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Optimal Consumption and Annuity Equivalent 
Wealth with Mortality Model Uncertainty 

Executive Summary 
The classic Yaari lifecycle model (LCM) lies at the very heart of much modern retirement research, particularly the 

economic understanding of annuity demand. The LCM predicts a high annuity demand among individuals facing 

retirement, yet it is rarely the case in reality. Such a disconnect between economic theory and practice is known as 

the annuity puzzle, spurring intensified research attempting to demystify its economic and psychological 

underpinnings. 

In this paper, we aim to understand the cause of low annuity demand through the angle of mortality model 

uncertainty. To this end, we advance Yaari’s LCM via incorporating a mortality model uncertainty analysis (a.k.a. 

perturbation analysis) and obtain the optimal robust consumption policies. Under an uncertain mortality 

environment, we examine the annuity equivalent wealth (AEW) and discover that investors may understate the value 

of an annuity if mortality model1 uncertainty is ignored. Based on a realistic choice of parameters, the following 

findings are obtained: 

• The worst-case mortality scenario in the perturbation analysis corresponds to an improved mortality 

trajectory, implying that a retiree’s aversion against mortality uncertainty is translated into the fear of 

longevity risk in retirement planning. 

 

• The worst-case perturbed mortality model is a parallel shift (also known as the proportional hazard 

distortion) of the best-estimated reference mortality curve. 

 

• Even under the presence of mortality model uncertainty, annuitization can still induce a noticeable increment 

in utility.   

 

• The optimal annuity payout pathway increases over time as mortality rate grows and more uncertainty about 

the future is resolved during the later stage of retirement.  

 

• The presence of mortality ambiguity aversion increases the value of annuity equivalent wealth. 

The last finding outlined above reveals that if mortality model uncertainty is disregarded, then the actual economic 

welfare gained by annuitization may be undervalued, causing fewer retirees to purchase annuities. Our study 

acknowledges that retirees should not place a full conviction on a specific mortality assumption.  Otherwise, the 

longevity risk inherent in retirement planning will be underestimated. Educating investors to recognize the uncertainty 

around future mortality pathways may be one of the possible ways to resolve the enduring issue of low annuity 

demand in the present retirement market. 

 

 

1 A model is a simplified mathematical description of some real-world phenomena. A mortality model can be as simple as life expectancies or as complex as 
stochastic mortality curves.  Admittedly, some sort of mortality model is likely to be involved in a retiree’s decision process. 
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Section 1: Introduction 

Owing to the growing public concern on retirement funding inadequacy, retirement planning has become a very active 

research area in the actuarial community during recent decades. A constant focus has been placed on the study about 

how retirees should wisely draw down their retirement nest eggs in order to receive adequate protection against the 

risks of outliving their retirement savings. Toward this aim, actuarial researchers resort to the rational economic 

theory for obtaining the optimal blueprint of retirees’ saving and consumption behaviors. Originally postulated in 

Fisher (1930) under the assumption of deterministic time horizon and then refined by Yaari (1965) to a stochastic 

lifetime, the lifecycle model (LCM) of consumption has evolved as the building block in much modern retirement 

research. Namely, Yaari (1965) derived the optimal consumption rule for a utility-maximizing retiree facing a 

stochastic time of death under an additive utility function. Yarri (1965) found that if there is no bequest motive, then 

the rational investor should convert all the savings into an actuarially fair annuity upon retirement. Later, rigorous 

analysis by Davidoff, et al. (2005) shows that many model assumptions in Yaari (1965) can be relaxed, while the original 

conclusion on full annuitization still remains true. 

Though the economic theory predicts a high annuity demand, this is rarely the case in reality. Very few consumers 

facing retirement choose to annuitize a substantial portion of their retirement savings (Benartzi et al., 2011). This 

disparity between theory and the actual consumers’ behavior, commonly referred to as the annuity puzzle, has 

spurred intensified research attempting to demystify the economic and psychological underpinnings. Several 

explanations for the annuity puzzle have been proposed, including low retirement savings amongst the population 

(Dushi and Webb, 2004), less flexibility to control spending (Pang and Warshawsky, 2010; Peijnenburg et al., 2017), 

the presence of bequest motive (Lockwood, 2012), incomplete annuity market (Horneff et al., 2008; Koijen et al., 

2011), unfair annuity pricing (Mitchell et al., 1999), and default risk of the annuity providers (Agnew et al., 2008), to 

name but only a few. It is fair to state that none of these explanations alone can fully account for low annuity demand 

in the market, but the aforementioned studies together essentially help us to better understand the issue from 

different angles. 

This paper bears another effort to unravel the annuity puzzle via the angle of mortality model uncertainty.  With all 

the other complexities involved in retirement planning, the subjective assessment of a retiree's future mortality 

pathway plays a decisive role in the decision process. Deviations from the mortality prediction model may pose a 

substantial influence on the lifespan discounted utility, thus turning the initially optimal strategy to be sub-optimal.  

Nevertheless, modeling individual mortality is notoriously hard from a statistical standpoint.  Different from the 

objective mortality model which can be estimated from the population data, the micro-structure of the subjective 

mortality is extremely complicated and is closely related to the retiree's occupation, wealth, lifestyle, and other 

socioeconomic determinants (Hurd and McGarry, 1995, 2002).  To develop an effective retirement strategy, the 

subjective mortality model should be “best-estimated'' using available data, while one must be also mindful of the 

model risk associated with the best-estimated model. 

In this paper, we treat the uncertainty surrounding the subjective mortality model as a robust control problem.  That 

is, in addition to the best-estimated reference mortality model, we should consider an alternative set of statistically 

similar mortality models, among which we solve the retirement planning problem based on the so-called 

endogenously determined worst-case mortality scenario.  Consequently, the consumption strategy obtained in our 

study will remain desirable even when the best-estimated mortality model performs inadequately.  As a side note, in 

behavioral economics, an investor's fear of the uncertainty in the estimated probability distributions of future 

outcomes, is referred to as ambiguity aversion.  In the context of this current paper, mortality ambiguity aversion 

represents a retiree's concern about the mortality model uncertainty.  If a retiree has no mortality ambiguity aversion, 

that means the retiree will choose to ignore the uncertainty surrounding the mortality model and fully trust the best-

estimated mortality curve. 
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The rest of this paper is organized as follows.  Section 2 provides a high-level summary of the technical approach and 

findings as well as numerical illustrations.  After revisiting Yaari’s LCM in Section 3, we set up an LCM with mortality 

model uncertainty and recursive utility in Section 4. Section 5 derives the optimal consumption strategies and 

discusses the economic implications of mortality model uncertainty. Section 6 states our conclusions. In order to 

facilitate the reading, all technical proofs are relegated to Appendix A. Throughout, we consider a probability space 

(𝛺, 𝐹, ℙ) satisfying the usual conditions, in which ℙ  is a reference probability measure. In this paper, we focus on the 

impact of mortality model uncertainty on the retiree’s optimal demand for a life annuity, while not addressing 

investment model uncertainty. 
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Section 2: Summary of the Approach and Findings 

2.1 THE TECHNICAL APPROACH 

Arguably, the annuity puzzle itself is a mathematical economics problem. In order to demystify the problem, highly 

sophisticated technical tools are inevitably involved.  At a high level, the following flowchart summarizes the technical 

approach adopted in our paper. 

Motivated by the original study of LCM in Yaari (1965), two market conditions will be considered.  They are namely 

the complete annuity (CA) market, which refers to the availability of a complete set of life-only annuities2 at actuarially 

fair prices, and the complete bond (CB) market, wherein pure discount bonds are available for any maturities, but 

annuities are absent.  For the reader’s convenience, below is a table summarizing the notation system. 

  

 

 

2 We openly admit that this paper only focuses on life-only annuities due to their simple structures.  Like most of economics research which require a 
significant level of abstraction of the real world, we hope that our results derived based on this simplest annuity product can be extended to another more 
realistic yet complicated scenario.  Follow-up research is still needed to verify this conjecture. 
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Notation Description 

𝑡𝑝𝑦 Probability of an individual aged at 𝑦 survives more than 𝑡 
years 

𝜆𝑥  Mortality rate (i.e., force of mortality) at age 𝑥 

𝑟 Risk-free discount rate (for discounting cashflows) 

𝜌 Subjective discount rate (for discounting utility) 

𝛾 Risk aversion parameter (the higher the value of 𝛾, the 
more averse a retiree becomes against consumption 
fluctuations due to the random states of the future) 

𝜙 Elasticity of intertemporal substitution (EIS) of 
consumption (the higher the value of 𝜙, the less averse a 
retiree becomes against consumption fluctuations over 

time in a deterministic world) 

𝜓 Model ambiguity aversion parameter (the higher the value 
of 𝜓, the more averse a retiree becomes against 

uncertainties surrounding the “best estimated” model) 

𝜃(𝑡) and 𝜃∗(𝑡) Mortality perturbation function such that the perturbated 
mortality curve is 𝜃𝑡 × 𝜆𝑥+𝑡, and the worst-case 

perturbation function is denoted by the superscript “*” 

𝑋𝐴(𝑡; 𝜓) and 𝑋𝐵(𝑡; 𝜓); 𝑋𝐴
∗(𝑡; 𝜓) and 𝑋𝐵

∗ (𝑡; 𝜓) Wealth processes at time 𝑡 under the complete annuity 
market condition (A) and complete bond market (B), 

respectively, and the optimal counterparts are denoted by 
the superscript “*” 

𝑉𝐴(𝑡; 𝜓) and 𝑉𝐵(𝑡; 𝜓); 𝑉𝐴
∗(𝑡; 𝜓) and 𝑉𝐵

∗(𝑡; 𝜓) Discounted utilities at time 𝑡 under the complete annuity 
market condition (A) and complete bond market (B), 

respectively, and the optimal counterparts are denoted by 
the superscript “*” 

𝑐𝐴(𝑡; 𝜓) and 𝑐𝐵(𝑡; 𝜓); 𝑐𝐴
∗(𝑡; 𝜓) and 𝑐𝐵

∗ (𝑡; 𝜓) Annuity payout functions at time 𝑡 under the complete 
annuity market condition (A) and complete bond market 

(B), respectively, and the optimal counterparts are 
denoted by the superscript “*” 

𝜋𝐴(𝑡; 𝜓) and 𝜋𝐵(𝑡; 𝜓); 𝜋𝐴
∗(𝑡; 𝜓) and 𝜋𝐵

∗ (𝑡; 𝜓) Consumption-to-wealth ratios at time 𝑡 under the 
complete annuity market condition (A) and complete bond 
market (B), respectively, and the optimal counterparts are 

denoted by the superscript “*” 

AEW Annuity equivalent wealth, which quantifies the utility 
increment gained by annuitization 
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2.2 SUMMARY OF THE CONTRIBUTIONS AND FINDINGS 

Here is a summary of our paper’s technical results and economic insights, which we believe are new to the literature. 

1. In terms of the technical contributions, we extend Yaari’s LCM in two innovative aspects. First, we integrate 

a perturbation analysis into the study of Yaari’s LCM and obtain the optimal consumption policies that are 

robust to the uncertainty occurred to the best-estimated mortality model. Inspired by the original study in 

Yaari (1965), both the complete annuity market and the complete bond market conditions are considered, 

and under an endogenous worst-case mortality scenario, we calculate the annuity equivalent wealth (AEW) 

which quantifies the utility increment gained by annuitization. Second, we generalize the additive utility 

considered in Yaari’s LCM to the more general Epstein-Zin recursive utility (Duffie and Epstein, 1992). 

Particularly, recent studies of Yaari’s LCM often assume the constant relative risk aversion (CRRA) 

preferences. It is known that the CRRA utility restricts the risk aversion parameter to be the reciprocal of the 

elasticity of intertemporal substitution parameter. See Remark 1 for details. However, these two parameters 

characterize very distinct features of a retiree’s risk preferences. The adoption of recursive utility allows us 

to distinguish the coefficient of relative risk aversion from the EIS in consumption. It is interesting to study 

what the roles of these two different risk preference parameters play in quantifying the retiree’s perception 

about mortality model uncertainty, the associated optimal consumption policies, and AEW.  For more details, 

we refer the reader to Sections 3 and 4. 

 

2. Capitalizing on the aforementioned extensions of Yaari’s LCM, we find that compared with the reference 

mortality model, the worst-case mortality scenario can be a deteriorated or improved mortality pathway, 

depending on the value of EIS. If the retiree’s EIS 𝜙 is smaller than one, which is the common case as shown 

in the empirical study by Yogo (2004), then 𝜃∗ < 1 and so the worst-case mortality scenario corresponds to 

an improved mortality trajectory, implying that the retiree is more concerned about the longevity risk 

throughout the retirement planning phase. This is a rather non-trivial yet appealing finding, which shows that 

the recent research focus on longevity risk is even meaningful from the mortality model uncertainty 

standpoint. For more details, we refer the reader to Theorem 1 in Section 5.1 and the discussions after it. 

 

3. Moreover, we find that the worst-case perturbed mortality model corresponds to a parallel shift (also known 

as the proportional hazard distortion; see, Wang, 1996) of the best-estimated reference mortality curve. This 

type of distortion is often adopted to examine the sensitivity of mortality assumption in retirement research, 

mainly due to its inherent simplicity. Our study shows the choice of parallel shock is indeed sufficiently 

conservative for covering the worst-case mortality scenario, so far at least as the LCM is concerned. For more 

details, we refer the reader to Theorem 1 and the discussions in Section 5.1. 

 

4. Realizing mortality model uncertainty, it is discovered that the optimal annuity payout pathway may present 

an asymmetric U-shaped pattern over time.  Based on reasonable values of parameters, the optimal annuity 

payout function decreases over time at the beginning of the retirement phase when the force of mortality is 

still relatively low. This is because the expected remaining lifetime of the retiree is still long.  A substantial 

number of uncertainties still remain over the outstanding retirement life, so the retiree needs to save more 

wealth for the future. However, as the retiree gets older, the mortality rate grows and more uncertainty 

about the future is resolved for the remaining life, the optimal annuity payout function will essentially 

become increasing. Conventional annuity products may be redesigned to incorporate such a payment 

pattern to be more attractive to retirees. While annuity products having this type of payout pattern are not 

common (or may not even exist) in the insurance market, it will be interesting to investigate their 

marketability in follow-up research. The optimal drawdown non-annuity strategies may present an 

asymmetric U-shaped pattern over time. For more details, we refer the reader to Proposition 4 and the 

discussions in Section 5.1. 
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5. Compared with the original LCM studied in Yaari (1965), the presence of mortality model uncertainty 

decreases the optimal annuity payout/consumption amount at the beginning of the retirement phase but 

increases the amount during the latter stage.  The optimal consumption-to-wealth ratio decreases because 

of mortality model uncertainty.  This is because, as argued in Point 1, a retiree’s aversion against mortality 

uncertainty is translated into the fear of longevity risk in retirement planning. For more details, we refer the 

reader to Propositions 6 - 7 and the discussions in Section 5.2. 

 

6. Even under the presence of mortality model uncertainty, annuitization can still induce a noticeable utility 

increment and consumption increment.  For more details, we refer the reader to the numerical example and 

Proposition 4.  

 

7. Under a realistic parameter setting, we show rigorously that the presence of mortality ambiguity aversion 

increases the value of AEW. This suggests a brand-new angle to understand the enduring economic puzzle 

on low annuity demand. Namely, if mortality model uncertainty is ignored, then the actual economic welfare 

gained by annuitization may be undervalued, causing fewer retirees to purchase annuities. Our study 

acknowledges that retirees should not place a full conviction on a specific mortality assumption.  Otherwise, 

the longevity risk inherent in retirement planning will be underestimated. Educating investors to recognize 

the uncertainty around future mortality pathways may be one of the possible ways to resolve the issue of 

low annuity demand in the present retirement market. For more details, we refer the reader to Proposition 

8 and the discussions in Section 5.2. 

 

2.3 A NUMERICAL SUMMARY OF THE RESULTS 

In this subsection, we present a numerical example to illustrate the findings of our paper, which were summarized in 

the previous section.  For more details of our model, technical results, and economic arguments, we refer the reader 

to Sections 3 – 5.  Suppose that the rational retiree of interest is now aged 65 and endowed with a retirement saving 

of $100 (thousand). We estimate the baseline mortality curve using the celebrated Gompertz law (Gompertz, 1825; 

also see Milevsky, 2020 for a recent development): 

 𝜆𝑥
GM = 𝑤1 𝑒𝑥𝑝( 𝑤2𝑥),  𝑥, 𝑤1, 𝑤2 > 0. (1) 

We fit the mortality model (1) into the 2015 - 2019 U.S. mortality table extracted from the Human Mortality Database3.  

The parameters are estimated to be �̂�1 = 5.01 × 10−5 and �̂�2 = 8.39 × 10−2 for female, and �̂�1 = 8.10 × 10−5 

and �̂�2 = 8.25 × 10−2 for male.  Figure 1 depicts the probability density function as well as the survival probability 

associated with the fitted Gompertz mortality model.  As is shown in the right panel of Figure 1, the female survival 

probability curve dominates that of male, implying that female is more likely to survive longer than male at any future 

time points. 

Moreover, we set the risk-free rate to be 1.9% according to the U.S. cash rate in the 2021 Long-Term Capital Market 

Assumptions report published by the J.P. Morgan Asset Management. We set the subjective discount rate to be 3% 

which is a standard choice in the related literature. Indeed, Frederic et al. (2002) conducted a comprehensive 

literature review on estimated discount rates in previous studies and found a predominance of high discount rates, 

being well above market interest rate. The choices of the EIS coefficient 𝜙 and robustness parameter 𝜓 are rather 

 

 

3 We recognize the mortality assumption used in annuity pricing is likely to be different from the one estimated from the Human Mortality Database.  To 
address the difference, one can apply a loading factor in front of λ.  However, the discrepancy or adjustment will pose no harm to our economic findings.  
The dependence between mortality model uncertainty and annuity demand will remain the same even under a different baseline mortality assumption.  For 
this reason, we shall simply stick with the mortality rate estimated from the Human Mortality Database throughout the numerical study. 
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subjective, which depends heavily on the retiree's individual risk preference.  Motivated by the empirical study by 

Yogo (2004), we set 𝜙 = 0.5 and 𝜓 = 1 as the baseline parameters, which will be then shocked to understand their 

implications on the optimal retirement strategies.   

Figure 1 PROBABILITY DENSITY FUNCTION (LEFT PANEL) AND SURVIVAL PROBABILITY FUNCTION (RIGHT PANEL) OF THE RETIREE’S 

REMAINING LIFETIME RV 𝜏65. 

 

Based on the aforementioned baseline parameters, Figure 2 presents the optimal consumption pathways underlying 

the proposed robust LCM (also see, Theorem 1).  We find that the optimal consumption amount and consumption 

rate for males are higher than those of females.  This is intuitive because the life expectancy of females is longer than 

males, the female retiree will rationally lower the consumption in order to save more wealth for the future.  

Meanwhile, for both the female and male retirees, the optimal consumption amount under the CA market is higher 

than that under the CB market at the beginning of the retirement phase.  This occurs because by purchasing an 

annuity, the retiree earns higher returns than by purchasing a bond due to the mortality credit. However, when it 

comes to the optimal consumption rate, it always holds that 𝜋𝐴
∗ > 𝜋𝐵

∗ . For more rigorous theoretical investigations, 

we refer the reader to Proposition 4 in Section 5. 

Figure 2 THE OPTIMAL CONSUMPTION AMOUNT (LEFT PANEL) AND OPTIMAL CONSUMPTION-TO-WEALTH RATIO (RIGHT PANEL) UNDER THE 

BASELINE PARAMETERS. 
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Next, we are going to study the sensitivity of the EIS parameter 𝜙 ∈ (0,1).  As mentioned in Section 2.1, an empirical 

study conducted by Yogo (2004) confirmed that the EIS parameter for a typical investor falls into this range.  As already 

seen in Figure 2 the optimal consumption rules between females and males have the same pattern, thus we focus on 

the female retiree only.  From Figure 3, we observe that under the CA market condition, a smaller EIS leads to a flatter 

optimal consumption function over time, and the optimal consumption-to-wealth ratio tends to be higher. However, 

the optimal consumption pathways under the CB market condition do not seem to have a monotonic pattern in 

response to the change in the EIS coefficient.  This may be caused by the fact that the EIS parameter 𝜙 determines 

not only the optimal consumption decision but also the worst-case perturbed mortality model, which complicates the 

impact of 𝜙 on the optimal robust consumption rule.  

 

Figure 3 THE OPTIMAL CONSUMPTION AMOUNT (FIRST ROW AND OPTIMAL CONSUMPTION-TO-WEALTH RATIO (SECOND ROW WITH VARYING 

𝜙 ∈ {0.25,0.5,0.75}. THE LEFT PANELS RECOGNIZE CA AND THE RIGHT ARE CB. 

  

 

Different than the EIS coefficient, the study of the sensitivity of the robustness preference parameter 𝜓 > 0 is much 

more predictable. According to the left panel of Figure 4, we find that a lower robustness preference 𝜓 increases the 

optimal consumption amount at the beginning of the retirement phase. The pattern is intuitive because when  𝜙 <

1,  the longevity risk is more concerned (see Point 2 in Section 2.2), and the retiree should rationally reduce the 

consumption amount at the beginning of the retirement phase so as to keep more savings for the future. In another 
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unreported case with EIS 𝜙 > 1, and thus the mortality risk is of more concern, the rational retiree will choose to 

increase the consumption amount at the beginning of the retirement phase to make sure that a desirable amount of 

consumption utility can be gained before death.  The right panel of Figure 4 shows that when EIS 𝜙 < 1, the mortality 

ambiguity aversion will lower the percentage of consumption out of the present wealth at every instant, no matter 

whether or not an annuity is purchased. This is because if 𝜙 < 1, then the worst-case perturbation function satisfies 

𝜃∗ < 1, which corresponds to a longevity risk scenario. Consequently, the retiree reduces the consumption rate in 

order to lower the risk of outliving retirement savings. Alternatively, if EIS 𝜙 > 1, then the worst-case perturbed 

mortality curve corresponds to a mortality risk scenario.  Thus, in order to maximize the lifespan discounted utility, 

the rational retiree will choose to increase the consumption ratio. 

Figure 4 THE OPTIMAL CONSUMPTION AMOUNT (FIRST ROW) AND OPTIMAL CONSUMPTION-TO-WEALTH RATIO (SECOND ROW) WITH 

VARYING Ψ ∈ {0.5,1,2}. THE LEFT PANELS RECOGNIZE CA AND THE RIGHT ARE CB. 

 

Finally, we study the sensitivity of robustness preference parameter 𝜓 on the AEW. Two cases are considered.  In the 

first case, if we stick to the baseline EIS 𝜙 = 0.5 which is smaller than one, which indicates a retiree’s preference for 

more stable consumption pattern over time, then the AEW is increasing with the retiree's robustness preference.  In 

another case where 𝜙 = 1.5, which is greater than one, indicating that a retiree has higher tolerance to future 

consumption fluctuations, then the relationship between 𝜓 and AEW is reversed. In other words, the aversion of 

future consumption fluctuations caused by mortality model misspecification can be translated into a fear of longevity 

risk. Thereby, a growing concern about mortality model uncertainty will essentially cause the AEW to increase. It is 
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also worth mentioning that an AEW4 as high as 190% as appeared in Figure 5 by no means present flaws in our model 

or calculation, and it is caused by the fact that LCM is based on a utility maximization framework. It is known that 

utility function is non-linear and concave, so an immoderate amount of wealth is needed for compensating the utility 

reduction due to the absence of annuity within the CB market. Indeed, such a magnitude of AEW is consistent with 

numerous results reported in the literature (see e.g., Brown, 2001; Milevsky and Huang, 2018). Based on the pattern 

observed in Figure 5, we argue that mortality model uncertainty is a potential contributor to the enduring puzzle of 

low annuity demand. Namely, if the uncertainty surrounding a point estimate of the mortality curve is overlooked by 

the retiree, then the value of annuity may be understated when  𝜙 < 1, which is a realistic choice for the EIS 

parameter.  Our study acknowledges that retirees should not place a full conviction on a specific mortality assumption.  

Otherwise, the longevity risk inherent in retirement planning will be underestimated. Educating investors to recognize 

the uncertainty around future mortality pathways may be one of the possible ways to resolve the issue of low annuity 

demand in the present retirement market. Moreover, we note that the AEW of the female retiree is always lower 

than that of the male retiree.  The reason is that the female retiree has a lower mortality rate than the male, so the 

corresponding annuity price is higher, lowering the utility gained. 

Figure 5 THE AEW’S WHEN THE EIS Φ = 0.5 (LEFT PANEL) AND Φ = 1.5 (RIGHT PANEL). 

 

 

  

 

 

4 Recall that AEW quantifies the extra amount of initial wealth needed in order to compensate for the lack of annuity in the CB market.  For example, a 
retiree in the CB market would need to have an initial wealth of $190 in order to achieve the same level of utility as a retiree in the CA market who only has 
$100 initial wealth.  As long as AEW is greater than 1, that implies annuitization can generate a utility increment.  However, note that in our study, we do 
not try to address the question about whether 190% AEW is good enough.  Instead, our goal is to investigate if the presence of mortality model uncertainty 
makes the baseline AEW smaller or larger.  Since we assumed that annuity prices are actuarially fair, the AEW is mainly driven by the risk aversion and the 
ambiguity aversion of the retiree.   
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Section 3: A Recap of Yaari’s Lifecycle Model 

In a nutshell, Yarri (1965) studied the optimal annuity payout/consumption pattern for a utility maximizing retiree 

facing stochastic lifetime. The annuitization argument derived in the original paper of Yaari (1965) is rather subtle, 

thus before putting our paper into perspective, this section provides a coarse review of it. Consider a rational retiree 

aged 𝑦 at time 0, and non-negative random variable (RV) 𝜏𝑦 denotes the retiree's remaining lifespan. Let 𝜆𝑦+𝑡 
be the 

subjective force of mortality of the retiree at time 𝑡 ≥ 0, the corresponding survival probability can be computed via 

 𝑡𝑝𝑦: = ℙ(𝜏𝑦 > 𝑡) = 𝑒𝑥𝑝 (− ∫ 𝜆𝑦+𝑠

𝑡

0

𝑑𝑠). (2) 

Suppose that the retiree does not have any bequest motive and is neither willing nor able to invest in the stock market. 

As a matter of choice, the retiree can either invest the retirement savings in a risk-free bond or an annuity, and then 

fully consume the payments generated from the holdings. In a complete annuity (CA) market which refers to the 

availability of a complete set of annuities at actuarially fair prices, the rational retiree will convert all the retirement 

savings into an annuity. An initial retirement wealth of 𝑥0 > 0 can support the annuity payout function 𝑐𝐴: ℜ+ → ℜ+, 

such that   

 𝑥0 = 𝔼[∫ 𝑒−𝑟𝑠
𝜏𝑦

0

𝑐𝐴(𝑠)𝑑𝑠] = ∫ 𝑒−𝑟𝑠
∞

0

 𝑠𝑝𝑦𝑐𝐴(𝑠)𝑑𝑠 = ∫ 𝑒− ∫ (𝑟+𝜆𝑦+𝑢)
𝑠

0 𝑑𝑢
∞

0

𝑐𝐴(𝑠)𝑑𝑠, (3) 

where 𝑟 > 0 denotes the instantaneous risk-free interest rate. The time 𝑡 actuarial present value of the future annuity 

payments can be evaluated as 

 𝑋𝐴(𝑡) = 𝔼𝑡[∫ 𝑒−𝑟(𝑠−𝑡)
𝜏𝑦

𝑡

𝑐𝐴(𝑠)𝑑𝑠] = ∫ 𝑒− ∫ (𝑟+𝜆𝑦+𝑢)
𝑠

𝑡 𝑑𝑢
∞

𝑡

𝑐𝐴(𝑠)𝑑𝑠, (4) 

which satisfies the following differential equation: 

 𝑑𝑋𝐴(𝑡) = ((𝑟 + 𝜆𝑦+𝑡)𝑋𝐴(𝑡) − 𝑐𝐴(𝑡))𝑑𝑡,  𝑋𝐴(0) = 𝑥0. (5) 

Without other means of living, the individual's wealth trajectory is exactly {𝑋𝐴(𝑡)}𝑡≥0.  Here and thereafter, the 

subscript ``𝐴'' attached with the payout function and wealth process is used to emphasize the CA market assumption.  

(Similarly, we should use subscript ``𝐵'' to spell out the complete bond market condition which will be introduced in 

a moment.) 

For 𝛾 > 0 and 𝑐 > 0, let 𝑢(𝑐) = 𝑐1−𝛾/(1 − 𝛾) denote the CRRA utility of consumption5 (when 𝛾 = 1, the utility 

function can be understood as 𝑢(𝑐) = 𝑙𝑜𝑔 𝑐). The rational retiree will choose an annuity payout for which 𝑐(⋅) 

maximizes the discounted lifetime utility over consumption:                                                    

 𝔼[∫ 𝑒−𝜌𝑠
𝜏𝑦

0

𝑢(𝑐(𝑠))𝑑𝑠] = ∫ 𝑒− ∫ (𝜌+𝜆𝑦+𝑢)
𝑠

0 𝑑𝑢
∞

0

×
𝑐(𝑠)1−𝛾

1 − 𝛾
𝑑𝑠, (6) 

where 𝜌 > 0 is the subjective discount rate that may or may not be equal to the risk-free interest rate. The optimal 

annuity payout function, or equivalently the optimal consumption path, is solved to be 

 

 

5 The LCM considered in Yaari (1965) used a more general additive utility form, but the choice of CRRA utility in our paper simplifies the present. 
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 𝑐𝐴
∗(𝑡) = 𝑥0 ×

[𝑒𝑥𝑝( − 𝑡(𝜌 − 𝑟))]1/𝛾

∫ 𝑡
∞

0
𝑝𝑦[𝑒𝑥𝑝( − 𝜌𝑠) 𝑒𝑥𝑝( − 𝑟𝑠)𝛾−1]1/𝛾𝑑𝑠

. (7) 

In analogy to the CA market, it is the complete bond (CB) market wherein pure discount bonds are available for any 

maturities, but annuities are absent. Thus, the retiree has to rely on bonds as the only means of investment. In this 

case, we denote the bond payout function by 𝑐𝐵: ℜ+ → ℜ+ which satisfies the following budget constraint: 

 𝑥0 = ∫ 𝑒−𝑟𝑠
∞

0

𝑐𝐵(𝑠)𝑑𝑠. (8) 

The evolution of the corresponding wealth trajectory is given by 

𝑑𝑋𝐵(𝑡) = (𝑟𝑋𝐵(𝑡) − 𝑐𝐵(𝑡))𝑑𝑡,  𝑋𝐵(0) = 𝑥0. 

The rational retiree will use the same objective function (5) to derive the optimal retirement consumption path which 

can be computed via 

 𝑐𝐵
∗ (𝑡) = 𝑥0 ×

[𝑡𝑝𝑦 𝑒𝑥𝑝( − 𝑡(𝜌 − 𝑟))]1/𝛾

∫
∞

0
[𝑡𝑝𝑦 𝑒𝑥𝑝( − 𝜌𝑠) 𝑒𝑥𝑝( − 𝑟𝑠)𝛾−1]1/𝛾𝑑𝑠

. (9) 

When 𝛾 > 1, then 𝑐𝐴
∗(𝑡)/𝑋𝐴

∗(𝑡) ≥ 𝑐𝐵
∗ (𝑡)/𝑋𝐵

∗ (𝑡) for all 𝑡 > 0, where 𝑋𝐴
∗ and 𝑋𝐵

∗  denote the wealth processes 

associated with the optimal consumption rules 𝑐𝐴
∗ and 𝑐𝐵

∗ , respectively.  The inequality implies that by annuitization, 

the optimal consumption rate out of the present wealth is higher at all times when the retiree is alive, which leads to 

the conclusion that the rational retiree should convert all the retirement savings into an annuity upon retirement.   

Moreover, to quantify the amount of individual welfare gained by annuitization, the annuity equivalent wealth (AEW) 

can be used. It is defined through   

𝑉𝐴
∗(𝑥0) = 𝑉𝐵

∗(AEW), 

where 𝑉𝐴
∗ and 𝑉𝐵

∗ denote the discounted lifetime consumption utility functions under the CA and CB markets with 

optimal consumption rules (6) and (8), respectively.  The AEW indicates the amount of extra initial wealth needed to 

compensate the absence of annuity in the CB market. In Yaari’s LCM, the AEW is given by   

AEW = 𝑥0 × [
∫
∞

0
[𝑡𝑝𝑦 𝑒𝑥𝑝( − 𝜌𝑠) 𝑒𝑥𝑝( − 𝑟𝑠)𝛾−1]1/𝛾𝑑𝑠

∫ 𝑡
∞

0
𝑝𝑦[𝑒𝑥𝑝( − 𝜌𝑠) 𝑒𝑥𝑝( − 𝑟𝑠)𝛾−1]1/𝛾𝑑𝑠

]

𝛾
𝛾−1

, 

which is greater than or equal to 𝑥0 for all 𝛾 > 0, meaning that the retiree would need a larger amount of retirement 

wealth in the CB market in order to achieve the same level of utility as in the CA market. 
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Section 4: Formulation of the LCM with Mortality Model Uncertainty 

As mentioned in the introduction, the main goal of our paper is to advance Yaari’s LCM along two directions, namely 

mortality model uncertainty and recursive utility. We start off by introducing a continuous-time version of the Epstein-

Zin recursive utility (Duffie and Epstein, 1992; Garleanu and Panageas, 2015) to model the retiree’s preferences. For 

any 𝑡 > 0, define the actuarial subjective discount factor 𝛿𝑡 = 𝜌 + 𝜆𝑦+𝑡, and let 𝑉(𝑡) be the discounted future utility 

at time 𝑡. The recursive utility is defined as                                                                               

 𝑉(𝑡) = 𝔼𝑡[∫ 𝑓
∞

𝑡

(𝑐(𝑠), 𝛿𝑠, 𝑉(𝑠))𝑑𝑠], (10) 

where 𝑐(⋅) denotes the consumption rate, 𝔼𝑡[⋅] denotes the conditional expectation given the filtration ℱ𝑡, and 

 𝑓(𝑐, 𝛿, 𝑣) =
(1−𝛾)𝑣

1−1/𝜙
[(

𝑐

((1−𝛾)𝑣)
1

1−𝛾

)

1−1/𝜙

− 𝛿]      𝑓𝑜𝑟 𝑐, 𝛿, 𝑣 > 0 (11) 

 

is known as the normalized aggregator of consumption and utility. In the formula above, 𝛾 > 0 is the relative risk aversion 

coefficient which measures the retiree's aversion of consumption fluctuations due to the random states of the future, and 

𝜙 > 0 is the EIS coefficient which measures the aversion of consumption fluctuations over time in a deterministic world. 

Hence, the merit for adopting the recursive utility over the CRRA utility is spelled out in that the retiree's preferences over 

the timing of the resolution of uncertainty is disentangled from risk aversion, so that we can study them separately.  

It is noteworthy that the recursive utility specified in (9) actually includes the CRRA utility as a special case, which is 

summarized in the following remark. 

Remark 1. If 𝜙 = 1/𝛾, then the aggregator defined in (10) becomes 

                         𝑓(𝑐, 𝛿, 𝑣) =
𝑐1−𝛾

1−𝛾
− 𝛿𝑣, 

so the recursive discounted utility (9) reduces 

 𝑉(𝑡) = 𝔼𝑡[∫ 𝑒− ∫ 𝛿𝑢
𝑠

𝑡 𝑑𝑢
∞

𝑡

×
𝑐(𝑠)1−𝛾

1 − 𝛾
𝑑𝑠], (12) 

which coincides with the additive discounted utility (5) as in Yaari's LCM. However, 𝜙 = 1/𝛾 may not hold true in 

general and thus the recursive utility is not necessarily additive. 

Next we turn to specify a set of plausible probability measures in order to account for the uncertainty around the 

reference mortality model. Following the mortality ambiguity approach proposed in Shen and Su (2019), for any 𝑡 >

0, we introduce an ℱ𝑡-predictable process 𝜃(𝑡) > 0 to be chosen endogenously by the retiree for adjusting the 

reference subjective mortality curve.  Consider an equivalent probability measure ℚ which is defined via the Radon–

Nikodym’s derivative: 

 
𝑑ℚ

𝑑ℙ
|ℱ𝑡

= 𝑒𝑥𝑝{ ∫ [
𝑡∧𝜏𝑦

0

𝑙𝑜𝑔( 𝜃(𝑠)) − 𝜃(𝑠) + 1]𝜆𝑦+𝑠𝑑𝑠 + ∫ 𝑙𝑜𝑔( 𝜃(𝑠)) 𝑑𝑍(𝑠) }
𝑡

0

 (13) 

where 𝑍(𝑠): = 𝟏{𝜏𝑦≤𝑠} − ∫ 𝟏{𝜏𝑦>𝑢}
𝑠

0
𝜆𝑦+𝑢𝑑𝑢 is a martingale associated with the single jump process 𝟏{𝜏𝑦≤𝑠}. By 

Girsanov’s Theorem, from ℙ to ℚ, the subjective force of mortality is perturbed from 𝜆𝑦+𝑡 to 𝜆𝑦+𝑡
ℚ

= 𝜃(𝑡)𝜆𝑦+𝑡, 𝑡 >

0.  Hence, we refer to ℚ as the perturbed measure and 𝜃(⋅) as the mortality perturbation function. The corresponding 
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survival probability under the perturbed measure ℚ can be computed similarly to Equation (1), but with the force of 

mortality therein replaced by 𝜃(𝑡)𝜆𝑦+𝑡. That is, 

 t𝑝𝑦
ℚ

: = ℚ[𝜏𝑦 > 𝑡] = 𝑒𝑥𝑝 (− ∫ 𝜃
𝑡

0
(𝑠)𝜆𝑦+𝑠𝑑𝑠). (14) 

The perturbation function 𝜃(𝑡) manipulates the discrepancy between the alternative model and the reference model 

at each time 𝑡 > 0.  To quantify the overall discrepancy, the relative entropy is a commonly used statistic to measure 

distance, suitable for robust control problems. In the context of this current paper, the relative entropy between the 

perturbed mortality model and the best-estimated reference mortality model can be computed via 

𝒟(ℚ|ℙ) = 𝔼𝑡
ℚ

[𝑙𝑜𝑔(
𝑑ℚ

𝑑ℙ
)] = 𝔼ℚ[∫ [

𝑡∧𝜏𝑦

0

𝑙𝑜𝑔( 𝜃(𝑠)) − 𝜃(𝑠) + 1]𝜆𝑦+𝑠𝑑𝑠 + ∫ 𝑙𝑜𝑔( 𝜃(𝑠)) 𝑑𝑍(𝑠) ]
𝑡

0

 

                                                  = 𝔼ℚ[∫ [
𝑡∧𝜏𝑦

0
𝜃(𝑠) 𝑙𝑜𝑔( 𝜃(𝑠)) − 𝜃(𝑠) + 1]𝜆𝑦+𝑠𝑑𝑠 + ∫ 𝑙𝑜𝑔( 𝜃(𝑠)) 𝑑𝑍ℚ(𝑠) ]

𝑡

0
 

                                                   = 𝔼ℚ[∫ [
𝑡∧𝜏𝑦

0
𝜃(𝑠) 𝑙𝑜𝑔( 𝜃(𝑠)) − 𝜃(𝑠) + 1]𝜆𝑦+𝑠𝑑𝑠]. 

For notational convenience, letting 

𝑔(𝜃): = 𝜃 𝑙𝑜𝑔 𝜃 − 𝜃 + 1,  𝜃 > 0, 

then we can write 

 𝒟(ℚ|ℙ) = 𝔼ℚ[∫ 𝑔
𝑡∧𝜏𝑦

0

(𝜃(𝑠))𝜆𝑦+𝑠𝑑𝑠]. (15) 

It is straightforward to check that 𝑔(1) = 0 and 𝑔′(𝜃) = 𝑙𝑜𝑔 𝜃, so if 𝜃(𝑡) ≡ 1, then the perturbed mortality model 

coincides with the reference mortality model, and so the relative entropy 𝒟 = 0.  For 𝜃1 and 𝜃2 both smaller than or both 

greater than one, if |𝜃1(𝑡) − 1| > |𝜃2(𝑡) − 1| for all 𝑡 > 0, then the perturbed mortality curve associated with 𝜃1 is farther 

away from the reference curve than the one associated with 𝜃2, so the corresponding entropy satisfies 𝒟1 > 𝒟2. 

The discussion above concerns how to construct the set of alternative mortality models to be considered by the 

retiree. Another important question is how large the set of the alternative mortality models should be. The answer to 

this question is not unique, but a widely accepted principle is that alternative models should not be statistically too 

far away from the reference model which has been best estimated, and those alternative models that are hard-to-be-

distinguished from the reference model should be considered more seriously. The penalty approach employed in the 

literature, such as Maenhout (2004, 2006) and Shen and Su (2019), reflects the aforementioned principle. Formally, 

given the consumption function 𝑐(⋅) and perturbation function 𝜃(⋅), we specify a penalty term incurred to the 

retiree’s discounted utility such that 

 𝐽(𝑐, 𝜃; 𝑡, 𝑥) = 𝔼𝑥,𝑡
ℚ

[∫ 𝑓
∞

𝑡

(𝑐(𝑠), 𝛿𝑠, 𝑉(𝑠, 𝑋(𝑠)))𝑑𝑠] +
1

𝜓
× 𝛤(𝑡, 𝜃),  𝑡 > 0,  𝑋(𝑡) = 𝑥, (16) 

where 𝜓 > 0 is the robustness preference parameter reflecting the extent of retiree’s concern about the uncertainty 

surrounding the reference mortality model, and 

𝛤(𝑡, 𝜃) = 𝔼ℚ[∫ (1 − 𝛾)
∞

0

𝑉(𝑠, 𝑋(𝑠))𝑔(𝜃(𝑠))𝜆𝑦+𝑠𝑑𝑠] 

can be viewed as a scaled counterpart of the relative entropy given in (14). The scaling factor (1 − 𝛾)𝑉(𝑠, 𝑋(𝑠)) is 

included in the penalty term mainly for an analytic tractability reason. With a fixed 𝜓, since a perturbed model that is 
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far away from the reference model will cause a large penalty to the utility, such a perturbed model is less likely to be 

accepted by the retiree. Alternatively, the robustness preference parameter 𝜓 controls the set of the alternative 

mortality models that the retiree is willing to consider. Namely, as 𝜓 increases, the penalty term becomes smaller 

even for those alternative models that are significantly different from the reference model, so the set of alternative 

mortality models acceptable for the retiree expands.  In other words, a more robust retiree having higher 𝜓 will put 

less faith on the reference model and effectively consider more different alternative mortality models that possess 

larger relative entropies. When 𝜓 = 0, any deviation from the reference model will lead to an infinitely large penalty 

incurred to the utility function. Hence in this case, the retiree has no ambiguity aversion and fully trusts the reference 

mortality model, corresponding to Yaari's LCM under the recursive utility but without mortality model uncertainty. 

Given the mortality perturbed measure and recursive utility, the retiree’s robust decision-making problem can be 

formulated in terms of the following two contemporaneous courses of action. In one course of action, within the pool 

of plausible mortality models, the retiree seeks to identify the worst-case mortality perturbation function 𝜃∗(⋅) that 

is most unfavorable to the retiree’s consumption utility. In another course of action, the retiree selects the optimal 

consumption policies to maximize the recursive utility under the worst-case mortality scenario. Collectively, the value 

function associated with the retirement problem of interest reads as 

 ( , ) max min ( , ; , ),cV t x J c t x  = C T               𝑡 > 0 𝑎𝑛𝑑 𝑥 > 0 (17) 

where the objective function 𝐽(⋅) is defined as per (15), ℭ and 𝔗 are the admissible spaces for consumption strategies 

and perturbation functions, to be specified in Definition 1 below. 

Definition 1. A consumption strategy 𝑐(𝑡) is said to be admissible if 

• 𝑐(𝑡) ≥ 0, for all 𝑡 > 0; 

• ∫ 𝑐
∞

0
(𝑠)𝑑𝑠 < ∞; 

• the wealth process 𝑋(𝑡) associated with 𝑐(𝑡) stays positive over the entire planning horizon. 

The space of all admissible consumption strategies is denoted by ℭ. 

Moreover, a distortion process 𝜃(𝑡) is said to be admissible if 

• 𝜃(𝑡) > 0, for all 𝑡 > 0; 

• ℚ is a well-defined probability measure equivalent to ℙ . 

The space of all admissible distortion processes is denoted by 𝔗. 

Inspired by the original study of LCM in Yaari (1965), we consider both the CA and CB market conditions, under which 

the retirement problem (16) satisfies the budget constraints specified in Equations (2) and (7), respectively. 

Capitalizing on the extended Yaari’s LCM laid down in this current section, we have a keen interest in examining the 

following questions which are of great importance in modern retirement research: 

Q1. If mortality model uncertainty is concerned, what will be the worst-case mortality scenario for the retiree? (See 

Points 2 and 3 in Section 2.2 for a concise answer, and Section 5.1 for detailed discussions.) 

Q2. Under mortality model uncertainty, what will be the optimal consumption policies? (See Point 4 in Section 2.2 

for a concise answer, and Section 5.1 for detailed discussions.) 

Q3. What are the implications of mortality model uncertainty on the AEW and the annuity puzzle? (See Point 6 in 

Section 2.2 for a concise answer, and Section 5.2 for detailed discussions.) 
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Section 5: Main Results 

Table 1 summarizes the cases that we aim to investigate and compare in this section. Among the four cases, Cases A 

and B have been well studied in Yaari (1965) under the additive utility function, but we extend the study to the more 

general recursive utility. The first part of this section studies the optimal consumption policies under Cases C and D, 

thus answering questions Q1 and Q2. Comparisons between Case A and Case C, and between Case B and Case D, are 

considered in the second part of this section, which answers question Q3. 

Table 1 

SUMMARY OF THE FOUR DIFFERENT RETIREMENT CASES CONSIDERED IN THIS CURRENT PAPER 

 Ambiguity neutral Ambiguity averse 

Complete annuity market Case A Case C 

Complete bond market Case B Case D 

 

5.1 OPTIMAL STRATEGIES WITH MORTALITY MODEL UNCERTAINTY 

In this section, we apply the dynamic programming principle to solve the max-mix problem (16), which yields the 

robust optimal consumption strategies for the rational retiree described in Section 4. The succeeding theorem 

summarizes the main mathematical results. Recall that quantities related to the CA and CB markets are distinguished 

by the subscripts ``𝐴'' and ``𝐵'', respectively. The robustness preference parameter 𝜓 is specified in the optimal 

decision rules in order to highlight the retiree's aversion against mortality model uncertainty which constitutes a major 

object of interest in our paper. 

Theorem 1. Suppose the retirement environment as per the description in Section 4, the worst-case perturbation 

function associated with the optimization problem (16), can be computed via 

𝜃𝐴
∗(𝑡; 𝜓) = 𝜃𝐵

∗ (𝑡; 𝜓) ≡ 𝜃∗(𝜓) = 𝑒𝑥𝑝(
𝜓

1−1/𝜙
),              𝑡 > 0, 

where 𝜓 > 0 denotes the robust preference parameter and 𝜙 > 0 denotes the EIS coefficient. Moreover, the optimal 

robust consumption strategies are given by  

 𝑐□
∗(𝑡; 𝜓) = 𝑐□

∗(0; 𝜓) × 𝑒𝑥𝑝{ ∫ [
𝑡

0

(1 − 𝐺□(𝜓))𝜆𝑦+𝑢 − 𝜙(𝜌 − 𝑟)]𝑑𝑢}, (18) 

where “□” can be “𝐴” or “𝐵”, and   

𝐺𝐴(𝜓): = (1 − 𝜙) + 𝐺𝐵(𝜓),  𝐺𝐵(𝜓): = 𝜙𝜃∗ +
1 − 𝜙

𝜓
𝑔(𝜃∗). 

Moreover, the optimal initial consumption rate can be evaluated via 

 𝑐□
∗(0; 𝜓) =

𝑥0

𝐾□(𝜓)
, 𝑤𝑖𝑡ℎ   𝐾□(𝜓) = ∫ 𝑒𝑥𝑝{ − ∫ (𝛽 + 𝐺□(𝜓)𝜆𝑦+𝑢)

𝑠

0

𝑑𝑢}𝑑𝑠,
∞

0

 (19) 

in which 𝛽 = (1 − 𝜙)𝑟 + 𝜙𝜌 is the weighted average between the risk-free interest rate and subjective discount rate. 

Given the optimal robust strategies 𝑐□
∗  and 𝜃∗, the value function (16) at the present time can be computed via 
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𝑉□
∗(0, 𝑥0; 𝜓) = [𝐾□(𝜓)]

−
1−𝛾
1−𝜙

𝑥0
1−𝛾

1 − 𝛾
, 

where “□” is either “𝐴” or “𝐵”. 

Proof. See Appendix A.                                                                                                                                                          

A careful inspection of the optimal strategies outlined in Theorem 1 reveals the following findings. First, the worst-

case perturbation functions are identical under the CA market and CB market conditions.  This is because the only 

difference between the optimization problems under the two market conditions is the associated budget constraints 

which only depend on the risk-free interest rate parameter and the reference mortality curve, while the worst-case 

perturbation functions 𝜃𝐴
∗(⋅) and 𝜃𝐵

∗ (⋅) only depend on the EIS coefficient 𝜙 and robustness preference parameter 𝜓. 

Interestingly, the worst-case perturbation functions are constant over time with the optimal perturbed mortality 

model given by 

 𝜆𝑦+𝑡
∗ = 𝜃∗ × 𝜆𝑦+𝑡 ,  𝑡 > 0, (20) 

which is a parallel shift of the best-estimated reference mortality curve. In the language of actuarial mathematics, the 

form of modification in (19) is also known as the proportional hazard distortion (Wang, 1996).  The proportional 

transform (a.k.a., parallel shock) is also commonly used in retirement research to test the sensitivity of mortality 

assumptions (see, e.g., Shen and Su, 2019). The proportional transform is applied in earlier studies mainly because of 

its inherent simplicity. Our finding herein provides a theoretical justification for the choice of parallel shock in 

sensitivity tests, which is perhaps sufficiently conservative for covering the worst-case mortality scenario, so far at 

least as Yaari's LCM is concerned.  

Second, the selection of the worst-case mortality shock 𝜃∗ depends on the interplay between the EIS coefficient 𝜙 

and robustness preference 𝜓.  Recall that 𝜓−1 conveys the amount of faith that the retiree puts on the reference 

model. The larger the value of 𝜓 is, the larger the value of |𝜃∗ − 1| becomes, which implies that a retiree with a 

stronger concern about model uncertainty will rationally set the worst-case perturbed model to be farther away from 

the reference model. Meanwhile, if (1 − 1/𝜙) < 0, or equivalently 𝜙 < 1, then 𝜃∗ < 1, which corresponds to an 

improved mortality scenario, and vice versa. Empirical studies have already suggested that the EIS coefficient 𝜙 for 

investors is typically less than 1 (e.g., Yogo, 2014). In this sense, the longevity risk is more relevant to the context of 

this current paper. 

What is more, as mentioned in Remark 1, if 1/𝜙 = 𝛾, then the recursive utility reduces to the power utility. In this 

case, the optimal perturbation function becomes 

 𝜃∗(𝑡) = 𝑒
𝜓

1−𝛾 . (21) 

Based on a more complicated lifecycle model, Shen and Su (2019) adopted the same penalty approach to obtain the 

optimal robust consumption-investment-insurance strategy when there are uncertainties around both the economics 

and mortality models, and the investor's preference is depicted by a power utility. Though analytical expression is not 

available for 𝜃∗(𝑡) due to the mathematical complexity involved in Shen and Su (2019), it was shown that 𝜃∗(𝑡) < 1 

if the risk aversion parameter of the power utility satisfies 𝛾 > 1,  and vice versa. In this regard, (20) is consistent with 

the finding in Shen and Su (2019). The use of recursive utility framework in this current paper allows us to distinguish 

the EIS coefficient from the risk aversion parameter.  As a result, we further clarify the assertion in Shen and Su (2019) 

by theorizing that whether the worst-case perturbed mortality curve corresponds to a mortality risk scenario (i.e., 

𝜃∗ > 1) or a longevity risk scenario (i.e., 𝜃∗ < 1) depends solely on the EIS parameter, but not the risk aversion 

parameter. This is one of the major economic implications of our paper. Our discussion thus far in this current section 

answers question Q1 posted at the end of Section 4. 
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Next, let us focus on the optimal consumption strategies. Curiously, the optimal consumption function (17) is 

independent of the risk aversion parameter 𝛾 of the recursive utility. To see the reason, recall that 𝛾 captures the 

aversion against consumption fluctuation due to the uncertain state in the future. As the retiree has converted the 

retirement savings into either annuity or bond investment at the beginning of the planning horizon6, there is no 

uncertainty involved in the future cash flows. Consequently, the optimal consumption strategies 𝑐𝐴
∗(⋅) and 𝑐𝐵

∗ (⋅) 

depend only on the EIS coefficient, together with other parameters including mortality and discount rates, but not 

the risk aversion parameter 𝛾. 

It is also interesting to study the patterns of the optimal consumption pathways over time. The succeeding corollary 

summarizes the increasing and decreasing properties for the optimal consumption function (17). 

Corollary 2. For □ ∈ {𝐴, 𝐵} and any 𝑡 ≥ 0, if (1 − 𝐺□(𝜓))𝜆𝑦+𝑡 ≥ 𝜙(𝜌 − 𝑟), then the optimal consumption 𝑐∗(𝑡; 𝜓) is 

increasing in 𝑡, and vice versa. 

Proof. The proof follows immediately from the expression of optimal consumption function (17).                             

The following lemma is of auxiliary importance in our latter discussion. 

Lemma 3. For all 𝜓 > 0, the functions 𝐺𝐴(𝜓) and 𝐺𝐵(𝜓) are decreasing in 𝜓 if the EIS 𝜙 < 1, and increasing in 𝜓 

otherwise.  Further, if 𝜙 < 1, then 

 1 − 𝜙 ≤ 𝐺𝐴(𝜓) ≤ 1 and 0 ≤ 𝐺𝐵(𝜓) ≤ 𝜙. 

Otherwise, 

 1 ≤ 𝐺𝐴(𝜓) ≤ ∞ and 𝜙 ≤ 𝐺𝐵(𝜓) ≤ ∞. 

Proof. See Appendix A.                                                                                                                                                                                                                                                                                                                                

Corollary 2 and Lemma 3 together imply that the optimal consumption pathways may present an asymmetric U-

shaped pattern over time (Figure 4).  For instance, consider a realistic situation in which EIS 𝜙 < 1 and 𝜌 > 𝑟, then 

the optimal consumption function may decrease over time at the beginning of the retirement phase when the force 

of mortality is still relatively low and so (1 − 𝐺□(𝜓))𝜆𝑦+𝑡 ≤ 𝜙(𝜌 − 𝑟), but it will essentially become increasing in time 

as mortality rate grows during the later stage of retirement.   

The next assertion compares the optimal consumption rules between the CA market and the CB market (i.e., Case C 

versus Case D in Table 1). Let  𝜋(𝑡) = 𝑐(𝑡)/𝑋(𝑡) be the consumption-to-wealth ratio at time 𝑡 > 0, which indicates 

the retiree's propensity to consumption out of the present wealth.  The consumption-to-wealth ratio associated with 

the optimal robust consumption strategy reported in Theorem 1 is denoted by 𝜋□
∗ (𝑡; 𝜓) = 𝑐□

∗(𝑡; 𝜓)/𝑋□
∗(𝑡; 𝜓), where 

𝑋□
∗(⋅ ; 𝜓) is the corresponding wealth process, □ ∈ {𝐴, 𝐵}. 

Proposition 4. The following relationships hold for the optimal strategies identified in Theorem 1: 

1. If the EIS  {
< 
> 

} 1 , then 𝜋𝐴
∗(𝑡; 𝜓) {

> 
< 

} 𝜋𝐵
∗ (𝑡; 𝜓) for all 𝑡 > 0 and 𝜓 > 0. 

2. If the EIS 𝜙 < 1 (resp. 𝜙 > 1), then there exists a time epoch 𝑡∗ > 0 such that 𝑐𝐴
∗(𝑡; 𝜓) is greater (resp. smaller) 

than or equal to 𝑐𝐵
∗ (𝑡; 𝜓) for 𝑡 ≤ 𝑡∗, but the inequality is reversed for 𝑡 > 𝑡∗. 

 

 

6 Compare between the CA and CB markets, it is rational to purchase an annuity rather than a bond investment regardless of the risk aversion level of the 
retiree. Thereby, when making the investment decision, the rationality of the retiree comes into play rather than the risk aversion level.   
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3. For any EIS 𝜙 > 0 and robustness preference 𝜓 > 0, 𝑉𝐴
∗(0, 𝑥0; 𝜓) > 𝑉𝐵

∗(0, 𝑥0; 𝜓). 

Proof. See Appendix A.                                                                                                                                                         

Proposition 4 answers question Q2 posted in Section 4. Specifically, it shows that even with mortality model 

uncertainty, annuitization may increase the optimal consumption rate at all times if the EIS parameter 𝜙 < 1which is 

a realistic case. Although there is a twisted pattern in the comparison in terms of the absolute consumption amount, 

the discounted lifetime utility of consumption is always higher by purchasing an annuity. 

In concluding this subsection, we report another important component in the study of Yaari’s LCM, namely the AEW, 

but in the state of mortality model uncertainty and recursive utility. 

Theorem 5. Suppose the retirement environment as per the description in Section 4, and the optimal decision rules 

can be computed via Theorem 1. Given the initial wealth 𝑥0 > 0, the associated annuity equivalent wealth is  

 AEW(𝜓) = 𝑥0[
𝐾𝐵(𝜓)

𝐾𝐴(𝜓)
]1/(1−𝜙),  𝜓 > 0. 

Proof. See Appendix A.                                                                                                                                                            

As mentioned earlier, because the constraint of full annuitization in the CA market or full bond investment in the CB 

market removes the uncertainty in the future cash flows, the AEW does not depend on the risk aversion parameter 𝛾 

which captures the consumption fluctuation due to future uncertainty. 

Remark 2. Note that the AEW reported in Theorem 5 is always greater than 𝑥0.   To see why, recall that 𝐺𝐴(⋅) = (1 −

𝜙) + 𝐺𝐵(⋅), which implies [𝐺𝐴(⋅)]1/(1−𝜙) ≥ [𝐺𝐵(⋅)]1/(1−𝜙), and so [𝐾𝐴(⋅)]1/(1−𝜙) ≥ [𝐾𝐵(⋅)]1/(1−𝜙) according to 

Equation (18).  This inequality confirms again that annuitization will induce extra utility to the retiree even when there 

is a presence of mortality ambiguity aversion. 

5.2 IMPLICATIONS OF MORTALITY MODEL UNCERTAINTY 

The prior subsection is devoted to the study of the optimal robust consumption strategies for Yaari’s LCM equipped 

with the recursive utility. In this section, we are going to focus on the implications of mortality model uncertainty on 

the optimal decision rules as well as the AEW. 

Proposition 6. For any fixed 𝑡 > 0 and □ ∈ {𝐴, 𝐵}, the optimal consumption-to-wealth ratio 𝜋□
∗ (𝑡; 𝜓) is decreasing in 

the robustness preference parameter 𝜓 if the EIS coefficient 𝜙 < 1, or increasing otherwise. 

Proof. See Appendix A.                                                                                                                                                               

The above result shows that when EIS 𝜙 < 1, the mortality ambiguity aversion will lower the percentage of 

consumption out of the present wealth at every instant, no matter whether or not an annuity is purchased. This is 

because if 𝜙 < 1, then the worst-case perturbation function satisfies 𝜃∗ < 1, which corresponds to a longevity risk 

scenario. Consequently, the retiree reduces the consumption rate in order to lower the risk of outliving retirement 

savings. Alternatively, if EIS 𝜙 > 1, then the worst-case perturbed mortality curve corresponds to a mortality risk 

scenario. So in order to maximize the lifespan discounted utility, the rational retiree will choose to increase the 

consumption ratio. 

In addition to the relative consumption ratio, we are also interested in studying the impact of mortality model 

uncertainty on the absolute consumption amount. Intuitively, if the robustness preference parameter 𝜓 changes, the 

optimal robust consumption rules should decrease for some 𝑡 and increase for the others, so that the budget 

constraint (2) or (7) can be satisfied. The next assertion shows that in the case of 𝜙 < 1 where the longevity risk is 
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more concerned, the retiree will rationally reduce the consumption amount at the beginning of the retirement phase 

so as to keep more savings for the future. In another case with EIS 𝜙 > 1, and thus the mortality risk is more 

concerned, the rational retiree will choose to increase the consumption amount at the beginning of the retirement 

phase so as to make sure that a desirable amount of consumption utility can be gained before death. 

Proposition 7. For □ ∈ {𝐴, 𝐵}, there exists a time epoch 𝑡∗ > 0 such that the optimal consumption functions 𝑐□
∗(𝑡; 𝜓) 

reported in Theorem 1 are decreasing in 𝜓 for all 𝑡 ≤ 𝑡∗ and become increasing in 𝜓 for 𝑡 > 𝑡∗, if the EIS 𝜙 < 1.  

Otherwise, the behaviors of the optimal consumption functions are reversed. 

Proof. See Appendix A.                                                                                                                                                       

Remark 3. Consider the case where 𝜓 → 0 meaning that the retiree has no ambiguity aversion against the mortality 

model, then 

lim
𝜓→0

𝐺𝐴(𝜓) = 1 and lim
𝜓→0

𝐺𝐵(𝜓) = 𝜙. 

The optimal consumption functions become 

 lim
𝜓→0

𝑐𝐴
∗(𝑡; 𝜓) = 𝑥0 ×

𝑒𝑥𝑝( − ∫ 𝜙
𝑡

0
(𝜌 − 𝑟)𝑑𝑢)

∫ 𝑒𝑥𝑝{ − ∫ (𝛽 + 𝜆𝑦+𝑢)
𝑠

0
𝑑𝑢}𝑑𝑠

∞

0

 (22) 

and 

 lim
𝜓→0

𝑐𝐵
∗ (𝑡; 𝜓) = 𝑥0 ×

𝑒𝑥𝑝{ − ∫
𝑡

0
[𝜙(𝜌 − 𝑟 + 𝜆𝑦+𝑢) − 𝜆𝑦+𝑢]𝑑𝑢}

∫ 𝑒𝑥𝑝{ − ∫ (𝛽 + 𝜙𝜆𝑦+𝑢)
𝑠

0
𝑑𝑢}𝑑𝑠

∞

0

. (23) 

Further, suppose that the EIS and risk aversion parameters satisfy 𝜙 = 1/𝛾 so the recursive utility reduces to the 

power utility, then (21) and (22) collapse respectively to the optimal consumption functions (6) and (8) under the 

classic Yaari's LCM. 

Finally, the impact of mortality model uncertainty on the AEW is considered.  Recall again that if EIS 𝜙 < 1, then the 

associated worst-case perturbed mortality curve corresponds to a longevity risk scenario, and as 𝜓 increases, the 

concern about longevity risk becomes stronger, so an annuity should become more valuable.  In other words, AEW 

increases with the robustness preference parameter 𝜓 when the EIS 𝜙 < 1, and vice versa.  The succeeding assertion 

confirms our conjecture.  

Proposition 8. If 𝜙 < 1 (resp. 𝜙 > 1), then AEW(𝜓) is increasing (resp. decreasing) in 𝜓 > 0. 

Proof. See Appendix A.                                                                                                                                                        

The study in this current subsection answers question Q3 posted in Section 4. 
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Section 6: Conclusions 

In this paper, we proposed and studied a revamped LCM in which there is an incorporation of mortality model 

uncertainty. We derived the optimal robust consumption decision as well as the associated AEW in explicit forms. Our 

major economic findings include the following. First, we found that for a typical retiree having EIS smaller than one, 

i.e., a more risk averse retiree, the worst-case perturbed mortality curve corresponds to an improved mortality 

scenario, meaning that the longevity risk is more of a concern than mortality risk in retirement planning. Second, 

under mortality model uncertainty, an annuity should still be attractive to retirees in the sense that by annuitization, 

the optimal consumption rate becomes higher. However, mortality ambiguity aversion will lower the optimal 

consumption rate. Third, if mortality model uncertainty is ignored by the retiree, then the value of annuity will be 

understated, causing a lower-than-expected annuity demand. 

There are several topics for future research. First, as pointed out by one of the project oversight group members, it is 

likely that a retiree’s ambiguity aversion level may be dependent of her/his risk aversion level. It will be very interesting 

to explore what are the common determinants of the two different types of aversion behaviors.  Second, it will be 

interesting to investigate whether or not retirees actually behave rationally.  Third, inflation has been growing up 

rapidly over the past two years. It will be interesting to incorporate a stochastic inflation rate model into the analysis 

and study the impacts of inflation jumps on the optimal drawdown strategies. Another promising research question 

needed to be addressed is how to best educate retirees, who may lack quantitative backgrounds, to understand and 

acknowledge model uncertainty.     
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Appendix A: Proofs 

Proof of Theorem 1. We only provide the proof for the CA market. The proof for the CB market is essentially the same, 

thereby omitted. To simplify our notation, we suppress the subscript 𝐴 in 𝑉 and 𝐾 in the sequel. 

Given 𝑋𝑡 = 𝑥 > 0, the Hamilton–Jacobi–Bellman (HJB) equation for the optimization problem (16) can be specified 

as  

1 1/

1

1

(1 ) 1
max min ( ) ( ) ( ) 0.

1 1/
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By the first order conditions of 𝐶 and 𝜃, we get  

 −𝑉𝑥 +
(1 − 𝛾)𝑉

1 − 1/𝜙

1 − 1/𝜙

((1 − 𝛾)𝑉)
1

1−𝛾

(
𝑐

((1 − 𝛾)𝑉)
1

1−𝛾

)−1/𝜙 = 0 (24) 

and 

 −𝜆
(1 − 𝛾)𝑉

1 − 1/𝜙
+

1 − 𝛾

𝜓
𝑔′(𝜃)𝜆𝑉 = 0. (25) 

We conjecture the following ansatz  

𝑉(𝑡, 𝑥; 𝜓) = [𝐾(𝑡; 𝜓)]
−

1−𝛾
1−𝜙

𝑥1−𝛾

1 − 𝛾
 

with the terminal value of 𝐾 is 𝐾(∞; 𝜓) = 0, is a solution to the HJB equation above.  Then from Equations (24) and 

(25), we obtain                                                  

 𝑐∗(𝑡; 𝜓) =
𝑥

𝐾(𝑡; 𝜓)
 and 𝜃∗(𝑡; 𝜓) ≡ 𝜃∗(𝜓) = 𝑒

𝜓
1−1/𝜙. (26) 

To solve 𝐾, we substitute 𝑐∗ and 𝜃∗ back to the HJB equation and get 

−
1

1 − 𝜙
𝐾𝑡(𝑡; 𝜓) [𝐾(𝑡; 𝜓)]

−
1−𝛾
1−𝜙

−1
𝑥1−𝛾 + [𝐾(𝑡; 𝜓)]

−
1−𝛾
1−𝜙𝑥1−𝛾[(𝑟 + 𝜆) −

1

𝐾(𝑡; 𝜓)
] +

[𝐾(𝑡; 𝜓)]
−

1−𝛾
1−𝜙𝑥1−𝛾

1 − 1/𝜙
[

1

𝐾(𝑡; 𝜓)

− (𝜌 + 𝜃∗(𝜓)𝜆)] +
𝜆

𝜓
𝑔(𝜃∗(𝜓))[𝐾(𝑡; 𝜓)]

−
1−𝛾
1−𝜙𝑥1−𝛾 = 0. 

Standard algebraic manipulation yields 

𝐾𝑡(𝑡; 𝜓) − (1 − 𝜙)[(𝑟 + 𝜆) −
𝜌 + 𝜃∗(𝜓)𝜆

1 − 1/𝜙
+

𝜆

𝜓
𝑔(𝜃∗(𝜓))]𝐾(𝑡; 𝜓) + 1 = 0, 

whose solution is obviously given by 

𝐾(𝑡; 𝜓) = ∫ 𝑒𝑥𝑝{ − ∫ (𝛽 + 𝐺(𝜓)𝜆𝑦+𝑢)
𝑠

𝑡

𝑑𝑢}𝑑𝑠.
∞

𝑡

 

Denote by 𝑋∗(⋅) the wealth trajectory associated with the optimal consumption derived above, then the dynamic of 

the optimal consumption 𝑐∗ evolves as 
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𝑑𝑐∗(𝑡; 𝜓) =
1

𝐾(𝑡; 𝜓)
[−(𝛽 + 𝐺(𝜓)𝜆𝑦+𝑡) + (𝑟 + 𝜆𝑦+𝑡)]𝑋∗(𝑡; 𝜓)𝑑𝑡 

= [(1 − 𝐺(𝜓))𝜆𝑦+𝑡 − 𝜙(𝜌 − 𝑟)]𝑐∗(𝑡; 𝜓)𝑑𝑡. 

Hence, 

𝑐∗(𝑡; 𝜓) = 𝑐∗(0; 𝜓) 𝑒𝑥𝑝{ ∫ [
𝑡

0

(1 − 𝐺(𝜓))𝜆𝑦+𝑢 − 𝜙(𝜌 − 𝑟)]𝑑𝑢}. 

The proof is now completed.                                                                                                                                                   

Proof of Lemma 3. First, we consider the monotonicity for GA and GB. Standard algebraic manipulations yield 

𝜕

𝜕𝜓
𝐺𝐴(𝜓) =

𝜕

𝜕𝜓
𝐺𝐵(𝜓) =

1 − 𝜙

𝜓2
[𝑒

𝜓
1−1/𝜙(1 −

𝜓

1 − 1/𝜙
) − 1]. 

Note that 𝑒𝑎(1 − 𝑎) < 1 for any 𝑎 ∈ (−∞, ∞). We have, for □ ∈ {𝐴, 𝐵},  

( )G 



=


{

> 0,      𝑖𝑓 𝜙 < 1;

< 0,     𝑖𝑓 𝜙 > 1.
 

Next, let us focus on 𝐺𝐴, and we have 

lim
𝜓→0

𝐺𝐴(𝜓) = 1 − 𝜙 + lim
𝜓→0

1 − 𝜙

𝜓
(1 − 𝑒

𝜓
1−1/𝜙) = 1 

and 

1 1/1
lim ( ) 1 lim 1( )AG e





 


 



−

→ →

−
= − + − = {

 1 − 𝜙,      𝑖𝑓 𝜙 > 1;

     ∞,           𝑖𝑓 𝜙 < 1.
 

Moreover, note that for 𝐺𝐵(𝜓) = 𝐺𝐴(𝜓) − (1 − 𝜙), the desired results are readily obtained. The proof is completed. 

 

 

Proof for Proposition 4. We prove the three relationships one by one. For the first relationship, we know from 

Equation (26) in the proof of Theorem 1 that 𝜋□
∗ (𝑡; 𝜓) = 1/𝐾□(𝑡; 𝜓) for a fixed 𝑡 > 0 and □ ∈ {𝐴, 𝐵}.   

For all 𝜓 > 0, we readily obtain 

 𝜙 {
<
>

}  1 ⇒  𝐺𝐴(𝜓) {
<
>

} 𝐺𝐵(𝜓)  ⇒  𝐾𝐴(𝑡; 𝜓) {
<
>

} 𝐾𝐵(𝑡; 𝜓)   ⇒  𝜋𝐴
∗(𝑡; 𝜓) {

>
<

} 𝜋𝐵
∗ (𝑡; 𝜓). (27) 

Also note that the above inequalities yield 

ϕ {
<
>

}  1   ⇒    𝑐𝐴
∗(0; 𝜓) {

>
<

} 𝑐𝐵
∗ (0; 𝜓). 

Meanwhile, we have 
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*

*

( ; ) ( )
exp

( )( ; )

A B

AB

c t K

Kc t

 


=  {∫ [𝐺𝐵(𝜓) − 𝐺𝐴(𝜓)]𝜆𝑦+𝑢 𝑑𝑢

𝑡

0
}, 

which is decreasing in 𝑡 > 0 if 𝜙 < 1, or increasing otherwise. This yields the second relationship in the proposition. 

Another repeated application of the inequalities in (27) yields the third relationship. This completes the proof.       

Proof of Theorem 5. By definition, the AEW is obtained via solving 

𝑉𝐴
∗(0, 𝑥0; 𝜓) = 𝑉𝐵

∗(0, 𝐴𝐸𝑊; 𝜓). 

According to Theorem 1, the AEW solves 

[𝐾𝐴(𝜓)]
−

1−𝛾
1−𝜙

𝑥0
1−𝛾

1 − 𝛾
= [𝐾𝐵(𝜓)]

−
1−𝛾
1−𝜙

AEW1−𝛾

1 − 𝛾
. 

This yields 

AEW(𝜓) = 𝑥0[
𝐾𝐵(𝜓)

𝐾𝐴(𝜓)
]1/(1−𝜙), 

which completes the proof.                                                                                                                                               

 

Proof of Proposition 6. From the proof of Proposition 4, we know that 𝜋□
∗ (𝑡; 𝜓) = 1/𝐾□(𝑡; 𝜓) for a fixed 𝑡 > 0 and 

□ ∈ {𝐴, 𝐵}.  Consider 

( ; ) ( ) exp ( ( ) )( )
s s

y u y u
t t t

K t G G du duds     
 



+ +
 

= −  − + =
     {

> 0,     𝑖𝑓 𝜙 < 1

< 0,     𝑖𝑓 𝜙 > 1.
 

So 𝜋□
∗ (𝑡; 𝜓) is decreasing in 𝜓 if the EIS 𝜙 < 1, or increasing otherwise. The proof is completed.                                 

 

Proof of Proposition 7. For 𝑡 > 0 and □ ∈ {𝐴, 𝐵}, write  

* 0( ; ) exp
( )

x
c t

K



= {∫ [(1 − ( )G  )𝜆𝑦+𝑢 − 𝜙(𝜌 − 𝑟)] 𝑑𝑢

𝑡

0
}, 

so we have  

* 0

2
( ; ) exp

( )[ ]
x

c t
K


 


=


{∫ [(1 − ( )G  )𝜆𝑦+𝑢 − 𝜙(𝜌 − 𝑟)] 𝑑𝑢

𝑡

0
} (−






𝐺□(𝜓)) 

× { ( )K  ∫ 𝜆𝑦+𝑢 𝑑𝑢 − ∫ exp (− ∫ (𝛽 + ( )G  𝜆𝑦+𝑢) 𝑑𝑢) ∫ 𝜆𝑦+𝑢 𝑑𝑢𝑑𝑠
𝑠

0

𝑠

0

∞

0

𝑡

0
}. 

Suppose that 𝜙 < 1, from Corollary 2, we know 𝜕/𝜕𝜓𝐺□(𝜓) < 0.  An inspection of the partial derivative formula 

above reveals  
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lim
𝑡→0

𝜕

𝜕𝜓
𝑐□

∗(0; 𝜓) < 0 as well as lim
𝑡→∞

𝜕

𝜕𝜓
𝑐□

∗(𝑡; 𝜓) > 0, 

and moreover, 
𝜕

𝜕𝜓
𝑐□

∗(𝑡; 𝜓) = 0 has a unique root. This establishes the desired results when 𝜙 < 1.  If  𝜙 > 1, then 

reversed behaviors of the optimal consumption functions are obtained. The proof is now completed.                                      

 

Proof of Proposition 8. Recall that by Theorem 5, the AEW can be computed via 

AEW(𝜓) = 𝑥0[
𝐾𝐵(𝜓)

𝐾𝐴(𝜓)
]1/(1−𝜙),  𝜓 > 0. 

To study the increasing and decreasing properties for the AEW function, consider 

𝜕

𝜕𝜓

𝐾𝐵(𝜓)

𝐾𝐴(𝜓)
=

𝐾𝐴(𝜓)𝐾𝐵′(𝜓) − 𝐾𝐴′(𝜓)𝐾𝐵(𝜓)

𝐾𝐴(𝜓)2
, 

which has the same sign as 𝜔𝐵(𝜓) − 𝜔𝐴(𝜓), where 

𝜔□(𝜓) =
𝐾□′(𝜓)

𝐾□(𝜓)
,  □ ∈ {𝐴, 𝐵}. 

Letting 

𝑣(𝑠) =
𝜕

𝜕𝜓
𝐺𝐴(𝜓) × ∫ 𝜆𝑦+𝑢

𝑠

0

𝑑𝑢,  𝑠 > 0, 

then we can write 

𝜔□(𝜓) = ∫
∞

0

𝑓□(𝑠)𝑣(𝑠)𝑑𝑠 =  𝔼[𝑣(𝑆□)], 

where 𝑆□ denotes the random variable associated with PDF:  

𝑓 (𝑠) =
𝑒𝑥𝑝( − ∫ (𝛽 + 𝐺 (

𝑠

0
𝜓)𝜆𝑦+𝑢)𝑑𝑢)

∫ 𝑒𝑥𝑝{ − ∫ (𝛽 + 𝐺 (𝜓)𝜆𝑦+𝑢)
𝑠

0
𝑑𝑢}𝑑𝑠

∞

0

. 

Note that 

0 0

0 0

exp ( ( ) )
( )

exp
( )

exp ( ( ) )

( )

( )

s

B y u
A

s
B

A y u

G du ds
f s

f s
G du ds

  

  



+



+

− +
= 

− +

 

 
{∫ [𝐺𝐵(𝜓) − 𝐺𝐴(𝜓)]𝜆𝑦+𝑢 𝑑𝑢

𝑠

0
} 

which is decreasing in 𝑠 > 0 if 𝜙 < 1, or increasing otherwise. This implies that 𝑆𝐵  stochastically dominates (of the 

first order) 𝑆𝐴 if 𝜙 < 1, and vice versa. Note that 𝑣(𝑠) is decreasing in 𝑠 > 0 if 𝜙 < 1, or increasing otherwise.  

Collectively, we can conclude that 𝔼[𝑣(𝑆𝐴)] > 𝔼[𝑣(𝑆𝐵)] for all 𝜙 > 0, so 𝐾𝐵(𝜓)/𝐾𝐴(𝜓) is increasing in 𝜓. Finally, we 

can conclude that AEW(𝜓) is increasing in 𝜓 for 𝜙 < 1, or decreasing otherwise.   

The proof is now finished.                                                                                                                                                                                                        
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