims
ILEC 2009–2015 Term

Trend: 0.58% (0.23%)
GLM Mortality (2012): 110.4% (0.49%)

Claims: 230,360

Figure 2
Candidate Models for Gender Split
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Variation Analysis—Actual Claim Count vs. GLM Predicted Claims
ILEC 2009–2015 Term—Top Level

Partition candidate: Gender

Gender: Female
Trend: 2.32% (0.40%)

GLM Mortality (2012): 112.7% (0.88%)
Claims: 77,141

Gender: Male
Trend: -0.31% (0.27%)

GLM Mortality (2012): 109.1% (0.58%)
Claims: 153,219

2010 2012 2014



PREDICTIVE ANALYTICS AND FUTURISM | 9Copyright © 2020 Society of Actuaries. All rights reserved.

Toiling in the Actuarial Vineyards: Accelerating Traditional Experience Analysis With GLM Trees

Figure 3
Candidate Models for Age Basis
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Variation Analysis—Actual Claim Count vs. GLM Predicted Claims
ILEC 2009–2015 Term—Top Level
Partition candidate: Age Basis

Age Basis: ALB
Trend: -2.33% (0.36%)

GLM Mortality (2012): 112.7% (0.79%)
Claims: 86,039

Age Basis: ANB
Trend: 2.56% (0.29%)
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Figure 4
Candidate Models for Face Amount Band
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Variation Analysis—Actual Claim Count vs. GLM Predicted Claims
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In Figure 4, there is substantial variation for both trend and 
mean mortality with increasing face amount band. Trend 
ranges from positive to negative with increasing face amount, 
and with the exception of face amounts under 10,000, mean 
mortality declines with increasing face amount. After testing the 
other nine variables, face amount was the first dimension along 
which to split the data. Because it has seven levels, there are 63 
splits. To lessen computation, face amount band is treated as an 

ordered factor, reducing this to six splits. The chosen split was 
at 100,000.

The algorithm then builds a tree recursively defined by split 
conditions with a GLM at each node/leaf of the tree. The partykit 
package expresses the results as a traditional tree. To get around the 
limitations of the default output, I expressed the results as a tree map 
as in Figure 5. The minimum node size was 10,000 expected claims.

Figure 5
Tree Map of GLM Output for Trend
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If you let your eyes wander, some findings emerge:

1. Face amounts less than 100,000 exhibited deterioration 
(the right third of the square). In the instance of 2-class 
preferred systems, deterioration was 6.4 percent (SE 0.42 
percent) on average per year. One possible exception was 
the light green block, but this is statistically not significant 
(SE 0.44 percent).

2. Face amounts 100,000 and higher witnessed improvement 
in general, with two exceptions.

a. The lower left corner contains post-level term and 
unknown level-term business. The trend here is 
potentially contaminated with slope misalignment. The 
net deterioration is 2.5 percent (SE 0.28 percent) per 
year on average.

b. The angry red block above it is residual standard of 
2-class preferred systems including the non-level 
term and within level term business. Within level 
term dominates the block. There was substantial 
deterioration of 3.3 percent on average per year (SE 
0.43 percent).

3. Right next to the angry red block is a very green block 
that contains residual standard of 3- and 4-class preferred 
systems. For these lives, there was substantial improvement 
on average of 2.6 percent per year (SE 0.32 percent), partly 
offsetting the deterioration of the 2-class systems. 

The same plot can be had for adjusted mean mortality (centering at 
2012). In Figure 6, we see that many relationships are as we expect: 
higher face amounts have better mortality, better preferred has 
better mortality, post-level term has worse mortality. Standing out is 
the high mortality for 2-class preferred systems with face < $100,000.

WHAT ABOUT PERM? ANALYSIS BY AMOUNT?
Perm has been omitted from this paper for brevity. The claim 
count is nearly 10x as large as for term, with much longer issue 
year horizons and more insurance plan types.

Analysis by amount has a few differences. For parameters, the 
GLM family is changed to a Tweedie distribution with parameter 
1.2. Minimum size depends on the specified weighting vector. 
The minimum size is set to 10,000 * $50,000, or $500,000,000, 
and the maximum depth tree depth is set to six. All but one of 
the resulting leaves has at least 10,000 claims.
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LIMITATIONS
The intent of the analysis was to unravel some of the riddles 
around trend in the ILEC 2009–2015 dataset. Since the 
minimum claim size per node was so large, it is likely that 
more insights can be gained by allowing the algorithm to drill 
deeper or changing the GLM model used for each node. 

I encountered a few problems when applying the GLM tree 
function in the partykit package to the data. The first was 

data sparsity with depth; there must be enough diversity in 
the data to support fitting a GLM within any proposed node. 
An early attempt at GLM trees was to have the GLM model 
template be an interaction between attained age group and 
duration group. The result would be an optimal subdivision 
of the data with a custom select-and-ultimate mortality table 
for each node of the tree. However, not every combination 
of age and duration will be available in every subset, or there 
may be no claims.

Figure 6
Tree Map of GLM Output for Mean Mortality
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The second was weighting. The GLM tree function applies the 
same weights parameter to the GLM fitting and the parameter 
fluctuation tests. This is problematic when using an offset in 
a Poisson model. If a weights vector is specified, the resulting 
GLMs will be skewed. If no weight is specified, the individual 
GLMs are fine, but the parameter fluctuation tests will 
weight equally each row of the data. Thus, it was necessary 
to customize the code to allow separate weights for the GLM 
fitting steps.

The third was lack of accommodation for splines. I had attempted 
to build a “GAM tree” function where the models within each 
node were GAMs. Adapting the spline parameters to parameter 
fluctuation tests proved challenging, and I ultimately set the task 
aside for later research.

FUTURE DIRECTIONS
I offer GLM trees as a valuable tool that helps to bridge the gap 
between the needs of actuarial analysis and the potential of data 
science methods. As an exploratory tool, it can illuminate structures 
in datasets. Using the typical recipe with training and test data, it can 
be applied as a predictive model. It can also be a point of departure 
for additional analysis, such as exposing where to focus further 
analysis or as a point of departure for more sophisticated models. n

Philip Adams, FSA, CERA, is an AVP and actuary, 
Biometric Research, for Munich American 
Reassurance Company. He can be contacted at 
padams@munichre.com.
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Uncertainty of a predictive model is a fact of life that many 
insurers could be overlooking at their peril without a 
framework for assessing it.

Predictive analytics have become increasingly commonly used 
across the U.S. life insurance industry in areas such as mortality 
and policyholder experience analysis, automated pricing and 
underwriting, in-force management and fraud/claims analytics.  

Predictive models are usually better at detecting signals from 
a large dataset and are more likely to be precise in making 
predictions compared to traditional approaches such as a tabular 
or one-way analysis. For example, U.S. life insurers often use 
actual-to-expected ratios in a tabular form to develop best 
estimate assumptions. Predictive models, like generalized linear 
models or tree models, may improve the traditional models, 
but the danger is that models become regarded as perfect and a 
silver bullet for decision making within the business. 

For, as the renowned statistician George E. P. Box once said: 
“All models are wrong, but some are useful.”

ZERO ERROR IS A PIPEDREAM
What he was referring to is that while any predictive model will 
(or should) be built to minimize the generalized error, the error 
will never practically be zero. So, the question insurers need to 
think about is how much the future will emerge differently from 
their predictions. To answer this question, having a framework 
to determine a level of model uncertainty can be invaluable. 

Such understanding matters, because it can be fundamental to 
things such as whether an insurance applicant that may be below 
the underwriting criteria is falsely approved, how much capital 

and reserves companies need to hold, the chances of fraudulent 
insurance claims making it through the vetting process, and 
decisions about risk transfer.

FRAMEWORK GOALS
There are a few key issues to address in such a framework. 
Actuaries usually ask, “How credible is the data?” Instead, we 
can expand this into more specific, targeted questions. What is 
the confidence level of the model’s average predictions? How 
significantly can reality differ from these predictions? The aim 
is to determine the degree to which your predictions may be 
uncertain so that you can augment your business strategy to 
minimize the impact from such uncertainty. 

We can apply those questions to the simplest of predictive 
models—the outcomes of tossing a coin. Let’s say 10 tosses 
of this coin have yielded six heads and four tails. Without 
knowledge of the fairness of this coin, what could the range of 
outcomes for 20 tosses be? What about 1,000 tosses? 

First, we must develop an assumption or a predictive model on 
the fairness of the coin. Then, we need to quantify the uncertainty 
of the model. Finally, given all these, we can understand the 
range and probability distribution of possible outcomes from 
more tosses.

An assumption about the fairness of the coin can be illustrated as a 
probability of showing a head. So, a reasonable assumption, based 
on experience, is 60 percent. We can estimate the uncertainty of 
that probability using binomial distribution as shown below to 
give an estimated standard deviation of 15.5 percent.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆	𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑆𝑆	𝑑𝑑𝑜𝑜	𝑃𝑃(𝐻𝐻𝑑𝑑𝑆𝑆𝑆𝑆) = 	2
𝑃𝑃(𝐻𝐻𝑑𝑑𝑆𝑆𝑆𝑆) × {1 − 𝑃𝑃(𝐻𝐻𝑑𝑑𝑆𝑆𝑆𝑆)}
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑𝑆𝑆	𝑑𝑑𝑜𝑜	𝑂𝑂𝑁𝑁𝑂𝑂𝑑𝑑𝑆𝑆𝑑𝑑𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑆𝑆𝑂𝑂

= 	2
0.6	 × 0.4

10
≈ 0.155 
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BAYESIAN APPROACH
So far, we have seen a frequentist view by developing a model 
on uncertainty relying solely on the historical data. Another 
approach is to use a Bayesian method that combines historical 
data and judgment (or a belief in the prior distribution). 
Depending on the prior belief, the view of the model and 
prediction uncertainties would differ, as illustrated in four charts 
in Figure 4. If there had been no or little prior knowledge, the 
posterior distribution would be more dispersed and fit to data 
similar to the frequentist view as shown in the chart indicated 
as uninformative or weak prior belief. A stronger prior belief 
that the coin is fair would produce a posterior distribution 
closer to 50 percent with less dispersion, putting less weight to 
the historical data. The selection of the prior distribution relies 
on qualitative subject matter expertise and intuition. This is a 
great way to combine the insights and domain expertise with the 
historical data, especially when the data is scarce. 

If we had more observations, for example, 60 heads from 100 
observations, our belief about the model would be stronger. The 
more data that’s available, the less the model uncertainty (see 
Figure 1).

Figure 1
Probability of a Head (P(Head)) Density Distribution of 
the Coin and Credibility

Some level of random noise would occur even if we have a model 
with a high degree of confidence in the underlying response. 
In our coin example, even if we are sure about the fairness of 
the coin, 20 tosses are expected to show a range of the number 
of heads due to random volatility. We may see 12 heads, but 
11 or 13 would also be likely given a coin with 60 percent of 
probability of heads. More tosses would ensure the outcome will 
be close to 60 percent of heads (see Figure 2). This measure 
can be particularly relevant when making predictions for a small 
number of cases or exposures.

Figure 2
Impact of Random Noise

Parameter Uncertainty by Historical Data Size

The overall uncertainty of the prediction is derived from both 
model uncertainty and randomness, as depicted in Figure 3. Even 
if the historical data indicated there is a 60 percent probability of 
heads with a high confidence, the future may surprise us (i.e., 10 
percent or 95 percent heads).

Figure 3
The Prediction Uncertainty Combines Parameter 
Uncertainty and Randomness. (Based on 10,000 
Simulations to Create the Density)

Some level of random noise 
would occur even if we have 
a model with a high degree of 
confidence in the underlying 
response. In our coin example, 
even if we are sure about the 
fairness of the coin, 20 tosses 
are expected to show a range 
of the number of heads due to 
random volatility.
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CASE STUDY: MORTALITY ANALYSIS 
With this theory in hand, we can now look to the operations of a 
life insurer, a much more complex problem than coin tosses. We 
will apply the same framework illustrated using coins, to a mortality 
study, which is one of key assumptions for life insurers. 

We first developed actual-to-expected (A/E) ratios on historical 
experience based on a classical approach. The A/E ratios were 
developed in a tabular form by gender, smoking status and 
substandard. As a comparison, we performed a Poisson regression, 
which is one of the popular generalized linear models. We used the 
Bayesian approach, assuming we are quite confident with the base 
expected mortality table. The prior distribution is assumed to be 
100 percent of the table with 5 percent of standard deviation.

Figure 4
Model Uncertainty Combines Parameter Uncertainty and Randomness. Posterior and Prediction Distributions are 
Developed Based on 10,000 Simulations.

We then developed predictions from a separate hold-out dataset, 
which was not used to develop the models. We then developed the 
mean and the 95 percent intervals of the predictions of the hold-out 
data. The predictions of the mortality rate (per 10,000 lives) of the 
group is shown in the chart in Figure 5. The actual mortality rate 
of the hold-out data set was 210 per 10,000 while the traditional 
model predicted 215. The Bayesian-Poisson model prediction of 
212 was closer to the actual compared to the traditional model that 
overfit to the training data set. The lower bound of confidence 
interval of the traditional model was 211, which is still higher than 
the actual (the second chart). A better way to view this is to compare 
the actual to the prediction interval. The Bayesian-Poisson model 
expects the actual mortality would be between 206 and 219 with 95 
percent confidence, which includes the actual mortality (the fourth 
chart). The actual data isn’t a surprise given the Bayesian analysis.
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predictions and actual experience, their use of predictive models 
needs to accommodate the inherent prediction uncertainty. 

Figure 6 illustrates a framework for doing that and, consequently, 
avoiding the tendency to accept models without a critical thought. 
When we develop a prediction model, we try to remove the noise 
and capture the signal. Ultimately, any model is a generalization 
of the complex and seemingly chaotic reality; but still useful as an 
approximation. With that understanding of the model in hand, 
the business should not ignore the noise, which is and always will 
be part of the reality. The Bayesian framework provides a way 
to address the uncertainties associated both with determining 
the model used for capturing the signal and understanding the 
possible noise (randomness) that would undermine the accuracy 
of the prediction.

From this we can see that the Bayesian approach is less prone 
to overfitting, and this was also the case when we reviewed the 
results in a more granular subgroup level with less credible data. 
Additionally, the Bayesian framework allowed us to combine 
historical data and actuarial judgment and helps us directly 
address the question of how the model is uncertain through 
its posterior distribution. We could add randomness to the 
posterior distribution to create the prediction distribution. 
We believe the Bayesian approach is one of the most effective 
quantitative analysis tools to inform how the model can deviate 
from reality and support risk management strategy. 

THE SIGNAL AND THE NOISE
If insurers are truly going to get to grips with the known unknowns 
in their businesses, such as inevitable variances between 

Figure 5
Predictions (Mean, and Upper and Lower Bounds Based on 95 Percent Confidence Level)
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Figure 6
Illustrative Framework for Assessing Prediction Uncertainty
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As much as predictive models have improved actuaries’ abilities 
to make more accurate and precise projections and assumptions, 
our foresight will never be 20/20. That much we know, so 
building our knowledge of the prediction uncertainty in our 
models is an essential part of fully understanding them and 
making sound business decisions based on them. n

Dan Kim is a director in Willis Towers Watson’s 
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willistowerswatson.com
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