we're so fast, you can't compete

RARTA RACERS SOA CASE STUDY 2022

Towson University

Lea de Lausnay, Angela Luthcke, Emily Mackert, Erin Stales, Serena Wernert Faculty Advisor: Min Deng

Table of Contents

1. Executive Summary	3
2. Introduction	4
2.1 Background	4
2.2 Objective	4
3. Data Limitations and Assumptions	4
3.1 Data and Data Limitation	5
3.2 Preliminary Data Analysis	5
3.3 Assumptions	6
3.3.1 Tournament Assumptions	6
3.3.2 Player Assumptions	6
3.3.3 Data Assumptions	6
3.3.4 Other Assumptions	7
4. Risk and Risk Mitigation	7
5. Team Selection Criteria	8
5.1 Analysis Methodology	8
5.2 Team Program Design	9
5.2a Principal Component Analysis for Multicollinearity	9
5.2b Model Creation with Zero-Truncated Poisson	10
5.2c Optimization for Final Rooster selection	11
5.3 2022 Tournament Ranking	12
6. Economic Impact	12
6.1 Funding Sources	12
6.2 Rarita's Expenses and Revenues	13
7. Implementation and Analysis Considerations	14
8. Conclusion and Recommendations	14
8.1 Further Considerations	15
References	16
Appendices	18
Appendix A: Data Limitations and Assumptions	18
Appendix B: Risk and Risk Mitigation	27
Appendix C: Team Program Design	28
Appendix D: Literature Review	36

Appendix E: Further Considerations	37
Appendix F: Expenses and Revenues	47
F1: Expenses R Code	47
F2: Forecasted Expenses	48
F3: Revenues R Code	49
F4: Forecasted Revenues	50

1. Executive Summary

Rarita is not currently involved with International Football; in the interest of reaping economic and political benefits, the nation seeks to create a national soccer team. Ultimately, Rarita would like for the national soccer team to qualify for the international FSA league within five years.

Three regions comprise the nation: the East, Central, and West. We are also given economic data for Rarita and 21 other countries. With this information, we compare Rarita's economic standing with those of other countries in the FSA league. Additional data provide statistics on player demographics and performance, which is analyzed to select an optimal team for Rarita. The data provided was complex due to missing and inconsistent data. These limitations, though a burden on the accuracy of projected models, allow us to come to reasonable assumptions, which become the framework for team selection.

Initial investigation of the provided information along with additional research led to analysis of risk and risk mitigation. These risks play a significant role in the economic goals and decisions. From here, we analyzed the data using principal component analysis, Excel, and R code to create models that forecast future trends in both the economy and revenue/expense allocations. Using general linear models, we found that from 2021 to 2031, revenues can be expected to increase by 25.7%, while expenses can be expected to increase by 71.68%.

Using tournament data, we modeled rank using a zero-truncated poisson model. From this model, we created two team rosters with different cost levels. Then we ran the low cost roster through our model to project the outcome of the next tournament. We found that this team would rank first in the tournament, and we conclude that it will likely continue to improve in the coming years with correct planning.

2. Introduction

2.1 Background

Rarita has been overlooked within the FSA League due to lack of both organization and competitiveness. We have been hired by the Commissioner of Sport for Rarita, Hammessi Bayes, to form a competitive national team for Rarita. The objective for this team is to achieve success within ten years by positively influencing Rarita economically, politically, and competitively.

Despite not having a national team, Rarita has had many successful soccer players play for different winning teams of the FSA. Rarita's players have previously been divided between East, Central, and West provinces of the nation. Our official team includes a mixture of players from different nations and provinces of Rarita.

We have been given an initial amount of 995 million Doubloons, Rarita's national currency. Moving forward we utilize non-governmental funding sources through sponsorship and investments.

2.2 Objective

We observe countries that won the FSA experience a great financial impact to their economy. To experience the same economic influence, we consider data limitations, assumptions, and risks when also trying to achieve our goal. Our objective is to rank within the top ten FSA members within five years and win the FSA within ten years.

3. Data Limitations and Assumptions

Incomplete data and limited historical data require data assumptions, which impacts overall analysis, including projections over 10 years. In the following section we discuss missing data and the considerations to reform these situations.

3.1 Data and Data Limit	ation
-------------------------	-------

Data Sheet	Description	Usage
Player Data	Contains league, tournament, and salary data for players in 2020 and 2021.	Main use of the data is seen in team creation and competitive analysis.
Economic Data	Contains economic demographic data, spot rates, and inflation/deflation rates for Rarita as well as GDP for other countries.	Main use from the impact of the national soccer team on the economy and government in Rarita.
Team Management Data	Contains revenue, expense, attendance, and social media data for national teams.	Main use in projection of costs, budgets, and revenues for the national team.

In multivariate analysis, complete data is very important for constructing an accurate and representative model - player data was incomplete and some values lacked reasonability. Estimation of missing values is thus limited to accuracy and reach of our model.

Player data is limited. Historical data is vital for projections - we are provided only two years of player data for league, tournament, and salary. The data is also inconsistent. This increases uncertainty when projecting player performance over ten years, as requested by the client.

There is a lack of breakdown in revenue and expenses. Ambiguity surrounding costs, where revenue is allocated, and the current resources Rarita already has during the implementation stage causes less precise estimations of expenses and profit.

Economic data is not available for 2021. This can affect our predictions since it does not take into account the impact of the pandemic.

There is data for inflation rates for the last 20 years but only ten years of data for GDP, population, and gross income for Rarita. For other countries, we only have five years (2016-2020) of data. This is a relatively small sample size to trend rates and economic factors for ten years.

3.2 Preliminary Data Analysis

An initial pass over the data was conducted to identify missing data and patterns that may exist. We also detailed our team selection criteria based on tournament national teams makeup. Any missing data was imputed through the HMISC process (See Appendix A).

3.3 Assumptions

Assumptions are identified to help develop accurate results. We group assumptions into four categories: tournament, player, data, and other.

3.3.1 Tournament Assumptions

Tournament-related assumptions include that players may compete representing any national team, despite citizenship status, and Rarita is the only additional team for the upcoming tournament. These are assumed because players in the data wouldn't be provided if they weren't available for choice, and there is no information regarding competition for players in the data.

3.3.2 Player Assumptions

Player-related assumptions include that if there is a salary for a player in 2020, but not for 2021, then that player is a free-agent, meaning it is not necessary to pay the extra 10% of their salary when recruiting them.

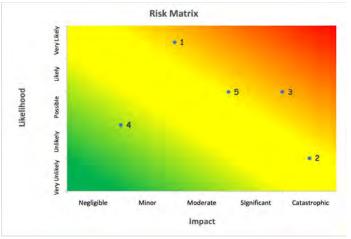
We assume that players from the league player data are the only players available for choice because tournament data exists from specific tournament(s), while league data shows active categories.

We assume that players may play for the country's team starting at age 16 because it is Rarita's policy.

3.3.3 Data Assumptions

Data-related assumptions include that social media and attendance data (located with revenues and expense data) are from 2020. The revenues and expense data is from 2016-2020. Hence, the social media and attendance data is from the most recent year.

We assume that some data needs to be adjusted, such as negative statistics being converted to zero due to lack of logical sense. For example, it would be impossible to score a negative number of goals.


3.3.4 Other Assumptions

Other assumptions include that the Rarita Racers have a stadium previously built because, based on the allotted budget to the team, there is not enough money to cover player salaries, team expenses, etc., along with building a stadium and the associated expenses.

The date of our official team formation is 1/1/2022. There is no information regarding the official team formation date, so we chose the first day of the next year, allowing the remainder of the current year to analyze data and go through necessary procedures.

4. Risk and Risk Mitigation

The development of a national football team comes with risks that must be recognized to achieve our goal. We produced a risk analysis to summarize key risks below and reported additional risk through a risk categorization and definition tool (see Appendix B)

There are five key risks, which are assessed in the above risk matrix:

- 1. **Player Injury:** Majority of player injuries are minor and last less than a month. To mitigate this risk, we analyze player age, past injuries, and invest in trainers to prevent injury and optimize recovery.
- 2. **Natural and Man-made Disasters:** Unexpected natural disasters or health related pandemics could prevent players from competing or fans from attending games. Ending a season early could dramatically impact revenues and decrease profits.

- 3. **Unexpected player performance:** We could overestimate or underestimate the skill level of a player, which could obstruct the ability to rank in the FSA. We must spend more time studying the players before official recruitment.
- 4. **Changes in player contract:** We must account for increased salaries per renegotiations, increased experience, and/or leasing players. It could be necessary to alter our team to minimize expenses. We need to look at past data to understand common contract changes along with salary.
- 5. **Changes in inflation:** Catastrophic events could impact inflation rates, leading to higher or lower rates than predicted. Changes can cause different profit margins and affect economic standing. To mitigate this risk, we save as much money as possible to plan for the best and worst case scenario.

5. Team Selection Criteria

5.1 Analysis Methodology

The aim of the team selection process is to create rosters optimizing performance statistics within budget. Initial constraints were based on the national teams' rosters from the 2020-2021 tournament. The driving forces include: number of players per position, age, and salary cap. Using the interquartile range we determined 6-10 defense, 4-8 forwards, 1-2 goalkeepers, and 10-12 midfield, along with an age range of 25-30.

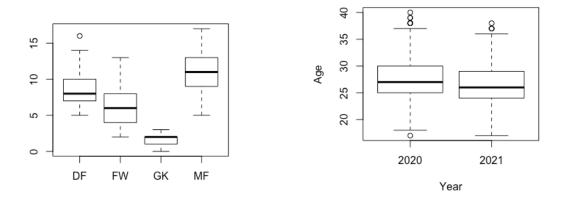


Figure 2: Number of Players by Position Box Plot

Figure 3: Range for Age Box Plot

5.2 Team Program Design

5.2a Principal Component Analysis for Multicollinearity

We examine correlations between all player parameters. We split the data into 2 groups: goalie data and player data. It is evident that the data is highly correlated and parameter reduction would be beneficial.

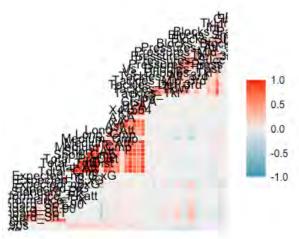
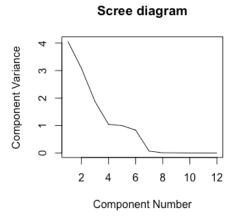
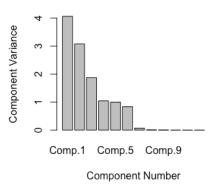
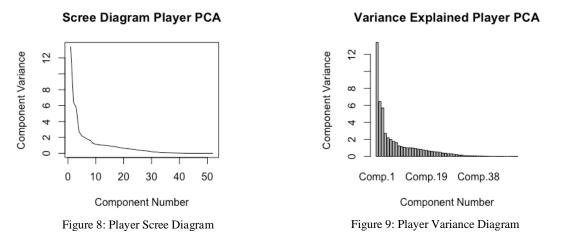



Figure 4: Player Parameters Correlation Plot


Figure 5: Goalie Player Parameters Correlation Plot


Principle component analysis (PCA) is well-suited for correlated data and effectively collapses a set of variables into fewer uncorrelated linear combinations of original parameters [11]. PCA utilizes orthogonal transformation to adapt a wide range of potentially correlated variables during the observation into a list of linearly uncorrelated variables [6]. Accounting for most of the variation, we set a threshold of 80% for new component creation.



As seen above, we can create new variables. Goalie and player data now consists of 4 and 12 components, respectively. This has established essential indicators for selecting the best players. (See Appendix C for PCA output)

5.2b Model Creation with Zero-Truncated Poisson

Using 2021 tournament data, we modeled rank as a discrete variable by aggregating the team's principal components as dependent variables and assigning rank as independent variable. The discrete models that were considered include: negative binomial regression, poisson regression, and zero-truncated negative binomial and poisson regression.

In order to rank and select a model, we analyzed the AIC, Log Likelihood, and degrees of freedom for each model. Additionally, we examined multicollinearity through VIF and finalized the models to contain only significant variables with $\alpha = .05$ (See Appendix C). We proceeded with zero-truncated poisson.

	AIC	LL	df
Neg Binomial	130.8678	-60.43392	4
Poisson	128.8677	-60.43385	5
ZT Poisson	128.319	-61.15949	3
ZT Neg Binomial	130.719	-60.35949	5

Goalie:

	AIC	LL	df
Neg Binomial	152.3081	-68.15405	8
Poisson	151.2846	-68.6423	7
ZT Poisson	151.0514	-68.52568	7
ZT Neg Binomial	152.0238	-68.01192	8

Player Model:

Goalie Model:

 $log(\lambda) = .69029 + 1.23911 G1 + .13980 G2$

Player Model:

 $log(\lambda) = 2.46859 - .48251C2 - .52429C4 - .53898C8 + .31129C9 - .68218C10 + .78098C14$

5.2c Optimization for Final Rooster selection

We ran optimization based on the criteria in section 5.1 to create two team rosters: low cost, utilizing 20% of budget, and high cost, utilizing 50% of budget.

*	Player	Pos	PredictRank	Salary
1	5. Nachum	DF	1.693744	1969000
2	U. Kaahwa	DF	1.570861	7953000
3	C. Nalwadda	DF	1.510875	4543000
4	H. Azizi	DF	1.449559	5870000
5	B. Lindberg	DF	1.299351	25096500
6	R. Bogere	DF	1.272461	18628500
7	D. Lehner	MF	1.265096	6730000
8	H. KoroĂÂjec	DF	1.216709	38852000
9	G. Vidal	FW	1.178760	5362500
10	K. Driciru	MF	1.157814	36674000
11	C. Ji	MF	1.138882	34347500
12	A. Perez	FW	1.127549	7660000
13	U. Katushabe	MF	1.116438	30525000
14	K. Kazlo?	FW	1.077029	5920000
15	W. Mbaziira	DF	1.072074	4000000
16	L. Tarigan	FW	1.058373	6400000
17	P. Otoo	MF	1.035250	31086000
18	T. Kamugisha	GK	1.033467	4196500
19	A. Khainza	GK	1.028298	1639000
20	J. Namirembe	MF	1.027846	8330000
21	S. Kisakye	DF	1.016940	42262000
22	X. Takagi	DF	1.006038	4810000
23	J. Bah	MF	1.003421	20394000
24	R. Nabwire	FW	1.000159	28380000
25	P. Martin	FW	1.000000	33110000
26	K. Adong	FW	1.000000	28006000
27	F. Akongo	MF	1.000000	1958000

	Player	Pos	PredictRank	Salary
1	Q. Lange	DF	1.913618	5698000
2	D. Mo	DF	1.912058	3663000
3	R. Hamed	MF	1.862431	99000
4	U. Sun	MF	1.798094	4158000
5	E. Vasav	DF	1.755284	6479000
6	A. Afful	MF	1.708537	1738000
7	S. Nachum	DF	1.693744	1969000
8	H. Nuwahereza	FW	1.681158	2090000
9	H. Makumbi	FW	1.598193	7430000
10	U. Kaahwa	DF	1.570861	7953000
11	C. Nalwadda	DF	1.510875	4543000
12	H. Azizi	DF	1.449559	5870000
13	A. Katusiime	MF	1.378948	9559000
14	I. Saha	FW	1.353650	8380000
15	R. Bogere	DF	1.272461	18628500
16	D. Lehner	MF	1.265096	6730000
17	G. Vidal	FW	1.178760	5362500
18	A. Perez	FW	1.127549	7660000
19	K. Kazlo?	FW	1.077029	5920000
20	W. Mbaziira	DF	1.072074	4000000
21	L. Tarigan	FW	1.058373	6400000
22	A. Khainza	GK	1.028298	1639000
23	J. Namirembe	MF	1.027846	8330000
24	X. Takagi	DF	1.006038	4810000
25	J. Bah	MF	1.003421	20394000
26	K. Adong	FW	1.000000	28006000
27	F. Akongo	MF	1.000000	1958000

Figure 10: Low end budget roster

Figure 11: High end budget roster

5.3 2022 Tournament Ranking

After adding our low end roster through the model against the current nations, we would place first for the 2022 tournament.

+	Nation	GoalieRank	PlayerRank	OverallRank
1	Bernepamar	9.383393	6.622725	8.003059
2	Byasier Pujan	10.759125	10.448585	10.603855
3	Djipines	11.837429	15.360758	13.599093
4	Eastern Niasland	23.161872	16.078114	19.619993
5	Eastern Sleboube	19.352589	18.599662	18.976126
6	Esia	10.882507	9.022471	9.952489
7	Galamily	6.919535	11.146225	9.032880
8	Giumle Lizeibon	8.530426	16.356289	12.443358
9	Greri Landmoslands	13.773121	10.015144	11.894132
10	Ledian	28.927056	17.366136	23.146596
11	Leoneku Guidisia	13.951785	18.766845	16.359315
12	Manlisgamncent	11.352275	8.133093	9.742684
13	Mico	8.710719	2.565182	5.637951
14	New Uwi	20.631267	18.096439	19.363853
15	Nganion	3.841291	7.337166	5.589229
16	Ngoque Blicri	15.825693	22.776385	19.301039
17	Nkasland Cronestan	16.308407	12.850262	14.579335
18	People's Land of Maneau	3.367994	6.306295	4.837144
19	Quewenia	9.944772	10.015102	9.979937
20	Sobianitedrucy	5.359708	4.508951	4.934330
21	Southern Ristan	6.021551	7.240236	6.630893
22	Varijitri Isles	23.430698	26.924989	25.177844
23	Xikong	8.726784	10.273458	9.500121
24	Rarita	1.012716	1.002616	1.007666

Figure 12: 2022 Tournament standings using ZT Poisson Regression

6. Economic Impact

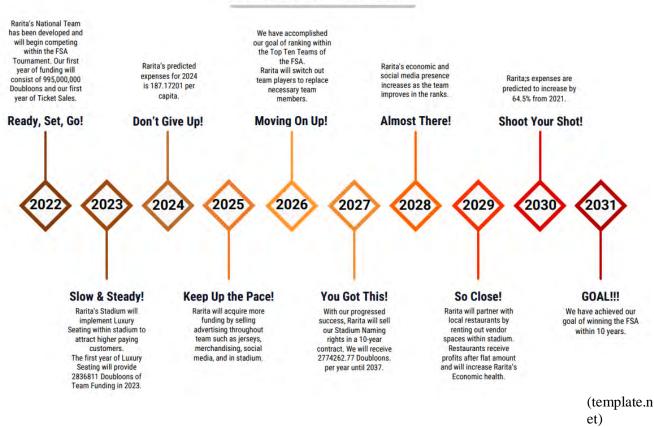
6.1 Funding Sources

We are given a lump sum of 995,000,000 Doubloons (∂) to fund Rarita's national team. We explored non-governmental funding ideas to increase our team's revenues.

Type of Advertising	Justification	Rarita's Revenue
Luxury Box Seating	Sports Stadiums sell luxury box seating to companies and high paying customers to attract an international audience. As teams gain popularity within tournaments, they have an increase in revenue (Shapiro et al., 2017).	We assume Rarita's stadium will sell 3-year contracts for 65 boxes, 17 home games, and a base rate of $\partial 2567.25$ per game and box. Every 3 years the price will increase by $\partial 1026.90$.

Type of Advertising	Justification	Rarita's Revenue
Rarita's Stadium Name	It's common for stadiums to enter 20 year contracts for millions of dollars (Paden, J., 2021). We used stadium naming rights revenue data for sports organizations to predict Rarita's yearly funding from the company (ESPN Internet Ventures., 2021).	We assume Rarita will enter into a 20 year contract for ∂55485255.42, guaranteeing a yearly revenue of ∂2774262.77.
Jersey Advertising	On average, teams made 27916430.00 euros in a year (Gaines, C., 2012).	Will make ∂31852646.63 from shirt sponsors.
Local Vendor Partners	Rarita's stadium will rent vendor spaces to local restaurants of Rarita to sell food. Other stadiums found "fully equipped concession is expected to cost about \$6,000 to \$45,000" (Joy Nwokoro, 2021). We would undercharge a flat fee of \$5000 to only cover utility costs and consider the profit as community outreach.	We assume Rarita's stadium will have 20 vendors, charging ∂41076 for a yearly contract.

6.2 Rarita's Expenses and Revenues


We only considered the nations who participated in the 2020 FSA tournament to predict Rarita's historical data on a FSA Tournament Basis. We use this information to forecast the revenues and expenses for 10 years.

We are given expenses and GDP for every nation from 2016-2020, excluding Eastern Sleboube. Taking every nation's total expenses, we created a general linear model for each year using R studio (see Appendix G1). We predicted Rarita's expenses per capita for 2017-2020 using Rarita's GDP. Taking these predicted expenses, we forecasted Rarita's expenses for 10 years (see Appendix G2). We conducted sensitivity analyses on these forecasted expenses (Appendix G2).

To calculate Rarita's revenues on a tournament basis, we used a general linear model with independent variables of nations GDP, Social Media, and Average League Attendance for each year between 2016-2020. Afterwards, we forecasted the revenues

per capita for 2021-2031 and used the forecasted population data to calculate the revenues in Doubloons. After adding our other funding sources, we converted our revenues back to per capita (see Appendix G3 and G4).

7. Implementation and Analysis Considerations

Rarita Racers 10 Year Timeline

8. Conclusion and Recommendations

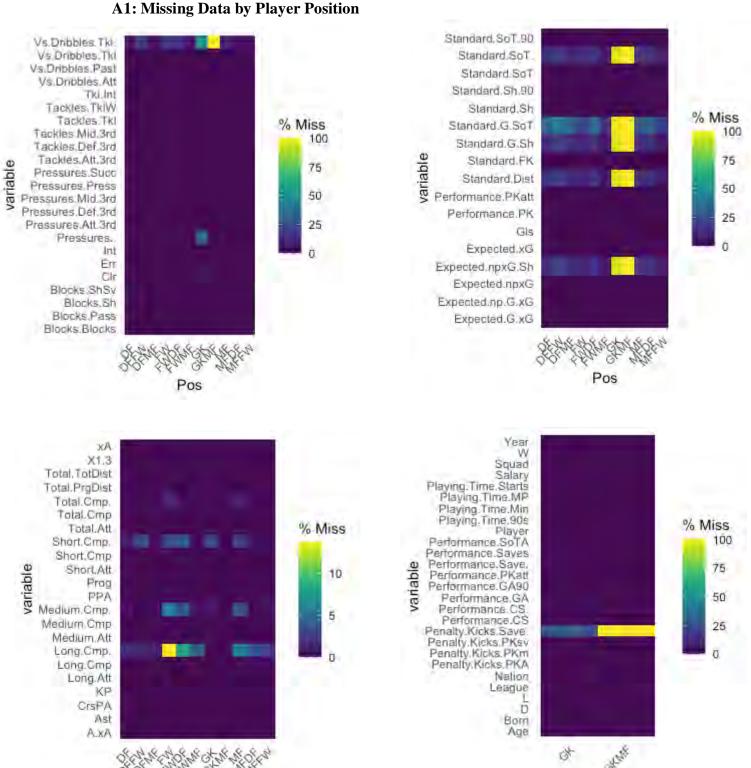
After extensive analysis and in-depth modeling, we conclude that the optimal team consists of the players that appear on the rosters in section 5.2 Team Program Design. These players were chosen based on performance and rank analysis. We assessed any possible correlations between variables that indicate the effectiveness of player performance, such as play time and salary. We addressed these concerns through principal component analysis.

8.1 Further Considerations

After a year of tournament play, we advise reevaluating the model fit. With more historic data, the model selection process could be improved to calculate more relevant standings for ten years.

We undervalued funding sources because we are a new team. In the future, we can gain more funding as recognition by other nations increases. We should reassess funding sources annually to optimize profit.

In the future, other variables may be used to project revenue and expenses. We have forecasted all economic data (see Appendix F) to analyze effects of any overlooked correlations.


References

- [1] Alwell, K. (2020). Analyzing Competitive Balance in Professional Sport.
- [2] ESPN Internet Ventures. (2021, September 29). *Sports Business*. ESPN. Retrieved March 10, 2022, from <u>https://www.espn.com/sportsbusiness/s/stadiumnames.html</u>
- [3] *Free design templates | adobe creative cloud express.* (n.d.). Retrieved March 17, 2022, from https://www.adobe.com/express/discover/templates
- [4] Gaines, C. (2012, July 25). Ads on sports jerseys might be worth more than you think, and that's a good thing. Business Insider. Retrieved March 10, 2022, from https://www.businessinsider.com/ads-on-sports-jerseys-might-be-worth-more-than-youthink-and-thats-a-good-thing-2012-7
- [5] Joy Nwokoro, J. (2021, May 26). Estimated Cost of Building a Concession Stand in 2022. ProfitableVenture. Retrieved March 10, 2022, from https://www.profitableventure.com/cost-build-concession-stand/
- [6] Li, W., & Sang, G. (2018, August). Principal Component Analysis on Football Competitions via Linear Model in China Football Association Super League Tournament. In 2018 International Conference on Management, Economics, Education and Social Sciences (MEESS 2018) (pp. 57-61). Atlantis Press.
- [7] Lopez, M. J., Matthews, G. J., & Baumer, B. S. (2018). How often does the best team win? A unified approach to understanding randomness in North American sport. The Annals of Applied Statistics, 12(4), 2483-2516.
- [8] Paden, J. (2021, December 19). The business of naming stadiums. AmadorValleyToday. Retrieved March 17, 2022, from https://www.amadorvalleytoday.org/17148/sports/thebusiness-of-naming-stadiums/
- [9] Pérez-Toledano, M. Á., Rodriguez, F. J., García-Rubio, J., & Ibañez, S. J. (2019). Players' selection for basketball teams, through Performance Index Rating, using multiobjective evolutionary algorithms. *PloS one*, 14(9), e0221258.
- [10] Pettinger, T. (2018, January 8). Effects of a falling inflation rate. Economics Help. Retrieved February 22, 2022, from <u>https://www.economicshelp.org/blog/357/inflation/effects-of-a-falling-inflationrate/#:~:text=A%20falling%20rate%20of%20inflation%20means%20that%20prices%20 will%20be,competitive%20increasing%20exports%20and%20growth</u>
- [11] Shah, P., & Patel, M. N. (2018). Ranking the cricket captains using principal component

analysis. Int. J. Physiol. Nutr. Phys. Educ, 3(2), 477-483.

- [12] Shapiro, S. L., DeSchriver, T., & Rascher, D. A. (2017, February 28). Factors affecting the price of luxury suites in major North American Sports Facilities. SSRN. Retrieved March 10, 2022, from https://ssrn.com/abstract=2924159
- [13] Stein, M., Janetzko, H., Seebacher, D., Jäger, A., Nagel, M., Hölsch, J., ... & Grossniklaus, M. (2017). How to make sense of team sport data: From acquisition to data modeling and research aspects. Data, 2(1), 2.

Appendices

A 1. Missing Data by Dlavar Desition

Appendix A: Data Limitations and Assumptions

Pos

Pos

A2: Imputing Missing Data

Multiple Imputation using Bootstrap and PMM

aregImpute(formula = ~Standard.SoT. + Standard.G.Sh + Standard.Dist + Standard.G.SoT + Expected.npxG.Sh + Total.Cmp. + Short.Cmp. + Medium.Cmp. + Long.Cmp. + Vs.Dribbles.Tkl. + Pressures.., data = df, n.impute = 5)

n: 5554 p: 11 Imputations: 5 nk: 3

Standard.SoT. 1031	St	andard.G.Sh 1031	Standard.Dist 1031		Expected.npxG.Sh 1031	Total.Cmp 3
Short.Cmp.		Medium.Cmp.		Vs.Dribbles.Tkl.	Pressures	
89		105	246			
	ype	d.f.				
Standard.SoT.	s	2				
Standard.G.Sh	s	2				
Standard.Dist	s	2				
Standard.G.SoT	s	Z				
Expected.npxG.Sh	s	2				
Total.Cmp.	s	2				
Short.Cmp.	s	2				
Medium.Cmp.	s	2				
Long.Cmp.	5	2				
Vs.Dribbles.Tkl.	s	2				
Pressures	s	1				

Transformation of Target Variables Forced to be Linear

R-squares for Predicting Non-Missing Values for Each Variable Using Last Imputations of Predictors

Standard.SoT.	Standard.G.Sh	Standard.Dist	Standard.G.SoT	Expected.npxG.Sh	Total.Cmp.
0.345	0.618	0.276	0.554	0.292	0.811
Short.Cmp.	Medium.Cmp.	Long.Cmp.	Vs.Dribbles.Tkl.	Pressures	
0.554	0.529	0.510	0.223	0.181	

A3: Major League Soccer Descriptive Statistics

Shooting

8							
Gls		Sh		SoT		SoT%	
Mean	1.18795	Mean	10.4508	Mean	3.68281	Mean	31.3690
Standard		Standard		Standard		Standard	
Deviation	2.07928	Deviation	12.6946	Deviation	5.20682	Deviation	23.2653
Minimum	0	Minimum	0	Minimum	0	Minimum	0
Maximum	14	Maximum	74	Maximum	34	Maximum	100
Sh/90		SoT/90		G/Sh		G/SoT	
Mean	1.19395	Mean	0.43195	Mean	0.09005	Mean	0.27453
Standard		Standard		Standard		Standard	
Deviation	1.36594	Deviation	0.79470	Deviation	0.14154	Deviation	0.28191
Minimum	0	Minimum	0	Minimum	0	Minimum	0
Maximum	12.27	Maximum	11.25	Maximum	1	Maximum	1
FK		РК		PKatt		xG	
Mean	0.41409	Mean	0.08516	Mean	0.11453	Mean	1.19427
Standard	1.313518	8 Standard	0.418435	Standard	0.483653	Standard	1.788397
Deviation	327	Deviation	823	Deviation	497	Deviation	107
Minimum	0	Minimum	0	Minimum	0	Minimum	0
Maximum	12	Maximum	5	Maximum	6	Maximum	11.8
npxG		npxG/Sh		G-xG		np:G-xG	
					-		-
	1.10484		0.096557		0.006314		0.002055
Mean	815	Mean	377	Mean	244	Mean	8
Standard	1.618384	4 Standard	0.063662	2 Standard	0.928600	Standard	0.925867
Deviation	275	Deviation	452	Deviation	187	Deviation	734
Minimum	0	Minimum	0.01	Minimum	-4.8	Minimum	-4.8

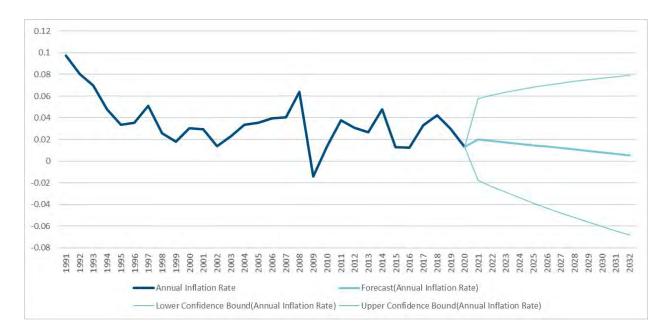
Maximum 11 Maximum 0.44 Maximum 4.5 Maximum 4.5

Passing

Стр		Att		Cmp%		TotDist		PrgDist	
	338.24		421.03	F /	77.939		6831.4	C	2290.0
Mean	2	Mean	3	Mean	7	Mean	4	Mean	5
		Standard							
Deviation	0	Deviation	1	Deviation	1	Deviation	6	Deviation	2
Minimum	0	Minimum	0	Minimum	0	Minimum	0	Minimum	0
		Maximu		Maximu		Maximu		Maximu	
Maximum	1298	m	1580	m	100	m	30835	m	12689
Стр		Att		Cmp%		Cmp		Att	
	129.55		147.58		87.368		147.88		170.64
Mean	6	Mean	8	Mean	7	Mean	3	Mean	3
Standard	114.84	Standard	129.14	Standard	8.7079	Standard	138.67	Standard	154.75
Deviation	1	Deviation	7	Deviation	8	Deviation	1	Deviation	6
Minimum	0	Minimum	0	Minimum	0	Minimum	0	Minimum	0
		Maximu		Maximu		Maximu		Maximu	
Maximum	608	m	699	m	100	m	681	m	723
Cmp%		Стр		Att		Cmp%		Ast	
	84.270				88.033		61.349		0.8428
Mean	5	Mean	55.571	Mean	7	Mean	5	Mean	7
Standard	11.370	Standard	59.866	Standard	92.053	Standard		Standard	
Deviation		Deviation		Deviation			18.004	Deviation	1.3817
Minimum	0	Minimum	0	Minimum	0	Minimum	0	Minimum	0
		Maximu		Maximu		Maximu		Maximu	
Maximum	100	m	331	m	488	m	100	m	9
xA		A-xA		KP		44564		PPA	
			0.0240						
Mean	0.8187	Mean	8	Mean	7.6989	Mean	25.97	Mean	6.6828

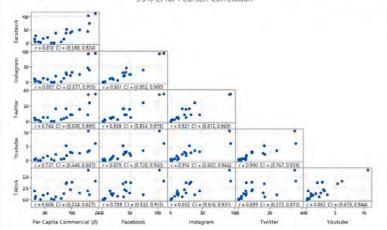
Standard	Standard	0.7599	Standard		Standard		Standard	
Deviation 1.1896	Deviation	9	Deviation	10.072	Deviation	27.916	Deviation	9.4177
Minimum 0	Minimum	-2.6	Minimum	0	Minimum	0	Minimum	0
	Maximu		Maximu		Maximu		Maximu	
Maximum 8.1	m	3.8	m	66	m	148	m	82
CrsPA	Prog							
Mean 1.773	Mean	28.967						
Standard	Standard							
Deviation 3.148	Deviation	30.827						
Minimum 0	Minimum	0						
	Maximu							
Maximum 26	m	209						

Defense

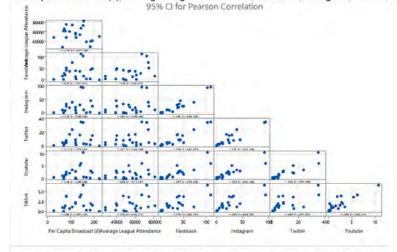

Tkl		TklW		Def 3rd		Mid 3rd		Att 3rd	
Mean	15.474	Mean	9.7635	Mean	7.6622	Mean	5.790	Mean	2.0220
Standard Deviation	15.491	Standard Deviation				Standard Deviation	6.2205	Standard Deviation	2.5863
Minimum	0								
Maximum	97	Maximum	64	Maximu m	49	Maximum	.37	Maximum	17
Tkl		Att		Tkl%		Past		Press	
Mean	5.0396	Mean	13.914	Mean	35.029	Mean	8.8751	Mean	120.95
Standard Deviation	5.6318	Standard Deviation		Standard Deviation		Standard Deviation	9.1022	Standard Deviation	104.96
Minimum	0								
Maximum	29	Maximum	81	Maximu m	100	Maximum	52	Maximum	598
Succ		%		Def 3rd		Mid 3rd		Att 3rd	

Mean	36.587	Mean	29.717	Mean	41.324	Mean	52.795	Mean	26.835
Standard		Standard		Standard		Standard		Standard	
Deviation	32.648	Deviation	13.134	Deviation	41.692	Deviation	49.880	Deviation	31.232
Minimum	0	Minimum	0	Minimum	0	Minimum	0	Minimum	0
				Maximu					
Maximum	186	Maximum	100	m	267	Maximum	291	Maximum	186
Blocks		Sh		ShSv		Pass		Int	
Mean	13.565	Mean	2.9236	Mean	0.0543	Mean	10.641	Mean	5.2790
Standard	12.559	Standard	4.4115	Standard	0.2332	Standard	10.159	Standard	5.9657
Deviation	46691	Deviation	53909	Deviation	30891	Deviation	07126	Deviation	09578
Minimum	0	Minimum	0	Minimum	0	Minimum	0	Minimum	0
Minimum	0	Minimum	0	Minimum Maximu	0	Minimum	0	Minimum	0
Minimum Maximum		Minimum Maximum			0 2	Minimum Maximum		Minimum Maximum	
-				Maximu					
Maximum	70	Maximum		Maximu m <i>Err</i>					
Maximum Tkl+Int	70	Maximum <i>Clr</i>	.30	Maximu m <i>Err</i>	2				
Maximum <i>Tkl+Int</i> Mean Standard	70 20.753	Maximum <i>Clr</i> Mean	30 18.32	Maximu m <i>Err</i> Mean Standard	2 0.2114				
Maximum <i>Tkl+Int</i> Mean Standard	70 20.753 20.542	Maximum <i>Clr</i> Mean Standard	30 18.32 26.807	Maximu m <i>Err</i> Mean Standard	2 0.2114 0.5389				
Maximum <i>Tkl+Int</i> Mean Standard Deviation	70 20.753 20.542	Maximum <i>Clr</i> Mean Standard Deviation	30 18.32 26.807	Maximu m <i>Err</i> Mean Standard Deviation	2 0.2114 0.5389				

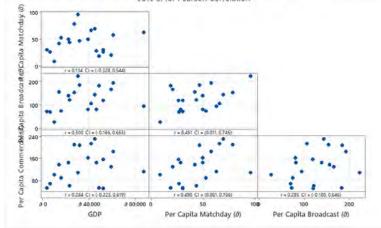
Goal Keeping


MP		Starts		Min		90s	
Mean	10.3684	Mean	10.24561	l Mean	922.070	Mean	10.24561
Standard		Standard		Standard	684.352	5 Standard	
Deviation	7.56078	Deviation	7.63282	Deviation	84	Deviation	7.60584
Minimum	1	Minimum	1	Minimum	90	Minimum	1

Maximum	23	Maximum	23	Maximum	2070	Maximum	23
GA		GA90		SoTA		Saves	
Mean	14.6491	Mean	1.62245	Mean	44	Mean	30.3333
Standard		Standard		Standard		Standard	
Deviation	10.634	Deviation	0.7441	Deviation	32.1330	Deviation	23.0
Minimum	0	Minimum	0	Minimum	1	Minimum	1
Maximum	40	Maximum	3.43	Maximum	116	Maximum	79
Save%		W		D		L	
Mean	66.9824	Mean	3.91228	Mean	2.42105	Mean	3.91228
Standard		Standard		Standard		Standard	
Deviation	12.920	Deviation	3.6561	Deviation	2.42713	Deviation	3.12981
Minimum	20	Minimum	0	Minimum	0	Minimum	0
Maximum	100	Maximum	13	Maximum	9	Maximum	13
CS		CS%		PKatt		РКА	
Mean	2.6315	Mean	22.3842	Mean	1.3859	Mean	1.017
Standard		Standard		Standard		Standard	
Deviation	2.525806	Deviation	21.209	Deviation	1.42370	Deviation	1.1416
Minimum	0	Minimum	0	Minimum	0	Minimum	0
Maximum	9	Maximum	100	Maximum	5	Maximum	4
PKsv		PKm		Save%		_	
Mean	0.24561	Mean	0.122807	7 Mean	19.39722	-	
Standard	0.509926	Standard	0.331133	8 Standard	33.18296	j	
Deviation	527	Deviation	089	Deviation	022		
Minimum	0	Minimum	0	Minimum	0		
Maximum	2	Maximum	1	Maximum	100		


A4: Forecasted Inflation Rates

A5: Revenue Correlation Matrices



Matrix Plot of Per Capita Commercial (ð), Facebook, Instagram, Twitter, Youtube, Tiktol-95% CI for Pearson Correlation

Per Capita Broadcast (∂), Average League Attendance, Facebook, Instagram, Twitter, Ye

Appendix B: Risk and Risk Mitigation

B1: Risk Considerations and Development Tool

Risk Category	Risk Subcategory	Risk Division	Risk	Explanation of Risk
Operational	Technology	Tech Develop not performing as expected	Data Security	Advancements in technology for modeling player performance are not accurate; expectations are not matching outcome
Operational	Human Resources	Talent Management	Recruiting	Ability to develop new talent each year to keep the team competitive
Operational	Human Resources	Talent Management	Player Injuries	Injury or ailments that prevent players from participating in games, can affect outcome of games
Operational	Natural Disasters	Operations	Unexpected Natural or man- made disasters	Natural disasters or health related pandemics could affect arenas and players from competing and fans attending
Strategic	Execution	Management	Player Performance	Under/overestimating player performance can affect probability of winning FSA
Strategic	Execution	Strategic	Standings	Incorrectly predicting tournament standings
Financial	Market	Talent Management	Player Contracts	Accounting for increased salaries per renegotiations, increased experience, and/or leasing players
Financial	Market	External	Changes to inflation/deflation	Unexpected changes in the economy affecting expenses and revenues
Financial	Politics	Internal	Controversial Topics	Potential controversial topics affecting matchday attendance, stockholders, or sponsorships
Financial	Market	External	Investments	Changes to sponsorship and/or stock investments
Financial	Market	Internal	Revenue & Expenses	Incorrectly projecting future revenue and expenses

Appendix C: Team Program Design

C1: Criteria Selection

2020 Player Summary Statistics

Variable	N	Mean	Std. Dev.	Min	Pctl. 25	Pctl. 75	Max
DF	55	7.69 1	2.26	4	6	9	13
DFFW	55	0.18 2	0.38 9	0	0	0	1
DFMF	55	0.98 2	0.97 2	0	0	1.5	4
FW	55	4.74 5	2.35 1	2	3	6	12
FWDF	55	0.03 6	0.18 9	0	0	0	1

2021 Player Summary Statistics

Variable	N	Mean	Std. Dev.	Min	Pctl. 25	Pctl. 75	Max
DF	24	6.54 2	1.64 1	4	5	7.25	10
DFFW	24	0.25	0.44 2	0	0	0.25	1
DFMF	24	0.62 5	0.77	0	0	1	2
FW	24	3.83 3	1.65 9	1	2	5	7
FWDF	24	0.33	0.56	0	0	1	2

Age of Player Summary Statistics

Variable	N	Mean	Std. Dev.	Min	Pctl. 25	Pctl. 75	Max
		Ye	ear: 202	20			
Age	1527	27.5 58	3.97 3	17	25	30	40
		Ye	ear: 202	21			
Age	488	26.5 84	3.97 6	17	24	29	38

C2: R PCA

#PCA for Goalie Data
scaled.gdf<-scale(gdf)
gf_pca<-princomp(x=scaled.gdf)
print(summary(gf_pca), loadings = TRUE)</pre>

g1<-cgoalie[,c(1,2,18,19)] g2<-gf_pca\$scores[,c(1:5)] gdata<-cbind(g1,g2) #pca for goalie data

#PCA for Player Data
pdf<-mdf[,c(4:56)]</pre>

scaled.pdf<-scale(pdf)
df_pca<-princomp(x = scaled.pdf)
print(summary(df_pca), loadings = TRUE)</pre>

d1<-mdf[,c(1:3,57,58)] d2<-df_pca\$scores[,c(1:14)] data<-cbind(d1,d2)

#correlation plots ggcorr(Xs)

C3: PCA Output

Goalie Output:

Importance of components:

Comp.1 Comp.3 Comp.6 Comp.2 Comp.4 Comp.5 Comp.7 2.0158389 1.7550333 1.3694415 1.02144299 0.99918091 0.91212046 0.262191482 Standard deviation Proportion of Variance 0.3392598 0.2571529 0.1565697 0.08710619 0.08335066 0.06945846 0.005739287 Cumulative Proportion 0.3392598 0.5964127 0.7529825 0.84008864 0.92343930 0.99289776 0.998637052 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12 Standard deviation 0.0973791870 0.0772512844 2.096751e-02 2.064109e-02 3.007483e-03 Proportion of Variance 0.0007916862 0.0004982327 3.670411e-05 3.557019e-05 7.551392e-07 Cumulative Proportion 0.9994287379 0.9999269706 9.999637e-01 9.999992e-01 1.000000e+00

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Age 0.425 0.860 0.280 Playing Time MP -0.486 -0.104 0.229 0.835 Playing Time Starts -0.486 -0.103 -0.863 -0.486 -0.103 Playing Time Min 0.305 -0.380 -0.486 -0.103 Playing Time 90s 0.329 -0.393 Performance GA 0.120 -0.485 0.342 -0.222 0.215 -0.615 0.399 Performance GA90 0.118 -0.488 0.333 -0.223 0.209 0.737 Performance SoTA -0.225 -0.719 -0.439 0.418 -0.209 Performance Saves -0.302 0.385 -0.575 0.301 0.165 0.556 Performance CS -0.307 -0.151 0.903 0.245 Performance PKatt 0.109 -0.271 -0.566 -0.253 0.140 0.712 Penalty Kicks PKA 0.105 -0.254 -0.583 -0.242 0.147 -0.699 -0.116 Comp.12 Age Playing Time MP **Playing Time Starts** Playing Time Min 0.716 Playing Time 90s -0.698 Performance GA Performance GA90 Performance SoTA Performance Saves Performance CS Performance PKatt Penalty Kicks PKA

Player Output:

Importance of component	ts:
	Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
Standard deviation	3.6630235 2.5407317 2.3894982 1.64593241 1.48062481 1.41024431 1.33069657 1.28031998 1.11954659 1.06271969
Proportion of Variance	0.2580762 0.1241613 0.1098201 0.05210658 0.04216563 0.03825227 0.03405859 0.03152867 0.02410754 0.02172231
Cumulative Proportion	0.2580762 0.3822375 0.4920576 0.54416419 0.58632981 0.62458209 0.65864067 0.69016934 0.71427688 0.73599919
	Comp.11 Comp.12 Comp.13 Comp.14 Comp.15 Comp.16 Comp.17 Comp.18 Comp.19 Comp.20
Standard deviation	1.0355275 1.01499567 1.00903164 0.99768960 0.9538248 0.93526015 0.91097199 0.86882328 0.83928809 0.79616368
Proportion of Variance	0.0206249 0.01981513 0.01958295 0.01914518 0.0174987 0.01682416 0.01596168 0.01451882 0.01354848 0.01219195
Cumulative Proportion	0.7566241 0.77643922 0.79602217 0.81516735 0.8326660 0.84949021 0.86545189 0.87997071 0.89351919 0.90571114
	Comp.21 Comp.22 Comp.23 Comp.24 Comp.25 Comp.26 Comp.27 Comp.28 Comp.29
Standard deviation	0.76826264 0.74618578 0.72274644 0.699887691 0.633372272 0.615165746 0.57637341 0.55419151 0.515100954
Proportion of Variance	0.01135241 0.01070933 0.01004709 0.009421613 0.007715901 0.007278683 0.00638964 0.00590729 0.005103325
Cumulative Proportion	0.91706355 0.92777289 0.93781998 0.947241593 0.954957494 0.962236177 0.96862582 0.97453311 0.979636432
	Comp.30 Comp.31 Comp.32 Comp.33 Comp.34 Comp.35 Comp.36 Comp.37 Comp.38
Standard deviation	0.456995203 0.400076620 0.389162371 0.299610835 0.298616705 0.272041126 0.25739893 0.243981766 0.210842518
Proportion of Variance	0.004016907 0.003078611 0.002912931 0.001726568 0.001715129 0.001423435 0.00127433 0.001144941 0.000855037
Cumulative Proportion	0.983653340 0.986731951 0.989644883 0.991371450 0.993086579 0.994510014 0.99578434 0.996929286 0.997784323
	Comp.39 Comp.40 Comp.41 Comp.42 Comp.43 Comp.44 Comp.45 Comp.46
Standard deviation	0.2044146414 0.1720869236 0.1310739367 0.0987888011 0.0819374670 5.959486e-02 5.271643e-02 0.0410090807
Proportion of Variance	0.0008036974 0.0005695925 0.0003304466 0.0001877085 0.0001291319 6.831029e-05 5.345157e-05 0.0000323466
Cumulative Proportion	0.9985880201 0.9991576127 0.9994880592 0.9996757677 0.9998048997 9.998732e-01 9.999267e-01 0.9999590081
	Comp.47 Comp.48 Comp.49 Comp.50 Comp.51 Comp.52
Standard deviation	3.709768e-02 2.025772e-02 1.189256e-02 1.002040e-02 9.397788e-03 3.801644e-03
Proportion of Variance	2.647049e-05 7.893134e-06 2.720314e-06 1.931251e-06 1.698712e-06 2.779787e-07
Cumulative Proportion	9,999855e-01 9,999934e-01 9,999961e-01 9,999980e-01 9,999997e-01 1.000000e+00
Loadings:	
	- 1 Care 2 Care 2 Care 1 Care 5 Care 5 Care 8 Care 8 Care 10 Care 11 Care 12 Care 12 Care 14 Care 1

	Comp.1	Comp.2	Comp.3	Comp.4			6 Comp.							Comp.14		
Age					0.124			0.125	0.137		0.491	0.204	0.345	0.150	0.175	
90s				0.118	0.111				0.116		0.520		0.340			
Gls			-0.245	0.431												
Standard Sh			-0.331		0.197			-0.132								
Standard SoT			-0.323	0.158	0.102			-0.169								
Standard Sh/90			-0.289		0.202			-0.144					-0.125		-0.110	
Standard SoT/90			-0.288	0.130	0.118	a.,		-0.178							-0.123	
Performance PK					0.151				-0.233	-0.138	0.367	-0.107	-0.401		0.516	
Performance PKatt					0.102		-0.21	1 0.612								
Standard FK					0.103	6.0	-0.19	3 0.609					-0.108			
Expected xG			-0.320		0.247	- I.					-0.128		0.134			
Expected npxG			-0.313		0.228	Ê.,		-0.101			-0.144		0.171			
Expected G-xG				0.522	-0.285											
Expected np:G-xG				0.521	-0.285	P										
Total Cmp	0.266					-0.12	0									
Total Att	0.269															
Total TotDist	0.261					-0.17	5									
Total PrgDist	0.240					-0.21	8									
Short Cmp	0.263															
5	Comp.16	Comp.1	7 Comp.	18 Comp	.19 Cor	np.20 (omp.21	Comp.22	Comp.23	Comp.24	Comp.25	Comp.26	Comp.27	Comp.28	Comp.29	
Age			0.65	8 0.1	01											
90s		0.138	-0.69	5	0	144										
Gls				0.1	65 -0	.163 .	0.114									
Standard Sh					0	.196 -	0.301	0.225								
Standard SoT				-0.1	89		0.331	-0.210								
Standard Sh/90				-0.1	49 0	375 -	0.411	0.319								
Standard SoT/90	-0.105			-0.3	41 0	176	0.425	-0.293								
Performance PK	-0.139	-0.395		0.3	05											
Performance PKatt													0.697			
Standard FK				-0.1	22								-0.702			
Expected xG	0.107			0.2	08 -0	290										
Expected npxG	0.127			0.2	60 -0	342										
Expected G-xG																
Expected np:G-xG																
Total Cmp									-0.115							
Total Att																
Total TotDist																
Total PrgDist									0.298							
Short Cmp									-0.245							

C4: R Code Player Rank Modeling

#aggregating goalie/team
team_goal<-mgoal[,-c(1,3,4)]%>% group_by(Nation) %>% summarise_all("mean")
team_play<-mplayers[,-c(1,3,4,5)]%>% group_by(Nation) %>% summarise_all("mean") #all 24

#adding rank as variable team_goal\$rank<-c(8,15,16,23,19,14,7,10,11,18,17,13,4,20,3,21,22,2,5,1,6,24,12) team_play\$rank<-c(8,15,16,9,23,19,14,7,10,11,18,17,13,4,20,3,21,22,2,5,1,6,24,12)

#Poisson Regression Goalie ---Xgr<-team_goal[,-c(1)]
fitgoalie<-glm(rank ~ ., data=Xgr, family="poisson")
summary(fitgoalie)</pre>

#Multicolin imcdiag(fitgoalie)

#New Model Goalie
newfitgoalie<-glm(rank ~ G1+G3+G5, data=Xgr, family="poisson")
summary(newfitgoalie)</pre>

newfitgoalienb<-glm.nb(rank ~G1+G3+G5, data=Xgr) summary(newfitgoalienb) #neg bin regression

fitgoalieztp <- zerotrunc(rank ~ G1+G3+G5, data=Xgr, dist="poisson") summary(fitgoalieztp)

```
fitgoalieztnb <- zerotrunc(rank ~ G1+G3+G5, data=Xgr, dist="negbin") summary(fitgoalieztnb)
```

#getitng AIC values AIC(newfitgoalie) AIC(newfitgoalienb) AIC(fitgoalieztp) AIC(fitgoalieztnb)

#loglikelihoodvalue logLik(newfitgoalie) logLik(newfitgoalienb) logLik(fitgoalieztp) logLik(fitgoalieztnb)

```
#Poisson Regression Players ----
Xpr<-team_play[,-(1)]
#old pass regress
fitp<-glm(rank ~ ., data=Xpr, family="poisson")</pre>
summary(fitp)
#Multicolin
imcdiag(fitp)
#New Models Pass
newfitp<-glm(rank ~ C2+C4+C8+C9+C10+C14, data=Xpr, family="poisson")
summary(newfitp)
imcdiag(newfitp)
newfitpnb<-glm.nb(rank ~ C2+C4+C8+C9+C10+C14, data=Xpr)
summary(newfitpnb) #neg bin regression
fitpztp <- zerotrunc(rank ~ C2+C4+C8+C9+C10+C14, data = Xpr, dist="poisson")
summary(fitpztp)
fitpztnb <- zerotrunc(rank ~ C2+C4+C8+C9+C10+C14, data = Xpr, dist="negbin")
summary(fitpztnb)
#getitng AIC values
AIC(newfitp)
AIC(newfitpnb)
AIC(fitpztp)
AIC(fitpztnb)
#loglikelihoodvalue
logLik(newfitp)
logLik(newfitpnb)
logLik(fitpztp)
logLik(fitpztnb)
#FINAL MODELS -----
#Players
fitpztp <- zerotrunc(rank ~ C2+C4+C8+C9+C10+C14, data = Xpr, dist="poisson")
```

summary(fitpztp)

#Goalies fitgoalieztp <- zerotrunc(rank ~ G1+G3+G5, data=Xgr, dist="poisson") summary(fitgoalieztp)

#Predicting for test data
testdatagoal\$predictrank<-predict(fitgoalieztp, testdatagoal, type="response")
testdataplay\$predictrank<-predict(fitpztp, testdataplay, type="response")</pre>

C5: Model Selection Output

Goalie Model: Call: imcdiag(mod = newfitgoalie)

All Individual Multicollinearity Diagnostics Result

VIF TOL Wi Fi Leamer CVIF Klein IND1 IND2 G1 1.2518 0.7988 2.5183 5.2884 0.8938 -2.5342 0 0.0799 1.3267 G3 1.2864 0.7773 2.8645 6.0154 0.8817 -2.6043 0 0.0777 1.4685 0 0.0969 0.2048 G5 1.0321 0.9689 0.3205 0.6731 0.9844 -2.0893 1 --> COLLINEARITY is detected by the test 0 --> COLLINEARITY is not detected by the test G3 , G5 , coefficient(s) are non-significant may be due to multicollinearity R-square of y on all x: 0.8151 * use method argument to check which regressors may be the reason of collinearity _____ Call: zerotrunc(formula = rank ~ G1 + G5, data = Xgr, dist = "poisson") Deviance residuals: Min 10 Median 30 Max -2.703663 -0.624870 -0.008854 0.846694 1.337434 Coefficients (truncated poisson with log link): Estimate Std. Error z value Pr(>|z|) (Intercept) 0.69029 0.24658 2.799 0.00512 ** G1 1.23911 0.14999 8.262 < 2e-16 *** **G5** 0.13980 0.08253 1.694 0.09027 . ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Number of iterations in BFGS optimization: 5 Log-likelihood: -61.16 on 3 Df

Player Model:

Call: imcdiag(mod = newfitp) All Individual Multicollinearity Diagnostics Result VIF TOL Wi Fi Leamer CVIF Klein IND1 IND2 C2 1.1293 0.8855 0.4654 0.6141 0.9410 1.6069 0 0.2460 0.9099 C4 1.1703 0.8545 0.6130 0.8089 0.9244 1.6653 0 0.2374 1.1565 0 0.2268 1.4573 C8 1.2245 0.8167 0.8082 1.0664 0.9037 1.7425 C9 1.2154 0.8228 0.7753 1.0229 0.9071 1.7294 0 0.2286 1.4084 C10 1.1274 0.8870 0.4585 0.6050 0.9418 1.6042 0 0.2464 0.8979 C14 1.0219 0.9786 0.0787 0.1038 0.9892 1.4541 0 0.2718 0.1700 1 --> COLLINEARITY is detected by the test 0 --> COLLINEARITY is not detected by the test C4, C8, C9, C10, C14, coefficient(s) are non-significant may be due to multicollinearity R-square of y on all x: 0.6644 * use method argument to check which regressors may be the reason of collinearity Call: zerotrunc(formula = rank ~ C2 + C4 + C8 + C9 + C10 + C14, data = Xpr, dist = "poisson") Deviance residuals: Min 10 Median 3Q Max -2.4292 -1.2521 0.1218 0.6227 2.3148 Coefficients (truncated poisson with log link): Estimate Std. Error z value Pr(>|z|) (Intercept) 2.46859 0.08003 30.845 < 2e-16 *** 0.08349 -5.779 7.5e-09 *** C2 -0.48251 C4 -0.52429 0.17443 -3.006 0.00265 ** C8 -0.53898 0.18066 -2.983 0.00285 ** C9 0.31129 0.17724 1.756 0.07903 . 0.35413 -1.926 0.05406 . 0.24074 3.244 0.00118 ** C10 -0.68218 C14 0.78098 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Number of iterations in BFGS optimization: 11 Log-likelihood: -68.53 on 7 Df

C6: R Code Optimization for Team Selection

#Salary Cap lowend<-7370370*27 #20% of budget highend<- 16574250*27 #50% of budget

#Optimization - Low End
obj = DF\$PredictRank
con = rbind(t(model.matrix(~ Pos + 0, DF)), rep(1,nrow(DF)), DF\$Salary)
dir = c(">=",">=","<=",">=","<=","<=")</pre>

rhs = c(10,6,1,8,27,7370370*27) resultlow = lp("min", obj, con, dir, rhs, all.bin = TRUE)

DF\$included<-resultlow\$solution teamlow<-split(DF,DF\$included)

#Team - high
obj = DF\$PredictRank
con = rbind(t(model.matrix(~ Pos + 0, DF)), rep(1,nrow(DF)), DF\$Salary)
dir = c(">=",">=","<=","<=","<=")
rhs = c(10,6,2,8,27,16574250*27)
resulthigh = lp("min", obj, con, dir, rhs, all.bin = TRUE)</pre>

DF\$includedhigh<-resulthigh\$solution teamhigh<-split(DF,DF\$includedhigh)

Appendix D: Literature Review

Gaines, C. (2012, July 25). Ads on sports jerseys might be worth more than you think, and that's a good thing. Business Insider. Retrieved March 10, 2022, from https://www.businessinsider.com/ads-on-sports-jerseys-might-be-worth-more-than-youthink-and-thats-a-good-thing-2012-7

Sport jersey sponsorships dramatically improve a team's profits and allow a change in money allocation. Based on the top English soccer teams, around 31 million is paid to these teams to have an advertisement on their shirt. This money can pay for a stronger or more talented roster or to decrease prices for the fans.

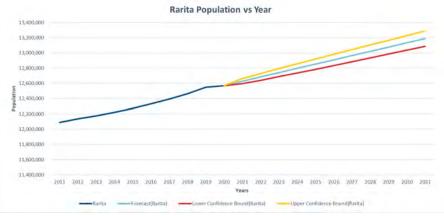
Joy Nwokoro, J. (2021, May 26). *Estimated Cost of Building a Concession Stand in 2022*. ProfitableVenture. Retrieved March 10, 2022, from

https://www.profitableventure.com/cost-build-concession-stand/

One way to increase profit margins is to build concession stands throughout stadiums. The article clearly presented the necessary factors to help determine the cost of the stand. This will help assist in the process of expanding our revenues. From the concession stands, there can be as much as 80 percent profit, depending on what is sold and other costs.

Paden, J. (2021, December 19). *The business of naming stadiums*. AmadorValleyToday. Retrieved March 17, 2022, from https://www.amadorvalleytoday.org/17148/sports/the-business-of-naming-stadiums/

For over a century, companies have been willing to pay millions of dollars to have a stadium named after them. This promotes advertisement for the company along with boosting the revenues for the team. Across all sports, the cost of naming stadiums remains consistent. On average, around 200 million dollars is spent on the naming rights.


Pérez-Toledano, M. Á., Rodriguez, F. J., García-Rubio, J., & Ibañez, S. J. (2019). Players' selection for basketball teams, through Performance Index Rating, using multiobjective evolutionary algorithms. *PloS one*, *14*(9), e0221258.

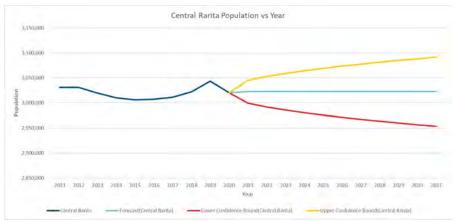
Two main goals of roster creation are to minimize the financial costs and to maximize the expected performance of the players selected. Create a valuation metric that is some sort of reference indicator of valuable players. Team valuation index is the sum of all players' normalized valuation indexes. This valuation metric is an objective performance indicator.

Pettinger, T. (2018, January 8). *Effects of a falling inflation rate*. Economics Help. Retrieved February 22, 2022, from <u>https://www.economicshelp.org/blog/357/inflation/effects-of-a-falling-inflation-</u> <u>rate/#:~:text=A%20falling%20rate%20of%20inflation%20means%20that%20prices%20</u> will%20be,competitive%20increasing%20exports%20and%20growth

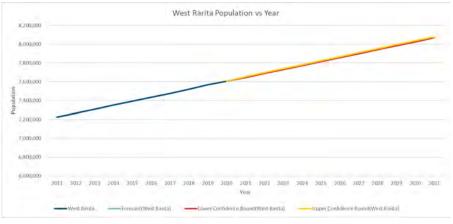
There are many different effects of a falling interest rate, but it is not always detrimental. Some of the benefits include increased competitiveness, increased real wages, and improved return for investors. However, it can also cause a decrease in the GDP, deflationary pressure, along with higher unemployment.

Appendix E: Further Considerations

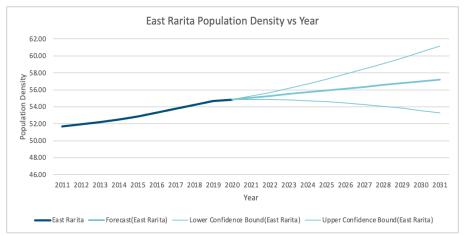
Population Forecasting:


Graph E1: Rarita Population vs Year

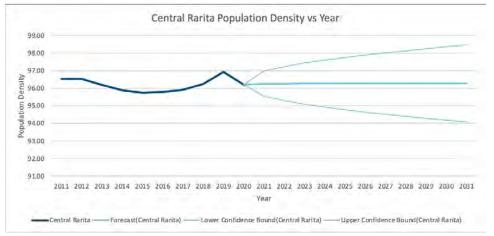
Shows the population trend for Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.


Graph E2: East Rarita Population vs Year

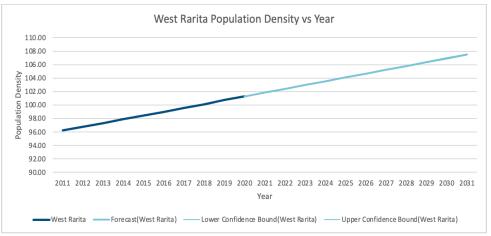
Shows the population trend for East Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.


Graph E3: Central Rarita Population vs Year

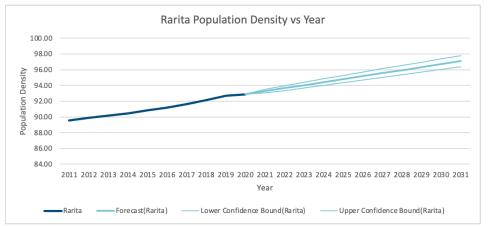
Shows the population trend for Central Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.


Graph E4: West Rarita Population vs Year

Shows the population trend for West Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

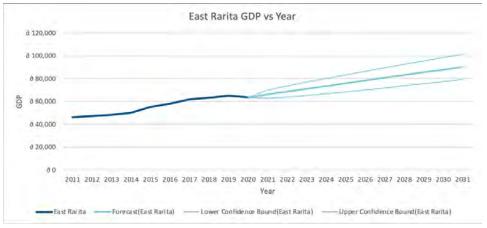


Shows the population density (people/ km^2) trend for East Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

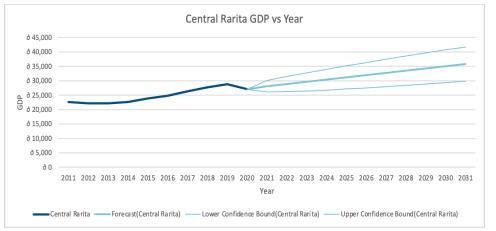

Graph E6: Central Rarita Population Density vs Year

Shows the population density (people/ km^2) trend for Central Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

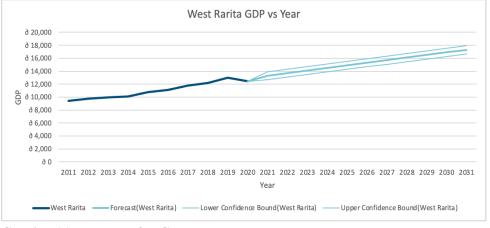
Graph E7: West Rarita Population Density vs Year


Shows the population density (people/ km^2) trend for West Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

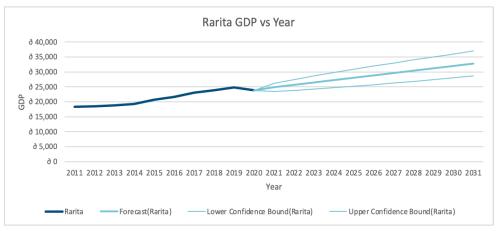
Graph E8: Rarita Population Density vs Year


Shows the population density (people/ km^2) trend for Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

GDP Forecasting:


Graph E9: East Rarita GDP vs Year

Shows the GDP per capita trend for East Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

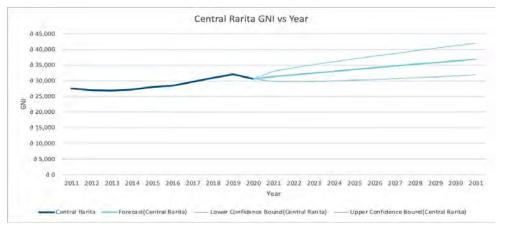

Graph E10: Central Rarita GDP vs Year

Shows the GDP per capita trend for Central Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

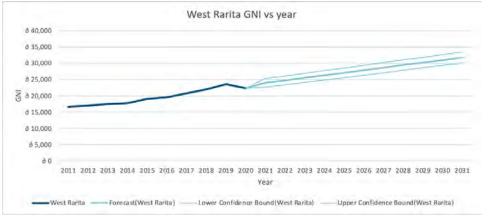
Graph E11: West Rarita GDP vs Year


Shows the GDP per capita trend for West Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

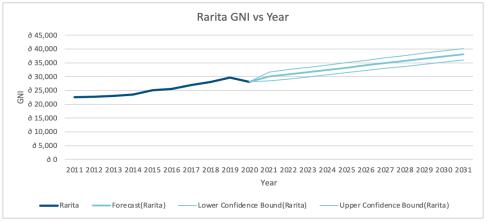
Graph E12: Rarita GDP vs Year


Shows the GDP per capita trend for Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

GNI Forecasting:


Graph E13: East Rarita GNI vs Year

Shows the GNI per capita trend for East Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

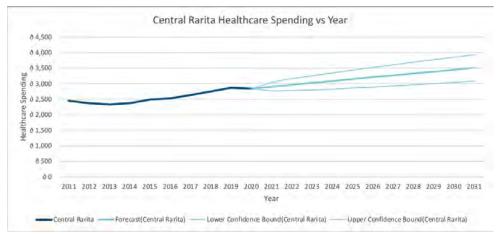

Graph E14: Central Rarita GNI vs Year

Shows the GNI per capita trend for Central Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

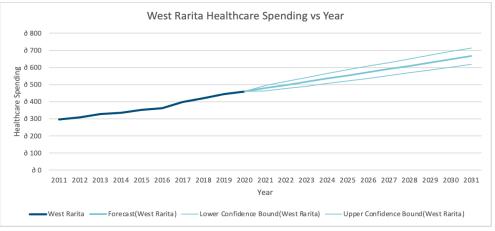
Graph E15: West Rarita GNI vs Year

Shows the GNI per capita trend for West Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

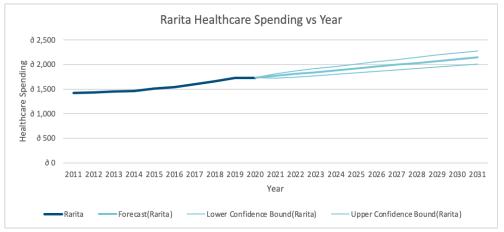
Graph E16: Rarita GNI vs Year


Shows the GNI per capita trend for Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

Healthcare Spending Forecasting:

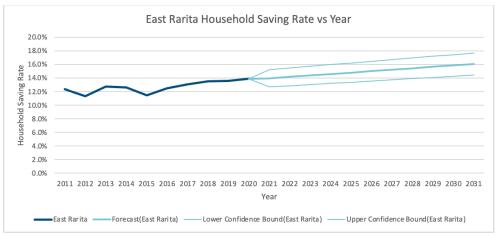

Graph E17: East Rarita Healthcare Spending vs Year

Shows the healthcare spending per capita trend for East Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

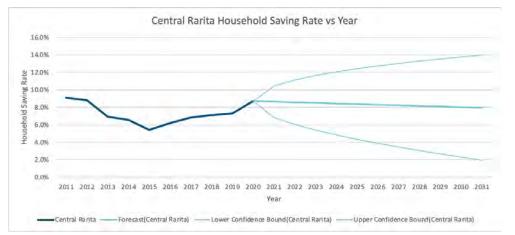

Graph E18: Central Rarita Healthcare Spending vs Year

Shows the healthcare spending per capita trend for Central Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

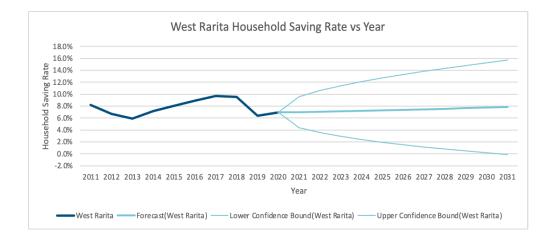
Graph E19: West Rarita Healthcare Spending vs Year


Shows the healthcare spending per capita trend for West Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

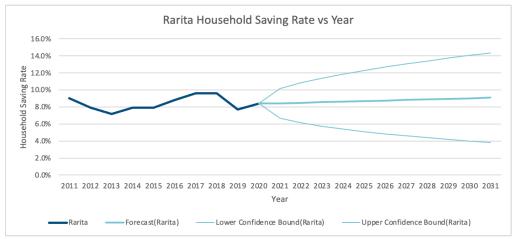
Graph E20: Rarita Healthcare Spending vs Year


Shows the healthcare spending per capita trend for Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

Household Saving Rate Forecasting:


Graph E21: East Rarita Household Saving Rate vs Year

Shows the household saving rate trend for East Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.


Graph E22: Central Rarita Household Saving Rate vs Year

Shows the household saving rate trend for Central Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

Graph E23: West Rarita Household Saving Rate vs Year

Shows the household saving rate trend for West Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

Graph E24: Rarita Household Saving Rate vs Year

Shows the household saving rate trend for Rarita from 2011 to 2020 and forecasts the future population until 2031. Depicts the 95% confidence interval.

Appendix F: Expenses and Revenues

F1: Expenses R Code data <-please.work View(please.work) datanew<-raritas.expenses.and.gdp View(raritas.expenses.and.gdp)

T1 <-glm(X2020.Total.Expense~ X2020 - 1,data=subset(data)) summary(T1)

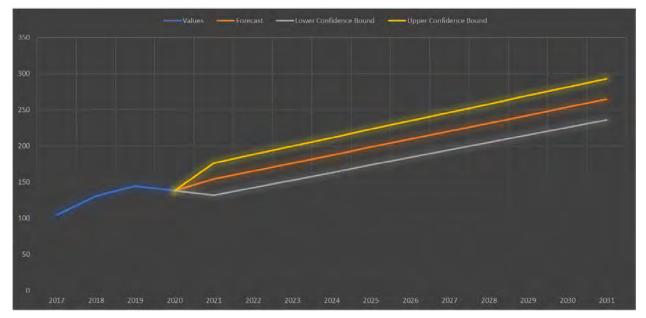
T2 <-glm(X2019.Total.Expense~ X2019 - 1,data=subset(data)) summary(T2)

T3 <-glm(X2018.Total.Expense~ X2018 - 1,data=subset(data)) summary(T3)

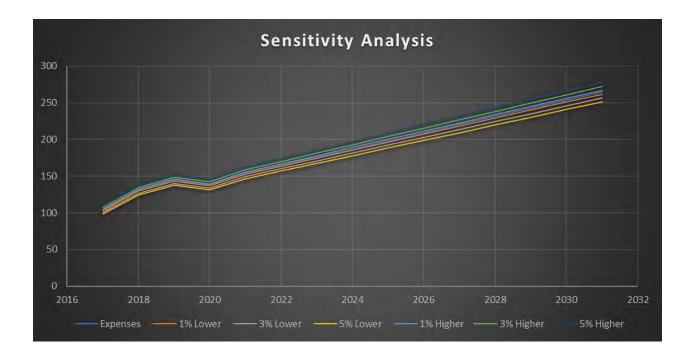
T4 <-glm(X2017.Total.Expense~ X2017 - 1,data=subset(data))

summary(T4)

T5 <-glm(X2016.Total.Expense~ X2016 - 1,data=subset(data)) summary(T5)


predOut <- predict(object=T1, newdata=datanew, type="response")
print(predOut)</pre>

predOut <- predict(object=T2, newdata=datanew, type="response")
print(predOut)</pre>


predOut <- predict(object=T3, newdata=datanew, type="response")
print(predOut)</pre>

```
predOut <- predict(object=T4, newdata=datanew, type="response")
print(predOut)</pre>
```

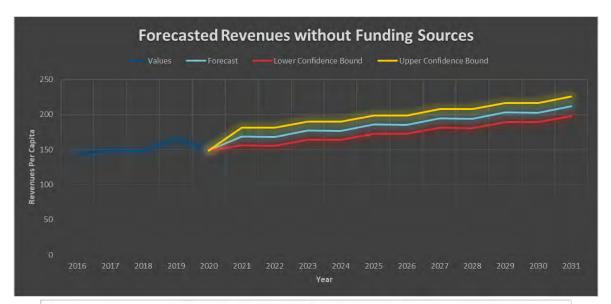
testM5 <- raritas.expenses.and.gdp[c(8)] View(testM5) predOut <- predict(object=T5, newdata=testM5, type="response") print(predOut)

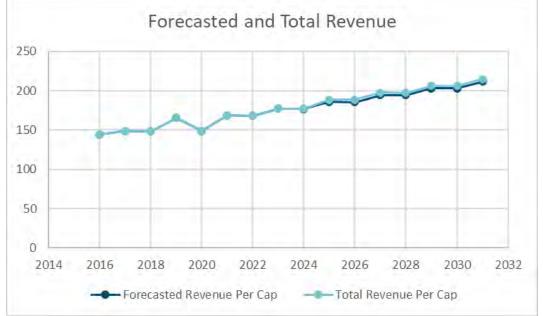
F2: Forecasted Expenses

F3: Revenues R Code

data <- LastChance View(data)

T1 <-glm(X2020TotalRevenue ~ X2020LeagueAttend + X2020TotalSocialMedia + GDP2020 - 1,data=subset(data)) summary(T1)


T2 <-glm(X2019TotalRevenue ~ X2019LeagueAttend + X2019TotalSocialMedia + GDP2019 - 1,data=subset(data)) summary(T2)


T3 <-glm(X2018TotalRevenue ~ X2018LeagueAttend + X2018TotalSocialMedia + GDP2018 - 1,data=subset(data)) summary(T3)

T4 <-glm(X2017TotalRevenue ~ X2017LeagueAttend + X2017TotalSocialMedia + GDP2017 - 1,data=subset(data)) summary(T4) T5 <-glm(X2016TotalRevenue ~ X2016LeagueAttend + X2016TotalSocialMedia + GDP2016 -1,data=subset(data)) summary(T5) rarita2020 <- RaritaLCinput[c(7, 12, 21)]</pre> View(rarita2020) predOut2020 <- predict(object= T1, newdata = rarita2020, type = "response") print(predOut2020) rarita2019 < - RaritaLCinput[c(8, 13, 20)]View(rarita2019) predOut2019 <- predict(object= T2, newdata = rarita2019, type = "response") print(predOut2019) rarita2018 <- RaritaLCinput[c(9, 14, 19)] View(rarita2018) predOut2018 <- predict(object= T3, newdata = rarita2018, type = "response") print(predOut2018) rarita2017 <- RaritaLCinput[c(10, 15, 18)] View(rarita2017) predOut2017 <- predict(object= T4, newdata = rarita2017, type = "response") print(predOut2017) rarita $2016 \leq \text{RaritaLCinput}[c(11, 16, 17)]$

View(rarita2016) predOut2016 <- predict(object= T5, newdata = rarita2016, type = "response") print(predOut2016)

F4: Forecasted Revenues

