
 PREDICTIVE ANALYTICS AND FUTURISM | 1Copyright © 2020 Society of Actuaries. All rights reserved.

 APRIL 2020
PREDICTIVE ANALYTICS AND FUTURISM

PREDICTIVE ANALYTICS 
AND FUTURISM

SECTION

Like Peas in a Pod: Ideas 
in Cluster Analysis
By Michael Niemerg

Cluster analysis is easy to grasp conceptually. You simply 
“group like things together.” The fundamental algorithms 
like k-means and hierarchical clustering are also relatively 

easy to understand and don’t require much background besides 
a little understanding of algebra. Despite such an intuitive 
premise, things can quickly become sophisticated. To that 
end, let’s explore some extensions of cluster analysis beyond 
the vanilla approaches to understand ways we can improve our 
analysis and to get a broader sense of what’s possible. 

First, let’s define more clearly what cluster analysis is. Cluster 
analysis is an unsupervised data-mining technique used to assign 
data into groupings whereby observations within a grouping (i.e., 
cluster) will be similar to each other. It is unsupervised because 
the algorithm does not have access to any label or response 
information when training. Instead, the model learns the 
relationships from the data itself without having access to any sort 
of “correct” answer (usually—we’ll come back to this point). 

Without a correct answer to judge the results by, how do we 
determine what makes a good cluster in the first place? This 
turns out to be a surprisingly tricky question. We are trying 
to create groupings that exhibit similar characteristics. Two 
natural consequences of this are that observations within a 
cluster should be similar to each other and observations within 
different clusters should be less similar to each other. While 
there are a variety of evaluation metrics in cluster analysis, most 
are ways of measuring and comparing these two ideas. The 
silhouette score is an illustrative example. For each data point, 
it measures the distance between the current data point and all 
the other observations within the same cluster and compares 
that to the average distance between the current data point and 
all observations for the nearest neighboring cluster. The closer 
the current data point is to the other observations within its 
own cluster center, and the farther away it is from the nearest 
cluster’s observations, the better. 

While in cluster analysis you don’t use labels in training your 
model (with exceptions as noted later), you can be in the lucky 
situation of having access to a cluster assignment label to evaluate 
the model. If this is the case, there are a few methods that can 
evaluate cluster quality, many of which are closely related to the 
types of error metrics you would look at for classification tasks. 
Even if you don’t have access to true cluster labels, another way 
to use this idea, called supervised clustering, is by using proxy 
features that you think the cluster model should be able to do a 
good job of classifying. For instance, you might want to group 
people with similar health profiles together. If you know what 
their health care claim costs are, you might be able to use this as 
a proxy of health. 

Now that we’ve established some concepts behind cluster 
evaluation, we’ll discuss some ideas that might be useful in 
practice. The ideas that follow are presented roughly in order 
of practicality.

DATA PREPROCESSING 
Modeling is always about the data and its representation. Data 
is the foundation upon which everything rests. One of the first 
things to try, even before creating a model, is to make sure you 
preprocess your data in a meaningful way. Because clustering 
relies on the distance between features, you will often want to 
normalize all the data so that it is all represented on a similar 
scale. One way to do that is to standardize the features to be 



PREDICTIVE ANALYTICS AND FUTURISM | 2

Like Peas in a Pod: Ideas in Cluster Analysis

Copyright © 2020 Society of Actuaries. All rights reserved.

performing better than another requires considerable thought. 
It is not as straightforward as the supervised learning case. 

FEATURE AND CLUSTER SELECTION
Irrelevant features in cluster analysis can slow down model 
training and unnecessarily bloat model size. Worse, they have 
the potential to degrade model performance. Feature selection 
can be tricky though and is a bit of a catch-22. If you already 
know what features matter, you would have already applied that 
knowledge and wouldn’t need to do feature selection. And if 
you don’t, and you lack a ground-truth label, how do you judge 
whether a feature matters?

Of course, the simplest form of feature selection is simply 
applying domain understanding. While qualitative, this form of 
feature selection is highly valuable. We can pick features that 
likely correlate to behaviors we are interested in and remove 
redundant, uninteresting, or highly correlated features. Barring 
that, there are also specialized algorithms that deal in feature 
selection. For instance, a feature selection algorithm might pick 
the features that most contribute to cluster compactness. 

Intelligently selecting the number of clusters (for algorithms 
that don’t do this automatically) is another way to improve 
the analysis. Several different metrics are useful, including the 
gap statistic, average silhouette score, and the elbow method. 
Conversely, the number of clusters selected may not involve 
any of these methods and may be informed by the use case. 
As an example: fifty clusters might be too unwieldy from an 
implementation perspective but five clusters might not be 
granular enough to give interesting insights. 

CONSENSUS CLUSTERING
Consensus clustering is a way to (potentially) improve cluster 
analysis by creating multiple cluster models and then combining 
them. Effectively, consensus clustering is a way to create 
ensembles, similar to how we might for supervised learning (not 
surprisingly, this approach is also called ensemble clustering). 
The reason it works is similar to the intuition for ensembles in 
the supervised case, with a few new wrinkles added in. One of 
those wrinkles is that different clustering methods divide the 
feature space in very different ways geometrically, so combining 
algorithms can be a bit risky and isn’t as easy as it might be in the 
supervised learning case. 

There are several ways to create consensus models. Some possible 
methods include relabeling/voting, a co-occurrence matrix, and 
median partition methods. My experience is primarily with 
relabeling/voting methods so I’ll expound upon that method for 
illustrative purposes. 

One thing to remember with consensus clustering is that, unlike 
in supervised learning, there is no response value in clustering, 

within the range [-1,1]. This should effectively give every feature 
in your data set an equal “vote” in the model-building process. 
Without normalization, features with large absolute values will 
be overweighted. You might also do the opposite and transform 
the scales of certain columns to have more influence in the 
clustering algorithm. In adjusting the weights, you can express a 
preference for how large of a vote each feature gets in the model.

Another step that is beneficial is to perform label encoding for 
categorical features, i.e., represent your categories as numbers. 
To do this, you need to be a little thoughtful and treat ordinal 
and categorical data differently. If you have three distinct 
categories and you assign them to values 1, 2, and 3, then the 
clustering algorithm will treat two records coded with 1 and 2 as 
more similar than two records coded with 1 and 3. This might 
make sense if your data is naturally ordinal. If not, you might try 
one-hot encoding, where you create a single indicator feature 
for each category in the original feature. 

Lastly, you can perform impact encoding. The idea here is that 
you replace each categorical value in a feature with a numerical 
value derived from some outcome of interest. For instance, if you 
have ZIP code as a feature it will have high cardinality and may 
not be useful in a model—it takes on too many values, mostly 
non-credible. You could instead create a feature that encodes 
the average income, mortality rate, or per member per month 
(PMPM) health care claim cost within that ZIP code. 

ALGORITHMIC POTPOURRI
One possible way to improve clustering model results is 
simply by trying out different model types. A myriad of 
different algorithms exist out there for clustering—literally 
hundreds. Yet, just like in the supervised learning case, the 
number of really useful algorithms is much smaller. K-means 
and hierarchical clustering are the obvious choices. Gaussian 
mixture models, density-based spatial clustering of applications 
with noise (DBSCAN), spectral clustering, and clustering large 
applications (CLARA) are some more common alternatives. 
To select the right algorithm there are two options—learn 
about the differences between them and carefully select the 
appropriate algorithm based upon the problem at hand (for 
instance, k-medoids is more robust to outliers than k-means 
while spectral clustering is more resistant to noise), or simply 
try out multiple algorithms and evaluate the results. Given the 
lack of a ground-truth label, knowing when one technique is 

One possible way to improve 
clustering model results is 
simply by trying out different 
model types.



PREDICTIVE ANALYTICS AND FUTURISM | 3Copyright © 2020 Society of Actuaries. All rights reserved.

Like Peas in a Pod: Ideas in Cluster Analysis

SHAP values were initially introduced as a model interpretation 
method, where we allocate how much each feature in a 
supervised learning task contributes to the difference between 
the prediction for that particular observation and the overall 
average. As an example, the SHAP value in a linear regression 
is actually the coefficient for that feature multiplied by the 
feature value—because this value in a regression equation tells 
us how to move that record’s prediction away from the overall 
average, conditional on all the other features. Things get more 
complicated in the nonlinear case of a gradient-boosted machine 
or random forest. That is where SHAP values really add insight. 
SHAP values are extremely useful, so if this has piqued your 
interest, I highly suggest you read more about them (for instance, 
see Lundberg 2017). 

So how can we use SHAP values in clustering? Well, because 
SHAP values deconstruct each individual prediction into the 
contribution from each feature, a data set with n observations 
and m features would generate a matrix of n x m SHAP values. 
This means that we have a new matrix that can effectively replace 
every feature in our data set with a new feature for our clustering 
model. Why is this interesting? Because it puts everything on a 
consistent interpretation and scale. It can also help us preprocess 
our data in desirable ways when dealing with categorical data, 
especially if the feature has high cardinality (in a way similar to 
impact encoding). Additionally, to the extent that the supervised 
model’s response corresponds to the types of behaviors you wish 
to use your cluster model on, it could result in tighter clusters.

The clear challenge with this approach is the requirement to 
first build a supervised model from which to get the SHAP 
values. This is a luxury that we often don’t have, but if we do, we 
should exploit it. 

SEMI-SUPERVISED CLUSTERING
There has been promising research on incorporating outside 
knowledge into the clustering process. Semi-supervised clustering 
is an approach that can be used either when we have partially 
labeled data or when we want to enforce prior knowledge into 
the model. Typically, this prior knowledge is represented by 
specifying a constraint that two observations must be in the same 
cluster or conversely that two observations can’t be in the same 
cluster. Semi-supervised clustering can be particularly useful 
when labeling instances is expensive or when you have a strong 
desire to enforce constraints based upon the business context 
of the model. How this works is that the algorithm takes user-
provided input in terms of labels or constraints and accounts for 
it in the model-building process. As an example, imagine building 
a clustering model using age bands. You might want to enforce 
a constraint that records with younger age bands should not be 
in the same cluster as records with older age bands while still 
desiring to use age as a way to measure similarity between records. 

so the output of a cluster model is an arbitrary label, usually an 
integer. That is, there is no guarantee in any set of clustering 
models that the fifth cluster in one model corresponds to the 
fifth in another model. The label is just a placeholder, so you 
can’t simply look up the fifth cluster in two different models and 
expect them to have any correspondence with each other. 

Relabeling/voting takes care of this problem for us. First, it 
determines label correspondence between the base models. It 
does this by checking the labels and switching them so that the 
labels in all the base models of the ensemble refer to the same 
cluster. With all our labels on a consistent basis, we can now create 
the ensemble’s prediction with either a hard or soft (probabilistic) 
classification of cluster membership for each observation. To do 
this we give each base cluster in the ensemble a vote as to which 
cluster it thinks the data point should belong to. For instance, if 
we had five different models with cluster predictions of 2, 2, 2, 
3, and 2, then by way of voting we would label this instance as 
belonging to the second cluster for a hard classification. For a soft 
classification, we would view this point as having a 0.8 weight or 
probability of being in the second cluster and a corresponding 
weight of 0.2 of it being in the third cluster.

PREPROCESSING WITH SHAP VALUES
Let’s now take things back a few steps, before applying any 
algorithms, to when we preprocessed our data. Instead of using 
the preprocessed data “as is,” let’s explore a new possibility: 
Shapley additive explanations (SHAP) values. SHAP values are 
derived from a classification or regression model. To explain 
how we can use SHAP values in clustering, let’s first dive into 
what they are. 



PREDICTIVE ANALYTICS AND FUTURISM | 4

Like Peas in a Pod: Ideas in Cluster Analysis

Copyright © 2020 Society of Actuaries. All rights reserved.

CONCLUSION
In many clustering problems, simple approaches like k-means 
can provide “good enough” results, and in my anecdotal 
experience they often provide strong baselines that can be hard 
to improve upon. However, by digging a little deeper you may 
find ways to take your results to the next level. 

Although clustering is not always as clear-cut as classification or 
regression problems, it doesn’t mean that all answers are equally 
good. More often than not, in the real world you will be creating 
clusters as a tool to achieve a goal, and a good clustering model 
should be measured by how well it helps you achieve that goal. 
There may not be a way to unambiguously measure whether or 
not you have “the best” model, but the end goal should inform 
all your modeling decisions. n

Michael Niemerg, FSA, MAAA, is predictive 
modeling manager at Milliman IntelliScript. He can 
be contacted at michael.niemerg@milliman.com.

BIBLIOGRAPHY

Aggarwal C., Reddy C. Data Clustering: Algorithms and Applications, 1st Edition (2013).

Awasthi, P., Zadeh, R.B., Supervised Clustering (2010). NIPS’10 Proceedings of the 23rd 
International Conference on Neural Information Processing Systems - Volume 1.

Bair, E., Semi-supervised clustering methods (2013). Wiley Interdisciplinary Reviews: 
Computational Statistics 5(5):349-361.

Lundberg S., Lee S., A unified approach to interpreting model predictions (2017). 
Advances in Neural Information Processing Systems, 4765-4774.

mailto:michael.niemerg%40milliman.com?subject=

	Like Peas in a Pod: Ideasin Cluster AnalysisBy Michael Niemerg

