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Section 1: Introduction  
While concerns about disparities and disproportionate impacts across race and ethnicity groups in 
insurance are not new, events in recent years have led to a fresh wave of discussions about racial justice 
and equality in the United States. Increased focus among the insurance industry and regulatory community 
on bias and equity in insurance processes and outcomes has spurred new research into disproportionate 
impact, fairness, and disparate outcome analyses, and the passage of laws like Colorado SB21-169,1 the 
stated intent of which is to protect Colorado consumers from unfair discrimination in insurance practices.  

However, a lack of consistent data collection or reporting is often an obstacle in the study of 
disproportionate impacts and equity across race and ethnicity cohorts in an insurance context. Datasets 
that are useful for research and analysis related to insurance products and services in the United States 
often do not include variables for race or ethnicity and, when such variables are available, the data is often 
incomplete or may have restrictions on usage. In property and casualty (P&C) insurance, race and ethnicity 
data has not been systematically collected (American Academy of Actuaries, 2022) while, in health 
insurance, race and ethnicity data are often incomplete and inconsistent (Haley, et al., 2022).  

In the insurance industry, some of the first uses of statistical methods for imputing or modeling race and 
ethnicity were in life and health insurance. Fiscella and Fremont (2006) cite multiple studies using surname 
analyses to assess differences in mortality (Rosenwaike, Hempstead, & Rogers, 1991), cancer incidence 
(Swallen, West, Stewart, Glaser, & Horn-Ross, 1997), (Swallen, et al., 1998), (Coronado, et al., 2002), and 
rates of cancer screening (Jacobs & Lauderdale, 2001). In P&C insurance, imputation has been used to 
analyze various rating variables for correlation and bias, in particular, territory and credit-based insurance 
scores. For example, the Texas Department of Insurance conducted studies in 2004 and 2005 on the 
relationship between credit-based insurance scores and ethnicity using a Hispanic surname database 
(NAIC, 2008). While these first attempts used simple methods to address missing race and ethnicity data, 
imputation methods have evolved significantly and not all are widely known or understood in the actuarial 
profession.  

This paper describes a range of techniques for developing probabilistic estimates or predictions of 
individual race and/or ethnicity. The authors apply some methods to data from an insurance application 
and compare them with a focus on relative accuracy and potential bias. Lastly, the authors apply some of 
these methods to a simulated dataset to illustrate how to use them in practice. 

While this paper does not represent an exhaustive list of possible imputation procedures, the authors 
believe those presented are a useful starting point for the actuarial profession. The authors do not make 
any recommendations as to any method’s appropriateness for any particular use case because that is 
situationally dependent. For example, aligning the imputation method’s data sources with the population 
of the dataset to be imputed is critical for accurate results and requires a thorough examination of all 
relevant data sources. Lastly, these methods fit into a broader context of studying disproportionate impacts 
and quantifying discriminatory effects. This paper focuses only on the technical aspects of the imputation 
methods, which should not be used without considering the downstream impacts and consequences. 

 

 

1 See https://doi.colorado.gov/for-consumers/sb21-169-protecting-consumers-from-unfair-discrimination-in-insurance-practices. 

https://doi.colorado.gov/for-consumers/sb21-169-protecting-consumers-from-unfair-discrimination-in-insurance-practices
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Section 2: Background  

2.1 DEFINITIONS 
Imputation is a term that refers to processes that replace missing data with inferred values or a vector of 
probabilities. Some sources refer to imputation as “indirect estimation.” 

Direct data refers to race and ethnicity information obtained directly from individuals. Direct data is 
obtained by asking individuals to self-report. For example, the U.S. Census Bureau collects direct data on 
race and ethnicity (American Academy of Actuaries, 2022). 

2.2 PERFORMANCE METRICS 
Most imputation methods output probabilities of belonging to various cohorts, for example “Black,” 
“Asian/Pacific Islander,” “Hispanic” and “white/other.” The cohort definitions vary across different datasets 
and studies. When the output of a method is a vector of probabilities, it can be translated into a 
classification by selecting the race or ethnicity cohort with the highest probability. 

When self-reported data is available, researchers can compare the predictions from an imputation method 
to the actual data. Several different metrics have been used in the literature to assess and compare 
imputation method performance, including: 

• Accuracy: For classification outputs (where each individual is associated with a single imputed race 
or ethnicity cohort), accuracy is the proportion of individuals where the imputed cohort matches 
the self-reported race or ethnicity. For continuous outputs such as probabilities, it is measured by 
the correlation between the estimated probabilities and actual self-reported race or ethnicity. It is 
important to note that this metric can be misleading in imbalanced datasets where the population 
distribution by race or ethnicity is not uniform because the accuracy for each cohort may vary 
significantly.2 Due to this, it is important to examine the accuracy for each cohort in the study. 

• Error rate: The overall proportion of individuals where the imputed cohort doesn’t match the self-
reported race. It is important to note that, similar to accuracy, this metric can also be misleading 
in imbalanced datasets, so it is important to examine the error for each cohort in the study. 

• False positives: Individuals who are classified into one race/ethnicity cohort whose self-reported 
race is a different cohort. For example, a non-Hispanic individual with an imputed ethnicity of 
Hispanic would be considered a false positive. 

• False negatives: Individuals who are classified as not in a race/ethnicity cohort whose self-
reported race is that cohort. For example, a Hispanic individual with an imputed ethnicity of 
something other than Hispanic would be considered a false negative. Note that false positives and 
false negatives are relevant in the context of one cohort; a false positive in one cohort is also a 
false negative in another cohort. 

• Precision: The proportion of individuals with the same imputed race/ethnicity cohort for whom 
the imputation matches the self-reported race/ethnicity. For example, the proportion of 
individuals who are predicted to be Hispanic who self-report as Hispanic. 

 

 

2 For example, if accuracy is 94% for a group that is 90% of the total, and the accuracy is 50% for a group that is 10% of the total, the overall 
accuracy will be 90% (0.90 x .94 + 0.10 x 0.50 = 90%), i.e., the overall accuracy is not sensitive to poor accuracy in smaller subgroups. 
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• Sensitivity/recall: The true positive rate, i.e., the ability to match the imputed cohort with the self-
reported one. For example, the proportion of individuals with self-reported Hispanic ethnicity 
where the imputed ethnicity is also Hispanic. 

• Specificity/selectivity: The true negative rate. For example, the proportion of individuals with a 
self-reported race/ethnicity other than Hispanic whose imputed race/ethnicity was non-Hispanic.  

• Receiver operating characteristic (ROC) curves: A plot of the true positive rate on the vertical axis 
against the false positive rate on the horizontal axis for various thresholds used for classification. 

• Area under ROC curve (AUC): The area under the receiver operating characteristic (ROC) curve. 
The value can be between 0 and 1, where a higher area measure represents a better ability to 
distinguish between two cohorts. According to Sorbero, values of 0.7 are considered “acceptable;” 
0.8 are considered “strong;” and 0.9 are considered “excellent” (Sorbero, 2022). Also known as 
the concordance (C) statistic.  

• Calibration curve (also known as a reliability diagram): Plot of the frequency of a true positive label 
on the y-axis by the predicted probability on the x-axis.  

Sections 5 and 6 of this paper show examples of these statistics calculated on various datasets and metrics 
to further illustrate their use, as well as their relative strengths and weaknesses. 
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Section 3: Discussion of Imputation Methods 

Imputing missing data on race and ethnicity is not a new practice—for example, the U.S. Census Bureau has 
been using imputation for several population characteristics, including race and ethnicity, since the 1960 
Census.3 Modern methods for imputing race and ethnicity for individuals began in 2008 with the 
introduction of Bayesian Surname Geocoding (Elliott, Fremont, Morrison, Pantoja, & Lurie, 2008). Since 
then, researchers have developed variations and refinements, with recent papers exploring the use of 
machine-learning algorithms and improved data quality. 

Most imputation methods are fundamentally similar in that they use data that has race/ethnicity 
information available to develop conditional distributions using attributes of the individuals, such as name, 
geolocation, or other characteristics available on the dataset to be analyzed. Methods that use only name 
and geolocation have an advantage in that conditional distributional data for names and geolocation are 
readily available. To incorporate other domain-specific information (age, gender, medical conditions, etc.) 
requires more direct data to develop the conditional distributions but can generate improvements in 
imputation accuracy. 

The remainder of this section provides an overview of various methods in use today and in the recent 
past. Each section describes the method and particular implementation used by the author, for example, 
the data used to develop the conditional distributions and the data to which the conditional distributions 
were applied. However, the methods can be implemented with datasets other than the particular ones 
used by the authors. 

Appendix A contains tables summarizing the inputs, outputs, references, and packages (where available) 
for each method described in this section. 

3.1 PRE-BAYESIAN METHODS  

3.1.1 GEOCODING ONLY  
Geocoding Only (GO) uses individuals’ addresses to link to census data about the geographic areas where 
they live and the associated race/ethnicity distribution of the area (Fiscella & Fremont, 2006). For example, 
knowing that a person lives in a census block group (a small neighborhood of approximately 1,000 
residents4), where 90% of the residents are Black, provides useful information for predicting that person’s 
self-reported race/ethnicity (Elliott, Fremont, Morrison, Pantoja, & Lurie, 2008). 

Before the introduction of Bayesian imputation methods, GO was a popular method for imputation when 
names were not available. GO methods at the ZIP code level were used in multiple studies of 
disproportionate impacts of credit-based insurance scores in P&C insurance in the 1990s and 2000s (NAIC, 
2008). In 2006, Fiscella and Fremont noted that using geolocation to estimate the effects of 
sociodemographic characteristics on health was “relatively new,” but “routinely” used by researchers when 
direct data are lacking. 

GO can be performed at different geographic levels, but the accuracy of GO predictions is expected to 
increase when smaller, more homogenous units of analysis are used (Krieger, et al., 2002). As Fiscella and 

 

 

3 See https://www.census.gov/newsroom/blogs/random-samplings/2021/08/census-when-demographic-and-housing-characteristics-
are-missing.html. 
4 See https://www.census.gov/programs-surveys/geography/about/glossary.html#par_textimage_4. 

https://www.census.gov/newsroom/blogs/random-samplings/2021/08/census-when-demographic-and-housing-characteristics-are-missing.html
https://www.census.gov/newsroom/blogs/random-samplings/2021/08/census-when-demographic-and-housing-characteristics-are-missing.html
https://www.census.gov/programs-surveys/geography/about/glossary.html#par_textimage_4
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Fremont (2006) found, the accuracy of imputations using GO could vary considerably based on the level of 
racial and ethnic diversity of a geographic area and the geographic level used (e.g., census tract, census 
block group, ZIP code, etc.). Several studies surveyed by Fiscella and Fremont suggested GO is unreliable 
for identifying Hispanic and Asian/Pacific Islander cohorts, although accuracy depends on the distribution 
of race and ethnicity of the population in the areas assessed. In other words, estimates of race and 
ethnicity based on geolocation are less reliable in more heterogeneous regions. 

It is also important to emphasize that GO is usually not sufficient for drawing conclusions about race and 
ethnicity at the individual level, but could be sufficiently accurate at the aggregate level, depending on the 
intended purpose of the imputation. In addition, the definitions of census block groups change over time, 
so it is important to geocode the data to be imputed with census block definitions consistent with the data 
used to develop the race/ethnicity distributions. 

3.1.2 SURNAME ANALYSIS 
Surname analysis (SA) infers race/ethnicity cohorts from surnames. Insofar as individuals with a particular 
surname belong almost exclusively to a particular race or ethnicity cohort, it is possible to identify 
membership in a cohort by using well-formulated surname dictionaries (Elliott, Fremont, Morrison, 
Pantoja, & Lurie, 2008). 

There are several ways to impute cohorts based on names, such as the use of letter combinations, 
dictionaries of surnames, and combinations of first, middle, and last names. The U.S. Census Bureau 
produced Spanish surname lists for each decennial census from 1950 to 1990 (Word & Perkins Jr., 1996). 
Another surname list was created using the California Department of Public Health birth data (Pérez-Stable, 
Hiatt, Sabogal, & Otero-Sabogal, 1995). More recent versions of SA rely on a list of popular surnames 
provided by the U.S. Census Bureau. 

Fiscella and Fremont (2006) found several studies suggesting SA produced reasonable predictions for 
Hispanic and Asian/Pacific Islander cohorts due to more distinctive surnames among these groups, but that 
it is less accurate for women and individuals with higher socioeconomic status, and no published data was 
available at the time for using SA to identify Black or white cohorts. Another study found that use of the 
1990 Census Spanish surname list to predict whether an individual is Hispanic showed an overall sensitivity 
(true positive rate) of 79% and specificity (true negative rate) of 90% compared to self-reported ethnicity in 
a national sample (Perkins, 1993). However, sensitivity and specificity predictions using this method were, 
respectively, 82% and 92% for men versus 77% and 88% for women. The prevalence of individuals within a 
cohort in the data being analyzed also has a powerful effect on accuracy; sensitivity and specificity for 
imputations using the Spanish surname list ranged, respectively, from 88% and 96% in Texas to 34% and 
37% in Vermont. For Asian surnames, studies (Lauderdale & Kestenbaum, 2000) showed sensitivities 
ranging from 74% for Vietnamese individuals to 29% for Filipino individuals when using a list of surnames 
derived from Social Security records. 

Like GO, SA is not sufficient for drawing conclusions about race and ethnicity at the individual level but can 
be useful for analysis at an aggregate level. 

3.1.3 CATEGORICAL SURNAME AND GEOCODING 
Prior to the development of the Bayesian methods discussed in the next section, a non-Bayesian hybrid 
method, Categorical Surname and Geocoding (CSG), combined surname and geography information 
sequentially, first using surname lists to impute race and ethnicity for Asian and Hispanic cohorts, then 
using geographic distributions to impute either Black or white/other for individuals with surnames not 
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appearing on the Asian or Hispanic surname lists (Fiscella & Fremont, 2006). An important characteristic of 
CSG is that it does not produce probabilities as output, like later methods do, instead assigning a 
categorical imputed race or ethnicity. 

3.2 BAYESIAN METHODS 

3.2.1 BAYESIAN SURNAME GEOCODING 
To overcome the limitations of the GO, SA, and CSG approaches, Bayesian Surname Geocoding (BSG) 
(Elliott, Fremont, Morrison, Pantoja, & Lurie, 2008) integrated cohort distributions by surname and 
geolocation from different datasets using Bayes’s theorem. Bayes’s theorem provides a framework for 
calculating conditional probabilities when joint probabilities are not available. Prior to the introduction of 
BSG, the preponderance of studies on quality of healthcare and patient outcomes were limited to Medicare 
or Medicaid patients with self-reported race/ethnicity data (Elliott, Fremont, Morrison, Pantoja, & Lurie, 
2008). 

Bayes’s theorem is stated mathematically as the following equation: 

 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)
 

 
where A and B are events, and 

• P(A|B) is the conditional probability of event A given that B occurs 
• P(B|A) is the conditional probability of event B given that A occurs 
• P(A) is the prior probability of observing A (also known as the marginal probability) 
• P(B) is the prior probability of observing B (also known as the marginal probability) 

For BSG, Bayes’s theorem is applied as follows: 

𝑃𝑃(𝑅𝑅|𝑆𝑆) =
𝑃𝑃(𝑆𝑆|𝑅𝑅)𝑃𝑃(𝑅𝑅)

𝑃𝑃(𝑆𝑆|𝑅𝑅)𝑃𝑃(𝑅𝑅) + 𝑃𝑃(𝑆𝑆|𝑛𝑛𝑛𝑛𝑛𝑛 𝑅𝑅)𝑃𝑃(𝑛𝑛𝑛𝑛𝑛𝑛 𝑅𝑅)
 

• Event R is belonging to a specific race/ethnicity cohort  
• Event S is having a specific surname 
• P(R|S) is the conditional probability of belonging to a specific race/ethnicity cohort given a specific 

surname 
• P(R) is the probability of belonging to a specific race/ethnicity cohort based solely on geolocation 
• P(S|R) is the conditional probability of having a specific surname, given belonging to a specific 

race/ethnicity cohort 
• P(not R) is the probability of belonging to a race/ethnicity cohort other than R based solely on 

geolocation 
• P(S|not R) is the conditional probability of having a specific surname, given belonging to a 

race/ethnicity cohort other than R 

BSG uses race/ethnicity composition by census block group as an estimate of P(R) and Asian and Hispanic 
surname lists to derive P(S|R) and P(S|not R), which are used to update P(R) given the individual’s surname. 
For example, using a four-cohort distribution (Asian, Hispanic, Black, and non-Hispanic white/other), and 
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given the following probabilities (all probabilities are for illustrative purposes only and not intended to 
represent an actual census block group or surname distribution): 

• Census block group distribution:  
o P(Individual is Asian) = 0.10 
o P(Individual is Hispanic) = 0.50 
o P(Individual is Black) = 0.20 
o P(Individual is white/other) = 0.20 

• Surname distribution: 
o P(Having an Asian surname | Individual is Asian) = 0.515 
o P(Having an Asian Surname | Individual is not Asian) = 0.004 

Then, for an individual in this census block group with a surname on the Asian surname list, P(Individual is 
Asian | Individual has an Asian surname) = (0.10 * .515) / [ (0.10 * 0.515) + (1-0.10) * 0.004] = 93.5%. The 
process would be repeated to estimate P(Individual is Hispanic | Individual has an Asian surname), etc., and 
the final output of the method is the probability of an individual belonging to each of the four cohorts.  

In the Elliott, Fremont et al. (2008) paper, the BSG algorithm used census block group distributions from 
the 2000 Census, the U.S. Census Bureau’s Spanish Surname List, and the Lauderdale-Kestenbaum Asian 
Surname list (Lauderdale & Kestenbaum, 2000). Because conditional probabilities of surnames vary by 
gender, the BSG algorithm used gender-specific distributions by surname.  

Elliott, Fremont et al. (2008) compared BSG to other imputation methods using commercial health plan 
data provided by the Aetna Health Insurance Company, with self-reported race and ethnicity for 1,973,362 
enrollees. The methods used for comparison were GO and CSG. For the comparison, statistical correlations 
between imputed individual race/ethnicity probabilities and self-reported cohort were examined. BSG and 
CSG both performed better than GO, and BSG outperformed CSG for the Black cohort. 

Table 1 
CORRELATION OF INDIVIDUAL PREDICTED RACE OR ETHNICITY WITH SELF-REPORTED RACE OR ETHNICITY  

 
Hispanic Asian Black White/other 

Weighted 
Average 

GO 0.49 0.34 0.57 0.55 0.53 
CSG 0.77 0.65 0.48 0.63 0.63 
BSG 0.79 0.67 0.61 0.70 0.70 

Source: Elliott, Fremont et al., 2008 

The accuracy of BSG is closely linked to the accuracy and completeness of the surname list. While BSG, at 
the time, improved the accuracy of imputing an individual’s race and ethnicity compared to previous 
methods, it has since been eclipsed by improvements in the use of name data.  

3.2.2 BAYESIAN IMPROVED SURNAME GEOCODING  
Bayesian Improved Surname Geocoding (BISG) is like BSG but uses a different source for surname data and 
conditions the prior probability of race/ethnicity on surname instead of geolocation (Elliott, et al., 2009). As 
noted in the limitations for BSG, the accuracy is closely linked to the accuracy and completeness of the 
surname list. In 2007, the U.S. Census Bureau published a detailed list of surnames classified by self-
reported race or ethnicity that appeared at least 100 times in the 2000 U.S. Census Bureau data, 
representing 89.8% of all individuals enumerated on Census 2000 (Word, Coleman, Nunziata, & Kominski, 
2007).  
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With an improved surname list and more granular data, BISG expanded the number of imputed cohorts 
from four to six: Hispanic, Black, Asian/Pacific Islander, American Indian/Alaska Native (AI/AN), multiracial, 
and white. Proportions for the same six cohorts by census block group were again obtained from the 2000 
Census. Again, the final output is the probability of an individual belonging to each of the six cohorts.  

The BISG imputations were compared to BSG and other methods using the same commercial health plan 
data used in the BSG paper. Because the output of BSG in Elliot & Morrison (2009) included only four 
cohorts, a comparison for AI/AN and multiracial was not possible. The biggest improvements in accuracy, as 
measured by correlation, were observed for cohorts where BSG was the weakest (Asian/PI and Black).  

Table 2 
CORRELATION OF INDIVIDUAL PREDICTED RACE OR ETHNICITY WITH SELF-REPORTED RACE OR ETHNICITY  

 Hispanic Asian/PI Black AI/AN Multiracial White/other 
Weighted 
Average 

BSG 0.80 0.69 0.62 NA NA 0.72 0.70 
BISG 0.82 0.77 0.70 0.11 0.02 0.76 0.76 

Source: Elliott, Morrison et al., 2009 

In addition, the Consumer Financial Protection Bureau (CFPB) assessed BISG in 2014 using self-reported 
race/ethnicity data for a sample of mortgage applications in 2011 and 2012 (CFPB, 2014). The CFPB study 
used the same U.S. Census Bureau surname list as the Elliott, Morrison et al. (2009) study and geographic 
distributions from the 2010 Census with very similar results. 

Table 3 
CORRELATION BETWEEN PROXY PROBABILITY AND REPORTED RACE AND ETHNICITY 

 Hispanic Asian Black AI/AN Multiracial White/other 
BISG 0.81 0.83 0.70 0.06 0.05 0.77 

Source: CFPB, 2014 

While BISG is an improvement in accuracy over BSG using these metrics, it still has limitations, including:  

• The exact counts for infrequent surnames in some cohorts are not available or are suppressed 
altogether due to privacy concerns; these omitted or suppressed surnames may impact less 
represented race/ethnicity cohorts more than others. 

• The methodology performs poorly for identifying self-reported American Indian/Alaska Native and 
multiracial individuals.  

• Despite its superiority relative to other alternatives, BISG is still subject to significant bias and 
estimation error and may result in overstated disparities in studies of mortgage lending outcomes 
(Baines & Courchane, 2014). For instance, Baines and Courchane note that, as an individual’s FICO 
score and income increases, BISG is less able to accurately identify Black and Hispanic individuals.  

• While noting that BISG probabilities may be relatively less inaccurate than GO and SA, Baines and 
Courchane (2014) raised concerns about the “objectively high” error rates of the method and how 
error rates can vary by population. In their results, BISG correctly identified 24.2% of Black 
consumers, while the CFPB report correctly identified 39% of Black consumers. 

While BISG was first developed on a surname list from the 2000 Census, in 2016, the U.S. Census Bureau 
released an updated list based on the 2010 Census (Comenetz, 2016), which can also be used with BISG. 
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The updated surname list covers 90.1% of people with surnames recorded in the 2010 Census and 
introduced edits to address compound/hyphenated names, suffixes and prefixes, and other items.5 

3.2.3 MEDICARE BAYESIAN IMPROVED SURNAME GEOCODING  
Medicare Bayesian Improved Surname Geocoding (MBISG) was introduced in 2013 as an improvement to 
BISG by incorporating data from the Centers for Medicare and Medicaid Services (CMS) (Martino, et al., 
2013). CMS’s race/ethnicity information for Medicare beneficiaries is primarily derived from self-reported 
race information collected by the Social Security Administration (SSA); however, this data is limited. For 
example, for persons assigned a Social Security number (SSN) before 1980, there were only three 
race/ethnicity response options: Black, white, or other (Haas, et al., 2019). MBISG was developed to 
supplement the CMS information. 

In MBISG, each cohort on the SSA data is associated with a distribution of self-reported race or ethnicity 
from a large, nationally representative survey of Medicare beneficiaries. These probabilities are combined 
with BISG probabilities from Elliott, Fremont et al. (2008) using a Bayesian method like the method used 
within BISG to produce MBISG probabilities (Haas, et al., 2019). 

In 2019, an update to MBISG (MBISG 2.0) was proposed with multiple improvements to the data and an 
improvement to the calibration of the output (Haas, et al., 2019). The first set of improvements 
incorporated into MBISG 2.0 were targeted at making better use of the data elements used in BISG: 
surnames, addresses, and race and ethnicity data. The use of surnames was improved by increasing the 
ability to match individuals with compound names, or surnames formed by a combination of component 
surnames. Improvement in the use of race/ethnicity data came from stratifying by age because the CMS 
distributions by race and ethnicity vary by age group. The last proposed improvement to the input data was 
to include whether an individual is a resident of Puerto Rico in developing the estimate. In MBISG 1.0, only 
surname and SSA race or ethnicity were used, which underestimated the prevalence of Hispanic 
beneficiaries in Puerto Rico. The final improvement proposed for MBISG 2.0 was to calibrate the predicted 
probabilities to match the probabilities in the validation sample, which addressed the undercounting of 
Hispanic and multiracial beneficiaries. Multinomial logistic regression using additional types of predictors of 
race/ethnicity6 was used to improve predictions and calibrate all the probabilities to match the sample.7 
MBISG 2.0 saw improvement in correlation across all race/ethnicity cohorts in comparison to MBISG 1.0, 
with the largest improvements for the white, Hispanic, and Asian/Pacific Islander cohorts.  

Because MBISG is calibrated to a Medicare population, it may not be appropriate for other settings. It 
requires an initial value for the SSA cohort, which may not be available for many datasets. While MBISG 
improves the imputations for American Indian/Alaska Native and multiracial beneficiaries, the quality of the 
predictions for these cohorts remains low, which can add to the inherent uncertainty in an analysis that 
incorporates these probabilities.  

 

 

5 See https://www2.census.gov/topics/genealogy/2010surnames/surnames.pdf. 
6 Additional predictors included variables for first names, Spanish preference, demographics, and coverage types. 
7 In MBISG 1.0, the imputed probabilities underestimated the proportion of the sample who were Hispanic and multiracial and overestimated 
the proportion who were white. In MBISG 2.0, an additive approach was used to calibrate the proportion multiracial, and multinomial logistic 
regression was used to adjust the mean probabilities of the predictions and match the distribution of self-reported race/ethnicity in the 
sample. 

https://www2.census.gov/topics/genealogy/2010surnames/surnames.pdf
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3.2.4 BAYESIAN IMPROVED SURNAME GEOCODING EXTENSIONS  
Another technique to improve BISG imputation accuracy is to include other information, or covariates, into 
the race/ethnicity predictions (Imai & Khanna, 2016). In these BISG extensions, the imputation algorithms 
make use of additional individual-level variables specific to the dataset used for calibration. 

For example, to impute race and ethnicity for a Florida voter file, Imai and Khanna (2016) considered 
covariates for age, gender, and political party registration, which were available in the dataset. Imai and 
Khanna extended the Bayesian estimation to include the conditional distributions of party registration by 
race and ethnicity obtained from Gallup polling data. Like BISG, the output is a probability of belonging to a 
cohort, but with five race and ethnicity cohorts: white, Black, Hispanic, Asian/Pacific Islander, and other, 
which includes the American Indian/Alaska Native cohort.  

Another example of incorporating additional covariates in the Bayesian imputation is a method developed 
by the U.S. Department of the Treasury to impute race and ethnicity for tax filers for tax policy analysis 
(Fisher, 2023). The method improves upon BISG estimates, using conditional distributions of race/ethnicity 
by other variables available on tax forms, such as filing status, age, number of dependents, and gender. 

The general idea of using additional information to predict race and ethnicity is a natural extension of the 
Bayesian methods. While there is potential for improvement in accuracy by incorporating additional 
information, the main downsides are that 1) additional input variables (and sources for distributions of 
those variables by race and ethnicity) are required to generalize the method to new data sources, and 2) 
the additional risk of bias in the imputation if the distributions in the prior data used to calibrate the 
imputations are significantly different than the population to which the imputation is being applied. 

3.2.5 BAYESIAN IMPROVED FIRST NAME SURNAME GEOCODING 
Bayesian Improved First Name Surname Geocoding (BIFSG) builds upon the BISG by adding first name as a 
feature that is used in the algorithm in conjunction with surname and geolocation (Voicu, 2018). Like BISG, 
the output is a probability that can be converted to a classification with six race/ethnicity cohorts (Hispanic, 
Asian/Pacific Islander, Black, American Indian/Alaska Native, multiracial, and white/other). 

The formal equation for calculating this probability is: 

𝑃𝑃(𝑅𝑅|𝐺𝐺, 𝑆𝑆,𝐹𝐹) =
𝑃𝑃(𝑅𝑅|𝑆𝑆)𝑃𝑃(𝐺𝐺|𝑅𝑅)𝑃𝑃(𝐹𝐹|𝑅𝑅)
∑𝑃𝑃(𝑅𝑅|𝑆𝑆)𝑃𝑃(𝐺𝐺|𝑅𝑅)𝑃𝑃(𝐹𝐹|𝑅𝑅)

 

where: 𝑃𝑃(𝑅𝑅|𝐺𝐺, 𝑆𝑆,𝐹𝐹) is the updated (posterior) probability of having self-reported race/ethnicity R based on 
geolocation G, surname S, and first name F (Voicu, 2018). 

To develop BIFSG, Voicu (2018) used the U.S. Census Bureau surname list and race/ethnicity distributions 
by census block group based on the 2010 Census.8 In addition, Voicu (2018) used a list of first names 
classified by self-reported race and ethnicity drawn from mortgage applications (Tzioumis, 2017).9  

Voicu (2018) tested BIFSG using proprietary databases of mortgage transactions from multiple lenders 
between 2012 and 2014, a combined dataset of 279,404 applications. While BIFSG demonstrated improved 
accuracy on all, the largest improvement was observed for the Black cohort. For the Hispanic and 

 

 

8 This list is publicly available at https://www.census.gov/topics/population/genealogy/data/2010_surnames.html. 
9 This list is publicly available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/TYJKEZ. 

https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/TYJKEZ
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Asian/Pacific Islander cohorts, surname is already highly predictive, which does not leave much room for 
improvement with the addition of first name.  

Table 4 
CORRELATION BETWEEN PROXY PROBABILITY AND SELF-REPORTED RACE AND ETHNICITY (VOICU, 2018) 

 Hispanic Asian/PI Black White/other 
Weighted 
Average 

BISG 0.87 0.86 0.71 0.82 0.82 
BIFSG 0.88 0.87 0.75 0.84 0.84 

 
Voicu further noted that the improvements for the Black cohort were greatest in geographic areas with 
greater racial and ethnic diversity. Accuracy differences by gender observed using surname only were 
reduced when first name was included in the imputation. 

It is important to note that, given the variation in rates of home ownership in the United States by race and 
ethnicity, first names more common to non-white race/ethnicity groups may be underrepresented in the 
first name data, which was derived from home mortgage applications (Sorbero, Euller, Kofner, & Elliott, 
2022).  

3.2.6 MODIFIED BAYESIAN IMPROVED FIRST NAME SURNAME GEOCODING 
In 2022, Sorbero et al. constructed a modified version of BIFSG using the U.S. Census Bureau surname list, 
demographic distributions by census block group based on the 2010 Census, and first name data from the 
sample of mortgage applicants. In addition, Sorbero et al. (2022) incorporated additional refinements for 
compound and rare surnames and recalibrated the output to match the distributions in the self-reported 
race/ethnicity data on the dataset being analyzed. Race and ethnicity were imputed using a six-level cohort 
system of probabilities, like BISG. 

Sorbero et al. (2022) examined the performance of modified BIFSG on an extract of data from the 
Multidimensional Insurance Data Analytic System (MIDAS), which contains records at a person-year level 
for enrollees in health plans offered by Federally Facilitated Marketplaces and purchased through 
HealthCare.gov or state-based marketplaces.10 Like BIFSG, modified BIFSG was able to differentiate 
between Asian/Pacific Islander, Black, Hispanic, and white cohorts reasonably well, but accurately 
identifying American Indian/Alaska Native and multiracial individuals remained challenging. Performance 
was also examined by age and region. No comparisons were made to other methods, but Sorbero et al. 
(2022) examined results by age group and U.S. Census Bureau divisions, which partition the country into 
nine regions. Accuracy was lower for children and young adults than for older enrollees and varied by 
census division. The MIDAS extract did not contain information on gender to assess accuracy by gender. 

Modified BIFSG has the same limitations as BIFSG regarding representation in the first name data. While 
the recalibration step helps make the imputed results better reflect the observed data, it assumes that the 
distribution of the non-reporters is similar to the reporters (rather than all residents in the census block 
group). Also, accuracy levels for American Indian/Alaska Native and multiracial cohorts remain low. 

 

 

10 For more details, see https://www.hhs.gov/sites/default/files/CMS-MIDAS_remediated.pdf. 

https://www.hhs.gov/sites/default/files/CMS-MIDAS_remediated.pdf
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3.2.7 FULLY BAYESIAN IMPROVED SURNAME GEOCODING 
Fully Bayesian Improved Surname Geocoding (fBISG) seeks to address a couple of recurrent limitations 
described in the previous methods (Imai, Olivella, & Rosenman, 2022). First, in the publicly available census 
data, the U.S. Census Bureau will state a value of zero instead of small counts due to privacy concerns. This 
does not mean there are zero individuals in a race/ethnicity cohort in a geolocation, just that there are very 
few; fBISG uses a measurement error model so that zero values mean low probability instead of 
nonexistence.11 Second, fBISG addresses the problem of missing surnames in the Census Bureau surname 
list by supplementing the surname list with additional data from voter files from six Southern states. While 
the Census Bureau indicates its surname lists cover 90% of the population, the missing 10% may also 
disproportionately impact non-white race/ethnicity cohorts. Despite the name, fBISG also includes 
extensions of BISG to incorporate first and middle names like BIFSG. The method is available in an open-
source package called wru (“Who Are You”), which is available for public use.  

Like BISG, fBISG uses the U.S. Census Bureau surname list and demographic distributions by census block 
group based on the 2010 Census. However instead of mortgage data, Imai et al. built first and middle name 
lists using data from voter files from six Southern states. This same data is used to supplement the Census 
Bureau surname files. (Users of the wru package can import the latest available Census Bureau datasets.) 
The output of the method is a probability of belonging to one of five race/ethnicity cohorts: white, Black, 
Hispanic, Asian, and other.  

Imai, Olivella, and Rosenman (2022) examined the performance of fBISG on the six-state voter data, which 
contained 37.8 million voter records. The study used AUC as an overall performance metric. 

Table 5 
AUC BY METHODOLOGY  

Area under ROC 
 Hispanic Asian Black White Other 

BISG 0.92 0.82 0.92 0.90 0.59 
fBISG with zero-count correction 0.96 0.91 0.94 0.91 0.57 
fBISG with additional surname data 0.96 0.91 0.96 0.91 0.58 
fBISG with first name  0.97 0.93 0.97 0.94 0.61 
fBISG with first and middle name 0.98 0.94 0.98 0.95 0.62 

Source: (Imai, Olivella, & Rosenman, 2022). 

The performance gains from the zero-count correction were greatest for the Hispanic and Asian cohorts. 
Imai, Olivella and Rosenman (2022) note that, in the voter dataset, a fifth of Asian voters live in census 
blocks where the 2010 Census indicated there were no Asian residents, and the proportion varies 
significantly by state. The expanded name data (surname, first name, middle name) also improved 
performance. 

The fBISG methodology incorporates first and middle name into the prediction to get the full improvement 
in the results. However, because first and middle names may be more difficult to obtain, the full benefits of 
the algorithm may not be realized in practice. Another limitation is the possibility of regional bias, as some 
names may be more prevalent in some regions for certain race/ethnicity cohorts. 

 

 

11 The Census Bureau counts by race/ethnicity are treated as a draw from an unknown multinomial distribution. 
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3.2.8 BAYESIAN INSTRUMENTAL REGRESSION FOR DISPARITY ESTIMATION  
Imputation methods are often used to study racial disparities in contexts where direct data are not 
available, such as healthcare and financial services. While the methods described above tend to produce 
well-calibrated predicted probabilities of race and ethnicity, the errors of these methods are often 
correlated with the outcomes of interest, potentially leading to biased estimates of the race and ethnicity 
disparities being studied. McCartan et al. (2023) address this problem by introducing a class of models 
called Bayesian Instrumental Regression for Disparity Estimation (BIRDiE), which use the outcome variable 
and the predicted probabilities from a Bayesian imputation method (e.g., BISG) to produce less biased 
estimates of racial disparities in the outcome of interest, along with an updated set of imputed 
probabilities. These updated probabilities, which incorporate the outcome variable, are also more accurate 
than the initial probabilities, which were based only on surnames and location. 

As McCartan et al. demonstrate, BISG and its extensions tend to produce accurate and well-calibrated 
estimates of racial probabilities even when assumptions of the BISG methodology do not hold exactly. 
Thus, if the purpose of the analysis is only to impute probabilities using surname, geolocation, and other 
covariates, BISG (and its extensions) can be a good option. However, imputed probabilities are often used 
to weight the outcome data to compare average outcomes. For example, if Y is the outcome and R is a 
specific race cohort:  

𝐸𝐸[𝑌𝑌 | 𝑅𝑅] =  
∑ 𝑌𝑌𝑖𝑖 ∗ 𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃(𝑅𝑅)𝑖𝑖𝐼𝐼

∑ 𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃(𝑅𝑅)𝑖𝑖𝑖𝑖
 

For example, the average outcome Y for race/ethnicity cohort Hispanic would be calculated by taking the 
weighted average of the outcome for all individuals, where the weight for each individual is the estimated 
probability associated with Hispanic. 

If one uses BISG probabilities for the weights, the estimates are biased unless the effect of race is fully 
mediated by the name and geolocation. That is: 

 

Source: Cory McCartan12 

This assumption requires that race be conditionally independent of the outcome, given surname and 
geographic location. The reasonability of this assumption depends on the setting but may often be violated 
given that race and ethnicity affect many aspects of society besides geolocation and name. For example, 
say the outcome of interest is voter political party preference. The conditional independence assumption 

 

 

12BIRDiE. BIRDiE: Estimating disparities when race is not observed. Retrieved January 15, 2024, from 
https://corymccartan.com/birdie/#:~:text=Bayesian%20Instrumental%20Regression%20for%20Disparity%20Estimation%20%28BIRDiE%29%20i
s,described%20in%20McCartan%2C%20Goldin%2C%20Ho%20and%20Imai%20%282022%29. 

https://corymccartan.com/birdie/#:%7E:text=Bayesian%20Instrumental%20Regression%20for%20Disparity%20Estimation%20%28BIRDiE%29%20is,described%20in%20McCartan%2C%20Goldin%2C%20Ho%20and%20Imai%20%282022%29
https://corymccartan.com/birdie/#:%7E:text=Bayesian%20Instrumental%20Regression%20for%20Disparity%20Estimation%20%28BIRDiE%29%20is,described%20in%20McCartan%2C%20Goldin%2C%20Ho%20and%20Imai%20%282022%29
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would require that two individuals in the same geographic area, with the same surname, are equally likely 
to register with the Democratic party, regardless of race.  

The BIRDiE methodology addresses this problem by relying on a different assumption: that names are 
independent of outcomes, conditional on location and race.  

 

Source: Cory McCartan13 

With this assumption, surname is predictive of the outcome only through its ability to predict race. In other 
words, after accounting for race, surname has no predictive power of the outcome.  

BIRDiE models the outcome variable with fixed effects or mixed-effects regression models.14 BIRDiE uses 
BISG or fBISG probabilities and other covariates as inputs and, in the process, produces updated probability 
estimates that can be more accurate than the input probabilities. BIRDiE models are constructed as follows: 

• Generate a set of BISG probability estimates, which are conditional on surname, geolocation, and 
other observed characteristics. 

• Assume a priori that the distribution of the outcome is the same for each race.  
• Specify a model of the outcome as a function of race, geolocation, other observed characteristics, 

and the outcome parameter.  
• Compute the posterior distribution of the outcome using the prior distribution, the complete-data 

outcome model, and the BISG probabilities.  

To demonstrate, McCartan et al. applied BIRDiE and other methods to North Carolina voter data to 
measure the disparity in Democratic party registration between Black and white voters. This dataset 
includes self-reported individual race, allowing the authors to validate and compare the results of the 
different methodologies. In this data, the true difference in Democratic party registration was 54.6 
percentage points, with Black voters registering Democratic at a much higher rate than white voters. Using 
BISG probability estimates produced an estimated difference of 30.5 percentage points. The BIRDiE models 
produced an estimated difference of 49.2 percentage points, much closer to the true value. 

 

 

13BIRDiE. BIRDiE: Estimating disparities when race is not observed. Retrieved January 15, 2024, from 
https://corymccartan.com/birdie/#:~:text=Bayesian%20Instrumental%20Regression%20for%20Disparity%20Estimation%20%28BIRDiE%29%20i
s,described%20in%20McCartan%2C%20Goldin%2C%20Ho%20and%20Imai%20%282022%29. 
14 The authors present three alternative model specifications with varying levels of modeling flexibility: 

• Complete-pooling model: Estimates a single relationship between outcome and race that does not vary with geolocation or other 
observed characteristics. 

• Saturated (no-pooling) model: Estimates a different relationship for every level of geolocation and other observed characteristics. 
• General mixed-effects model: A compromise between the complete-pooling and no-pooling models that maintains the flexibility of 

the saturated model while allowing information to be shared across levels. This is the method recommended by the authors for 
general use. 

 

https://corymccartan.com/birdie/#:%7E:text=Bayesian%20Instrumental%20Regression%20for%20Disparity%20Estimation%20%28BIRDiE%29%20is,described%20in%20McCartan%2C%20Goldin%2C%20Ho%20and%20Imai%20%282022%29
https://corymccartan.com/birdie/#:%7E:text=Bayesian%20Instrumental%20Regression%20for%20Disparity%20Estimation%20%28BIRDiE%29%20is,described%20in%20McCartan%2C%20Goldin%2C%20Ho%20and%20Imai%20%282022%29
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McCartan et al. also examined the updated racial probability estimates produced by the BIRDiE models and 
used AUC to compare them to the initial BISG estimates. They found that the BIRDiE estimates were more 
accurate for white and Black voters, about the same for Hispanic, Asian, and Native American voters, and 
slightly less accurate for “other” voters, compared to the BISG estimates. 

The BIRDiE methodology can be implemented using the “birdie” R package. It includes functionality to 
compute the initial BISG probability estimates and specify the outcome model, as well as extract the 
updated probabilities. 

3.3 PREDICTIVE MODELING METHODS  
To date, Bayesian methods for imputing race and ethnicity have been the most widely used, but there are 
other types of algorithms that can be applied to imputation. While these methods show promise, the main 
limitation is that at least a subset of the data requires race/ethnicity classification to train the model. 
Additionally, many require additional inputs that limit their applicability or have not shown significant 
improvement in predictions. 

3.3.1 REGRESSION 
The use of regression models for missing data imputation is not specific to race/ethnicity imputation, as 
regression models are a common technique for imputation of missing values where there is a correlation 
between the variable with the missing values and other variables in the dataset. In the case of imputing 
race and ethnicity with a regression model, one would use multinomial logistic regression. To implement 
regression imputation requires race/ethnicity information and other variables on the same dataset. Two 
examples of using regression to impute race and ethnicity can be found in Xue, Harel, and Aseltine (2019) 
and Zavez, Harel, and Aseltine (2022). 

Xue, Harel, and Aseltine (2019) developed regression models to impute race and ethnicity using birth 
records from the Connecticut Department of Public Health from 2009 to 2013. Each birth record contained 
a self-reported race or ethnicity of the mother, as well as an insurance type,15 an indicator for father 
missing, and the mother’s age at delivery. Race and ethnicity distributions by census tract and surname 
were added from the 2010 Census data. Two multinomial logistic regression models were fit: one with 
variables for census tract and surname race/ethnicity percentages, and a second adding covariates for 
insurance type, a dummy variable for father missing, and the mother’s age. The models were fit on 5% of 
the available training data and imputed four race/ethnicity cohorts: white, Black, Hispanic, and other.  

The regression models were compared to BSG imputations using 2010 Census data. The regression models 
had an 81% accuracy of predictions compared to 78% for BSG. The models had much better sensitivity for 
the Black cohort, 60% to 63%, compared to 39% for BSG. The improvement in sensitivity for the Hispanic 
cohort was more modest, 71% to 72% compared to 66% for BSG. The sensitivity for the white cohort was 
slightly worse, 91% versus 93% for BSG. 

Zavez, Harel, and Aseltine (2022) also constructed regression models on Connecticut birth records using 
similar covariates (race/ethnicity percentages for the census tract, insurance type, sex, and age). However, 
Zavez developed Connecticut-specific first name and surname lists using the birth registry records instead 
of the census data. Zavez, Harel, and Aseltine also attempted to move the geocoding level from census 

 

 

15 Insurance types include private insurance, self-/no insurance, Medicaid, and other insurance. 
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tract to census block, which is a smaller area, but the request was denied by the Census Bureau. The study 
assumed that 50% of race/ethnicity information was missing at random in the data and used five 
race/ethnicity cohorts: white, Black, Asian/Pacific Islander, Hispanic, and other. 

The models were also validated on Connecticut hospitalization claim data from 2012 to 2017, which had 
more than 10 million records, with only 1% of self-reported ethnicity and 2% of self-reported race data 
missing. The regression models with the state-specific name lists performed better than a more generalized 
version using census data. 

Again, to train a regression model for imputation, all the covariates and self-reported race and ethnicity 
data need to be available on a portion of the dataset, which is not always feasible. Also, it is not clear how 
much of the accuracy gains observed in these studies were from the use of Connecticut-specific data or the 
inclusion of other covariates versus the method itself (e.g., regression vs. Bayesian imputation). 

3.3.2 NATURAL LANGUAGE PROCESSING 
The natural language processing (NLP) framework provides another method that can be used to impute 
race and ethnicity cohorts from names. These methods train a model where the individual’s name is the 
input, and their race/ethnicity cohort probability is the output. Xie (2021) fit an NLP model on a Florida 
voter registration dataset. Names for Native American and multiracial cohorts were dropped because of 
lack of data, so a four-level cohort grouping was modeled (Hispanic, Black, Asian/Pacific Islander, and 
white). An initial large model was trained using Bidirectional Long Short-Term Memory (BiLSTM) 
architecture, then a “distillation” step was applied to compress the model and obtain a smaller model with 
fewer parameters and layers for production. Xie also segmented the data by gender because gender is 
associated with race and ethnicity as well as name. Xie did not do any performance comparisons to other 
types of models. This model is available in the R package, rethnicity. 

Chintalapati et al. (2023) also fit long short-term memory (LSTM) models on the Florida voter registration 
dataset used in Xie (2021). These models are available in the Python package, ethnicolr. 

3.3.3 OTHER MACHINE LEARNING ALGORITHMS 
Decter-Frain (2022) investigated whether machine learning (ML) algorithms would be an improved 
framework over the Bayesian frameworks. They used surnames, first names, middle names, and geocoded 
locations as input data and tested multiple machine learning methods: multinomial regression, multinomial 
regression with elastic net penalty, random forests, and gradient boosted decision trees.  

The models were trained on data from voter registration records from California, Florida, Georgia, and 
North Carolina. The data contained over 26 million records, over 5% of the total electorate, but is not a 
representative sample. Race and ethnicity were self-reported, but only populated for 20% of the California 
data. The models imputed four race/ethnicity cohorts (white, Black, Hispanic, and Asian) and were trained 
in a cross-validation manner where the folds were defined as the states, training the model on three states, 
and testing on the fourth. 

The researchers fit two sets of models with different predictor sets. The first set used only 10 probabilistic 
inputs associated with surname and location and was compared to BISG. When using the minimal set of 
input variables, the comparison of ML methods to BISG was mixed. The ML methods performed better on 
AUC for some states and cohorts, but not as well for others. 

The second set of models included first and middle name inputs as well. For the models with first and 
middle name included, the ML models consistently outperformed a Bayesian imputation algorithm for 
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many groups, based on the AUC metric. The results were similar across the various ML methods and states 
tested. 

Table 6 
AUC BY MODEL FOR CALIFORNIA 

Area Under ROC 
Model Hispanic Asian Black White Other 

BISG (+First+Middle) 0.929 0.911 0.900 0.911 0.547 
Logistic 0.940 0.949 0.942 0.921 0.556 
ElasticNet 0.938 0.951 0.941 0.921 0.554 
Random Forest 0.937 0.951 0.943 0.920 0.537 
Gradient Boosted Trees 0.938 0.942 0.946 0.917 0.546 

Source: Decter-Frain, 2022 

In addition, Decter-Frain examined calibration curves by method and found the ML models to be better 
calibrated than BISG, particularly for Asian and Hispanic voters. The one exception where BISG appeared to 
be better calibrated was for Asian voters in California. In Florida, BISG was over-calibrated for Hispanic 
voters and ML methods were under-calibrated. These differences were attributed to differences in the 
overall population distributions by state.  

Chintalapati et al. (2023) fit ML models on the same Florida voter registration dataset used by Xie (2021). 
However, other types of models were investigated: K-nearest neighbors, random forests, gradient boosted 
decision trees, and NLP models. The models predict five cohorts: white, Black, Hispanic, Asian/Pacific 
Islander, and unknown. Multiracial and Native American cohorts were combined with unknown due to 
small sample size. These models are available in the Python package, ethnicolr. 

When predicting race and ethnicity with just surnames, the NLP model had the best accuracy, at 81%, and 
was the top performer for most cohorts. Although performance was poorer for Asian and Black cohorts 
compared to the others, the addition of first name improved accuracy for these cohorts. Accuracy 
measures by cohort for K-nearest neighbors were not reported, and no comparisons were made to other 
imputation methods. 

Table 7 
ACCURACY BY MODEL  

Accuracy on Hold-out Data 
Inputs Model Hispanic Asian Black White Other Overall 

Surname Only 

K-Nearest Neighbors * * * * * 0.78 
Random Forest 0.66 0.05 0.19 0.70 0.17 0.55 
Gradient Boosted Trees 0.80 0.07 0.12 0.93 0.01 0.75 
NLP 0.84 0.40 0.50 0.91 0.04 0.81 

Full Name 

K-Nearest Neighbors * * * * * 0.73 
Random Forest 0.66 0.22 0.32 0.89 0.03 0.71 
Gradient Boosted Trees 0.22 0.04 0.01 0.98 0.00 0.68 
NLP 0.86 0.63 0.74 0.92 0.07 0.85 

* Accuracy not reported.     Source: Chintalapati et al., 2023 

Machine learning methods can have a danger of overfitting to a specific dataset and may not be 
generalizable to broader populations. Decter-Frain (2022) used a conservative out-of-state evaluation 
strategy, but overfitting is a consistent concern for ML models. The authors suggest that testing multiple 
methods on a particular dataset may lead to identifying the best method for that particular dataset. 
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Section 4: Discussion of Direct Data 
Direct data is data collected directly from a primary source. In the context of this paper, direct data refers 
to self-reported individual race/ethnicity information. One method to obtain direct data is by asking 
insureds to self-report it, but there are still several challenges and considerations to this approach:  

• Legal 
o Historically, it was uncertain whether it was legal to collect on health plan participants 

(Fiscella & Fremont, 2006). 
o Some state laws would need to be changed to allow insurance companies to collect this data 

(American Academy of Actuaries, 2022). 
• Procedural 

o Even if you start collecting direct race/ethnicity data on new data, you won’t have it on 
previously collected data (Fiscella & Fremont, 2006). 

o Collection can be slow (Elliot et al., 2008). 
o It requires business process changes that would likely result in additional costs that would be 

passed on to consumers (American Academy of Actuaries, 2022). 
• Accuracy and completeness 

o Consumers may decline to participate and/or provide inaccurate information because they 
may suspect this information could affect their insurance coverage or invade their privacy 
(American Academy of Actuaries, 2022). 

o Refusal to respond might depend on an individual’s race or ethnicity (Fiscella & Fremont, 
2006). Voicu (2018) offers evidence that non-reporting of race/ethnicity information is 
correlated with actual race or ethnicity. 

• Social 
o Fear that consumers would assume data was being misused (Fiscella & Fremont, 2006).  
o Racial categories have changed over time and how people self-report can depend on the 

options presented to them and can change over time.  

Another approach is to match self-reported race from external, third-party datasets to the user’s dataset 
using personally identifiable information (PII). There are many vendors of consumer demographic data. 
However, considerations for this approach include: 

• How much data is imputed versus self-reported, and what methods are used for imputation. 
• The sources of the self-reported data. 
• Is the self-reported data collected in an unbiased setting? (American Academy of Actuaries, 2022) 
• Restrictions on use required by the entities collecting the data, for example, there are laws 

restricting the use of data obtained by/from governmental entities. (American Academy of 
Actuaries, 2022) 

• What categories for race and ethnicity are being captured, and are they appropriate for the 
intended use? (American Academy of Actuaries, 2022) 

• Procedures in place to protect and manage the PII used to do the matching. (American Academy 
of Actuaries, 2022) 

• Ethical and privacy concerns; what if an individual does not want their race or ethnicity disclosed? 
Is there an option for “prefer not to answer,” and will values be imputed for these individuals?16  

 

 

16 https://www.rti.org/insights/imputing-raceethnicity-part-
1#:~:text=Ethically%2C%20we%20should%20be%20concerned%20about%20filling%20in,not%20to%20answer%20is%20a%20valid%20respons
e%20category. 

https://www.rti.org/insights/imputing-raceethnicity-part-1#:%7E:text=Ethically%2C%20we%20should%20be%20concerned%20about%20filling%20in,not%20to%20answer%20is%20a%20valid%20response%20category
https://www.rti.org/insights/imputing-raceethnicity-part-1#:%7E:text=Ethically%2C%20we%20should%20be%20concerned%20about%20filling%20in,not%20to%20answer%20is%20a%20valid%20response%20category
https://www.rti.org/insights/imputing-raceethnicity-part-1#:%7E:text=Ethically%2C%20we%20should%20be%20concerned%20about%20filling%20in,not%20to%20answer%20is%20a%20valid%20response%20category
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Self-reported data is collected in several different settings, including healthcare, mortgage lending, and 
voter registration (in some states). While these datasets can be useful for developing and/or testing 
imputation methods, they are not generally available to match to other data and focus on particular 
subsets of the population. Another limitation to completeness is that many individuals may decline to self-
report. 

The U.S. Census Bureau and the Social Security Administration have the most comprehensive direct data on 
race and ethnicity. However, the census has a 72-year restriction on individual records (for example, the 
1950 Census data was released in 2022), so detailed data is dated, and more recent data is not publicly 
accessible. Restricted-use government datasets are available to qualified researchers at government 
agencies, academic institutions, and other entities with approved projects. For example, a 2007 Federal 
Trade Commission study of the use of credit-based insurance scores in auto insurance obtained 
race/ethnicity data from the Social Security Administration (Federal Trade Commission, 2007). 
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Section 5: Case Study: Imputation Methods for Race and Ethnicity 
This section discusses the results of using several imputation methods on actual data. This dataset 
contained names and addresses, along with self-reported race or ethnicity, so that it could be used to run 
algorithms using only name and address information and compare the predictions with self-reported race 
or ethnicity to compare accuracy. This section describes key attributes of the dataset, presents methods for 
evaluating performance of the imputation methods, and highlights outcomes of the performance 
comparison. 

5.1 DATASET AND ALGORITHMS 
The authors used a proprietary health insurance dataset, which contained data on approximately 1.4 
million lives with insurance coverage in one U.S. state. The geographically concentrated and homogenous 
coverage nature of the dataset should be kept in mind when reviewing the reported outcomes, because 
performance may differ materially when considering data from other regions or more diverse populations. 
The data contained basic demographics, including given name, surname, age, gender, and home address, in 
addition to self-reported race or ethnicity. The available values of self-reported race or ethnicity were 
white, Black, Hispanic, Asian/Pacific Islander (API), American Indian/Alaska Native (AI/AN), multiracial, and 
unknown/other. There are 751,485 distinct lives in the dataset with self-reported race or ethnicity (i.e., 
excluding values of unknown/other). 

Table 8 
DATASET DISTRIBUTION BY RACE/ETHNICITY 

Self-Reported Race/Ethnicity Lives Distribution 
Unknown/Other  602,793 44.5% 
White  353,359  26.1% 
Black  332,533  24.6% 
Hispanic  37,526  2.8% 
Multiracial  14,587  1.1% 
API  8,806  0.7% 
AI/AN  4,674  0.3% 

 

Table 9 
DATASET DISTRIBUTION OF RACE/ETHNICITY BY AGE 

Self-Reported Race/Ethnicity 0-17 18-39 40-64 65+ 
Count of Individuals 
Unknown/Other  357,782   140,730   77,758   26,523  
White  119,338   127,787   77,049   29,185  
Black  116,006   124,544   61,182   30,800  
Hispanic  21,333   11,696   3,258   1,239  
Multiracial  8,348   5,080   1,040   119  
API  3,271   2,947   1,645   943  
AI/AN  1,797   1,793   898   186  
Distribution 
Unknown/Other 57.0% 33.9% 34.9% 29.8% 
White 19.0% 30.8% 34.6% 32.8% 
Black 18.5% 30.0% 27.5% 34.6% 
Hispanic 3.4% 2.8% 1.5% 1.4% 
Multiracial 1.3% 1.2% 0.5% 0.1% 
API 0.5% 0.7% 0.7% 1.1% 
AI/AN 0.3% 0.4% 0.4% 0.2% 
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The following algorithms were used to impute race or ethnicity for all individuals on the dataset using the 
Surgeo Python package: first name only (FO), surname analysis (SA), geocoding only (GO), Bayesian 
Improved Surname Geocoding (BISG), and Bayesian Improved First Name Surname Geocoding (BIFSG). See 
section 6 below for a technical tutorial demonstrating how to use Surgeo and other imputation packages.17 
Surgeo was used as it provided an off-the-shelf implementation of all five algorithms. Finally, to analyze a 
method that maximizes the number of individuals the authors were able to assign imputed race/ethnicity 
probabilities for, the authors added a sixth method that used a hierarchical approach in which the authors 
assign each individual probability based on the following hierarchy, where individuals only move to the next 
step in the hierarchy if they are not assigned probabilities at each step: 

1. Bayesian Improved First Name Surname Geocoding (BIFSG) 
2. Bayesian Improved Surname Geocoding (BISG) 
3. Surname analysis (SA) 
4. Geocoding only (GO) 
5. First name only (FO) 

In other words, each individual is first run through the BIFSG algorithm; if they are not assigned an imputed 
race/ethnicity probability using this algorithm, then they are run through BISG, etc. Therefore, only 
individuals who did not receive imputed race/ethnicity probabilities from all five algorithms will not receive 
imputation probabilities. Information on this method is shown in the “hierarchy” column in the tables 
throughout this section.   

5.2 DATA CLEANING AND PREPROCESSING 
Cleaning data can be an important step in running the imputation algorithms, given the wide degree of 
variation in individual names. In particular, individuals with compound or hyphenated surnames or given 
names are less likely to be assigned probabilities by algorithms using such information because these 
names are less likely to be present in the lists used by the packages. However, the Surgeo package the 
authors used to impute race and ethnicity for the case study has limited functionality for preprocessing the 
data for compound or hyphenated names. Therefore, the authors began by running the algorithms on data 
with no preprocessing other than the basic data cleaning included in the Surgeo package, such as removing 
spaces or punctuation; the authors did not perform additional data cleaning other than ensuring all input 
was formatted correctly. 

The individuals who are not assigned imputed probabilities include those where information needed to run 
the algorithm was missing or invalid (e.g., when an address could not be geocoded, or a first name was 
missing). For the remainder of this section, the authors will use the term “cohort” to refer to the group of 
individuals with a specific self-reported race or ethnicity who were able to be assigned probabilities by the 
algorithm under discussion (i.e., who had the necessary data to be run through the algorithm and who did 
not receive an imputed race of “unknown”). 

  

 

 

17 Note that the BIRDiE algorithm was not included in the case study due to lack of an outcome variable to use in training; however, we have 
included BIRDiE in the tutorial in section 6. 
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Table 10 
PERCENTAGE OF INDIVIDUALS ASSIGNED PROBABILITIES BEFORE PREPROCESSING 

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
Unknown/Other 57% 99% 88% 87% 49% >99% 
White 79% 99% 93% 92% 73% >99% 
Black 46% >99% 96% 95% 44% >99% 
Hispanic 74% >99% 58% 58% 43% >99% 
Multiracial 53% 98% 91% 90% 48% >99% 
API 53% 99% 86% 85% 46% >99% 
AI/AN 65% >99% 91% 90% 59% >99% 

 

As expected, a high proportion of individuals was not assigned probabilities when using the BISG and BIFSG 
methods without the preprocessing of data, and many of these exclusions were due to individuals with 
compound or hyphenated names. Therefore, to increase the likelihood of matching these compound and 
hyphenated names, the authors created multiple records for each individual using the individual pieces of 
the compound or hyphenated name applied, used the algorithms to impute race/ethnicity probabilities for 
each record, and then averaged the various probabilities.  

As an example, consider an individual John Smith-Doe. To assign imputed race/ethnicity probabilities, the 
authors would use the name John Smith and the name John Doe and average the probabilities output by 
each algorithm. The authors note that this approach allows more individuals to have probabilities assigned, 
but it does not make full use of the information that can be gleaned from knowing an individual has a 
compound or hyphenated name. 

Table 11 shows the percentage of individuals assigned race/ethnicity probabilities using each algorithm 
after applying this cleaning method. 

Table 11 
PERCENTAGE OF INDIVIDUALS ASSIGNED PROBABILITIES AFTER PREPROCESSING 

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
Unknown/Other 58% 99% 96% 95% 55% >99% 
White 80% 99% 95% 94% 75% >99% 
Black 48% >99% 98% 98% 46% >99% 
Hispanic 75% >99% 98% 98% 73% >99% 
Multiracial 54% 98% 95% 93% 51% >99% 
API 56% 99% 89% 88% 51% >99% 
AI/AN 66% >99% 96% 95% 63% >99% 

 

As illustrated by the increase in individuals assigned probabilities, particularly for the Hispanic cohort using 
surname-based algorithms, this step can have a material impact on results. For the remainder of this 
section, the authors will limit discussion to results after applying these preprocessing methods. Appendix B 
contains a comparison to results without preprocessing for selected metrics. 

As seen in Table 11, the FO and BIFSG algorithms have the lowest percentages of individuals assigned 
probabilities after preprocessing. This is likely due to the fact that the Surgeo package uses a first names list 
with these algorithms that was developed using data aggregated from mortgage applications (Tzioumis, 
2018), which may not be representative of the individuals in the case study data. Note, that the 
geolocation and surname lists used by the Surgeo package were developed from the 2010 Census, which 
are representative of the entire U.S. population. Table 12 shows the percentages of individuals assigned 
race/ethnicity probabilities by age bands using the FO algorithm after applying preprocessing to names. 
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Table 12 
PERCENTAGE OF INDIVIDUALS ASSIGNED PROBABILITIES AT EACH AGE RANGE  

Self-Reported 
Race/Ethnicity 

First Name Only Algorithm 
0-17 18-39 40-64 65+ 

White 62.8% 84.1% 94.7% 93.4% 
Black 31.6% 40.3% 73.0% 86.0% 
Hispanic 72.1% 78.2% 81.5% 82.3% 
Multiracial 46.2% 61.2% 83.0% 88.2% 
API 56.8% 57.8% 60.2% 44.2% 
AI/AN 50.6% 69.8% 86.6% 87.1% 

 
As Table 12 shows, the FO algorithm generally demonstrates a higher ability to assign probabilities for older 
individuals (except for the age 65+ API cohort). The variation in the proportions of the population who are 
assigned FO probabilities across age bands is especially pronounced for the Black cohort. As mentioned 
above, the BIFSG algorithm also uses the same first names list as the FO algorithm, therefore, a similar 
variation in assigned probabilities underlies those results. This information should be kept in mind while 
reviewing results in this section, as well as when these algorithms are applied in practice, because it 
demonstrates that the applicability of these algorithms can vary materially depending on the age 
distribution of the population they are being applied to. Table 13 provides the distribution of individuals 
(excluding those with unknown or other self-reported race or ethnicity) by age cohort to provide additional 
context for the metrics in subsequent sections. 

Table 13 
DATASET DISTRIBUTION BY AGE RANGE FOR EACH RACE/ETHNICITY (EXCLUDING UNKNOWN/OTHER SELF-
REPORTED RACE) 

Self-Reported 
Race/Ethnicity 0-17 18-39 40-64 65+ 

White 44.2% 46.7% 53.1% 46.7% 
Black 43.0% 45.5% 42.2% 49.3% 
Hispanic 7.9% 4.3% 2.2% 2.0% 
Multiracial 3.1% 1.9% 0.7% 0.2% 
API 1.2% 1.1% 1.1% 1.5% 
AI/AN 0.7% 0.7% 0.6% 0.3% 

 

As Table 13 shows, the race and ethnicity distribution varies materially by age, with a higher concentration 
of the Hispanic and multiracial cohorts in the younger age groups. This will impact performance and the 
ability of the algorithms to assign probabilities and should be considered when reviewing results 
throughout this section. 

Figures 1 and 2 show the distribution of individuals before and after imputation using BIFSG (the algorithm 
with the lowest percentage of individuals with imputed race or ethnicity) and hierarchy (the algorithm with 
the highest percentage of individuals with imputed race or ethnicity), including those who reported other 
or did not provide race or ethnicity, shown as “UNK” in the figures. These charts are called Sankey diagrams 
and are intended to provide a visualization of key statistics by self-reported and imputed race and ethnicity 
that can be found in tabular form throughout the remainder of this section18. 

 

 

18 See https://www.data-to-viz.com/graph/sankey.html for more information about Sankey diagrams and their interpretation. 

https://www.data-to-viz.com/graph/sankey.html
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Figure 1 
DISTRIBUTION OF RACE/ETHNICITY BEFORE AND AFTER IMPUTATION USING BIFSG 

 

Figure 2 
DISTRIBUTION OF RACE/ETHNICITY BEFORE AND AFTER IMPUTATION USING HIERARCHY 
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Of particular interest when comparing figures 1 and 2 is the size of the imputed white cohort in figure 2, 
since it is significantly larger than the cohort self-reporting as white, or the cohort imputed white using the 
BIFSG method. 

Table 14 shows the percentage of individuals who had their race or ethnicity imputed at each step in the 
hierarchical algorithm. 

Table 14 
PERCENTAGE OF INDIVIDUALS ASSIGNED PROBABILITIES AT EACH STEP IN THE HIERARCHY  

Self-Reported 
Race/Ethnicity 

Step 1: 
BIFSG 

Step 2:  
BISG 

Step 3:  
SA 

Step 4:  
GO 

Step 5:  
FO 

Unknown/Other 55% 40% 1% 4% <1% 
White 75% 19% 1% 5% <1% 
Black 46% 51% <1% 2% <1% 
Hispanic 73% 24% <1% 2% <1% 
Multiracial 51% 43% 2% 5% <1% 
API 51% 37% 1% 11% <1% 
AI/AN 63% 32% <1% 4% <1% 

Total 59% 37% 1% 4% <1% 
 
As shown above, the majority of individuals is assigned probabilities by one of the two Bayesian algorithms, 
with only the API cohort having less than 90% of individuals imputed by those two steps.  

5.3 PERFORMANCE METRICS 
This section provides an overview of several methods used to evaluate performance of the algorithms that 
the authors were able to run on the data. Note that the authors show all metrics by race/ethnicity cohort 
rather than at a population level to avoid misleading metrics based on the distribution of the population by 
race and ethnicity. The authors also exclude all individuals with unknown or other self-reported race or 
ethnicity because the authors do not have the information needed to measure performance on that 
cohort. The authors are including metrics for the multiracial cohort but note that all algorithms tend to 
perform poorly on this cohort, and the value of grouping all multiracial individuals together for analysis is 
uncertain. 

The results in this case study are specific to the data used for the case study. The authors are not 
recommending any algorithm, method, or specific use from these results. For any other dataset, deviations 
from these results are expected. In particular, any differences in the distribution by age, gender, or 
socioeconomic status may cause material differences in performance. Furthermore, the authors have 
applied the algorithms using the packages as they are published. The user should consider whether 
refinements or modifications are necessary based on their data and use case. 

5.3.1 ACTUAL-TO-EXPECTED DISTRIBUTION  
5.3.1.1 Methods 
Here the authors show how the various algorithms perform at predicting the race/ethnicity distribution of 
the sample. The authors show them as both actual-to-expected ratios (A:E) and calibration curves. The A:E 
shows the ratio of the actual number of individuals in each cohort to the number that would be predicted 
to be in that cohort using the imputation algorithms. An A:E above 1 means the algorithm has 
underpredicted the size of the cohort and an A:E below 1 means the algorithm has overpredicted the size 
of the cohort. 
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The authors will look at the A:E, and several other metrics through subsequent subsections, two different 
ways: the average probability metric, and the true positive rate—classified using highest probability. The 
average probability metric uses the probabilities output by algorithms directly, calculating the average 
probability assigned to each individual’s self-reported race or ethnicity by the algorithms. The second 
method, true positive rate, classified by highest probability, uses a hard classification rule that assigns 100% 
probability to the race or ethnicity that had the highest associated probability.  

These two methods are intended to align with two common ways of using this output. It’s important to 
note that the two sets of results should not be compared to determine that one method of using the 
output is more accurate than the other; the two methods are not directly comparable in this way.  

Calibration curves visualize the correlation between the predicted probability of a positive and the 
proportion of actual positives in the response. In a perfectly calibrated model, the calibration curve will be 
a 45-degree line so, for example, 50% of observations with a predicted probability of 50% would actually 
have a positive response.  

In the context of race/ethnicity imputation algorithms, calibration curves can be generated for each level of 
race or ethnicity by using an indicator for self-reporting that race or ethnicity as the response. The 
calibration curves for all races and ethnicities can be plotted on the same set of axes, providing a 
convenient visual comparison of how the algorithm performs for different races and ethnicities.  

The calibration curves below plot the predicted probabilities of each race/ethnicity cohort against the 
actual distribution of race and ethnicity. For each curve, the population is divided into deciles based on the 
predicted probabilities associated with the race/ethnicity cohort of interest, shown on the horizonal axis, 
and this is then compared to the actual proportion of individuals in that group who self-reported that race 
or ethnicity. It should be noted that some of the points represent relatively small population sizes (in 
particular, API and AI/AN), since the authors are looking at deciles of predictions on cohorts that are 
already small. The authors have excluded the multiracial cohort from these calibration curves because the 
algorithms do not typically assign a wide range of probabilities to the multiracial prediction, meaning that 
the deciles are not well-defined. 

The authors also provide a comparison of the actual-to-expected distribution by age group for the FO 
algorithm, illustrating the variation in performance as a corollary to Table 12, which illustrated the variation 
in imputation percentage for this algorithm. 
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5.3.1.2 Results 

Figure 3 
CALIBRATION CURVES 

 

  

CALIBRATION CURVES FOR FO   CALIBRATION CURVES FOR GO
 

CALIBRATION CURVES FOR SA   CALIBRATION CURVES FOR BISG 

CALIBRATION CURVES FOR BIFSG   CALIBRATION CURVES FOR HIERARCHY 
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Table 15 
A:E DISTRIBUTION FOR AVERAGE PROBABILITY METHOD 

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White 0.71 0.77 0.73 0.89 0.91 0.82 
Black 4.64 1.44 1.92 1.14 1.16 1.27 
Hispanic 0.83 0.97 0.59 0.85 0.98 0.90 
Multiracial 8.91 1.38 0.92 1.55 1.48 1.67 
API 0.27 0.98 0.60 1.10 1.56 1.42 
AI/AN 3.39 1.59 0.76 1.55 2.34 1.97 

 

Table 16 
A:E DISTRIBUTION FOR AVERAGE PROBABILITY METHOD BY AGE BAND 

Self-Reported 
Race/Ethnicity 

First Name Only Algorithm 
0-17 18-39 40-64 65+ 

White  0.71   0.75   0.71   0.62  
Black  4.37   4.59   4.93   4.69  
Hispanic  1.25   0.79   0.40   0.28  
Multiracial 14.14 10.19 4.08 1.04 
API  0.29   0.29   0.25   0.18  
AI/AN  3.19   4.08   3.69   1.44  

 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭:
# 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭𝒄𝒄 𝑹𝑹

∑# 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒊𝒊𝒔𝒔𝑭𝑭𝒐𝒐- 𝑭𝑭𝒔𝒔𝒓𝒓𝑭𝑭𝑭𝑭𝒄𝒄𝒊𝒊𝒊𝒊𝒓𝒓 𝑹𝑹 ∗ 𝑨𝑨𝑹𝑹
 

𝒘𝒘𝒄𝒄𝒔𝒔𝑭𝑭𝒔𝒔 𝑨𝑨𝑹𝑹 𝒊𝒊𝒊𝒊 𝒄𝒄𝒄𝒄𝒔𝒔 𝑭𝑭𝒊𝒊𝒔𝒔𝑭𝑭𝑭𝑭𝒓𝒓𝒔𝒔 𝒓𝒓𝑭𝑭𝑭𝑭𝒑𝒑𝑭𝑭𝒑𝒑𝒊𝒊𝑭𝑭𝒊𝒊𝒄𝒄𝒑𝒑 𝑭𝑭𝒊𝒊𝒊𝒊𝑭𝑭𝒄𝒄𝒊𝒊𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝒘𝒘𝒊𝒊𝒄𝒄𝒄𝒄 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑 𝒄𝒄𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭𝒄𝒄 𝑹𝑹 𝑭𝑭𝒊𝒊𝒊𝒊 𝒘𝒘𝒄𝒄𝒔𝒔𝑭𝑭𝒔𝒔 𝒄𝒄𝒄𝒄𝒔𝒔 𝒊𝒊𝑭𝑭𝑭𝑭 𝒊𝒊𝒊𝒊 𝒄𝒄𝑭𝑭𝒕𝒕𝒔𝒔𝒊𝒊 
𝑭𝑭𝒊𝒊𝒔𝒔𝑭𝑭 𝑭𝑭𝑭𝑭𝑭𝑭 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒊𝒊𝒔𝒔𝒊𝒊. 
 

Table 17 
A:E DISTRIBUTION FOR CLASSIFICATION METHOD 

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White 0.63 0.62 0.57 0.87 0.86 0.78 
Black 15.02 1.84 4.41 1.15 1.28 1.31 
Hispanic 1.30 68.43 0.72 0.76 0.97 0.91 
Multiracial N/A1 N/A1 1,730.00 261.67 23.39 44.18 
API 1.49 395.32 0.88 1.29 1.58 1.60 
AI/AN N/A1 121.79 8.32 9.98 13.14 13.02 

1 Values of N/A indicate that no individuals were assigned the corresponding imputed race by that algorithm using the classification 
method. 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭: 
# 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭𝒄𝒄 𝑹𝑹

# 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒘𝒘𝒊𝒊𝒄𝒄𝒄𝒄 𝒊𝒊𝑭𝑭𝒓𝒓𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑 𝑹𝑹 

 
5.3.1.3 Key Observations and Limitations 
FO and SA tend to under-predict the size of the Black population, while over-predicting the size of all other 
cohorts at most levels of predicted probability. In particular, the API cohort is over-predicted by the largest 
margin at all levels for FO. 

BISG produces calibration curves significantly closer to the diagonal for all race/ethnicity cohorts compared 
to the non-Bayesian algorithms. This indicates that use of BISG to estimate the racial/ethnic composition of 
an area would result in less biased estimates on the sample than the previous algorithms that used only 
name or geolocation, but not both. 
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A notable difference between the calibration curves for BIFSG compared to BISG is on the API cohort, 
where the BIFSG is showing a clear tendency to understate the size of the population. This aligns with the 
tables shown in subsection 5.3.2.2 below, which show a deterioration in performance moving from BISG to 
BIFSG for this cohort. 

5.3.2 PROBABILITY OF SELF-REPORTED RACE AND ETHNICITY PREDICTED 
5.3.2.1 Methods 
The authors will next consider a simple and widely published metric: the probability of predicting an 
individual’s self-reported race or ethnicity correctly using the same two methods described in subsection 
5.3.1 above.  

5.3.2.2 Results 

Table 18 
AVERAGE PROBABILITY ASSOCIATED WITH SELF-REPORTED RACE/ETHNICITY 

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White 87.2% 68.9% 73.8% 70.3% 80.2% 77.7% 
Black 11.9% 39.9% 33.3% 59.6% 56.0% 57.3% 
Hispanic 35.4% 9.1% 84.0% 75.0% 73.3% 72.6% 
Multiracial 0.2% 1.5% 2.2% 1.6% 1.8% 1.7% 
API 27.7% 2.1% 64.3% 57.2% 49.1% 47.5% 
AI/AN 0.2% 1.4% 3.0% 4.0% 2.8% 2.9% 

 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭: 
# 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒊𝒊𝒔𝒔𝑭𝑭𝒐𝒐- 𝑭𝑭𝒔𝒔𝒓𝒓𝑭𝑭𝑭𝑭𝒄𝒄𝒊𝒊𝒊𝒊𝒓𝒓 𝑹𝑹 ∗ 𝑨𝑨𝑹𝑹

𝑻𝑻𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒊𝒊𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑 𝒄𝒄𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭𝒄𝒄 

𝒘𝒘𝒄𝒄𝒔𝒔𝑭𝑭𝒔𝒔 𝑨𝑨𝑿𝑿 𝒊𝒊𝒊𝒊 𝒄𝒄𝒄𝒄𝒔𝒔 𝑭𝑭𝒊𝒊𝒔𝒔𝑭𝑭𝑭𝑭𝒓𝒓𝒔𝒔 𝒓𝒓𝑭𝑭𝑭𝑭𝒑𝒑𝑭𝑭𝒑𝒑𝒊𝒊𝑭𝑭𝒊𝒊𝒄𝒄𝒑𝒑 𝑭𝑭𝒊𝒊𝒊𝒊𝑭𝑭𝒄𝒄𝒊𝒊𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝒘𝒘𝒊𝒊𝒄𝒄𝒄𝒄 𝒊𝒊𝒔𝒔𝑭𝑭𝒐𝒐-𝑭𝑭𝒔𝒔𝒓𝒓𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔 𝑿𝑿 𝒐𝒐𝑭𝑭𝑭𝑭 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑 𝒄𝒄𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭𝒄𝒄 𝑿𝑿. 

Note: For this formula and all formulas below, “individuals” refers to all individuals for whom sufficient data was available to run the 
given algorithm and excluding individuals with an imputed race or ethnicity of “unknown.” 

For example, the value of 11.9% for the FO algorithm on the Black cohort can be interpreted to mean that, if the algorithm were run 
on only the Black cohort, the average probability associated with Black would be 11.9%, or that it would estimate 11.9% of that 
population to be Black. 

 

Table 19 
TRUE POSITIVE RATE – CLASSIFIED USING HIGHEST PROBABILITY 

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White 97.6% 89.2% 92.5% 78.7% 87.7% 86.0% 
Black 5.7% 39.7% 18.8% 66.7% 58.4% 61.9% 
Hispanic 38.5% 0.1% 93.6% 90.5% 78.3% 79.9% 
Multiracial 0.0% 0.0% 0.0% <0.1% 0.3% 0.1% 
API 25.9% 0.1% 69.2% 65.6% 55.1% 54.2% 
AI/AN 0.0% 0.2% 2.7% 3.3% 2.4% 2.4% 

 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭: 
# 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭 𝒘𝒘𝒄𝒄𝑭𝑭𝒊𝒊𝒔𝒔 𝒊𝒊𝑭𝑭𝒓𝒓𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑 𝑭𝑭𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄𝒔𝒔𝒊𝒊 𝒊𝒊𝒔𝒔𝑭𝑭𝒐𝒐- 𝑭𝑭𝒔𝒔𝒓𝒓𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 

𝑻𝑻𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒊𝒊𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑 𝒄𝒄𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭𝒄𝒄  

 

For example, the value of 5.7% for the FO algorithm on the Black cohort indicates that, if a user were to run 
the algorithm on only the Black cohort, and each individual’s imputed race was assumed to be the race 
with the highest probability assigned by the algorithm, 5.7% of the population would be imputed as Black. 
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5.3.2.3 Key Observations and Limitations 
The authors can see that the true positive rate—classified using highest probability—produces more 
accurate predictions for the white cohort for every algorithm under this metric, but for other race/ethnicity 
cohorts, the results are more mixed. In particular, performance is more likely to degrade for the non-
Bayesian algorithms and for the AI/AN cohort (though the accuracy of all algorithms is extremely low for 
the AI/AN cohort using either method). 

The authors also note that combining geolocation and surname degrades performance for certain 
cohorts—namely, white, Hispanic, and API. This may be due to the specifics of the data used in the authors’ 
evaluation but may also reflect the variation in geographic racial/ethnic homogeneity for these cohorts. 

As discussed in more detail below, care should be taken when drawing conclusions from this. For example, 
algorithms that classify a large percentage of the population as white would appear to perform very well on 
the white cohort but may not be very useful in measuring disproportionate impacts or understanding the 
composition of a population. 

5.3.3 PROBABILITY OF WHITE RACE PREDICTED 
5.3.3.1 Methods 
In addition to analyzing the ability of the algorithms to correctly predict self-reported race and ethnicity, 
the authors consider the likelihood associated with predicting that an individual is white across all races 
and ethnicities. This metric is important to consider because all algorithms perform highest on the white 
population, which can be misleading and skew metrics given the high prevalence of white individuals in the 
population; furthermore, overestimating the prevalence of white individuals in a population could affect 
any study of disparities or bias significantly. 

5.3.3.2 Results 

Table 20 
AVERAGE PROBABILITY ASSOCIATED WITH WHITE RACE/ETHNICITY 

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White 87.2% 68.9% 73.8% 70.3% 80.2% 77.7% 
Black 77.5% 52.2% 59.5% 37.7% 41.7% 40.0% 
Hispanic 56.0% 62.3% 10.6% 17.7% 22.0% 21.5% 
Multiracial 80.8% 64.3% 63.9% 56.6% 65.8% 61.2% 
API 60.6% 66.1% 19.4% 22.7% 31.2% 31.6% 
AI/AN 82.0% 61.0% 60.6% 51.1% 63.3% 57.6% 

 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭: 
# 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒊𝒊𝒔𝒔𝑭𝑭𝒐𝒐- 𝑭𝑭𝒔𝒔𝒓𝒓𝑭𝑭𝑭𝑭𝒄𝒄𝒊𝒊𝒊𝒊𝒓𝒓 𝑹𝑹 ∗ 𝑨𝑨𝑾𝑾 

𝑻𝑻𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒊𝒊𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑 𝒄𝒄𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭𝒄𝒄 

𝒘𝒘𝒄𝒄𝒔𝒔𝑭𝑭𝒔𝒔 𝑨𝑨𝑾𝑾 𝒊𝒊𝒊𝒊 𝒄𝒄𝒄𝒄𝒔𝒔 𝑭𝑭𝒊𝒊𝒔𝒔𝑭𝑭𝑭𝑭𝒓𝒓𝒔𝒔 𝒓𝒓𝑭𝑭𝑭𝑭𝒑𝒑𝑭𝑭𝒑𝒑𝒊𝒊𝑭𝑭𝒊𝒊𝒄𝒄𝒑𝒑 𝑭𝑭𝒊𝒊𝒊𝒊𝑭𝑭𝒄𝒄𝒊𝒊𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝒘𝒘𝒊𝒊𝒄𝒄𝒄𝒄 𝒘𝒘𝒄𝒄𝒊𝒊𝒄𝒄𝒔𝒔 𝒐𝒐𝑭𝑭𝑭𝑭 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑 𝒄𝒄𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭𝒄𝒄 𝑹𝑹. 
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Table 21 
RATE OF WHITE IMPUTATIONS – CLASSIFIED USING HIGHEST PROBABILITY 

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White 97.6% 89.2% 92.5% 78.7% 87.7% 86.0% 
Black 90.4% 60.2% 80.0% 32.6% 40.9% 37.5% 
Hispanic 60.7% 85.4% 5.6% 7.6% 20.3% 18.2% 
Multiracial 92.8% 82.1% 82.2% 60.6% 71.0% 66.7% 
API 68.9% 84.8% 20.7% 19.8% 31.3% 32.3% 
AI/AN 92.8% 79.3% 76.0% 52.4% 68.4% 61.2% 

 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭: 
# 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭 𝒘𝒘𝒊𝒊𝒄𝒄𝒄𝒄 𝒊𝒊𝑭𝑭𝒓𝒓𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔 𝒘𝒘𝒄𝒄𝒊𝒊𝒄𝒄𝒔𝒔
𝑻𝑻𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒊𝒊𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑 𝒄𝒄𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭𝒄𝒄 

 

5.3.3.3 Key Observations and Limitations 
Tables 20 and 21 show that, although the method of classifying individuals using highest probability 
produces a higher true positive rate, it also produces a higher or similar false positive rate for all algorithms 
and cohorts except Hispanic. This illustrates the importance of considering multiple performance metrics 
when evaluating algorithms, depending on the intended use. 

5.3.4 RATIO OF TRUE POSITIVES TO FALSE POSITIVES 
5.3.4.1 Methods 
This metric represents the odds that the imputation algorithm results in a race or ethnicity consistent with 
an individual’s self-reported race or ethnicity. A ratio of 1 indicates the odds are 50-50 that the imputation 
is correct, meaning the imputation does not perform better than random. The higher the ratio, the better 
the imputation algorithm is at matching self-reported race or ethnicity. In particular, a ratio less than 1 
means that individuals in that group are more likely to be identified incorrectly than correctly, which 
indicates a high likelihood of introducing bias in any analysis. 

The authors looked at the ratios of true positives to false positives using the same two methods described 
in the prior sections, focusing on white predictions for the reasons noted above. Table 22 represents the 
average imputed probability associated with white for the cohort with a self-reported race of white, 
compared to the average imputed probability associated with white for all other cohorts. Table 23 
represents the probability that an individual has a self-reported race of white if the imputed race or 
ethnicity assigned by using the highest probability prediction is white, compared to the probability that the 
individual does not have a self-reported race of white. 

The authors focus on the white cohort in this section because the distinction between white people and 
people of color is often of primary importance when performing bias and disparity analysis. Appendix B 
provides detail on other cohort predictions. 
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5.3.4.2 Results 

Table 22 
ODDS OF MATCHING SELF-REPORTED RACE USING PROBABILITIES ASSOCIATED WITH WHITE 

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White  1.64   1.13   1.17   1.66   2.72  1.76 

 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭:
# 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒊𝒊𝒔𝒔𝑭𝑭𝒐𝒐- 𝑭𝑭𝒔𝒔𝒓𝒓𝑭𝑭𝑭𝑭𝒄𝒄𝒊𝒊𝒊𝒊𝒓𝒓 𝒘𝒘𝒄𝒄𝒊𝒊𝒄𝒄𝒔𝒔 ∗ 𝑨𝑨𝒘𝒘

∑# 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒊𝒊𝒔𝒔𝑭𝑭𝒐𝒐- 𝑭𝑭𝒔𝒔𝒓𝒓𝑭𝑭𝑭𝑭𝒄𝒄𝒊𝒊𝒊𝒊𝒓𝒓 𝒄𝒄𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭𝒄𝒄 𝑹𝑹 ∗ 𝑨𝑨𝑹𝑹
 

𝒘𝒘𝒄𝒄𝒔𝒔𝑭𝑭𝒔𝒔 𝑨𝑨𝑿𝑿 𝒊𝒊𝒊𝒊 𝒄𝒄𝒄𝒄𝒔𝒔 𝑭𝑭𝒊𝒊𝒔𝒔𝑭𝑭𝑭𝑭𝒓𝒓𝒔𝒔 𝒓𝒓𝑭𝑭𝑭𝑭𝒑𝒑𝑭𝑭𝒑𝒑𝒊𝒊𝑭𝑭𝒊𝒊𝒄𝒄𝒑𝒑 𝑭𝑭𝒊𝒊𝒊𝒊𝑭𝑭𝒄𝒄𝒊𝒊𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝒘𝒘𝒊𝒊𝒄𝒄𝒄𝒄 𝒘𝒘𝒄𝒄𝒊𝒊𝒄𝒄𝒔𝒔 𝒐𝒐𝑭𝑭𝑭𝑭 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑 𝒄𝒄𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭𝒄𝒄 𝑿𝑿 𝑭𝑭𝒊𝒊𝒊𝒊 𝒄𝒄𝒄𝒄𝒔𝒔 𝒊𝒊𝑭𝑭𝑭𝑭  
𝒊𝒊𝒊𝒊 𝒄𝒄𝑭𝑭𝒕𝒕𝒔𝒔𝒊𝒊 𝑭𝑭𝒊𝒊𝒔𝒔𝑭𝑭 𝑭𝑭𝑭𝑭𝑭𝑭 𝒄𝒄𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭𝒄𝒄𝒊𝒊 𝒔𝒔𝒆𝒆𝒄𝒄𝒔𝒔𝒓𝒓𝒄𝒄 𝒘𝒘𝒄𝒄𝒊𝒊𝒄𝒄𝒔𝒔. 
 

Table 23 
RATIO OF TRUE POSITIVES TO FALSE POSITIVES FOR INDIVIDUALS PREDICTED TO BE WHITE 

Imputed Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White  1.59   1.23   1.11   2.16   3.02  2.07  

 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭:
# 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒘𝒘𝒊𝒊𝒄𝒄𝒄𝒄 𝒊𝒊𝑭𝑭𝒓𝒓𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔 𝒘𝒘𝒄𝒄𝒊𝒊𝒄𝒄𝒔𝒔 𝑭𝑭𝒊𝒊𝒊𝒊 𝒊𝒊𝒔𝒔𝑭𝑭𝒐𝒐- 𝑭𝑭𝒔𝒔𝒓𝒓𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔 𝒘𝒘𝒄𝒄𝒊𝒊𝒄𝒄𝒔𝒔
∑# 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒘𝒘𝒊𝒊𝒄𝒄𝒄𝒄 𝒊𝒊𝑭𝑭𝒓𝒓𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔 𝒘𝒘𝒄𝒄𝒊𝒊𝒄𝒄𝒔𝒔 𝑭𝑭𝒊𝒊𝒊𝒊 𝒊𝒊𝒔𝒔𝑭𝑭𝒐𝒐- 𝑭𝑭𝒔𝒔𝒓𝒓𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔 𝑹𝑹  

𝒘𝒘𝒄𝒄𝒔𝒔𝑭𝑭𝒔𝒔 𝒄𝒄𝒄𝒄𝒔𝒔 𝒊𝒊𝑭𝑭𝑭𝑭 𝒊𝒊𝒊𝒊 𝒄𝒄𝑭𝑭𝒕𝒕𝒔𝒔𝒊𝒊 𝑭𝑭𝒊𝒊𝒔𝒔𝑭𝑭 𝑭𝑭𝑭𝑭𝑭𝑭 𝒄𝒄𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭𝒄𝒄𝒊𝒊 𝒔𝒔𝒆𝒆𝒄𝒄𝒔𝒔𝒓𝒓𝒄𝒄 𝒘𝒘𝒄𝒄𝒊𝒊𝒄𝒄𝒔𝒔. 

 

5.3.4.3 Key Observations and Limitations 
The table shows that the FO algorithm has a low ratio relative to the BIFSG algorithm on the white cohort—
contrasted with the fact that it has the highest true positive rate for that cohort (the first row of table 19), 
it also has a high false positive rate (table 21) because it assigns a high probability of being white to a large 
swath of the population, regardless of self-reported race or ethnicity. Further, in contrast to the prior 
metrics shown, combining surname and geolocation in BISG or BIFSG always improves the ratio compared 
to surname analysis or geocoding only.  

5.3.5 AREA UNDER THE RECEIVER OPERATING CHARACTERISTIC CURVE (AUC)  
5.3.5.1 Methods 
The receiver operating characteristic (ROC) curve is a plot of the true positive rate on the vertical axis 
against the false positive rate on the horizontal axis for various thresholds used for classification. The area 
under the ROC curve (AUC) is a metric describing the ROC curve. A higher AUC represents a better ability to 
distinguish between two cohorts. The AUC measures how well a probability model can distinguish positives 
from negatives in a binary response. It can take values from 0 to 1, where an AUC of 1 means the model 
can perfectly distinguish between positives and negatives and an AUC of 0.5 means the model is no better 
than a coin flip. AUC values below 0.5 are theoretically possible but are uncommon as this would mean the 
model actually does worse at distinguishing outcomes than a random guess. 
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5.3.5.2 Results 

Figure 4 
ROC CURVES FOR HIERARCHY METHOD 

 

Users should be aware that a model can have a high AUC but perform poorly by other metrics. 

Table 24 
AUC 

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White 0.67 0.73 0.75 0.82 0.84 0.84 
Black 0.68 0.74 0.79 0.85 0.85 0.86 
Hispanic 0.80 0.74 0.97 0.98 0.97 0.97 
Multiracial 0.49 0.58 0.52 0.60 0.51 0.57 
API 0.73 0.71 0.89 0.91 0.89 0.90 
AI/AN 0.51 0.61 0.53 0.63 0.57 0.58 

 
5.3.5.3 Key Observations and Limitations 
Similar to the metrics shown in subsection 5.3.4 above, despite mixed results for BISG and BIFSG in the rate 
of true positives or average probability of correct self-reported race or ethnicity (see subsection 5.3.2), 
BISG and BIFSG are an improvement on (or similar to) the performance of the SA algorithm using this 
metric. The authors also note that all algorithms show performance on the AI/AN cohort that is only slightly 
better than 0.50. 

5.3.6 PRECISION 
5.3.6.1 Methods 
Precision, also known as positive predicted value, is the proportion of predicted positives that actually had 
a positive response. It measures the relevance of positive predictions. Precision and recall/sensitivity (true 
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positive rate) are often reported together and combine to present a fuller picture of the model 
performance.  

In the context of race/ethnicity imputation methods, the precision for each level of race or ethnicity is the 
proportion of people predicted to be that race or ethnicity who actually self-report as that race or 
ethnicity.  

5.3.6.2 Results 

Table 25 
PRECISION 

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White 61.4% 55.2% 52.6% 68.4% 75.1% 67.4% 
Black 86.0% 73.3% 82.9% 76.6% 74.9% 81.3% 
Hispanic 50.1% 9.0% 67.2% 69.2% 75.8% 72.5% 
Multiracial 0.0% 0.0% 0.0% 11.5% 6.3% 6.4% 
API 38.6% 31.8% 61.1% 84.5% 87.3% 86.4% 
AI/AN  N/A1 28.9% 22.4% 33.2% 31.6% 31.5% 

1Values of N/A indicate no positive predictions for that cohort and algorithm. 

 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭: 
# 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒘𝒘𝒊𝒊𝒄𝒄𝒄𝒄 𝒊𝒊𝑭𝑭𝒓𝒓𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑 𝑹𝑹 𝒘𝒘𝒄𝒄𝑭𝑭 𝒊𝒊𝒔𝒔𝑭𝑭𝒐𝒐-𝑭𝑭𝒔𝒔𝒓𝒓𝑭𝑭𝑭𝑭𝒄𝒄 𝒄𝒄𝒄𝒄𝑭𝑭𝒄𝒄 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑

𝑻𝑻𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭 # 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒘𝒘𝒊𝒊𝒄𝒄𝒄𝒄 𝒊𝒊𝑭𝑭𝒓𝒓𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑 𝑹𝑹  

 
5.3.6.3 Key Observations and Limitations 
The two cohorts of particular interest for this metric are the Black and API cohorts. In the Black cohort, FO 
and SA produce the highest precision of all methods though, in subsection 5.3.1 above, this is driven by a 
tendency to underestimate the size of the Black cohort (thereby decreasing the denominator of the 
metric). For the API cohort, BISG and BIFSG are a striking improvement over other algorithms when using 
this metric.  

5.3.7 SPECIFICITY 
5.3.7.1 Methods 
True negative rate is the proportion of negative observations with negative predictions. It measures the 
ability of the imputation to detect negative responses among all the data. In the context of race/ethnicity 
imputation algorithms, the true negative rate can be calculated for each level of race or ethnicity and 
thought of as the probability of a specific race or ethnicity not being imputed among individuals who do not 
self-report that race or ethnicity. 
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5.3.7.2 Results 

Table 26 
SPECIFICITY 

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White 14.1% 35.9% 28.2% 68.8% 60.7% 63.1% 
Black 99.5% 88.4% 96.8% 83.2% 90.2% 88.7% 
Hispanic 97.6% 99.9% 97.6% 97.8% 98.4% 98.4% 
Multiracial >99.9% >99.9% >99.9% >99.9% 99.9% >99.9% 
API 99.6% >99.9% 99.5% 99.9% 99.9% 99.9% 
AI/AN 100.0% >99.9% 99.9% >99.9% >99.9% >99.9% 

 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭: 
# 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒘𝒘𝒊𝒊𝒄𝒄𝒄𝒄 𝒊𝒊𝑭𝑭𝒓𝒓𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑 𝑭𝑭𝒄𝒄𝒄𝒄𝒔𝒔𝑭𝑭 𝒄𝒄𝒄𝒄𝑭𝑭𝒊𝒊 𝑹𝑹 𝒘𝒘𝒄𝒄𝑭𝑭 𝒊𝒊𝒊𝒊𝒊𝒊 𝒊𝒊𝑭𝑭𝒄𝒄 𝒊𝒊𝒔𝒔𝑭𝑭𝒐𝒐-𝑭𝑭𝒔𝒔𝒓𝒓𝑭𝑭𝑭𝑭𝒄𝒄 𝒄𝒄𝒄𝒄𝑭𝑭𝒄𝒄 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑

𝑻𝑻𝑭𝑭𝒄𝒄𝑭𝑭𝑭𝑭 # 𝑭𝑭𝒐𝒐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑭𝑭𝑭𝑭𝑭𝑭𝒊𝒊 𝒘𝒘𝒊𝒊𝒄𝒄𝒄𝒄 𝒊𝒊𝑭𝑭𝒓𝒓𝑭𝑭𝒄𝒄𝒔𝒔𝒊𝒊 𝑭𝑭𝑭𝑭𝒄𝒄𝒔𝒔/𝒔𝒔𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒄𝒄𝒊𝒊𝒄𝒄𝒑𝒑 𝑭𝑭𝒄𝒄𝒄𝒄𝒔𝒔𝑭𝑭 𝒄𝒄𝒄𝒄𝑭𝑭𝒊𝒊 𝑹𝑹  

 
5.3.7.3 Key Observations and Limitations 
Contrary to many other metrics considered, the specificity is highest for the Hispanic, API, and AI/AN 
cohorts across all algorithms. This indicates a tendency not to assign high probabilities to these cohorts for 
individuals who do not self-report as those cohorts. 

5.4: CASE STUDY SUMMARY  
This section summarizes which algorithms achieved the highest performance using each metric throughout 
the case study, by race/ethnicity. It is important to keep in mind that performance on a user’s dataset may 
vary materially from the performance metrics presented in the case study. In addition, the optimal metric 
for a given situation will take into account the intended purpose of the imputation, so the choice of 
algorithm for a specific use case should take into account the characteristics of the data and the 
consequences of misclassifications. It should also be kept in mind that identifying an algorithm as the 
highest performing for a given cohort and metric does not indicate that the performance is acceptable, 
particularly when considering the multiracial and AI/AN cohorts. 

Table 27 
SUMMARY OF METRICS 

Metric White Black Hispanic Multi- 
racial 

API AI/AN 

Coverage1 GO GO GO GO GO GO 
Methods Using Probabilities Directly 
A to E distribution (Table 15) BIFSG BISG BIFSG SA GO SA 
Avg Probability of self-reported (Table 18) FO BISG SA SA SA BISG 
Avg Probability of white (Table 20) N/A BISG SA BISG SA BISG 
Odds of matching self-reported (Table 37) BIFSG Hierarchy BIFSG BIFSG BIFSG BIFSG 
Methods Classifying Individuals Using Highest Probability 
A to E distribution (Table 17) BISG BISG BIFSG BIFSG SA SA 
True positive rate (Table 19) FO BISG SA BIFSG SA BISG 
Rate of white imputations (Table 21) N/A BISG SA BISG BISG BISG 
Area under the curve (Table 24) Hierarchy Hierarchy BISG BISG BISG BISG 
Precision (Table 25) BIFSG FO BIFSG BISG BIFSG BISG 
Specificity (Table 26) BISG FO GO FO GO FO 
Ratio of true to false positives (Table 38) BIFSG FO BIFSG BISG BIFSG BISG 

1 Coverage measures the percent of the population for whom the algorithm assigned race and ethnicity probabilities. Note 
that the hierarchy method achieved the highest coverage for all race and ethnicity cohorts, but it is excluded from this metric 
since it was intentionally designed to maximize coverage.  
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Section 6: Tutorial 
To help readers become familiar with how to implement the imputation methods described above, this 
section provides a tutorial that uses Python and R packages to impute race and ethnicity on simulated data. 
The code and simulated dataset can be downloaded from the Society of Actuaries website. The remainder 
of this section serves as a guide to the data and code and reviews the output from various imputation 
methods run on the simulated dataset. 

6.1 INPUT DATA 
The tutorial dataset is simulated purely for demonstration purposes. Although the authors made an effort 
to match the U.S. national distribution by race and ethnicity, the tutorial data should not be used to draw 
any conclusions about the true population or accuracy of any particular method. Rather, the purpose of the 
tutorial dataset is to show an example of the input data and code for imputation and analyzing imputation 
output. 

The authors created the tutorial dataset by first creating fictitious names, combining a dataset with first 
names and gender with a dataset of frequently occurring surnames.19 The authors used these names to 
simulate self-reported race or ethnicity with the ethnicolr package.20 Next, the authors assigned ZIP Code 
Tabulation Areas (ZCTAs) based on the distribution of race and ethnicity by ZCTA from the U.S. Census 
Bureau and ZCTAs were mapped to census tracts, block groups, and blocks. Age was randomly assigned 
based on a U.S. national distribution. The authors also simulated a hypothetical outcome variable (variable 
name = “target”) from normal distributions with different means by race and ethnicity.  

Tables 28 and 29 show a sample of five records from the tutorial dataset and summary statistics. 

Table 28 
TUTORIAL SAMPLE INPUT RECORDS  

Variable 1 2 3 4 5 
first_name Ronald Paul Roy Stella Kenneth 
last_name Kim Loo Madrid Bunting Ma 
middle_name Thomas Clay Leonard Lorraine Christopher 
gender M M M F M 
race asian asian asian asian asian 
ZCTA 92880 94122 23228 27502 1003 
age 42 28 59 60 45 
GEOID_block 060650406202002 060750327007001 510872004113006 371830534331002 250158204001038 
GEOID_blockgroup 000060650406202 000060750327007 000510872004113 000371830534331 000250158204001 
GEOID_tract 000006065040620 000006075032700 000051087200411 000037183053433 000025015820400 
Target 10.1105164 7.367597 7.60920374 8.360537 10.4004808 

For display, this table has been transposed from the usual format, so that each column corresponds to a single record and 
each row corresponds to a data element. 

  

 

 

19 Gender by Name dataset from the UC Irvine Machine Learning Repository and Frequently Occurring Surnames from the 2010 Census (all 
surnames occurring 100 or more times in the 2010 U.S. Census). 
20 Full Name Florida voter registration-based model. 
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Table 29 
TUTORIAL DATASET SUMMARY STATISTICS  

Self-Reported Race/Ethnicity Records Distribution Average Target 

White  57,322 57.3% 9.9 

Black  11,766 11.8% 8.6 

Hispanic  19,624 19.6% 6.1 

API  5,854 5.9% 8.5 

Other 5,434 5.4% 7.4 

 
As discussed in the case study, data preparation is an important step for imputation packages to work well. 
Due to the nature of the tutorial dataset, the authors did not include code for data cleaning as the data 
cleaning needed will vary from dataset to dataset. Some packages include tools for some data cleaning 
tasks, but the specific data prep process will depend on the format of the raw data and the requirements of 
the packages being used.  

6.2 IMPUTATION PACKAGES 
The following packages are used to impute race and ethnicity within the tutorial code: 

1. Surgeo (Python), which implements first name only (FO), geocoding only (GO), surname analysis 
(SA), Bayesian Improved Surname Geocoding (BISG), and Bayesian Improved First Name Surname 
Geocoding (BIFSG). 

2. Ethnicolr (Python), which provides pretrained neural network models that can be applied to new 
data. 

3. Wru (R), which implements the BISG and fBISG methods proposed in Imai, K. & Khanna, K. (2016). 
4. BIRDiE (R), which implements Bayesian Instrumental Regression for Disparity Estimation as 

described in McCartan et al. (2022) and BISG and fBISG algorithms described in Imai et al. (2022). 

Appendix C contains a table summarizing the methods available for each package tested, as well as 
distribution sources, types of geolocations used (e.g., census block, ZCTA), and the types of outputs 
produced.  

  

https://arxiv.org/abs/2303.02580
https://www.science.org/doi/full/10.1126/sciadv.adc9824
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6.3 OUTPUT 
The output of the imputations is an array of probabilities attached to the input dataset. Table 34 shows a 
sample from the BIRDiE BISG function. 

Figure 30 
TUTORIAL SAMPLE OUTPUT RECORDS  

Variable 1 2 3 4 5 
first_name Ronald Paul Roy Stella Kenneth 
last_name Kim Loo Madrid Bunting Ma 
middle_name Thomas Clay Leonard Lorraine Christopher 
gender M M M F M 
race asian asian asian asian asian 
 . . . . . . . . . . . . . . . 
nh_white 0.00307 0.00829 0.08556 0.88415 0.0182 
nh_black 0.00105 0.00015 0.01375 0.06463 0.00147 
hispanic 0.00633 0.00961 0.85528 0.01206 0.00346 
asian 0.97266 0.90893 0.02511 0.00534 0.95015 
american_indians_alaska_native 0.00001 0 0.00181 0.00054 0.00003 
other 0.01687 0.07302 0.01849 0.03328 0.02668 

For display, this table has been transposed from the usual format, so that each column corresponds to a single record and 
each row corresponds to a data element. 

When self-reported data is available, it is possible to calculate performance metrics. The tutorial code 
includes logic to calculate the same metrics shown in the case study above. A sample of performance 
metrics from the BIRDiE tutorial is included in Appendix D. Again, given the nature of the tutorial data, it is 
important not to make any inferences about imputation algorithm performance based on these results.  
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Section 7: Conclusion 
Imputation is a powerful tool for studying disproportionate impact, unfair discrimination, and equity. As it 
grows in use by the insurance industry, it is important that actuaries understand the limitations and 
appropriate uses of various methods and data used for imputation and give careful thought to the validity of 
the distributions and methods being used for the population under study.  

The authors have reviewed several methods for imputing race and ethnicity data and prepared a case study 
to illustrate how an off-the-shelf package performs on a particular sample dataset and the importance of 
examining multiple performance metrics by cohort. This study, and other studies, show how accuracy can 
vary from dataset to dataset and the strengths and weaknesses of various methods and data sources. While 
imputation methods have improved greatly, the field is continuing to develop. It is the authors’ hope that 
this paper will help advance the development of best practices for implementation and use of imputation 
methods.  

 

 

 

 

 

 

 

 

 

 

 

 

https://soa.qualtrics.com/jfe/form/SV_cTFAdgtTa9furBk?Code=DEI116&Type=PR


  44 

 

Copyright © 2024 Society of Actuaries Research Institute 

Acknowledgments 
The researchers’ deepest gratitude goes to those without whose efforts this project could not have come 
to fruition: the Project Oversight Group and others for their diligent work overseeing, reviewing, and 
editing this report for accuracy and relevance. 

Project Oversight Group members: 

Dorothy Andrews, Ph.D., ASA, MAAA, CSPA  

Brian Bayerle, FSA, MAAA 

Stephen Cameron, FSA, MAAA 

Amine Elmeghni, FSA, MAAA, MSc  

Jean-Marc Fix, FSA, MAAA  

Hannah Kraus, ASA, MAAA 

Tim Luedtke, FSA, MAAA 

Ian McCulla, FSA, MAAA 

Andrew Melnyk 

Min Mercer, FSA 

Murali Niverthi, FSA, MAAA 

Renee West, FSA, MAAA 

At the Society of Actuaries Research Institute: 

Lisa Schilling, FSA, EA, FCA, MAAA, Senior Research Actuary 

  



  45 

 

Copyright © 2024 Society of Actuaries Research Institute 

Appendix A: Summary of Imputation Methods 
 

Table 31 
SUMMARY TABLE OF INPUT AND OUTPUTS 

Input Variables 

Method First 
Name 

Middle 
Name 

Sur-
name 

Geo-
location  Other Outputs 

Geocoding Only (GO)    X  Variable 

Surname Analysis (SA)   X   Variable 

Categorical Surname and Geocoding 
(CSG)   X X  Variable 

Bayesian Surname Geocoding (BSG)   X X  
White/other, Black, 

Hispanic, Asian 

Bayesian Improved Surname 
Geocoding (BISG)   X X  

White, Black, Hispanic, 
API, AI/AN, multiracial 

Medicare Bayesian Improved 
Surname Geocoding (MBISG) X  X X X 

White, Black, Hispanic, 
API, AI/AN, multiracial 

Bayesian Improved Surname 
Geocoding Extensions (BISG Ext)   X X X Variable 

Bayesian Improved First Name 
Surname Geocoding (BIFSG) X  X X  

White, Black, Hispanic, 
API, AI/AN, multiracial 

Modified BIFSG X  X X X 
White, Black, Hispanic, 
API, AI/AN, multiracial 

Fully Bayesian Improved Surname 
Geocoding (fBISG) X X X X  

White, Black, Hispanic, 
Asian 

Bayesian Instrumental Regression for 
Disparity Estimation (BIRDiE) (i) (i) X X X 

White, Black, Hispanic, 
Asian, Native, Other 

Regression X  X X X Variable 

Natural Language Processing (NLP) X  X   
White, Black, Hispanic, 
API, AI/AN, multiracial 

Machine Learning (ML) X X X X  
White, Black, Hispanic, 

API, Other 

(i) User can provide imputed probabilities from other packages that use first and/or middle names. BIRDiE includes functions to create 
BISG and fBISG estimates. 
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Table 32 
SUMMARY TABLE OF PACKAGES AND REFERENCES 

Method References Packages Notes 

GO Fiscella & Fremont, 2006 
Krieger, et al., 2002 

Surgeo (Python) 
Older method. Not accurate enough for 
individual predictions, should only be used in 
aggregate. 

SA 
Fiscella & Fremont, 2006 
Elliott, Fremont et al., 2008 
Lauderdale & Kestenbaum, 2000 

Surgeo (Python) 
WRU (R) 
BIRDiE (R) 

Older method. Not accurate enough for 
individual predictions, should only be used in 
aggregate. 

CSG Fiscella & Fremont, 2006  
Older method of combining surname and 
geolocation. Categorical predictions only, not 
probabilities. 

BSG Elliott, Fremont, et al., 2008  
Older method, improvement to CSG but more 
limited surname lists. 

BISG 
Elliott, Morrison, et al., 2009 
Baines & Courchane, 2014 

Surgeo (Python) 
WRU ® 
BIRD®(R) 

Structurally similar to BSG, with better 
surname data and more cohorts imputed.  

MBISG Martino et al., 2013 
Haas et al., 2019 

Non-public Improved use of data elements of BISG. 
Calibrated to Medicare population. 

BISG Ext Imai & Khanna, 2016 
Fisher, 2023 

 
Other predictors: age, gender, political party 
registration, number of dependents, tax filing 
status. 

BIFSG 
Voicu, 2018 
Sorbero, et al., 2022 

Surgeo (Python) 
WRU (R) Significant improvement for Black cohort. 

Modified 
BIFSG Sorbero, et al., 2022  

Added refinements for compound and rare 
surnames. 

fBISG Imai, Olivella & Rosenman, 2022 
WRU (R) 
BIRDiE (R) 

Added measurement error to geolocations 
with zero population. Created new first name 
list. 

BIRDiE McCartan et al., 2023 BIRDiE (R) 

Can incorporate distributions specified by the 
user besides name and geolocation. Utilizes a 
correlated target variable to update the 
race/ethnicity prediction. 

Regression 
Xue, Harel & Aseltine (2019) 
Zavez, Harel & Aseltine (2022) 

 
Other predictors: insurance type, missing 
father, mother’s age. Connecticut-specific first 
name and last name lists. 

NLP Xie (2021) Rethnicity (R) 
Ethnicolr (Python) 

No comparisons to Bayesian methods. 

ML Decter-Frain (2022) 
Chintalapati et al. (2023) 

Ethnicolr (Python) Concerns about overfitting. 
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Appendix B: Detailed Performance Metrics from Case Study 
Section 5 contained key performance metrics from the case study analysis; this appendix provides further 
detail on many of these items. 

B.1 COMPARISON OF ACCURACY METRICS PRIOR TO DATA CLEANING 
In section 5, the authors focused on performance metrics using data that had been preprocessed prior to 
running through the algorithms to enhance the ability to assign probabilities to individuals with compound 
or hyphenated names. Here the authors show a comparison to metrics prior to this preprocessing, 
illustrating the importance of this step. 

Table 33 
AVERAGE PROBABILITY ASSOCIATED WITH SELF-REPORTED RACE/ETHNICITY 

Self-Reported Race/Ethnicity FO SA GO BISG BIFSG Hierarchy 
White 87.2% 74.1% 68.9% 70.5% 80.4% 77.6% 
Black 12.0% 33.3% 39.9% 59.7% 56.2% 57.1% 
Hispanic 35.3% 83.3% 9.1% 74.1% 72.7% 46.5% 
Multiracial 0.2% 2.2% 1.5% 1.6% 1.8% 1.7% 
API 25.7% 65.6% 2.1% 58.4% 49.3% 46.9% 
AI/AN 0.2% 3.1% 1.4% 4.2% 2.9% 2.9% 

Table 34 
TRUE POSITIVE RATE – CLASSIFIED USING HIGHEST PROBABILITY 

Self-Reported Race/Ethnicity FO SA GO BISG BIFSG Hierarchy 
White 97.6% 92.9% 89.2% 78.9% 87.8% 86.1% 
Black 5.8% 18.9% 39.7% 66.7% 58.7% 61.6% 
Hispanic 38.4% 90.6% 0.1% 88.2% 77.4% 46.7% 
Multiracial 0.0% 0.0% 0.0% <0.1% 0.3% 0.1% 
API 23.5% 70.5% 0.1% 66.9% 55.8% 53.6% 
AI/AN 0.0% 2.8% 0.2% 3.5% 2.5% 2.4% 

 

Comparing the above results to the results in subsection 5.3.2.2 above shows that the impact on accuracy 
is minimal for most cohorts, but it increases the accuracy for the Hispanic cohort by 26 and 33 percentage 
points, for the average probability and true positive rate, respectively. 

Table 35 
AVERAGE PROBABILITY ASSOCIATED WITH WHITE RACE 

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White 87.2% 68.9% 74.1% 70.5% 80.4% 77.6% 
Black 77.7% 52.2% 59.5% 37.6% 41.6% 40.2% 
Hispanic 56.1% 62.3% 11.5% 18.4% 22.4% 37.9% 
Multiracial 80.8% 64.3% 64.3% 56.9% 66.1% 61.5% 
API 62.3% 66.1% 19.3% 22.5% 31.8% 32.4% 
AI/AN 81.9% 61.0% 62.3% 52.2% 64.4% 58.7% 
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Table 36 
RATE OF WHITE PREDICTIONS – CLASSIFIED USING HIGHEST PROBABILITY 

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White 97.6% 89.2% 92.9% 78.9% 87.8% 86.1% 
Black 90.6% 60.2% 80.0% 32.6% 40.8% 37.8% 
Hispanic 60.8% 85.4% 8.1% 9.1% 20.6% 45.3% 
Multiracial 92.8% 82.1% 82.8% 60.8% 71.3% 63.4% 
API 71.1% 84.8% 20.7% 19.6% 31.6% 33.5% 
AI/AN 92.8% 79.3% 78.5% 53.8% 69.6% 63.4% 

 

Comparing these results to those shown in subsection 5.3.3.2 highlights the impact of data cleaning on this 
metric that is once again large for the Hispanic cohort, particularly when measured on using the highest 
probability to classify individuals. 

B.2 RATIO OF TRUE POSITIVES TO FALSE POSITIVES BY COHORT 
Tables 37 and 38 show the ratio of true positives to false positives for each race/ethnicity cohort using the 
same data (after preprocessing). See subsection 5.3.4.1 for a description of this metric. 

As described in section 5, this represents the ability of the models to accurately categorize individuals in 
each cohort—higher ratios represent a better ability to distinguish between individuals of the specified 
race or ethnicity and individuals not of that specified race or ethnicity. A ratio of 1 would indicate the 
model does no better than a random guess, and ratios below 1 indicate worse predictive ability than a 
random guess.  

Table 37 
ODDS OF MATCHING SELF-REPORTED RACE USING PROBABILITIES  

Self-Reported Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White 1.64 1.13 1.17 1.66 2.72 1.76 
Black 1.24 1.34 1.78 2.15 1.83 2.65 
Hispanic 0.42 0.10 0.98 1.75 2.54 1.89 
Multiracial 0.02 0.02 0.02 0.07 0.07 0.03 
API 0.08 0.02 0.64 1.68 3.27 2.07 
AI/AN 0.01 0.02 0.02 0.07 0.07 0.06 

Table 38 
RATIO OF TRUE POSITIVES TO FALSE POSITIVES 

Imputed Race/Ethnicity FO GO SA BISG BIFSG Hierarchy 
White 1.59 1.23 1.11 2.16 3.02 2..07 
Black 6.14 2.74 4.84 3.27 2.98 4.34 
Hispanic 1.00 0.10 2.05 2.24 3.13 2.64 
Multiracial N/A1 N/A1  N/A1 0.13 0.07 0.07 
API 0.63 0.47 1.57 5.44 6.89 6.37 
AI/AN  N/A1 0.41 0.29 0.50 0.46 0.46 

1Values of N/A indicate no false positives for that cohort and algorithm. 

The BISF and BIFSG algorithms perform very well on the API and Hispanic cohorts using this metric, 
meaning that individuals with a high imputed probability associated with API or Hispanic have a high 
probability of being API or Hispanic, which is consistent with the specificity metrics shown in subsection 
5.3.7.2.  
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Appendix C: Summary of Tutorial Imputation Packages 

Package Language 
Methods 

SA GO FO S + F (i) BISG BIFSG fBISG fBIFSG BIRDiE 
Surgeo Python X X X  X X    
Ethnicolr Python X   X      
WRU R X    X X (ii) X X  

BIRDiE R X    X (iii) X (iii) X 

(i) Surname plus first name only. 
(ii) Wru also allows use of middle names. 
(iii) Not implemented in BIRDiE, but user can provide estimated probabilities produced from other methods/packages.  

 

 Data Sources Geography Levels Outputs 

Surgeo 

2010 Census 
 
Demographic aspects of first 
names from mortgage 
applications. 

ZCTA/ZIP Code 
State census tract (for BISG) 

Six cohorts: White, Black, API, 
Native, Multiple, Hispanic 

Ethnicolr 

Ethnicolr1: 2000/2010 Census 
 
Ethnicolr2: 2020 Census 
Florida and North Carolina 
voter registration 

NA – models not based on 
geographic information 

Multiple models trained on four-
cohort and five-cohort data. 
Four cohorts: White, Black, 
Hispanic, Asian 
Five cohorts: White, Black, 
Hispanic, Asian, Other 

WRU 2010 or 2020 Census 
Census geolocations: county, 
tract, block group, block, place 

Five cohorts: White, Black, 
Hispanic, Asian, Other 

BIRDiE 
Flexible: Can use decennial 
census or 1- and 5-year ACS 
surveys 

State 
ZCTA/ZIP Code 

Six cohorts: White, Black, 
Hispanic, Asian, American Indian, 
and Alaska Native, Other 
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Appendix D: Sample Tutorial Output 
Performance metrics from the BIRDiE tutorial are shown below. Results on the tutorial data should not be 
used to draw any conclusions about the true population or accuracy of any particular method. 

D.1 CALIBRATION CURVES 
A calibration curve below the 45-degree line indicates that the model overpredicts the probability, while a 
calibration curve above the 45-degree line indicates that the model underpredicts the probability.  

Figure 5 
BIRDIE TUTORIAL — CALIBRATION CURVES 
SA      BIRDiE IMPROVED SA 

 

BISG       BIRDiE IMPROVED BISG 
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FBISG       BIRDiE IMPROVED fBISG 

 

D.2 ACTUAL-TO-EXPECTED DISTRIBUTION 

Table 39 
BIRDIE TUTORIAL - ACTUAL-TO- EXPECTED FOR AVERAGE PROBABILITY METHOD 

Imputed 
Race/Ethnicity SA BISG fBISG 

BIRDiE 
Improved SA 

BIRDiE 
Improved BISG 

BIRDiE 
Improved fBISG 

White  0.98 0.96 0.90 0.99 0.97 0.91 

Black  0.91 0.99 1.19 0.91 0.99 1.18 

Hispanic  0.95 0.96 1.03 0.95 0.96 1.01 

API  1.45 1.42 1.25 1.41 1.37 1.22 

Other 1.57 1.51 2.66 1.53 1.46 2.49 

 

Table 40 
ACTUAL-TO-EXPECTED FOR CLASSIFICATION METHOD 

Imputed 
Race/Ethnicity 

SA BISG fBISG BIRDiE 
Improved SA 

BIRDiE 
Improved BISG 

BIRDiE 
Improved fBISG 

White  0.80 0.87 0.84 0.82 0.89 0.85 

Black  2.40 1.16 1.49 2.16 1.13 1.43 

Hispanic  1.02 1.00 1.03 0.98 0.96 1.00 

API  1.45 1.50 1.39 1.44 1.46 1.35 

Other 66.27 12.49 27.87 35.52 8.06 17.14 

 

D.3 PROBABILITY OF CORRECT SELF-REPORTED RACE AND ETHNICITY PREDICTED 
The true positive rate can be calculated for any imputation method that directly classifies observations or 
produces probabilities of a positive and applies a classification threshold. The analogous metric for the 
probabilities is the average probability of being associated with the correct self-reported race or ethnicity. 
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Table 41 
AVERAGE PROBABILITY ASSOCIATED WITH CORRECT RACE AND ETHNICITY 

Self-Reported 
Race/Ethnicity SA BISG fBISG 

BIRDiE 
Improved SA 

BIRDiE 
Improved BISG 

BIRDiE 
Improved fBISG 

White  75% 83% 87% 78% 86% 89% 

Black  29% 51% 46% 30% 53% 48% 

Hispanic  80% 83% 80% 86% 89% 87% 

API  46% 52% 55% 48% 53% 57% 

Other 5% 8% 5% 7% 12% 8% 

 

Table 42 
TRUE POSITIVE RATE – CLASSIFIED USING HIGHEST PROBABILITY  

Self-Reported 
Race/Ethnicity SA BISG fBISG 

BIRDiE 
Improved SA 

BIRDiE 
Improved BISG 

BIRDiE 
Improved fBISG 

White  93% 93% 95% 94% 94% 96% 

Black  16% 57% 48% 20% 59% 51% 

Hispanic  84% 87% 86% 89% 92% 91% 

API  55% 56% 59% 55% 58% 60% 

Other <1% 4% 2% 1% 7% 4% 

D.4 PROBABILITY OF WHITE RACE PREDICTED 
For each level of race or ethnicity, one can calculate the rate at which individuals in that cohort are 
predicted to be white by the imputation algorithm. This metric is important because imputation algorithms 
that overestimate the prevalence of white individuals can bias subsequent analyses. 

Table 43 
AVERAGE IMPUTED PROBABILITY ASSOCIATED WITH WHITE RACE 

Self-Reported 
Race/Ethnicity 

SA BISG fBISG 
BIRDiE 

Improved SA 
BIRDiE 

Improved BISG 
BIRDiE 

Improved fBISG 
White  75% 83% 87% 78% 86% 89% 

Black  61% 40% 47% 59% 37% 44% 

Hispanic  16% 12% 15% 9% 6% 8% 

API  28% 25% 27% 28% 25% 27% 

Other 65% 65% 69% 55% 54% 59% 
 

Table 44 
POSITIVE RATE FOR WHITE PREDICTIONS – CLASSIFIED USING HIGHEST PROBABILITY 
Self-Reported 
Race/Ethnicity SA BISG fBISG 

BIRDiE 
Improved SA 

BIRDiE 
Improved BISG 

BIRDiE 
Improved fBISG 

White  93% 93% 95% 94% 94% 96% 

Black  83% 42% 51% 78% 38% 47% 

Hispanic  14% 11% 12% 10% 6% 7% 

API  29% 27% 28% 30% 27% 28% 

Other 77% 74% 78% 70% 64% 70% 
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D.5 RATIO OF TRUE POSITIVES TO FALSE POSITIVES 
The ratio of true positives to false positives describes the odds that the imputed race/ethnicity group is 
consistent with the individual’s self-reported race or ethnicity.  

Table 45 
RATIO OF AVERAGE PROBABILITY OF CORRECT SELF-REPORTED RACE AND ETHNICITY TO AVERAGE 
PROBABILITY OF INCORRECT RACE OR ETHNICITY  

Imputed 
Race/Ethnicity SA BISG fBISG 

BIRDiE 
Improved SA 

BIRDiE 
Improved BISG 

BIRDiE 
Improved fBISG 

White  3.00 4.85 6.70 3.55 6.07 8.42 

Black  0.41 1.06 0.85 0.43 1.14 0.92 

Hispanic  3.91 4.85 4.08 5.99 7.88 6.61 

API  0.86 1.07 1.24 0.91 1.13 1.32 

Other 0.05 0.08 0.05 0.08 0.14 0.09 

 

Table 46 
RATIO OF TRUE POSITIVES TO FALSE POSITIVES  

Imputed 
Race/Ethnicity SA BISG fBISG 

BIRDiE 
Improved SA 

BIRDiE 
Improved BISG 

BIRDiE 
Improved fBISG 

White  2.87 4.19 3.80 3.23 5.03 4.41 

Black  0.60 1.90 2.45 0.78 2.06 2.72 

Hispanic  6.33 6.62 7.71 6.86 7.95 9.98 

API  4.01 5.41 4.46 3.76 5.51 4.36 

Other 0.37 0.86 1.13 1.13 1.36 1.93 

D.6 AREA UNDER THE RECEIVER OPERATING CHARACTERISTIC CURVE (AUC) 
A higher AUC represents a better ability to distinguish between cohorts. 

Table 47 
AUC 

Self-Reported 
Race/Ethnicity 

SA BISG fBISG BIRDiE 
Improved SA 

BIRDiE 
Improved BISG 

BIRDiE 
Improved fBISG 

White  0.80 0.89 0.89 0.86 0.93 0.93 

Black  0.80 0.91 0.91 0.81 0.92 0.92 

Hispanic  0.93 0.97 0.97 0.98 0.99 0.99 

API  0.83 0.90 0.92 0.87 0.92 0.93 

Other 0.47 0.62 0.63 0.70 0.74 0.77 

D.7 PRECISION 
Precision for each level of race or ethnicity is the proportion of people predicted to be that race or ethnicity 
who self-report that race or ethnicity. 
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Table 48 
PRECISION 

Self-Reported 
Race/Ethnicity SA BISG fBISG 

BIRDiE 
Improved SA 

BIRDiE 
Improved BISG 

BIRDiE 
Improved fBISG 

White  74% 81% 79% 76% 83% 82% 

Black  37% 65% 71% 44% 67% 73% 

Hispanic  86% 87% 89% 87% 89% 91% 

API  80% 84% 82% 79% 85% 81% 

Other 27% 46% 53% 53% 58% 66% 

D.8 SPECIFICITY 
True negative rate is the proportion of negative observations with negative predictions. It measures the 
ability of the imputation to detect negative responses among all the data.  

Table 49 
SPECIFICITY 

Self-Reported 
Race/Ethnicity SA BISG fBISG 

BIRDiE 
Improved SA 

BIRDiE 
Improved BISG 

BIRDiE 
Improved fBISG 

White  56% 70% 67% 61% 75% 71% 

Black  97% 96% 97% 97% 96% 97% 

Hispanic  97% 97% 97% 97% 97% 98% 

API  99% 99% 99% 99% 99% 99% 

Other 99.9% 99.8% 99.9% 99.9% 99.7% 99.9% 

D.9 BIRDIE OUTCOME ESTIMATES 
Although the focus of this paper is not to look at how to analyze differences in outcomes, the BIRDiE 
package was developed to model unbiased estimates of outcomes by race and ethnicity. As mentioned 
above, the data used in this tutorial is not real-world data and the outcome variable predicted doesn’t have 
any meaning. The authors have included the example here to illustrate this additional application of BIRDiE.  

Table 50 
PROBABILITY-WEIGHTED AVERAGE OUTCOME BY GROUP  

Self-Reported 
Race/Ethnicity 

SA BISG fBISG BIRDiE with SA 
probabilities 

BIRDiE with 
BISG 

probabilities 

BIRDiE with 
fBISG 

probabilities 

Actual 
Outcome 

White  9.90 9.90 9.90 9.49 9.61 9.58 9.90 

Black  8.61 8.62 8.62 9.27 8.90 8.86 8.62 

Hispanic  6.13 6.13 6.13 6.46 6.38 6.35 6.14 

API  8.50 8.49 8.49 8.45 8.44 8.41 8.50 

Other 7.40 7.39 7.39 8.78 8.59 8.56 7.37 
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Table 51 
AVERAGE OUTCOME BY GROUP – CLASSIFIED USING HIGHEST PROBABILITY  

Self-Reported 
Race/Ethnicity 

SA BISG fBISG BIRDiE with SA 
probabilities 

BIRDiE with 
BISG 

probabilities 

BIRDiE with 
fBISG 

probabilities 

Actual 
Outcome 

White  9.40 9.49 9.47 9.43 9.55 9.51 9.90 

Black  9.17 8.88 8.80 9.18 8.86 8.79 8.62 

Hispanic  6.50 6.49 6.44 6.52 6.46 6.41 6.14 

API  8.45 8.46 8.44 8.46 8.43 8.40 8.50 

Other 8.68 8.23 8.19 8.51 8.28 8.11 7.37 
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