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1. Executive Summary  
 

Floods don’t just break dams—they break budgets. Their growing frequency, alongside 
dam failures, threatens both infrastructure and financial stability. Current insurance models rely 
on either government-backed reserves (e.g., the Netherlands [Sanon, H. 2024], Canada [Canada, 
P.S. 2025]) or mostly privatized systems (e.g., the United States [Bowman, A. 2014]). Neither 
approach reliably balances pricing equity and market stability. 

 
This report proposes a hybrid, multi-layered risk transfer model. It spreads flood risk 

across three groups: direct insurers, regional reinsurers, and the government. Direct insurers 
compete for individual policies. Regional reinsurers manage high-risk zones and maintain dams. 
The government provides targeted subsidies and acts as the catastrophic backstop. If this model 
had been in place over the past 23 years, reserve needs could have dropped from Q335 billion to 
Q89 billion—a Q246 billion reduction. Savings would come from lower payouts, improved dam 
maintenance, and greater insurer participation. Fewer dam failures. Fewer disasters. Stronger 
economies. Safer communities. Sensitivity analysis shows the model boosts both economic and 
social resilience with near certainty. Key risks include insurer insolvency, reinsurer hesitation, 
monopolies, and inconsistent inspections. We recommend four safeguards: capital reserve rules, 
tax incentives for reinsurers, pricing regulations, and standardized inspections. Together, these 
protect financial stability and long-term success. 
 

2. Objectives 
 
This program aims to stabilize Tarrodan’s finance and infrastructure through two core objectives: 

 

1. Move from a full government model to a layered risk model to reduce fiscal burden. 
2. Incentivize maintenance and infrastructure upgrades to reduce flood frequency. 

 

Program success will be measured by these two metrics: 
● Reduced government flood-related expenditures, through lower claim payouts, improved 

dam maintenance, and increased private-sector participation. 
○ Measured by budget impact, comparing disaster assistance and insurance reserve 

costs before and after implementation 
● Decreased flood incidence, via proactive infrastructure maintenance. 

○ Measured by tracking changes in flood frequency over time 
 

Implementation is divided into three phases: 
● Setup Phase (6–12 months): Establish regulatory frameworks, onboard direct insurers 

and reinsurers, and implement data-driven risk assessment tools. 
● Delivery Phase (Years 1–3): Deploy subsidies, standardize inspection protocols, and 

incentivize preventative maintenance through structured insurance pricing. 
● Evaluation Phase (Ongoing, every 6–12 months): Monitor spending reductions, track 

flood occurrences, and refine risk-sharing mechanisms based on actuarial analysis. 



 

 
Figure 1: Implementation Timeframe for Overall Program 

 
Initial budgetary improvements may emerge within a few years. Full flood prevention 

benefits will take 5–10 years to materialize. Continuous monitoring and iterative improvements 
will be essential for lasting resilience. 
 

3. Program Design 
 
3.1. Evaluation of Insurance Models & Proposal 
 

This section evaluates two opposing flood insurance models: a fully government-backed 
national program and a fully privatized market. Neither extreme is viable for Tarrodan, given the 
financial and structural demands of effective flood risk management. 

 
A fully government-backed model ensures universal coverage, affordability, and 

coordinated national mitigation efforts (Thistlethwaite & Henstra, 2024). Subsidies keep 
high-risk homeowners insured, while state investment supports large-scale infrastructure 
projects. However, this model has critical weaknesses. Disaster relief costs are soaring, straining 
fiscal sustainability. Governments often lack incentives for regular infrastructure upkeep, leading 
to poorly maintained dams and potential insurer bailouts (Texas Commission on Environmental 
Quality, 2006). In Canada, post-disaster relief is increasingly unsustainable. In the Netherlands, 
despite full state control, doubts remain about the sufficiency of public funding for long-term 
infrastructure maintenance (Glas, 2022). As Ontario’s flood risk report (2024) notes, 
governments may lack both the expertise and capacity for effective mitigation. 

 
A fully privatized market, by contrast, introduces risk-based pricing, ensuring low-risk 

homeowners don’t subsidize high-risk ones (Bossio & Ness, 2024). Competition promotes 
efficiency—insurers refine risk models, incentivize prevention, and control costs. Yet 
privatization often limits affordability and access (Moyana, 2025). In Florida, private insurers 
frequently deny coverage or set unaffordable premiums in flood-prone areas, leaving many 
reliant on last-resort state programs like Citizens Property Insurance (Smith, 2024). While 
fiscally stable, privatization fails to protect vulnerable populations against adverse selection. 

 



 

Neither system works in isolation. Terrodan needs a hybrid model. Our proposal blends 
the strengths of both systems while mitigating their flaws. The following sections detail its 
structure and phased implementation. 
 
3.2. Role of Direct Insurers – Liquidity & Competitive Pricing 
 

A resilient direct insurance market is key to maintaining liquidity and fair, risk-based 
pricing in flood coverage (IAIS, 2024). Insurers must balance accurate pricing with affordability. 
But without government support, market forces alone can’t ensure competition or access. Direct 
insurers face two main challenges: limited capital and high entry costs (OECD, 2016). 

 
First, many lack the reserves to handle extreme, right-skewed losses (Stephenson, 2023). 

Flood claims are rare but severe, threatening solvency (Prost, 2024). Small markups over 
expected losses leave insurers exposed. One major event can wipe them out. To stay afloat, they 
raise premiums. Higher prices drive down participation. Liquidity shrinks. Access fades. A 
vicious cycle begins. Second, high entry costs block new competitors (Hayes, 2024). Flood 
insurance needs strong finances and advanced modeling tools. Software like GGY Axis is 
essential—but expensive (Hedegaard, 2018). Small insurers can’t afford it. Premiums rise. 
Consumer choice shrinks. To fix these barriers, we propose five targeted interventions: 
 

1. Reinsurance Support for Extreme, Right-Skewed Losses (See Appendix A for visual) 
To ease financial strain on direct insurers, the government will encourage greater 

reinsurance participation. Claims above the 80th percentile will be ceded to reinsurers, protecting 
insurers from catastrophic losses and promoting premium stability. 

2. Subsidized Access to Predictive Modeling Software 
High software costs are a major barrier for small insurers. To level the playing field, the 

government will subsidize access to tools like GGY Axis. This increases competition, improves 
pricing accuracy, and enhances consumer access. 

3. Grants and Financial Support for InsurTech Startups 
Innovation is crucial for a competitive and efficient market. Government grants will 

support InsurTech firms developing AI-powered risk models and advanced underwriting 
systems. These tools reduce operational costs and improve affordability. 

4. Open Government Data for Risk Assessment 
Regulated insurers will gain free access to key datasets—including weather forecasts, 

flood histories, and infrastructure assessments. This reduces data collection costs, promotes fair 
competition between new and established players, and ultimately drives down premiums. 

5. Compulsory Insurance Bundling 
As outlined in Section 3.4, flood insurance will be bundled with standard property 

insurance. Bundling increases participation, simplifies the purchase process, reduces consumer 
resistance, spreads risk more broadly, and boosts market stability. 



 

3.3. Role of Reinsurers – Risk Absorption & Infrastructure Stewardship 
 

Reinsurers do more than absorb catastrophic losses—they sustain the insurance 
ecosystem by pooling capital and enabling competition among smaller firms. In our model, 
reinsurers evolve from passive risk carriers into proactive infrastructure stewards, actively 
supporting dam maintenance and mitigation efforts. 
 
The Need for Reinsurers to Lead Dam Maintenance 
 

Tarrodan’s dam inspection system is severely inadequate. Cross-regional analysis reveals 
that over 48% of records lack inspection dates, and more than 40% omit inspection frequency 
data. The result: inconsistent, unstandardized inspections that heighten systemic flood risk. 
Actuarial studies confirm an inverse correlation between inspection frequency and flood 
losses—more inspections mean fewer catastrophic failures. While government-led intervention 
seems intuitive, it often falls short. Public agencies typically lack the technical capacity to design 
optimal inspection schedules and frequently treat infrastructure upkeep as a financial burden 
(T.K., 2024). Maintenance funding is inconsistent and vulnerable to political shifts, leading to 
dangerous delays in critical repairs. 
 
Why Reinsurers Are a Better Choice 
 

● Stronger Financial Incentives & Risk Expertise – With exposure to catastrophic losses, 
reinsurers are financially motivated to invest in prevention. Their actuarial tools support 
data-driven inspections and maintenance. 

● Long-Term Stability & Efficiency – Reinsurers operate beyond political cycles, 
applying consistent strategies to infrastructure risk over time. 

● Catalyst for Private Investment – Their involvement can draw private capital into flood 
mitigation, advancing engineering solutions and predictive technologies, while reducing 
reliance on public funds (Jordan-Tank, 2017). 

 
Incentive Structure for Enhanced Maintenance Efforts 

 
To formalize reinsurer engagement, we introduce a 
performance-based incentive system tied to inspection 
frequency. Initially, the government’s reimbursement 
threshold is set at the 95th percentile, covering 
catastrophic losses above $200–$350 billion, depending 
on the region. However, exploratory data analysis shows 
 

Figure 2: Increasing Minimum Inspection Frequency to 5 
Showcases a Significant Decrease in Expected Losses 



 

a clear inverse relationship between inspection frequency and loss magnitude (see Appendix A). 
To encourage proactive action, the threshold adjusts dynamically. For example, increasing 
inspections from two to eight per cycle reduces the reimbursement threshold from $350 billion to 
$275 billion. This creates a financial incentive for reinsurers to fund maintenance oversight and 
reduce catastrophic exposure. 

 
 

 

Structured Approach for Implementation (refer to Appendix B for detailed calculations) 
 

1. Fixed Reserve – The reserve remains constant, adjusted for inflation, for fiscal planning. 
2. Reserve Calculation – Based on a normal distribution, reserves = Expected Loss + 3σ, 

ensuring 99.7% coverage under the Law of Large Numbers (Ross, 2024). 
3. Initial Thresholds – Attachment points begin at the 95th percentile of loss distribution. 
4. Machine Learning Integration – A dynamic model, powered by Google’s YDF (see 

Appendix C), adjusts thresholds based on updated inspection data. This ensures precise 
alignment between inspection frequency and fiscal exposure. 

 
*Note: Inspection frequency is capped at 9, details are available in the sensitivity analysis. 
 
3.4. Role of the Government – Subsidies, Retrocession, and Regulatory Oversight 
 

Beyond subsidies and retrocession (Sections 3.2 and 3.3), the government plays key roles 
in regulation, standard enforcement, and managing extreme-risk scenarios—the "one percent 
problem" (Thistlethwaite & Henstra, 2024). 
 

First, regulatory oversight ensures direct insurers and reinsurers act ethically, 
transparently, and efficiently. By consulting experts, the government sets strict licensing 
standards. Only insurers that meet them receive subsidies and financial support. Regulations also 
mandate clear guidelines for dam inspections and maintenance. This stops reinsurers from 
inflating inspection frequencies or cutting quality for profit. Without oversight, insurers may end 
up funding poorly maintained infrastructure, shifting costs unfairly to them. Strong regulation 
prevents this. It maintains integrity, accountability, and resilience in the system. Second, the “one 
percent problem” needs targeted action. Properties in the top one percent can cause 40% of 
expected losses (Thistlethwaite, J., 2025). These homes—considered uninsurable—will be 
excluded from compulsory insurance. Instead, owners get a one-time disaster payment under a 
“one and done” policy. This can be used to rebuild or relocate. The goal is to encourage moves to 
safer areas and reduce high-risk housing over time. 
 

This targeted exclusion also mitigates adverse selection. By removing the costliest 
properties from the risk pool, premiums for the remaining 99 percent become both lower and 
more equitable. A case study shows that the average housing price for top one percent properties 



 

is significantly higher than the national average. This raises a serious social equity concern: 
people might be angry knowing that they pay the insurance for some rich guy’s mansion near the 
tropical beach. Excluding these properties from the compulsory scheme avoids this issue and 
strengthens public support for the program. To further prevent adverse selection, flood insurance 
is bundled with standard property insurance. This ensures wide participation and stable pricing. 
Premiums vary by region to reflect local flood risk. Homeowners pay their fair share—no more, 
no less. At the same time, the government promotes self-insurance for the highest-risk properties. 
These owners are encouraged to invest in flood protection or relocate. This aligns with broader 
buyout programs to reduce vulnerable housing. A “sunset clause” (Thistlethwaite, J., & Henstra, 
D., 2024), based on the UK model, supports long-term risk reduction. Regions have ten years to 
upgrade flood infrastructure like dams and levees. If benchmarks aren’t met, insurers may 
withdraw coverage. This clause empowers citizens to demand timely upgrades and supports 
stronger negotiations with reinsurers. 
 

Taken together, these strategies integrate the government’s regulatory and financial roles 
to promote sustainability, market equity, and risk mitigation—while empowering citizens and 
preserving the long-term viability of the national flood insurance landscape. 

3.5. Evaluation Time Frame 

The evaluation timeline establishes a structured framework for monitoring and refining 
the proposed hybrid insurance model. This systematic approach ensures ongoing assessments of 
financial sustainability, market competitiveness, and infrastructure resilience. Defined evaluation 
intervals for key stakeholders—direct insurers, reinsurers, and government regulators—facilitate 
continuous oversight and data-driven policy adjustments. 

 
Figure 3: Evaluation Timeframe for Overall Program 

 
4.  Financial Results 

4.1. Government Inflows: Revenue Sources 

The financial structure of the hybrid program relies on a well-balanced system of inflows 
and outflows, designed to ensure long-term viability. On the inflow side, the government derives 
revenue from two key sources. First, region-specific tax contributions are levied across Lumaria 
at differentiated rates based on economic capacity and flood exposure: 0.10% of GDP in 



 

Flumevale, 0.80% in Lyndrassia, and 0.15% in Navaldia. This tax structure ensures equitable 
contribution across regions, generating an estimated $44,096 QM over a ten-year period while 
aligning revenue with risk and regional output. Second, licensing fees collected from 
participating private insurers and reinsurers support both regulatory oversight and infrastructure 
development. As the program scales, these fees are expected to rise proportionally with the 
number of participating entities, further reinforcing the government’s capacity to sustain and 
manage national flood risk. 

4.2. Government Outflows: Expenditures 

On the expenditure side, the government covers catastrophic losses that exceed the 
private sector’s capacity. The largest cost comes from claim payouts during extreme flood 
events. Models project average annual payouts of $3,859 QM in Flumevale, $3,893 QM in 
Lyndrassia, and $4,911 QM in Navaldia, depending on flood severity and frequency. These 
payments are key to keeping insurers in the program and protecting policyholders from major 
financial loss. The government also provides $50 QM annually in targeted subsidies. These go to 
smaller insurers—especially along the GGY axis—who face higher risk and financial strain 
during extreme weather. The subsidies help them stay solvent, preserve market competition, and 
prevent consolidation that could drive up premiums and limit consumer choice. The program 
also incurs approximately $50 QM annually in operational expenditures. These funds support 
regulatory oversight, continuous data collection, and the deployment of AI-driven risk modeling 
systems. By refining flood risk assessments in real time, these tools improve forecasting 
accuracy, enhance resource allocation, and contribute to loss mitigation. 

4.3. Long-Term Fiscal Sustainability  

Fiscal sustainability is a core pillar of the program’s design. Government reserves are 
projected to remain relatively stable, supported by low variability in data trends and steady 
reserve growth. Subsidies are structured with built-in flexibility, allowing for real-time 
adjustments based on evolving flood risk patterns and new climate data. This dynamic approach 
ensures continued responsiveness to external shocks, such as climate change, rather than relying 
on static funding models. Reserves are expected to grow at an annual rate of 4.5%, gradually 
expanding the government’s capacity to absorb catastrophic losses without overextending public 
finances. These reserves serve as a financial buffer, enabling the state to fulfill its role as insurer 
of last resort while maintaining long-term fiscal discipline. To ensure affordability and equity, 
residents of Flumevale contribute 0.10% of their average salary, while those in Lyndrassia and 
Navaldia contribute 0.80% and 0.15%, respectively. All contribution rates remain well below the 
1.8% threshold which is the upper limit of affordability for insurance (Thistlethwaite & Henstra, 
2024). This structure ensures accessibility while maintaining proportionality across regions. 



 

4.4. Budget vs Current Contributions  

To assess the fiscal impact of the hybrid model, we compare its reserve requirement to a 
counterfactual scenario in which the government assumes full responsibility for flood risk. Under 
a government-only model, maintaining sufficient reserves to cover all claims would require 
$27907 to $32365 QM per region. This estimate accounts for direct payouts, operational costs, 
and preventative measures, with no risk transfer to insurers or reinsurers. In contrast, the hybrid 
model leverages private capital, reducing the government’s reserve requirement to $4911 to 3859 
QM per region over the same period. The resulting more than $20000 QM  reduction per region 
significantly alleviates fiscal pressure, freeing resources for other public priorities. Beyond 
budgetary relief, this approach enhances economic stability by unlocking capital that would 
otherwise remain tied up in reserves, fostering economic activity. 

5. Key Assumptions 
 

Metric Description Rationale 

Current 
Government 

Reserves 

$88,501 QM required under a 
government-only model to 

cover all claims without 
private sector support.  

Based on stable historical growth and 
economic forecasts, ensuring the 

government can fulfill its 
insurer-of-last-resort role. 

Expected Loss 
Distribution 

Losses follow a Normal 
distribution, validated by QQ 
plot to account for skew.  

Catastrophic flood losses are best modeled 
with a Normal distribution, where a few 

events drive most losses (see Appendix A). 

Average 
Maintenance 
cost per dam 

The estimated rehabilitation 
cost per dam is 0.81 M 

(USD) = 0.77QM. (ASDSO, 
2016) 

This is based on data from the Association 
of State Dam Safety Officials, which 

provides region-specific estimates on dam 
repair and maintenance expenses. 

 
6. Risk and Risk Mitigation Considerations 

 
6.1. Main Risks  

The main risks facing the flood insurance sector include reinsurer reluctance in 
high-risk zones, the perception of high maintenance costs, and the growing impact of climate 
change. Reinsurers may withdraw from high-risk flood areas, reducing market capacity and 
driving up premiums. To mitigate this, governments can introduce tax incentives and direct 
subsidies, creating a cost-sharing model where a percentage of reinsurers' expenses in such zones 
is covered. Additionally, reinsurers may hesitate to invest in preventive maintenance due to 
perceived high costs, increasing the likelihood of catastrophic claims. This can be addressed by 



 

promoting data-driven evidence of long-term cost savings and claim reductions through 
preventive action. Lastly, climate change introduces unpredictable weather patterns that increase 
dam vulnerability and complicate flood risk forecasting. Mitigation strategies include reinforcing 
dam and flood defense infrastructure and regularly updating flood risk models with the latest 
climate data to ensure accurate risk assessment and premium pricing. 
 
6.2. Risk Matrix 

The risk matrix highlights that most primary 
risks have a moderate likelihood of occurrence but a 
high potential impact on the program’s performance. 
These risks pose significant threats to financial stability 
and operational continuity. To counteract this, the 
mitigation strategies outlined in Section 6.1 and 
appendix E have been rigorously implemented. These 
measures ensure the hybrid insurance program remains 
viable and resilient against potential disruptions. 
 
6.3. Sensitivity  

Sensitivity testing on inspection frequency reveals that the optimal range lies between 0 
and 9 inspections per cycle, with the most significant reductions in payouts occurring around 6 
inspections. Beyond nine, additional inspections yield minimal improvements in payout 
reduction, indicating diminishing returns. This 0–9 range effectively balances risk 
mitigation—by reducing dam failure likelihood—with resource efficiency, while maintaining 
stable government reserves. Assessment level sensitivity shows a clear relationship between 
structural condition and expected payouts. As assessment levels decline from "Satisfactory" to 
"Poor," expected payouts increase significantly: by 32.2% in Flumevale, 20.3% in Lyndrassia, 
and 14.1% in Navaldia. Flumevale is the most sensitive to poor assessment outcomes, 
underscoring the need for improved maintenance to reduce losses. Ensuring that all structures 
meet at least a "Fair" assessment level is critical to minimizing regional financial exposure. 

 
7. Data and Data Limitations 

7.1 Data Sources  
This analysis draws on four key sources.  

1. The Reimbursement for Damages Act (Ministerie van Infrastructuur en Waterstaat, 2023) 
the Netherlands’ criteria for disaster-related damage reimbursement. It provides insight 
into public policy for distributing financial aid after disasters.  

2. 2. The Cost of Rehabilitating Our Nation’s Dams report (ASDSO, 2016) offers an 
updated comprehensive assessment of dam rehabilitation expenses across U.S. regions. 

3. 3. Public Safety Canada (2025) details two major Canadian disaster response programs: 
the Disaster Financial Assistance Arrangements (DFAA) and the Canada Flood Insurance 



 

Program (CFIP). These programs operate as federal cost-sharing models,and serve as a 
reference for assigning financial responsibilities in disaster recovery efforts.  

4. 4. Wang (2021) presents a machine learning-based data cleaning method using the 
K-Nearest Neighbor (KNN) classifier. The study introduces classification ability ranking 
to manage missing data, improving the quality of datasets in predictive risk modeling. 

 
7.2. Data Limitations 

1. Dam-related metrics are incomplete, with significant gaps across key categories—most 
notably, 51% of entries lack data on the “Assessment Date.” Thisigh level of missing 
information may distort loss projections and require further validation. 

2. The absence of precedent hybrid insurance programs means there are no existing 
benchmarks for estimating maintenance costs or reserve structures. As a result, the model 
relies on assumptions about operational costs, which may affect precision.  

3. Limited direct data available on dam maintenance costs, introducing uncertainty into 
operational expense forecasts and expected cost savings.  

4. Finally, the lack of information on current government-held flood insurance reserves and 
active policy structures necessitated assumptions in modeling reserve requirements and 
potential fiscal benefits. These data gaps introduce risks of inaccuracy in evaluating the 
proposed policy’s long-term impact. 

 
8. Conclusion and Next Steps 

 
By implementing our approach, we anticipate a substantial influx of dam-related data as 

inspection and maintenance practices improve. This enriched data environment will allow for 
continuous refinement of our predictive models, enabling the setting of more precise thresholds 
and optimized premium pricing. Over time, Terrodan can reduce the government’s flood 
mitigation budget by 40.6% while lowering the total number of dam failures. The result: 
enhanced public safety and stronger social outcomes. 

 
Looking ahead, one promising extension involves the integration of advanced machine 

learning techniques to assess individualized property risk premiums. This would require 
collecting granular property-level data—such as elevation relative to flood plains, building 
materials, foundation type, and other structural characteristics—and feeding it into 
high-precision predictive models. Much like in the real estate market, the resulting premium 
values would be made publicly available. This transparency empowers homeowners with clear, 
data-driven insights into their flood risk. It also shifts market dynamics. Insurers, now facing 
more informed customers, would be incentivized to offer more competitive pricing and better 
coverage terms. Initially, this effort could begin with detailed case studies in high-risk regions to 
identify key predictive features. Over time, it would scale to a fully integrated, nationwide 
pricing framework—one that aligns actuarial fairness with technological innovation. 



 

9. Appendix A – Exploratory Data Analysis 
 
During exploratory data analysis, we applied K-Nearest Neighbors (KNN) with 

cross-validation to determine the optimal k-value for imputing missing quantitative data. We 
introduced "total loss" and "expected loss" variables to enhance interpretability and removed 
"last inspection date" due to over 90% missing values. Categorical gaps were addressed by 
introducing a "missing" level. 
 

Additionally, univariate and bivariate analysis revealed key data patterns: 

● Layered Risk Structure: The right-skewed distribution of total loss aligns with the 
proposed tiered risk allocation. 

 

Figure 5: Loss distribution between Number of Dams and Expected Loss 

● Dam Age & Failure Risk: There is no clear trend between damage and failure 
probability or total loss. 

 
 

Figure 6: Correlation between Age and probability of failure 



 

● Inspection Frequency & Failure Probability: A strong correlation suggests that 
government-backed risk adjustments based on inspection history could be justified.  

 
Figure 7: Relationship between Inspections Frequency and the Probability of Failure 

● Regional Risk Segmentation: Certain regions (e.g., Flumevable) have relatively few 
dams but high expected losses, reinforcing the need for government intervention.  

 
Figure 8: Number of Dams with their Hazard Level in Specific Regions 

 

 
Figure 9: Expected Loss according to Different Hazard Level in Different Regions 



 

● Urban Exposure & Premium Subsidization: Dams near cities pose higher financial 
risks, suggesting that government subsidies may be necessary to maintain insurability.  

 
Figure 10: Relationship between Distance with City and the Total Financial Loss 

● Market Stability Risks: The highest-risk dams (top 10% of projected failures) contribute 
disproportionately to expected financial losses, highlighting the potential need for 
government support.  

  
Figure 11: Pareto-like Graph: Cumulative Total Loss 

 
 
 



 

 
Figure 12: BoxPlot for Expected Loss 

 
 

 
Figure 13: BoxPlot for Expected Loss for Flumevale 



 

 
Figure 14: BoxPlot for Expected Loss for Lyndrassia 

 
 

 
Figure 15: BoxPlot for Expected Loss for Navaldia 

 

 
Figure 16: Normal Q-Q Plot for Expected Total Loss  



 

10. Appendix B – Technical Explanation of Government Reserve and Threshold 
Adjustments 

 
Our system operates through a structured, actuarially sound framework, as shown below: 

 
Figure 17: Initial Reserve Determination 

● Expected Total Loss: Modeled average loss from dam failure and flooding. 
● Attachment Point Threshold: The loss level (e.g., $350B → $275B) at which government 

reimbursement begins. 
● Government Reserve: Calculated as Expected Loss + 3 standard deviations, ensuring a 

99.7% confidence level under extreme loss scenarios (CPMI-IOSCO, 2024). 

 
 

Figure 18: Adjusting Threshold with Inspection Frequency 
 

● Impact of Inspections: More inspections lower expected loss by reducing failure 
likelihood and severity. 

● Threshold Recalibration: With a constant reserve, the attachment point adjusts to reflect 
reduced risk. 

● Incentive Alignment: This structure rewards reinsurers for proactive inspections while 
preserving fiscal discipline. 

 



 

11. Appendix C – Code for YDF Machine Learning Model for inspection frequency 
A link to the remaining code base can be found here: 
https://github.com/kevinj637/SOA_research_comp2025 
 
Machine_learning.py code:  
#libraries we used to create out program 
import pandas as pd 
import numpy as np 
import ydf 
import matplotlib.pyplot as plot 
import gov_expenditure 
import scipy.stats 
 
#this function returns the new government threshold based on their percentile of involvement 
and minimum frequency 
def expected_losses_given_min_frequency(file : str, frequency : int, initial_percentile: float, 
make_graph : bool, verbose : bool) -> tuple: 
    #decode the file 
    df = pd.read_csv(file) 
    train_df = df.copy(True) 
    #The columns were dropped for the following reasons: 
    #ID: Independent from data 
    #Years Modified: Insufficient data 
    #Assessment date: insufficient data 
    # loss given failure (all varieties): independent from dam failure probability rate 
    # hazard: independent from dam failure probability rate 
    train_df = train_df.drop(columns=["ID", "Years Modified", "Assessment Date", "Assessment 
Date","Loss given failure - prop (Qm)","Loss given failure - liab (Qm)", "Loss given failure - BI 
(Qm)", "Total Loss Given Failure", "Expected Loss Value", "Hazard"]) 
    test_df = train_df.copy(True) 
 
    # adjust all frequencies to be at least minimum frequency 
    for i in range(test_df.index.size): 
        if (test_df.loc[i, "Inspection Frequency"] < frequency): 
            test_df.loc[i, "Inspection Frequency"] = frequency 

https://github.com/kevinj637/SOA_research_comp2025


 

    ydf.verbose(0) 
 
    #run machine model 
    model = ydf.GradientBoostedTreesLearner(label="Probability of Failure", 
task=ydf.Task.REGRESSION,).train(train_df) 
    ydf_prediction = model.predict(test_df) 
    
    for i in range(test_df.index.size): 
        test_df.loc[i, "Probability of Failure"] = ydf_prediction[i] 
    
    #input machine trained-information 
    new_df = df.copy(True) 
    new_df = new_df.replace(new_df["Probability of Failure"], pd.Series(ydf_prediction)) 
    for i in range(new_df.index.size): 
        new_df.loc[i, "Expected Loss Value"] = test_df.loc[i, "Probability of Failure"] * 
new_df.loc[i, "Total Loss Given Failure"] 
    new_df.to_csv(f"machine_learning_frequency_adjusted_{df.loc[0, "Region"]}.csv", index = 
False) 
 
    #make graph 
    if make_graph: 
        compare_new = new_df["Expected Loss Value"].div(10).to_numpy() 
        compare_old = df["Expected Loss Value"].div(10).to_numpy() 
        plot.hist([compare_old, compare_new], bins=50,label=["Original", "After Frequency 
Change"]) 
        plot.xlabel("Expected Loss Value, millions(£Q)") 
        plot.ylabel("Number of Dams") 
        plot.title(f"Reduction to losses by increased inspection frequency in {df.loc[0, "Region"]}") 
        plot.legend() 
        plot.savefig(f"frequency_adjusted_expected_loss_{frequency}_{df.loc[0, 
"Region"]}_histogram.png") 
        plot.clf() 
 
    #do computations to obtain our government threshold and reserve 



 

    new_data = 
gov_expenditure.yearly_loss_percentile(f"machine_learning_frequency_adjusted_{df.loc[0, 
"Region"]}.csv", 0, 100, verbose) 
    old_data = gov_expenditure.yearly_loss_percentile(file, 0, 100, verbose) 
    gov_threshold = scipy.stats.norm.ppf(initial_percentile/100) * old_data[2] + old_data[1] #one 
standard deviation, covers 95% to 99.7% of all cases 
    gov_reserve = scipy.stats.norm.ppf(0.997) * old_data[2] + old_data[1] - gov_threshold 
    new__gov_detachment_point = scipy.stats.norm.ppf(0.997) * new_data[2] + new_data[1] #the 
amount of money for 99.7% of all cases 
    new_gov_threshold = new__gov_detachment_point - gov_reserve 
    new_percentile = scipy.stats.norm.cdf(new_gov_threshold, new_data[1], new_data[2]) 
    if verbose: 
        print("Based on the original data, the threshold should be:", gov_threshold, "and the reserve 
is", gov_reserve) 
        print(f"The expected value of the new data is {new_data[1]} with standard deviation 
{new_data[2]}.") 
        print(f"This means the government detachment point is {new__gov_detachment_point} and 
the detachment point is {new_gov_threshold}.") 
        print(f"The insurance companies will expect to pay {new_data[1]} instead of {old_data[1]}. 
This represents a decreased payout of {new_data[1] - old_data[1]}") 
        print(f"The government threshold will also shift by {new_gov_threshold - gov_threshold}") 
        print(f"This is the {new_percentile * 100} percentile.") 
    
    #return important information 
    ans = {f"Threshold percent {df.loc[0,"Region"]}" : new_percentile} 
    ans.update({f"Original Threshold {df.loc[0,"Region"]}": gov_threshold}) 
    ans.update({f"New Threshold {df.loc[0,"Region"]}" : new_gov_threshold}) 
    ans.update({f"Change in Threshold {df.loc[0,"Region"]}" : new_gov_threshold - 
gov_threshold}) 
    ans.update({f"Original Expected Payout {df.loc[0,"Region"]}" : old_data[1]}) 
    ans.update({f"New Expected Payout {df.loc[0,"Region"]}" : new_data[1]}) 
    ans.update({f"Change in Payout {df.loc[0,"Region"]}" : new_data[1] - old_data[1]}) 
    return ans 
 
 



 

Gov_expenditure.py code, calculates the expected loss and government reserves of a region: 
def yearly_loss_percentile(file : str, lower_percentile : int, upper_percentile : int, verbose : bool) 
-> (tuple): 
    df = pd.read_csv(f"{file}") 
    df.sort_values("Expected Loss Value", axis= 0, ascending=True, inplace=True) 
    lower_bound = int(df.index.size * lower_percentile / 100) 
    upper_bound = int(df.index.size * upper_percentile / 100) 
    df_analyze = df.iloc[lower_bound:upper_bound] 
    expected_value = df_analyze.get(["Expected Loss Value"]).sum() 
    total_loss_avg = df_analyze.get(["Total Loss Given Failure"]).sum() 
    df_analyze.to_csv(f"outlier_{file}") 
    cumulative_variance = 0 
    if verbose: 
        print(df_analyze.columns.get_loc("Total Loss Given Failure")) 
    for i in range(df_analyze.index.size): 
        second_moment = df_analyze.iloc[i, 18] * df_analyze.iloc[i, 22] * df_analyze.iloc[i, 22] 
        variance = second_moment - df_analyze.iloc[i, 23] * df_analyze.iloc[i, 23] 
        cumulative_variance = variance + cumulative_variance 
    expected_value = expected_value / 10 
    cumulative_variance = cumulative_variance / 10 
    standard_deviation = math.sqrt(cumulative_variance) 
    if verbose: 
        print(f"""Region: {df.iloc[3,1]}\nAverage Loss Given Failure: 
{total_loss_avg.values[0]}\nExpected Value: {expected_value.values[0]}\nStandard Deviation: 
{standard_deviation}\nVariance: {cumulative_variance}\nNumber of Dams: 
{df_analyze.index.size}\nExpected Reserves: {z_value(standard_deviation, 
expected_value)}\n\n""") 
    return total_loss_avg.values[0], expected_value.values[0], standard_deviation, 
cumulative_variance, df_analyze.index.size 
 

 



 

Specific Performance of the YDF machine-learning model: 
 
Task: REGRESSION 
Loss (SQUARED_ERROR): 0.0138698 
RMSE: 0.11777 
 
Specific characteristics regarding inputs used for the YDF machine-learning model: 
 
Number of columns by type: 
 NUMERICAL: 9 (60%) 
 CATEGORICAL: 6 (40%) 
 
Columns: 
NUMERICAL: 9 (60%) 
 0: "Probability of Failure" NUMERICAL mean:0.0874883 min:0.0027 max:0.19 
sd:0.0290562 dtype:DTYPE_FLOAT64 
 5: "Height (m)" NUMERICAL mean:17.6929 min:0 max:278.646 sd:21.163 
dtype:DTYPE_FLOAT64 
 6: "Length (km)" NUMERICAL mean:0.424202 min:0 max:14 sd:0.77955 
dtype:DTYPE_FLOAT64 
 7: "Volume (m3)" NUMERICAL mean:377956 min:0 max:1.10551e+08 sd:3.2803e+06 
dtype:DTYPE_FLOAT64 
 8: "Year Completed" NUMERICAL mean:1944.99 min:1850 max:2022 sd:32.8183 
dtype:DTYPE_FLOAT64 
 9: "Surface (km2)" NUMERICAL mean:4.49367 min:0 max:3143.66 sd:57.5464 
dtype:DTYPE_FLOAT64 
 10: "Drainage (km2)" NUMERICAL mean:986.348 min:0 max:919056 sd:16024.1 
dtype:DTYPE_FLOAT64 
 12: "Inspection Frequency" NUMERICAL mean:2.6448 min:0 max:10 sd:2.37541 
dtype:DTYPE_FLOAT64 
 13: "Distance to Nearest City (km)" NUMERICAL mean:16.7191 min:0 max:231.6 
sd:21.4028 dtype:DTYPE_FLOAT64 
 
CATEGORICAL: 6 (40%) 
 1: "Region" CATEGORICAL has-dict vocab-size:2 zero-ood-items 
most-frequent:"Flumevale" 3522 (100%) dtype:DTYPE_BYTES 
 2: "Regulated Dam" CATEGORICAL has-dict vocab-size:3 zero-ood-items 
most-frequent:"Yes" 3257 (92.4759%) dtype:DTYPE_BYTES 
 3: "Primary Purpose" CATEGORICAL has-dict vocab-size:12 zero-ood-items 
most-frequent:"Water Supply" 1025 (29.1028%) dtype:DTYPE_BYTES 



 

 4: "Primary Type" CATEGORICAL has-dict vocab-size:12 num-oods:3 (0.0851789%) 
most-frequent:"Earth" 3074 (87.28%) dtype:DTYPE_BYTES 
 11: "Spillway" CATEGORICAL has-dict vocab-size:4 zero-ood-items 
most-frequent:"Missing" 1792 (50.8802%) dtype:DTYPE_BYTES 
 14: "Assessment" CATEGORICAL has-dict vocab-size:7 zero-ood-items 
most-frequent:"Satisfactory" 1850 (52.527%) dtype:DTYPE_BYTES 
 
Sample of the tree of the tree built by YDF: 
  
Tree #1 of 50: 
    "Inspection Frequency">=5.5 [s:0.00031397 n:3186 np:854 miss:0] ; pred:-2.35608e-10 
        ├─(pos)─ "Assessment" is in [BITMAP] {<OOD>, Fair, Not Rated, Not Available, 
Unsatisfactory, Poor} [s:7.90974e-05 n:854 np:643 miss:1] ; pred:-0.00292806 
        |        ├─(pos)─ "Assessment" is in [BITMAP] {<OOD>, Satisfactory, Unsatisfactory, 
Poor} [s:4.7757e-05 n:643 np:41 miss:1] ; pred:-0.00241859 
        |        |        ├─(pos)─ "Height (m)">=9.9615 [s:1.68793e-05 n:41 np:10 miss:1] ; 
pred:0.000229452 
        |        |        |        ├─(pos)─ "Distance to Nearest City (km)">=17.37 [s:3.364e-05 n:10 np:5 
miss:0] ; pred:-0.000493914 
        |        |        |        |        ├─(pos)─ pred:-0.00107391 
        |        |        |        |        └─(neg)─ pred:8.60864e-05 
        |        |        |        └─(neg)─ "Primary Purpose" is in [BITMAP] {Irrigation, Flood Risk 
Reduction, Missing} [s:7.85359e-06 n:31 np:25 miss:0] ; pred:0.000462796 
        |        |        |                 ├─(pos)─ pred:0.000600086 
        |        |        |                 └─(neg)─ pred:-0.000109247 
        |        |        └─(neg)─ "Inspection Frequency">=8.5 [s:1.77675e-05 n:602 np:45 miss:0] ; 
pred:-0.00259894 
        |        |                 ├─(pos)─ "Volume (m3)">=3040.9 [s:4.12232e-05 n:45 np:30 miss:1] ; 
pred:-0.00408191 
        |        |                 |        ├─(pos)─ pred:-0.00362791 
        |        |                 |        └─(neg)─ pred:-0.00498991 
        |        |                 └─(neg)─ "Assessment" is in [BITMAP] {<OOD>, Satisfactory, Not 
Rated, Not Available, Unsatisfactory, Poor} [s:1.98747e-05 n:557 np:356 miss:1] ; 
pred:-0.00247913 
        |        |                          ├─(pos)─ pred:-0.00214414 
        |        |                          └─(neg)─ pred:-0.00307243 
        |        └─(neg)─ "Length (km)">=0.5655 [s:2.10222e-06 n:211 np:21 miss:0] ; 
pred:-0.00448061 
        |                 ├─(pos)─ "Spillway" is in [BITMAP] {<OOD>, Uncontrolled, Controlled} 
[s:2.89887e-05 n:21 np:14 miss:1] ; pred:-0.00404449 



 

        |                 |        ├─(pos)─ "Drainage (km2)">=3.99494 [s:5.97168e-06 n:14 np:5 miss:1] ; 
pred:-0.00366377 
        |                 |        |        ├─(pos)─ pred:-0.00333591 
        |                 |        |        └─(neg)─ pred:-0.00384591 
        |                 |        └─(neg)─ pred:-0.00480591 
        |                 └─(neg)─ "Volume (m3)">=22742 [s:2.95476e-06 n:190 np:76 miss:1] ; 
pred:-0.00452881 
        |                          ├─(pos)─ "Volume (m3)">=24655 [s:8.13557e-06 n:76 np:68 miss:1] ; 
pred:-0.00473933 
        |                          |        ├─(pos)─ pred:-0.0046415 
        |                          |        └─(neg)─ pred:-0.00557091 
        |                          └─(neg)─ "Distance to Nearest City (km)">=4.795 [s:3.53561e-06 n:114 
np:90 miss:1] ; pred:-0.00438846 
        |                                   ├─(pos)─ pred:-0.00429136 
        |                                   └─(neg)─ pred:-0.00475258 
        └─(neg)─ "Inspection Frequency">=0.75 [s:0.000104824 n:2332 np:1877 miss:1] ; 
pred:0.00107228 
                 ├─(pos)─ "Assessment" is in [BITMAP] {Fair, Not Rated, Not Available, 
Unsatisfactory, Poor} [s:6.27985e-05 n:1877 np:705 miss:0] ; pred:0.00157637 
                 |        ├─(pos)─ "Inspection Frequency">=2.5 [s:0.000173619 n:705 np:210 miss:1] ; 
pred:0.00259811 
                 |        |        ├─(pos)─ "Primary Type" is in [BITMAP] {<OOD>, Earth, Concrete, 
Rockfill, Arch, Buttress, Other, Multi-Arch, Masonry, Roller-Compacted Concrete} 
[s:6.59684e-05 n:210 np:185 miss:1] ; pred:0.000575134 
                 |        |        |        ├─(pos)─ pred:0.000873708 
                 |        |        |        └─(neg)─ pred:-0.00163431 
                 |        |        └─(neg)─ "Inspection Frequency">=1.5 [s:0.000123326 n:495 np:114 
miss:1] ; pred:0.00345635 
                 |        |                 ├─(pos)─ pred:0.00548654 
                 |        |                 └─(neg)─ pred:0.00284889 
                 |        └─(neg)─ "Inspection Frequency">=2.5 [s:4.60266e-05 n:1172 np:142 miss:1] ; 
pred:0.000961749 
                 |                 ├─(pos)─ "Primary Purpose" is in [BITMAP] {<OOD>, Flood Risk 
Reduction, Recreation, Other, Fish and Wildlife Pond, Fire Protection, Stock, Or Small Fish 
Pond, Debris Control, Missing, Tailings} [s:0.000116198 n:142 np:60 miss:1] ; 
pred:-0.000865421 
                 |                 |        ├─(pos)─ pred:0.000394753 
                 |                 |        └─(neg)─ pred:-0.0017875 
                 |                 └─(neg)─ "Inspection Frequency">=1.5 [s:7.10385e-05 n:1030 np:130 
miss:1] ; pred:0.00121365 



 

                 |                          ├─(pos)─ pred:0.00343132 
                 |                          └─(neg)─ pred:0.00089332 
                 └─(neg)─ "Assessment" is in [BITMAP] {<OOD>, Fair, Not Rated, Not Available, 
Unsatisfactory, Poor} [s:0.000125435 n:455 np:150 miss:1] ; pred:-0.00100721 
                          ├─(pos)─ "Assessment" is in [BITMAP] {Not Available, Unsatisfactory} 
[s:0.000130302 n:150 np:20 miss:0] ; pred:0.00058982 
                          |        ├─(pos)─ "Primary Purpose" is in [BITMAP] {Fire Protection, Stock, Or 
Small Fish Pond, Missing} [s:0.000149974 n:20 np:6 miss:0] ; pred:0.00350009 
                          |        |        ├─(pos)─ pred:0.00537075 
                          |        |        └─(neg)─ pred:0.00269837 
                          |        └─(neg)─ "Assessment" is in [BITMAP] {<OOD>, Satisfactory, Not 
Rated, Not Available, Unsatisfactory, Poor} [s:1.59922e-05 n:130 np:73 miss:1] ; 
pred:0.000142086 
                          |                 ├─(pos)─ pred:0.000495456 
                          |                 └─(neg)─ pred:-0.000310475 
                          └─(neg)─ "Primary Purpose" is in [BITMAP] {<OOD>, Water Supply, 
Irrigation, Flood Risk Reduction, Hydroelectric, Fish and Wildlife Pond, Tailings} [s:3.0658e-06 
n:305 np:229 miss:1] ; pred:-0.00179263 
                                   ├─(pos)─ "Height (m)">=19.0865 [s:3.26218e-06 n:229 np:19 miss:0] ; 
pred:-0.00169177 
                                   |        ├─(pos)─ pred:-0.00229223 
                                   |        └─(neg)─ pred:-0.00163744 
                                   └─(neg)─ "Surface (km2)">=0.180255 [s:6.6646e-06 n:76 np:29 miss:1] ; 
pred:-0.00209657 
                                            ├─(pos)─ pred:-0.00242522 
                                            └─(neg)─ pred:-0.00189379 
Train model on 3522 examples 
Model trained in 0:00:00.205943 

 



 

YDF-model generated description regarding the importance of each variable, sorted by their 
inverse mean depth from the root. 

Variable importances measure the importance of an input feature for a model. Here are 
our variable importances: 

INV_MEAN_MIN_DEPTH 
   1.          "Inspection Frequency"    0.475367 ################ 
    2.                    "Assessment"    0.302383 ###### 
    3. "Distance to Nearest City (km)"  0.194697  
    4.                 "Surface (km2)"    0.193772  
    5.                  "Primary Type"   0.193499  
    6.                   "Length (km)"   0.193060  
    7.               "Primary Purpose"  0.191314  
    8.                "Drainage (km2)"   0.191283  
    9.                    "Height (m)"   0.191071  
   10.                   "Volume (m3)"   0.186913  
   11.                "Year Completed"   0.181479  
   12.                      "Spillway"   0.176465  
   13.                 "Regulated Dam"   0.176164  
 

Those variable importances are computed during training. More, and possibly more 
informative, variable importances are available when analyzing a model on a test dataset. 

 
 

 



 

12. Appendix D – Additional Sensitivity Analysis 
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0 
0.9501 212000.38 212160.72 160.34 

191945.2
7 

192073.4
2 128.15 

1 
0.9501 212000.38 212163.38 163.00 

191945.2
7 

192076.1
0 130.83 

2 
0.9501 212000.38 212193.25 192.87 

191945.2
7 

192106.8
3 161.56 

3 
0.9503 212000.38 209598.16 -2402.22 

191945.2
7 

189440.2
8 -2504.99 

4 
0.9508 212000.38 202757.87 -9242.51 

191945.2
7 

182472.6
3 -9472.64 

5 
0.9508 212000.38 200192.04 

-11808.3
4 

191945.2
7 

179883.4
0 

-12061.8
7 

6 
0.9509 212000.38 198133.74 

-13866.6
4 

191945.2
7 

177809.7
5 

-14135.5
2 

Flume
vale 

7 
0.9509 212000.38 198133.74 

-13866.6
4 

191945.2
7 

177809.7
5 

-14135.5
2 

 

8 
0.9509 212000.38 198133.74 

-13866.6
4 

191945.2
7 

177809.7
5 

-14135.5
2 

9 
0.9510 212000.38 193820.05 

-18180.3
3 

191945.2
7 

173454.9
2 

-18490.3
5 

10 
0.9510 212000.38 193820.05 

-18180.3
3 

191945.2
7 

173454.9
2 

-18490.3
5 

11 
0.9510 212000.38 193820.05 

-18180.3
3 

191945.2
7 

173454.9
2 

-18490.3
5 

12 
0.9510 212000.38 193820.05 

-18180.3
3 

191945.2
7 

173454.9
2 

-18490.3
5 

13 
0.9510 212000.38 193820.05 

-18180.3
3 

191945.2
7 

173454.9
2 

-18490.3
5 



 

14 
0.9510 212000.38 193820.05 

-18180.3
3 
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-18490.3
5 

15 
0.9510 212000.38 193820.05 

-18180.3
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7 

173454.9
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-18490.3
5 

16 
0.9510 212000.38 193820.05 

-18180.3
3 

191945.2
7 
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2 

-18490.3
5 

17 
0.9510 212000.38 193820.05 

-18180.3
3 

191945.2
7 

173454.9
2 

-18490.3
5 

 

0 
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280293.4
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1 
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-11744.6
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5 

268383.4
5 

-11910.0
0 

2 
0.9510 300498.72 274533.02 

-25965.7
0 

280293.4
5 

254037.2
9 

-26256.1
6 

3 
0.9510 300498.72 272594.63 

-27904.0
9 

280293.4
5 

252076.7
3 

-28216.7
2 

4 
0.9521 300498.72 241884.29 

-58614.4
2 

280293.4
5 
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1 
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4 

5 
0.9526 300498.72 227640.33 

-72858.3
8 

280293.4
5 
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7 
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8 

6 
0.9530 300498.72 214549.08 
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3 
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5 
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3 
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2 
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ssia 
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0.9530 300498.72 214549.08 

-85949.6
3 

280293.4
5 
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3 
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2 

 

8 
0.9532 300498.72 206078.87 

-94419.8
5 

280293.4
5 

184862.9
8 

-95430.4
7 

9 
0.9540 300498.72 162103.71 

-138395.
01 

280293.4
5 

140636.1
8 

-139657.
28 

10 
0.9540 300498.72 162103.71 

-138395.
01 

280293.4
5 

140636.1
8 

-139657.
28 

11 
0.9540 300498.72 162103.71 

-138395.
01 

280293.4
5 
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8 

-139657.
28 
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0.9540 300498.72 162103.71 
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01 
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5 
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8 

-139657.
28 
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28 

17 
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01 

280293.4
5 

140636.1
8 
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28 

 

0 
0.9501 351907.44 351891.88 -15.56 

326403.7
0 

326341.6
3 -62.06 

1 
0.9501 351907.44 351761.97 -145.47 

326403.7
0 

326210.6
6 -193.04 

2 
0.9501 351907.44 350697.12 -1210.32 

326403.7
0 

325141.3
3 -1262.37 

3 
0.9503 351907.44 347765.94 -4141.50 

326403.7
0 

322151.2
8 -4252.42 

4 
0.9505 351907.44 343943.97 -7963.47 

326403.7
0 

318268.8
9 -8134.80 

5 
0.9518 351907.44 312878.50 

-39028.9
4 

326403.7
0 

286671.0
4 

-39732.6
6 

6 
0.9523 351907.44 295528.07 

-56379.3
7 

326403.7
0 

269145.6
3 

-57258.0
7 

Navald
ia 

7 
0.9524 351907.44 288609.84 

-63297.6
0 

326403.7
0 

262168.1
5 

-64235.5
5 

 

8 
0.9521 351907.44 300315.44 

-51592.0
0 

326403.7
0 

273979.6
8 

-52424.0
2 

9 
0.9528 351907.44 275220.35 

-76687.0
9 

326403.7
0 

248626.7
8 

-77776.9
2 

10 
0.9528 351907.44 275220.35 

-76687.0
9 

326403.7
0 

248626.7
8 

-77776.9
2 

11 
0.9528 351907.44 275220.35 

-76687.0
9 

326403.7
0 

248626.7
8 

-77776.9
2 



 

12 
0.9528 351907.44 275220.35 

-76687.0
9 
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8 

-77776.9
2 

13 
0.9528 351907.44 275220.35 

-76687.0
9 
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0 

248626.7
8 

-77776.9
2 

14 
0.9528 351907.44 275220.35 

-76687.0
9 

326403.7
0 

248626.7
8 

-77776.9
2 

15 
0.9528 351907.44 275220.35 

-76687.0
9 

326403.7
0 

248626.7
8 

-77776.9
2 

16 
0.9528 351907.44 275220.35 

-76687.0
9 

326403.7
0 

248626.7
8 

-77776.9
2 

17 
0.9528 351907.44 275220.35 

-76687.0
9 

326403.7
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248626.7
8 

-77776.9
2 

 
Figure 19: Comparative Threshold and Payout Adjustment across Inspection Frequency 
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d 

Percent 

Initial 
Expecte
d Payout 

Final 
Expecte
d Payout 

Change 
in 

Expecte
d Payout 

% 
Change 

in 
Expecte
d Payout 

Elasticit
y 

Flumeval
e 0.950109 0.951034 0.000925 

192,073.
42 

173,454.
92 -18618.5 -9.69 -99.5 

Lyndrass
ia 0.950183 0.953968 0.00378 

279,754.
15 

140,636.
18 

-139117.
9 -49.73 -124.9 

Navaldia 0.950124 0.952774 0.00265 
326,341.

63 
248,626.

78 
-77714.8

5 -23.81 -85.3 
 

Figure 20: Elasticity of Expected Payouts to Threshold Percent across Regions 



 

 
Figure 21: Assessment Adjusted Expected Loss in Flumevale with an Fair Assessment Rating 

 
Figure 22: Assessment Adjusted Expected Loss in Flumevale with a Poor Assessment Rating 



 

 
Figure 23: Assessment Adjusted Expected Loss in Flumevale with a Satisfactory Assessment 

Rating 

 
Figure 24: Assessment Adjusted Expected Loss in Flumevale with an Unsatisfactory Assessment 

Rating 



 

 
Figure 25: Adjusted Expected Loss Due to Minimum Inspection Frequency of 3 in Flumevale 

 
Findings are the following: 
 

● Flumevale: The expected payout decreases by 9.69% as the threshold percent rises from 
0.950109 to 0.951034. An elasticity of -99.5 means a 1% increase in threshold percent 
reduces the payout by about 99.5%, indicating high sensitivity. 

● Lyndrassia: Shows the largest drop at 49.73%, with an elasticity of -124.9, suggesting 
extreme sensitivity—small parameter changes drastically cut payouts, possibly due to a 
significant threshold reduction (-138,395). 

● Navaldia: A 23.81% payout reduction with an elasticity of -85.3, less sensitive than 
Lyndrassia but still significant. 

 
The decreasing payouts despite a rising threshold percent (and falling thresholds) suggest 

the model adjusts risk downward over scenarios, possibly reflecting reduced event severity or 
probability. Lyndrassia’s heightened sensitivity implies it’s more vulnerable to parameter tweaks, 
requiring careful calibration in risk management. This table quantifies these shifts, aiding in 
assessing risk exposure across locations. 

 
 



 

13. Appendix E – Additional Risks 
 

Risk  Description  Mitigation Strategy  

Market 
Monopolization 

 

Large insurers could dominate 
the market, inflating premiums 

and reducing efficiency, 
particularly if smaller 

competitors are forced out. 

Regulate market entry and pricing 
to promote competition. Offer 

temporary claim support to smaller 
insurers during catastrophic 
events, preventing market 
consolidation and ensuring 

affordable premiums. 

Poor Inspection 
Quality 

Inadequate inspections may fail 
to detect risks, increasing the 

probability of dam failures and 
subsequent flood-related claims. 

Standardize inspection protocols 
with industry expertise to ensure 
thorough, consistent evaluations. 
Enforce compliance by imposing 

higher claim thresholds or 
penalties on reinsurers failing to 

meet inspection standards. 

Insolvency Risk for 
Small Insurers 

Small insurers may collapse 
under the weight of large-scale 

claims, destabilizing the 
insurance market. 

Enforce minimum capital reserve 
requirements for direct insurers 

and reinsurers to maintain 
financial stability. Provide 

temporary government claim 
support to prevent insolvencies 
following catastrophic events. 

 

14. Appendix F – Additional Assumptions 
 

Metric Description Rationale 

Attachment/Detach
ment Points for 

Reinsurance 
 

Reinsurance attachment is set at 
the 80th percentile and 
detachment at the 95th 

percentile of the expected loss 
distribution. 

This structure follows the current 
industry standard, which balances 

risk-sharing between direct insurers 
and reinsurers. It limits reinsurer 

exposure to high-frequency, 
low-severity losses while ensuring 



 

coverage for catastrophic events. 

Standardized 
Inspections 

Uniform inspection protocols 
apply across all regions, with 
adjustments for specific risks 
such as climate and floodplain 
exposure. Inspection frequency 

does not impact quality. 

Standardized inspections mitigate dam 
failure risk by enabling early detection 

of maintenance issues. This model 
assumes a negative correlation 

between inspection frequency and 
failure probability. 

Assumption of 
average salary per 

person in each 
region 

Assumption in which the 
average salary is equal to the 
GDP per capita per region.  

This average salary helps to give a 
general view of the burden in tax per 

person of our program. In order to 
measure the affordability of our 

model. 
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