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QFI QF Model Solutions 
Spring 2020 

 
 
 
 
1. Learning Objectives: 

1. The candidate will understand the foundations of quantitative finance. 
 
Learning Outcomes: 
(1a) Understand and apply concepts of probability and statistics important in 

mathematical finance. 
 
(1c) Understand Ito integral and stochastic differential equations. 
 
(1d) Understand and apply Ito’s Lemma. 
 
(1h) Define and apply the concepts of martingale, market price of risk and measures in 

single and multiple state variable contexts. 
 
Sources: 
An Introduction to the Mathematics of Financial Derivatives, Hirsa, Ali and Neftci, Salih 
N., 3rd Edition 2nd Printing, 2014 – Chapters: 6, 8, 10, & 13.   
 
Commentary on Question: 
This question tests candidates’ understanding of exotic options and Ito’s Lemma and 
concept of martingale. 
 
Solution: 
(a) Describe three common differences between exotic options and standard options. 
 

Commentary on Question: 
Candidates performed below expectations. Candidates knew some of the 
differences between exotic and standard options but most failed to recognize the 
common differences.  
 
Three common differences between exotic and standard options is that for exotic 
options: 

• The expiration value of the option may depend on some event or the path 
of the asset over the life of the option;  

• The option may have random expiration dates; 
• The options may be written on more than one asset. 
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1. Continued 
 
(b) Derive the stochastic differential equation of tS . 
 

Commentary on Question: 
This is a standard application of Ito’s Lemma. Most candidates demonstrated 
knowledge of how to apply Ito’s Lemma. However, some candidates made 
mistakes in the application of the formula and/or in the calculations.  
 
Let 𝐹𝐹(𝑥𝑥,𝑦𝑦) = �𝑥𝑥𝑥𝑥.  
 
𝑆𝑆𝑡𝑡 = 𝐹𝐹(𝑋𝑋𝑡𝑡 ,𝑌𝑌𝑡𝑡).  
 
By Ito’s lemma, we have 

𝑑𝑑𝑆𝑆𝑡𝑡 = 𝑑𝑑𝑑𝑑 = 𝐹𝐹𝑡𝑡𝑑𝑑𝑑𝑑 + 𝐹𝐹𝑥𝑥𝑑𝑑𝑋𝑋𝑡𝑡 + 𝐹𝐹𝑦𝑦𝑑𝑑𝑌𝑌𝑡𝑡 +
1
2 �
𝐹𝐹𝑥𝑥𝑥𝑥𝑑𝑑𝑋𝑋𝑡𝑡2 + 𝐹𝐹𝑦𝑦𝑦𝑦𝑑𝑑𝑌𝑌𝑡𝑡2� + 𝐹𝐹𝑥𝑥𝑥𝑥𝑑𝑑𝑋𝑋𝑡𝑡𝑑𝑑𝑌𝑌𝑡𝑡 

Note that 
𝐹𝐹𝑡𝑡 = 0  

𝐹𝐹𝑥𝑥 = 1
2
𝑋𝑋𝑡𝑡
−12𝑌𝑌𝑡𝑡

1
2  

𝐹𝐹𝑦𝑦 = 1
2
𝑋𝑋𝑡𝑡
1
2𝑌𝑌𝑡𝑡

−12  

𝐹𝐹𝑥𝑥𝑥𝑥 = −1
4
𝑋𝑋𝑡𝑡
−32𝑌𝑌𝑡𝑡

1
2  

𝐹𝐹𝑦𝑦𝑦𝑦 = −1
4
𝑋𝑋𝑡𝑡
1
2𝑌𝑌𝑡𝑡

−32  

𝐹𝐹𝑥𝑥𝑥𝑥 = 1
4
𝑋𝑋𝑡𝑡
−12𝑌𝑌𝑡𝑡

−12  
𝑑𝑑𝑋𝑋𝑡𝑡2 = 𝑋𝑋𝑡𝑡2(𝛼𝛼2 + 𝛽𝛽2)𝑑𝑑𝑑𝑑  
𝑑𝑑𝑌𝑌𝑡𝑡2 = 𝑌𝑌𝑡𝑡2(𝛽𝛽2 + 𝛾𝛾2)𝑑𝑑𝑑𝑑  
𝑑𝑑𝑋𝑋𝑡𝑡𝑑𝑑𝑌𝑌𝑡𝑡 = 𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽)𝑑𝑑𝑑𝑑  
 
Plugging the above equations into the first equation, we get 

𝑑𝑑𝑆𝑆𝑡𝑡 =
1
2�

𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡 �𝜇𝜇1𝑑𝑑𝑑𝑑 + 𝛼𝛼𝛼𝛼𝑊𝑊𝑡𝑡
(1) + 𝛽𝛽𝛽𝛽𝑊𝑊𝑡𝑡

(2)� +
1
2�

𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡 �𝜇𝜇2𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛽𝛽𝑊𝑊𝑡𝑡
(1) + 𝛾𝛾𝛾𝛾𝑊𝑊𝑡𝑡

(2)�

−
1
8�

𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡(𝛼𝛼2 + 2𝛽𝛽2 + 𝛾𝛾2)𝑑𝑑𝑑𝑑 +
1
4�

𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽)𝑑𝑑𝑑𝑑 
 
Rearranging the terms gives 

𝑑𝑑𝑆𝑆𝑡𝑡 =
1
2
𝑆𝑆𝑡𝑡 �𝜇𝜇1 + 𝜇𝜇2 −

1
4

(𝛼𝛼2 + 2𝛽𝛽2 + 𝛾𝛾2 − 2𝛼𝛼𝛼𝛼 − 2𝛽𝛽𝛽𝛽)�𝑑𝑑𝑑𝑑

+
1
2
𝑆𝑆𝑡𝑡 �(𝛼𝛼 + 𝛽𝛽)𝑑𝑑𝑊𝑊𝑡𝑡

(1) + (𝛽𝛽 + 𝛾𝛾)𝑑𝑑𝑊𝑊𝑡𝑡
(2)� 

 

𝑑𝑑𝑆𝑆𝑡𝑡 =
1
2
𝑆𝑆𝑡𝑡 �𝜇𝜇1 + 𝜇𝜇2 −

1
4

{(𝛼𝛼 − 𝛽𝛽)2 + (𝛽𝛽 − 𝛾𝛾)2}�𝑑𝑑𝑑𝑑

+
1
2
𝑆𝑆𝑡𝑡 �(𝛼𝛼 + 𝛽𝛽)𝑑𝑑𝑊𝑊𝑡𝑡

(1) + (𝛽𝛽 + 𝛾𝛾)𝑑𝑑𝑊𝑊𝑡𝑡
(2)� 
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1. Continued 
 
(c) Show that tB  is a standard Wiener process. 

 
Commentary on Question: 
Candidates did relatively well on this part as most recognized the conditions 
required for 𝐵𝐵𝑡𝑡 to be a Wiener process.  

 
To show that 𝐵𝐵𝑡𝑡 is a Wiener process, we need to verify four conditions. 
 

1. B0 = 0  Since 𝑊𝑊𝑡𝑡
(1) and 𝑊𝑊𝑡𝑡

(2) are Wiener processes, we have 𝐵𝐵0 = 0. 
 

2. Stationary, Independent Increments  Since 𝑊𝑊𝑡𝑡
(1) and 𝑊𝑊𝑡𝑡

(2) are independent 
Wiener processes, 𝐵𝐵𝑡𝑡 also has stationary, independent increments. 
 

3. Continuous  Since 𝑊𝑊𝑡𝑡
(1) and 𝑊𝑊𝑡𝑡

(2) are Wiener processes, which are continuous in 𝑡𝑡, 
𝐵𝐵𝑡𝑡 is also continuous in 𝑡𝑡. 
 

4. E[Bt-Bs] = 0 and  Var[Bt-Bs] = |t-s| 
 

Consider 𝐵𝐵𝑡𝑡 − 𝐵𝐵𝑠𝑠 =
(𝛼𝛼+𝛽𝛽)�𝑊𝑊𝑡𝑡

(1)−𝑊𝑊𝑠𝑠
(1)�+(𝛽𝛽+𝛾𝛾)�𝑊𝑊𝑡𝑡

(2)−𝑊𝑊𝑠𝑠
(2)�

�(𝛼𝛼+𝛽𝛽)2+(𝛽𝛽+𝛾𝛾)2
. 

 
Since 𝑊𝑊𝑡𝑡

(1) and 𝑊𝑊𝑡𝑡
(2) are Wiener processes, we know that  𝐵𝐵𝑡𝑡 − 𝐵𝐵𝑠𝑠 follows a normal 

distribution.   
 
                       𝐸𝐸[𝐵𝐵𝑡𝑡 − 𝐵𝐵𝑠𝑠] = 0  
 
and 

𝑉𝑉𝑉𝑉𝑉𝑉[𝐵𝐵𝑡𝑡 − 𝐵𝐵𝑠𝑠] =
(𝛼𝛼 + 𝛽𝛽)2|𝑡𝑡 − 𝑠𝑠| + (𝛽𝛽 + 𝛾𝛾)2|𝑡𝑡 − 𝑠𝑠|

(𝛼𝛼 + 𝛽𝛽)2 + (𝛽𝛽 + 𝛾𝛾)2 = |𝑡𝑡 − 𝑠𝑠| 

 
(d) Derive the condition on the parameters under which tS  is a martingale with 

respect to the filtration generated by tB . 
 

Commentary on Question: 
Candidates did relatively well on this part as they recognized that the drift of St 
with respect to the filtration generated by Bt should be 0 to be a martingale.  

 
From (b).:  

 
𝑑𝑑𝑆𝑆𝑡𝑡 = 1

2
𝑆𝑆𝑡𝑡 �𝜇𝜇1 + 𝜇𝜇2 −

1
4

{(𝛼𝛼 − 𝛽𝛽)2 + (𝛽𝛽 − 𝛾𝛾)2}� 𝑑𝑑𝑑𝑑 + 1
2
𝑆𝑆𝑡𝑡 �(𝛼𝛼 + 𝛽𝛽)𝑑𝑑𝑊𝑊𝑡𝑡

(1) + (𝛽𝛽 +

𝛾𝛾)𝑑𝑑𝑊𝑊𝑡𝑡
(2)�  
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1. Continued 
 
𝑑𝑑𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

=
1
2
�𝜇𝜇1 + 𝜇𝜇2 −

1
4

{(𝛼𝛼 − 𝛽𝛽)2 + (𝛽𝛽 − 𝛾𝛾)2}�𝑑𝑑𝑑𝑑 +
1
2
�(𝛼𝛼 + 𝛽𝛽)2 + (𝛽𝛽 + 𝛾𝛾)2 𝑑𝑑𝑑𝑑𝑡𝑡 

  
         
For 𝑑𝑑𝑆𝑆𝑡𝑡

𝑆𝑆𝑡𝑡
 to be a martingale, we must have the drift (dt) = 0  

 
  

1
2
�𝜇𝜇1 + 𝜇𝜇2 −

1
4

{(𝛼𝛼 − 𝛽𝛽)2 + (𝛽𝛽 − 𝛾𝛾)2}� = 0 
 

𝜇𝜇1 + 𝜇𝜇2 =
(𝛼𝛼 − 𝛽𝛽)2 + (𝛽𝛽 − 𝛾𝛾)2

4
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2. Learning Objectives: 
1. The candidate will understand the foundations of quantitative finance. 
 
Learning Outcomes: 
(1a) Understand and apply concepts of probability and statistics important in 

mathematical finance. 
 
(1c) Understand Ito integral and stochastic differential equations. 
 
(1d) Understand and apply Ito’s Lemma. 
 
Sources: 
Hirsa-Neftci Ch5, 9, 10, Chin-Olafsson Ch 2, 3 
 
Commentary on Question: 
The question is trying to test how to apply the concept of Ito Integral 
 
Solution: 
(a) Apply Ito’s isometry to prove that 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )
0 0 0

 
t t t

E f u dW u g u dW u E f u g u du   =      ∫ ∫ ∫ . 

 

Now, denote ( ) ( )( ) ( )
0

t
X t sgn W s dW s= ∫ , where ( )

1   0
1   0
, if x

sgn x
, if x

≥
= − <

. 

 
Commentary on Question: 
Overall, candidates did poorly on this section. Most, who attempted it, stated 
isometry as a result, but did not apply it to complete the proof.  
 

Ito’s isometry says that 

 𝐸𝐸 ��∫ (𝑓𝑓(𝑢𝑢) + 𝑔𝑔(𝑢𝑢))𝑑𝑑𝑑𝑑(𝑢𝑢)𝑡𝑡
0 �

2
� = 𝐸𝐸 �∫ (𝑓𝑓(𝑢𝑢) + 𝑔𝑔(𝑢𝑢))2𝑑𝑑𝑑𝑑𝑡𝑡

0 �.  

 
For the expression on the left-hand side, expanding the squares followed by applying Ito 
isometry lead to 

𝐸𝐸 ��� 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑑𝑑(𝑢𝑢)
𝑡𝑡

0
�
2

+ �� 𝑔𝑔(𝑢𝑢)𝑑𝑑𝑑𝑑(𝑢𝑢)
𝑡𝑡

0
�
2

+ 2�� 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑑𝑑(𝑢𝑢)
𝑡𝑡

0
��� 𝑔𝑔(𝑢𝑢)𝑑𝑑𝑑𝑑(𝑠𝑠)

𝑡𝑡

0
�� 

= 𝐸𝐸 ��� 𝑓𝑓2(𝑢𝑢)𝑑𝑑𝑑𝑑
𝑡𝑡

0
� + �� 𝑔𝑔2(𝑢𝑢)𝑑𝑑𝑑𝑑

𝑡𝑡

0
�+ 2�� 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑑𝑑(𝑠𝑠)

𝑡𝑡

0
��� 𝑔𝑔(𝑢𝑢)𝑑𝑑𝑑𝑑(𝑠𝑠)

𝑡𝑡

0
�� 

 
For the expression on the right-hand side, expanding the squares gives 
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2. Continued 
 

𝐸𝐸 �� �𝑓𝑓2(𝑢𝑢) + 𝑔𝑔2(𝑢𝑢) + 2𝑓𝑓(𝑢𝑢)𝑔𝑔(𝑢𝑢)�𝑑𝑑𝑑𝑑
𝑡𝑡

0
� 

 
Hence, subtracting like terms on both sides gives the desired results. 

(b) Show using the result in part (a) or otherwise, that   
 
(i) ( ) ( ) 0E X t W t =   . 

 

(ii) ( ) ( )
3

2 4 2
3

tE X t W t
π

  =  . 

 

Hint:  ( ) 2sE W s
π

  =  . 

 
Commentary on Question: 
Of the two parts to this question, (b)(i) was attempted by most candidates. About 
half were able to attain full marks on part (b)(i). Fewer had success on part (b)(ii) 
and only the best candidates obtained full marks on part (b)(ii). 
 
Part (i) 
 

𝐸𝐸[𝑋𝑋(𝑡𝑡)𝑊𝑊(𝑡𝑡)] 

= 𝐸𝐸 ��� 𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡

0
[𝑊𝑊(𝑠𝑠)]𝑑𝑑𝑑𝑑(𝑠𝑠)��� 𝑑𝑑𝑑𝑑(𝑠𝑠)

𝑡𝑡

0
�� 

= 𝐸𝐸 �∫ 𝑠𝑠𝑠𝑠𝑠𝑠[𝑊𝑊(𝑠𝑠)] ⋅ 1𝑑𝑑𝑑𝑑𝑡𝑡
0 � by applying part (a) 

= ∫ 𝐸𝐸�𝑠𝑠𝑠𝑠𝑠𝑠[𝑊𝑊(𝑠𝑠)]�𝑑𝑑𝑑𝑑𝑡𝑡
0   

= 0  

Alternative solution for part (i):   
            
Appply Ito’s Lemma, one has 
𝑑𝑑�𝑋𝑋(𝑡𝑡)𝑊𝑊(𝑡𝑡)� 
= 𝑋𝑋(𝑡𝑡) 𝑑𝑑𝑑𝑑(𝑡𝑡) +𝑊𝑊(𝑡𝑡) 𝑑𝑑𝑑𝑑(𝑡𝑡) +  𝑑𝑑𝑑𝑑(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡) 
= 𝑋𝑋(𝑡𝑡) 𝑑𝑑𝑑𝑑(𝑡𝑡) +𝑊𝑊(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠[𝑊𝑊(𝑡𝑡)]  𝑑𝑑𝑑𝑑(𝑡𝑡) +  𝑠𝑠𝑠𝑠𝑠𝑠[𝑊𝑊(𝑡𝑡)]𝑑𝑑𝑑𝑑 
 
Hence, integrating both sides followed by taking expectation gives 
𝐸𝐸[𝑋𝑋(𝑡𝑡)𝑊𝑊(𝑡𝑡)] 

= 𝐸𝐸 �� [𝑋𝑋(𝑠𝑠) + 𝑊𝑊(𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠[𝑊𝑊(𝑠𝑠)]]
𝑡𝑡

0
𝑑𝑑𝑑𝑑(𝑠𝑠) + � 𝑠𝑠𝑠𝑠𝑠𝑠[𝑊𝑊(𝑠𝑠)]𝑑𝑑𝑑𝑑

𝑡𝑡

0
�
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2. Continued 
 
= ∫ 𝐸𝐸�𝑠𝑠𝑠𝑠𝑠𝑠[𝑊𝑊(𝑠𝑠)]�𝑑𝑑𝑑𝑑 𝑡𝑡

0     
= 0 
 
   Part (ii) 
 

Note that, by Ito formula,  
𝑑𝑑𝑊𝑊2(𝑡𝑡) = 2𝑊𝑊(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡) + 𝑑𝑑𝑑𝑑 
or equivalently, 
𝑊𝑊2(𝑡𝑡) = 2∫ 𝑊𝑊(𝑠𝑠)𝑑𝑑𝑑𝑑(𝑠𝑠) + 𝑡𝑡𝑡𝑡

0 . 
 
Hence, 
𝐸𝐸[𝑋𝑋(𝑡𝑡)𝑊𝑊2(𝑡𝑡)] 

= 𝐸𝐸 ��� 𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡

0
[𝑊𝑊(𝑠𝑠)]𝑑𝑑𝑑𝑑(𝑠𝑠)��2� 𝑊𝑊(𝑠𝑠)𝑑𝑑𝑑𝑑(𝑠𝑠) + 𝑡𝑡

𝑡𝑡

0
�� 

= 2𝐸𝐸 �� 𝑠𝑠𝑠𝑠𝑠𝑠[𝑊𝑊(𝑠𝑠)]𝑊𝑊(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
� + 𝑡𝑡𝑡𝑡 �� 𝑠𝑠𝑠𝑠𝑠𝑠[𝑊𝑊(𝑠𝑠)]𝑑𝑑𝑑𝑑(𝑠𝑠)

𝑡𝑡

0
�… (∗) 

= 2� 𝐸𝐸[|𝑊𝑊(𝑠𝑠)|]𝑑𝑑𝑑𝑑 + 0
𝑡𝑡

0
 

= 2�
21 2⁄ 𝑠𝑠1 2⁄

√𝜋𝜋
𝑑𝑑𝑑𝑑

𝑡𝑡

0
… (∗∗) 

=
25 2⁄ 𝑡𝑡3 2⁄

3√𝜋𝜋
 

 
where (**) is evaluated as follows: note that 𝑊𝑊(𝑠𝑠)~𝑁𝑁(0, 𝑠𝑠), which gives 
𝐸𝐸[|𝑊𝑊(𝑠𝑠)|] 

= � 1
2𝜋𝜋𝜋𝜋

� |𝑢𝑢|𝑒𝑒−
𝑢𝑢2
2𝑠𝑠𝑑𝑑𝑢𝑢

∞

−∞
 

= � 2
𝜋𝜋𝜋𝜋
� |𝑢𝑢|𝑒𝑒−

𝑢𝑢2
2𝑠𝑠𝑑𝑑𝑑𝑑

∞

0
 

= � 2
𝜋𝜋𝜋𝜋
�−𝑠𝑠𝑒𝑒−

𝑢𝑢2
2𝑠𝑠�

𝑢𝑢=0

𝑢𝑢=∞

 

=
21 2⁄ 𝑠𝑠1 2⁄

√𝜋𝜋
 

 
            An alternative way to arrive at (*) is given below. 
Applying Ito formula, one has 
𝑑𝑑𝑑𝑑(𝑡𝑡)𝑊𝑊2(𝑡𝑡) 
= 𝑋𝑋(𝑡𝑡) 𝑑𝑑𝑊𝑊2(𝑡𝑡) + 𝑊𝑊(𝑡𝑡) 𝑑𝑑𝑑𝑑(𝑡𝑡) +  𝑑𝑑𝑑𝑑(𝑡𝑡)𝑑𝑑𝑊𝑊2(𝑡𝑡) 
= 𝑋𝑋(𝑡𝑡)[2𝑊𝑊(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡) + 𝑑𝑑𝑑𝑑] + 𝑊𝑊2(𝑡𝑡)[𝑠𝑠𝑠𝑠𝑠𝑠[𝑊𝑊(𝑡𝑡)]𝑑𝑑𝑊𝑊(𝑡𝑡)] +  2𝑊𝑊(𝑡𝑡) 𝑠𝑠𝑠𝑠𝑠𝑠[𝑊𝑊(𝑡𝑡)]𝑑𝑑𝑑𝑑  
Hence, integrating both sides followed by taking expectation gives 
= 𝐸𝐸 �∫ [2𝑋𝑋(𝑠𝑠)𝑊𝑊(𝑠𝑠) + 𝑊𝑊2(𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠[𝑊𝑊(𝑠𝑠)]]𝑡𝑡

0 𝑑𝑑𝑑𝑑(𝑠𝑠) + ∫ [𝑋𝑋(𝑠𝑠) + 2𝑊𝑊(𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠[𝑊𝑊(𝑠𝑠)]]𝑑𝑑𝑑𝑑𝑡𝑡
0 �  
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2. Continued 

(c) Show that 𝐸𝐸[|𝑋𝑋(𝑡𝑡)𝑊𝑊(𝑡𝑡)|] ≤ 𝑡𝑡. 
 

Commentary on Question: 
Overall, candidates did poorly on this part, and very few obtained full marks. 
There were two approaches candidates could take, shown in the solutions below.  

 
Solution 1 
 
Note that By Cauchy-Schwarz inequality 
|𝑋𝑋(𝑡𝑡)𝑊𝑊(𝑡𝑡)| ≤ 𝑋𝑋(𝑡𝑡)2+𝑊𝑊(𝑡𝑡)2

2
   

and 

𝐸𝐸[𝑋𝑋(𝑡𝑡)2] = 𝐸𝐸 ��∫ 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡
0 [𝑊𝑊(𝑠𝑠)]𝑑𝑑𝑑𝑑(𝑠𝑠)�

2
�  

= 𝐸𝐸 ��∫ (𝑠𝑠𝑠𝑠𝑠𝑠[𝑊𝑊(𝑠𝑠)])2𝑑𝑑𝑑𝑑𝑡𝑡
0 �� = 𝐸𝐸 ��∫ 1𝑑𝑑𝑑𝑑𝑡𝑡

0 �� = 𝑡𝑡  
 
𝐸𝐸[𝑊𝑊(𝑡𝑡)2] = 𝑡𝑡  
 
We have [|𝑋𝑋(𝑡𝑡)𝑊𝑊(𝑡𝑡)|] ≤ 𝑡𝑡 

 
Solution 2 

 

𝐸𝐸[|𝑋𝑋(𝑡𝑡)𝑊𝑊(𝑡𝑡)|] = 𝐸𝐸 ���𝑋𝑋(𝑡𝑡)𝑊𝑊(𝑡𝑡)�2�  

 
By isometry, we have 𝑋𝑋2(𝑡𝑡) = ∫ 𝑠𝑠𝑠𝑠𝑠𝑠2(𝑡𝑡

0 𝑊𝑊(𝑠𝑠))𝑑𝑑𝑑𝑑 = ∫ 1𝑡𝑡0 𝑑𝑑𝑑𝑑 = 𝑡𝑡 
 

𝐸𝐸 ���𝑋𝑋(𝑡𝑡)𝑊𝑊(𝑡𝑡)�2� = 𝐸𝐸 ��𝑡𝑡 �𝑊𝑊(𝑡𝑡)�2� = √𝑡𝑡 𝐸𝐸 ���𝑊𝑊(𝑡𝑡)�2�  

 
By Jensen’s inequality, the concavity of square root function gives us that  
 

√𝑡𝑡 𝐸𝐸 ���𝑊𝑊(𝑡𝑡)�2� ≤ √𝑡𝑡 �𝐸𝐸[𝑊𝑊2(𝑡𝑡)] = 𝑡𝑡  
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3. Learning Objectives: 
1. The candidate will understand the foundations of quantitative finance. 
 
Learning Outcomes: 
(1a) Understand and apply concepts of probability and statistics important in 

mathematical finance. 
 
(1c) Understand Ito integral and stochastic differential equations. 
 
(1d) Understand and apply Ito’s Lemma. 
 
(1h) Define and apply the concepts of martingale, market price of risk and measures in 

single and multiple state variable contexts. 
 
Sources: 
Hirsa-Neftci Ch5, 6, 10; Chin-Olafsson Ch1, 2, 3 
 
Commentary on Question: 
In general, candidates did well on this question. Most lost points on parts (b) and (c). 
 
Solution: 
(a)  

(i) State the three conditions for a process to be a martingale.  
 

(ii) Show that, for a fixed ( ){ },  0,uu M t  satisfies those conditions. 
 

Commentary on Question: 
Most candidates received full credit for part (i) as long as a clear, complete 
definition was stated and all conditions were correctly stated.  
 
{𝑀𝑀𝑢𝑢(0, 𝑡𝑡)}  is ℱ𝑡𝑡-adapted. 
This is clear since 𝐼𝐼(𝑡𝑡) is ℱ𝑡𝑡  measurable. 
 
𝔼𝔼|𝑀𝑀𝑢𝑢(0, 𝑡𝑡)| is finite. 
Let 𝑔𝑔 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑢𝑢𝑥𝑥 − 1

2
𝑢𝑢2 ∫ 𝑓𝑓2(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡

0 �. Direct differentiation gives 𝑔𝑔𝑡𝑡 = −1
2
𝑢𝑢2𝑓𝑓2(𝑡𝑡)𝑔𝑔, 

𝑔𝑔𝑥𝑥 = 𝑢𝑢𝑢𝑢 and 𝑔𝑔𝑥𝑥𝑥𝑥 = 𝑢𝑢2𝑔𝑔. Using Ito’s formula, 
𝑑𝑑𝑀𝑀𝑢𝑢(0, 𝑡𝑡) 

= 𝑔𝑔𝑡𝑡𝑑𝑑𝑑𝑑 + 𝑔𝑔𝑥𝑥𝑑𝑑𝑑𝑑(𝑡𝑡) +
1
2
𝑔𝑔𝑥𝑥𝑥𝑥[𝑑𝑑𝑑𝑑(𝑡𝑡)]2 

= �𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡) −
1
2
𝑢𝑢2𝑓𝑓2(𝑡𝑡)𝑑𝑑𝑑𝑑 +

1
2
𝑢𝑢2𝑓𝑓2(𝑡𝑡)� 𝑔𝑔 

= 𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡) 
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3. Continued 
 
Writing in integral form and taking expectation gives 

𝔼𝔼[𝑀𝑀𝑢𝑢(0, 𝑡𝑡)] −𝑀𝑀𝑢𝑢(0,0) = 𝔼𝔼 �� 𝑢𝑢𝑢𝑢(𝑠𝑠)𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑡𝑡

0
� 

so that 
𝔼𝔼[𝑀𝑀𝑢𝑢(0, 𝑡𝑡)] = 𝔼𝔼|𝑀𝑀𝑢𝑢(0, 𝑡𝑡)| = 1 < ∞ 
 
 
𝔼𝔼�𝑀𝑀𝑢𝑢(0, 𝑡𝑡2)|ℱ𝑡𝑡1� = 𝑀𝑀𝑢𝑢(0, 𝑡𝑡1) for 0 ≤ 𝑡𝑡1 < 𝑡𝑡2. 
In evaluating the dynamic of 𝑀𝑀𝑢𝑢(0, 𝑡𝑡) above, observe that the drift term vanishes. 
Therefore 𝔼𝔼�𝑀𝑀𝑢𝑢(0, 𝑡𝑡2)|ℱ𝑡𝑡1� = 𝑀𝑀𝑢𝑢(0, 𝑡𝑡1) for 0 ≤ 𝑡𝑡1 < 𝑡𝑡2. 

 
(b) Show that ( )

11 2, 1u tM t t  =   . 

 
Commentary on Question: 
Candidates who referred to part (a) without dealing specifically with the more 
general question asked in this part received partial credit only.  
 
 
Using martingale property and conditional expectation, 
𝑀𝑀𝑢𝑢(0, 𝑡𝑡1) = 𝔼𝔼�𝑀𝑀𝑢𝑢(0, 𝑡𝑡2)|ℱ𝑡𝑡1� 

= 𝔼𝔼 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑢𝑢𝑢𝑢(𝑡𝑡2)−
1
2
𝑢𝑢2 � 𝑓𝑓2(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑡𝑡2

0
��ℱ𝑡𝑡1� 

= 𝔼𝔼 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑢𝑢𝑢𝑢(𝑡𝑡1) + 𝑢𝑢[𝐼𝐼(𝑡𝑡2)− 𝐼𝐼(𝑡𝑡1)]−
1
2
𝑢𝑢2 � 𝑓𝑓2(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑡𝑡1

0
−

1
2
𝑢𝑢2 � 𝑓𝑓2(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑡𝑡2

𝑡𝑡1
��ℱ𝑡𝑡1� 

= 𝑀𝑀𝑢𝑢(0, 𝑡𝑡1)𝔼𝔼 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑢𝑢[𝐼𝐼(𝑡𝑡2) − 𝐼𝐼(𝑡𝑡1)] − 1
2
𝑢𝑢2 ∫ 𝑓𝑓2(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡2

𝑡𝑡1
��ℱ𝑡𝑡1�. 

Since 𝑀𝑀𝑢𝑢(0, 𝑡𝑡1) is a non zero process, this gives  
1 = 𝔼𝔼�𝑀𝑀𝑢𝑢(𝑡𝑡1, 𝑡𝑡2)|ℱ𝑡𝑡1�. 
 
Alternatively, for 𝑡𝑡 ≥ 𝑡𝑡1, consider 

𝑋𝑋𝑡𝑡 = 𝑢𝑢�𝐼𝐼(𝑡𝑡) − 𝐼𝐼(𝑡𝑡1)� −
𝑢𝑢2

2
� 𝑓𝑓2(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡1
  

Then 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑢𝑢𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡) −
𝑢𝑢2

2
𝑓𝑓2(𝑡𝑡)𝑑𝑑𝑑𝑑 

 
From Ito’s formula 

𝑑𝑑𝑒𝑒𝑋𝑋𝑡𝑡 = 𝑒𝑒𝑋𝑋𝑡𝑡 �𝑑𝑑𝑋𝑋𝑡𝑡 +
(𝑑𝑑𝑋𝑋𝑡𝑡)2

2 � 

= 𝑒𝑒𝑋𝑋𝑡𝑡 �𝑢𝑢𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡) −
𝑢𝑢2

2
𝑓𝑓2(𝑡𝑡)𝑑𝑑𝑑𝑑 +

�𝑢𝑢𝑢𝑢(𝑡𝑡)�2

2
𝑑𝑑𝑑𝑑�
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3. Continued 
 
= 𝑢𝑢𝑒𝑒𝑋𝑋𝑡𝑡𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡) 
Hence 

𝑒𝑒𝑋𝑋𝑡𝑡 − 𝑒𝑒𝑋𝑋𝑡𝑡1 = 𝑢𝑢� 𝑒𝑒𝑋𝑋𝑠𝑠𝑓𝑓(𝑠𝑠)
𝑡𝑡

𝑡𝑡1
𝑑𝑑𝑑𝑑(𝑠𝑠)  

 
Note that using martingale property, 
𝔼𝔼 �∫ 𝑒𝑒𝑋𝑋𝑠𝑠𝑓𝑓(𝑠𝑠)𝑡𝑡

𝑡𝑡1
𝑑𝑑𝑑𝑑(𝑠𝑠)� ℱ𝑡𝑡1� = ∫ 𝑒𝑒𝑋𝑋𝑠𝑠𝑓𝑓(𝑠𝑠)𝑡𝑡1

𝑡𝑡1
𝑑𝑑𝑑𝑑(𝑠𝑠) = 0.  

Also, 𝑋𝑋𝑡𝑡1 = 𝑢𝑢�𝐼𝐼(𝑡𝑡1)− 𝐼𝐼(𝑡𝑡1)� − 𝑢𝑢2

2 ∫ 𝑓𝑓2(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡1
𝑡𝑡1

= 0. Thus it follows that  

𝔼𝔼�𝑒𝑒𝑋𝑋𝑡𝑡|ℱ𝑡𝑡1� = 1. The desired result follows by putting 𝑡𝑡 = 𝑡𝑡2. 
 
(c) Show that ( )1I t  and ( ) ( )2 1I t I t−  are independent normal random variables.  

Identify their means and variances. 
 
Commentary on Question: 
To receive full credit, candidates needed to prove independence and show the 
variables are normal random variables with the correct means and variances.  

 
From part (b),  

𝔼𝔼�𝑀𝑀𝑢𝑢1(0, 𝑡𝑡1)𝑀𝑀𝑢𝑢2(𝑡𝑡1, 𝑡𝑡2)�ℱ𝑡𝑡1� = 𝑀𝑀𝑢𝑢1(0, 𝑡𝑡1) 
Meanwhile, from part (b), 𝔼𝔼�𝑀𝑀𝑢𝑢1(0, 𝑡𝑡1)� = 1 due to martingale property.  
Taking expectation on both sides and rearranging gives  
 

𝔼𝔼[exp{𝑢𝑢1𝐼𝐼(𝑡𝑡1) + 𝑢𝑢2[𝐼𝐼(𝑡𝑡2) − 𝐼𝐼(𝑡𝑡1)]}] = exp �1
2
𝑢𝑢12 ∫ f2(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡1

0 + 1
2
𝑢𝑢22 ∫ f2(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡2

𝑡𝑡1
�. 

Note that the left-hand side corresponds to the joint moment generating function of 
�𝐼𝐼(𝑡𝑡1), 𝐼𝐼(𝑡𝑡2) − 𝐼𝐼(𝑡𝑡1)�, whereas the right hand side corresponds to the product of 
moment generating functions of two (marginal) normal distributions. This implies 𝐼𝐼(𝑡𝑡1) 
and 𝐼𝐼(𝑡𝑡2) − 𝐼𝐼(𝑡𝑡1) are independent normal random variables.  
From the joint moment generating function, means and variances can be identified as 
𝐼𝐼(𝑡𝑡1)~𝑁𝑁 �0,∫ f2(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡1

0 � and 𝐼𝐼(𝑡𝑡2) − 𝐼𝐼(𝑡𝑡1)~𝑁𝑁�0,∫ f2(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡2
𝑡𝑡1

�. 
 
Alternative solution: 
From (b) 𝔼𝔼�exp �𝑢𝑢[𝐼𝐼(𝑡𝑡2) − 𝐼𝐼(𝑡𝑡1)]− 1

2
𝑢𝑢2 ∫ f2(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡2

𝑡𝑡1
� �ℱ𝑡𝑡1� = 1 for all 𝑡𝑡2 ≥ 𝑡𝑡1 

Thus, 𝔼𝔼�exp{𝑢𝑢[𝐼𝐼(𝑡𝑡2) − 𝐼𝐼(𝑡𝑡1)]} �ℱ𝑡𝑡1� = exp �1
2
𝑢𝑢2 ∫ f2(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡2

𝑡𝑡1
� 

Since RHS is the moment generating function of 𝑁𝑁 �0,∫ f2(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡2
𝑡𝑡1

� we find that for all 
pairs 𝑡𝑡1, 𝑡𝑡2 with 0 ≤ 𝑡𝑡1 ≤ 𝑡𝑡2
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3. Continued 
 

𝐼𝐼(𝑡𝑡2) − 𝐼𝐼(𝑡𝑡1)~𝑁𝑁�0,� f2(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡2

𝑡𝑡1
� 

In particular for pairs 0, 𝑡𝑡1 with 0 ≤ 𝑡𝑡1 we have                                                ,  

𝐼𝐼(𝑡𝑡1) = 𝐼𝐼(𝑡𝑡1) − 𝐼𝐼(0)~𝑁𝑁�0,� f2(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡1

0
� 

Finally since 𝑊𝑊(𝑠𝑠4) −𝑊𝑊(𝑠𝑠3) and 𝑊𝑊(𝑠𝑠2) −𝑊𝑊(𝑠𝑠1) are independent for 𝑠𝑠1 ≤ 𝑠𝑠2 ≤ 𝑠𝑠3 ≤
𝑠𝑠4, we conclude that 𝐼𝐼(𝑡𝑡1) = ∫ f(𝑠𝑠)𝑡𝑡1

0 𝑑𝑑𝑑𝑑(𝑠𝑠) and 𝐼𝐼(𝑡𝑡2) − 𝐼𝐼(𝑡𝑡1) = ∫ f(𝑠𝑠)𝑡𝑡2
𝑡𝑡1

𝑑𝑑𝑑𝑑(𝑠𝑠) are 
also independent. 
(d) ( ) ( )( )1 2Cov ,I t I t  
 

Commentary on Question: 
Overall, candidates did very well on this part. 

 
Using part (c), 
 𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼(𝑡𝑡1), 𝐼𝐼(𝑡𝑡2)) 
= 𝐶𝐶𝐶𝐶𝐶𝐶�𝐼𝐼(𝑡𝑡1), 𝐼𝐼(𝑡𝑡2)− 𝐼𝐼(𝑡𝑡1)� + 𝑉𝑉𝑉𝑉𝑉𝑉�𝐼𝐼(𝑡𝑡1)� 

= � f2(𝑠𝑠)
𝑡𝑡1

0
𝑑𝑑𝑑𝑑 
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4. Learning Objectives: 
1. The candidate will understand the foundations of quantitative finance. 
 
Learning Outcomes: 
(1i) Demonstrate understanding of the differences and implications of real-world 

versus risk-neutral probability measures, and when the use of each is appropriate.  
 
(1j) Understand and apply Girsanov’s theorem in changing measures. 
 
Sources: 
Hirsa–Neftci, Chapter 14 
 
Commentary on Question: 
This question tests candidates’ knowledge of option pricing, Girsanov’s theorem, the 
relationship between risk-neutral measures and real-world measures. Most candidates 
were able to complete some parts and earn partial credit. However, very few candidates 
were able to earn full credit. 
 
Solution: 
(a)  

(i) Write the arbitrage-free option price C  as an expectation with respect 
to the risk-neutral probability measure  . 
 

(ii) Derive the formula 0 1C S N( d )=  where 

2
0

1

ln
2

S r T
K

d
T

σ

σ

   + +  
   = . 

 
(iii) Calculate C  using the above formula. 

 
Commentary on Question: 
Most candidates did well on parts (i) and (iii) by writing out the option pricing 
formula based on the risk-neutral pricing theory and calculating the option price. 
However, few candidates were able to derive the formula in part (ii). 
 

(i) Let 𝐶𝐶 denote the arbitrage-free option price. Then 
𝐶𝐶 = 𝐸𝐸𝑄𝑄�𝑆𝑆1 1{𝑆𝑆1>𝐾𝐾} 𝑒𝑒−𝑟𝑟� with 𝑄𝑄 the risk-neutral probability measure. 

 
(ii) Continue from (i): Since 𝑆𝑆1 = 𝑆𝑆0 𝑒𝑒�𝑟𝑟−0.5𝜎𝜎2+𝜎𝜎𝑊𝑊1

𝑄𝑄�, we obtain 

𝑆𝑆1 > 𝐾𝐾 ⇒  𝑊𝑊1
Q > −

ln �𝑆𝑆0𝐾𝐾�+ (𝑟𝑟 − 0.5𝜎𝜎2)

𝜎𝜎
 

and 
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4. Continued 

𝐸𝐸𝑄𝑄�𝑆𝑆1 1{𝑆𝑆1>𝐾𝐾}� 𝑒𝑒−𝑟𝑟 =  𝑆𝑆0
1

√2𝜋𝜋
� 𝑒𝑒−0.5𝜎𝜎2+𝜎𝜎𝜎𝜎−0.5𝑥𝑥2𝑑𝑑𝑑𝑑
∞

− 
ln�𝑆𝑆0𝐾𝐾 �+(𝑟𝑟−0.5𝜎𝜎2)

𝜎𝜎

 

=  𝑆𝑆0
1

√2𝜋𝜋
� 𝑒𝑒−0.5(𝑥𝑥−𝜎𝜎)2𝑑𝑑𝑑𝑑 
∞

− 
ln�𝑆𝑆0𝐾𝐾 �+(𝑟𝑟−0.5𝜎𝜎2)

𝜎𝜎

=  𝑆𝑆0
1

√2𝜋𝜋
� 𝑒𝑒−0.5𝑦𝑦2𝑑𝑑𝑑𝑑 
∞

− 
ln�𝑆𝑆0𝐾𝐾 �+(𝑟𝑟+0.5𝜎𝜎2)

𝜎𝜎

=  𝑆𝑆0 �1 −  𝑁𝑁�−
ln �𝑆𝑆0𝐾𝐾� + (𝑟𝑟 + 0.5𝜎𝜎2)

𝜎𝜎
��

=  𝑆𝑆0𝑁𝑁�
ln �𝑆𝑆0𝐾𝐾� + (𝑟𝑟 + 0.5𝜎𝜎2)

𝜎𝜎
� =  𝑆𝑆0𝑁𝑁(𝑑𝑑1). 

 
(iii) Substituting the given values into the formula in (ii), we have 𝑑𝑑1 = −4.23 and 𝐶𝐶 = 0. 
 
(b)  

(i) State how Girsanov’s Theorem can be used in this case. 
 

(ii) Show that the adapted process on the probability space (   t, ,Ω Ι  ) 
defined by 1tX d=  satisfies the Novikov condition with 1d  being the 
constant calculated in part (a). 
 

Commentary on Question: 
Most candidates did well on this part. 
 

(i) Girsanov Theorem can be applied to any two equivalent measures. Since we need to go from 
(Ω, 𝐼𝐼𝑡𝑡 ,𝑄𝑄) to (Ω, 𝐼𝐼𝑡𝑡,𝑃𝑃), we can state it as follows:  
 
Let 𝑊𝑊𝑡𝑡 be a Wiener process defined on the probability space (Ω, 𝐼𝐼𝑡𝑡,𝑄𝑄) and 𝑋𝑋𝑡𝑡 be an adapted 
process satisfying the Novikov condition. (A weaker hypothesis than Novikov, which implies the 
conclusion of the theorem is that the random process 

𝜉𝜉𝑡𝑡 = 𝑒𝑒�∫ 𝑋𝑋𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢
Q−0.5∫ 𝑋𝑋𝑢𝑢2 𝑑𝑑𝑑𝑑𝑡𝑡

0
𝑡𝑡
0 �, 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇
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4. Continued 
 
is a martingale with respect to the information sets 𝐼𝐼𝑡𝑡 and the probability 𝑄𝑄)  
Then  

𝑊𝑊𝑡𝑡
P = 𝑊𝑊𝑡𝑡

Q −� 𝑋𝑋𝑢𝑢 𝑑𝑑𝑑𝑑, 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇
𝑡𝑡

0
 

is a Wiener process with respect to 𝐼𝐼𝑡𝑡 and the probability 𝑃𝑃 given by 𝑃𝑃(𝐴𝐴) = 𝐸𝐸𝑄𝑄(1𝐴𝐴 𝜉𝜉𝑇𝑇) for any 
event 𝐴𝐴 determined by 𝐼𝐼𝑇𝑇.  
 
(ii) Novikov condition is satisfied since: 

𝐸𝐸𝑄𝑄 �𝑒𝑒0.5∫ |𝑋𝑋𝑢𝑢|2 𝑑𝑑𝑑𝑑𝑡𝑡
0 � = 𝐸𝐸𝑄𝑄 �𝑒𝑒0.5𝑑𝑑12𝑡𝑡� < ∞ 

 
(c)  

(i) Define the probability measure  . 
 

(ii) Express 1N( d )  as an expectation with respect to  . 
 

Commentary on Question: 
Many candidates did well on part (i). However, few candidates were able to do 
part (ii). 

 
(i) The application of Girsanov Theorem yields that 𝑊𝑊𝑡𝑡

P = 𝑊𝑊𝑡𝑡
Q − 𝑑𝑑1𝑡𝑡 is a Wiener process with 

respect to (Ω, 𝐼𝐼𝑡𝑡 ,𝑃𝑃) and 𝑃𝑃(𝐴𝐴) = 𝐸𝐸𝑄𝑄 �1𝐴𝐴 𝑒𝑒𝑑𝑑1𝑊𝑊𝑡𝑡
𝑄𝑄−0.5𝑑𝑑12𝑡𝑡�. 

 
(ii) 𝑁𝑁(𝑑𝑑1) =  𝑄𝑄��𝑊𝑊1

Q ≤  𝑑𝑑1�� = 𝐸𝐸𝑄𝑄 �1�𝑊𝑊1
Q≤ 𝑑𝑑1�

�  

= 𝐸𝐸𝑄𝑄 �1�𝑊𝑊1
Q≤ 𝑑𝑑1�

𝑒𝑒𝑑𝑑1𝑊𝑊1
𝑄𝑄−0.5𝑑𝑑12𝑒𝑒−𝑑𝑑1𝑊𝑊1

𝑄𝑄+0.5𝑑𝑑12� = 𝐸𝐸𝑃𝑃 �1�𝑊𝑊1
Q≤ 𝑑𝑑1�

 𝑒𝑒−𝑑𝑑1𝑊𝑊1
𝑄𝑄+0.5𝑑𝑑12�  

= 𝐸𝐸𝑃𝑃 �1�𝑊𝑊1
P≤ 0� 𝑒𝑒

−𝑑𝑑1𝑊𝑊1
𝑃𝑃−0.5𝑑𝑑12� 

 
 
(d) Calculate y  and z  and estimate C  using the simulation results and the table 

above. 
 

Commentary on Question: 
Most candidates did poorly on this part. 
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4. Continued 
 
Using the simulation results: 

 
𝐸𝐸𝑃𝑃 �1�𝑊𝑊1

P≤ 0� 𝑒𝑒
−𝑑𝑑1𝑊𝑊1

𝑃𝑃−0.5𝑑𝑑12�

≈ 0.003𝑒𝑒(4.23)(−2.85)−0.5(4.23)2 + 0.009𝑒𝑒(4.23)(−2.55)−0.5(4.23)2

+ 0.008𝑒𝑒(4.23)(−2.2)−0.5(4.23)2 + 0.015𝑒𝑒(4.23)(−1.85)−0.5(4.23)2

+ 0.027𝑒𝑒(4.23)(−1.5)−0.5(4.23)2 + 0.057𝑒𝑒(4.23)(−1.15)−0.5(4.23)2

+ 0.098𝑒𝑒(4.23)(−0.85)−0.5(4.23)2 + 0.118𝑒𝑒(4.23)(−0.5)−0.5(4.23)2

+ 0.149𝑒𝑒(4.23)(−0.15)−0.5(4.23)2 ≈ 1.25 × 10−5 
 (disregarding all but the last three terms). 
 
𝑥𝑥 = 0.098𝑒𝑒(4.23)(−0.85)−0.5(4.23)2 = 3.50208𝐸𝐸 − 07 is given 

y = 0.118𝑒𝑒(4.23)(−0.5)−0.5(4.23)2 = 1.85334𝐸𝐸 − 06 
z = 0.149𝑒𝑒(4.23)(−0.15)−0.5(4.23)2 = 1.02857𝐸𝐸 − 05 

 
Therefore, 𝐶𝐶 = 𝑆𝑆0𝑁𝑁(𝑑𝑑1) ≈  1.25 × 10−2 = 0.0125. 
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5. Learning Objectives: 
2. The candidate will understand the fundamentals of fixed income markets and 

traded securities. 
 
Learning Outcomes: 
(2c) Understand measures of interest rate risk including duration, convexity, slope, and 

curvature. 
 
Sources: 
Veronesi, Fixed Income Securities (Chapters 3, 4) 
 
Commentary on Question: 
The question was about the comprehension, the application and the calculations around 
the concepts of the duration and the convexity of a portfolio and their relation to the 
interest rate risk. 
 
The global results were lower than expected because of the poor results of parts d), e) 
and f). Those three parts referred to the general understanding of the duration and 
convexity of Barbell-Bullet portfolio, and whether or not such a portfolio can always 
achieve positive return, and if it consists of an arbitrage opportunity.  
 
It seems that the candidates have overlooked the section of the reading material 
explaining the situation. It is as if they wanted to concentrate more on difficult issues, 
involving formulae and calculations, but they should be remembered that more general 
concepts are often good concepts to know well, and that it is an occasion to earn exam 
points that may be important. 
 
Part a) on the calculation of the duration and the convexity from the given data was well 
done. 
 
Solution: 
(a) Calculate the duration and the convexity of the GIC, assuming the term structure 

of interest rates currently is flat at a continuously compounded rate of 4%. 
 

Commentary on Question: 
The candidates were very successful in their calculations. 
 

Duration 
1

* 2.92
n

GIC i i
i

D W T
=

= =∑  

Convexity 𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺 = ∑ 𝑊𝑊𝑖𝑖 ∗ 𝑇𝑇𝑖𝑖2𝑛𝑛
𝑖𝑖=1 = 10.523 
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5. Continued 
 
(b) Construct a hedging portfolio based on the CIO’s suggestion. 
 

Commentary on Question: 
The results seemed to be of two categories. Many were not able to go through the 
question, did not remember the formulae, but other were more successful. They 
have usually used the development of the formula d V = d P + k1 × d P1 + k2 × d 
P2, leading to the equations: 

k1 × D1 × P1 + k2 × D2 × P2 = −D × P (Delta Hedging) 

k1 × C1 × P1 + k2 × C2 × P2 = −C × P (Convexity Hedging) 

and they solved for k1 and k2 based on the data. However, some forgot the negative 
sign for the D and C, when they are at the right side of the equation.  

Finally, in general, the candidates have interpreted the negative value of k1 and k2 
as being a decision to short, but it was the contrary in this situation. The GIC sold 
by the company is a SHORT action. The negative signs of k1 and k2 mean the 
immunization actions are both opposite actions. So, we need to LONG two zero 
bonds to immunize the GIC. 
 

The hedging portfolio would be : 
 1 2* (0,2) * (0,5)V GIC k Z k Z= + +   
Where  
                            GIC  : Present Value (PV) of the GIC (in millions) 
                            (0, 2)Z  : PV of 2-year zero-coupon bond (in millions)  
                            (0,5)Z  : PV of 5-year zero-coupon bond (in millions) 
                                                                    

1 (0,5) (0,5) (0,2) (0,5) (0,2) (0,5)*(( * * ) ( * * ))(0, 2) GIC Z GIC Z Z Z Z Z
GICk D C C D D C C DZ= − − −  

 

2 (0,2) (0,2) (0,5) (0,1) (0,5) (0,2)*(( * * ) ( * * ))(0,5) GIC Z GIC Z Z Z Z Z
GICk D C C D D C C DZ= − − −  
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5. Continued 
 
Where  
 2

(0, ) (0, ),Z T Z TD T C T= = : the durations and convexities of two zero-coupon bonds  
                                           PV of  𝐺𝐺𝐺𝐺𝐺𝐺 = ∑ 𝐶𝐶𝐹𝐹𝑖𝑖 ∗ 𝑍𝑍(0,𝑇𝑇𝑖𝑖) = 6.662𝑛𝑛

𝑖𝑖=1  

 2
(0,2) (0,2)

2
(0,5) (0,5)

(0, 2) 0.923, (0,5) 0.819
2, 2 4

5, 5 25
Z Z

Z Z

Z Z
D C

D C

= =

= = =

= = =

  

 𝑘𝑘1 = −6.662
0.923

∗ ((2.92∗25−10.523∗5)
(2∗25−4∗5)

) = −4.906  

 𝑘𝑘2 = −6.662
0.819

∗ ((2.92∗4−10.523∗2)
(5∗4−25∗2)

) = −2.54  

 
So ‘LONG’ 4.906*1,000,000=4,906,000 of the face value of the 2-year zero-coupon bond and 
2.54*1,000,000=2,540,000 of the 5-year zero-coupon bond. 

 
 
(c) Assess the gains or losses of the hedging portfolio constructed in (b), if interest 

rates were to decrease by 25 basis points from 4% to 3.75%. 
 

Commentary on Question: 
Some have used the Alternative Solution approach solving or dV, but they made 
errors in applying the formula, in particular with the second part of the equation 
where we have to consider dr2.   

𝐺𝐺𝐺𝐺𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �𝐶𝐶𝐹𝐹𝑖𝑖 ∗ 𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,𝑇𝑇𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= 6.711 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐺𝐺𝐺𝐺𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐺𝐺𝐺𝐺𝐺𝐺 = 6.711 − 6.662 = 0.05  

 

 
(0, 2) (0,2) (0,2) 0.928 0.923 0.005
(0,5) (0,5) (0,5) 0.829 0.819 0.01

revised

revised

dZ Z Z
dZ Z Z

= − = − =
= − = − =

  

 
So                    𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑘𝑘1 ∗ 𝑑𝑑𝑑𝑑(0,2) + 𝑘𝑘2 ∗ 𝑑𝑑𝑑𝑑(0,5) 
𝑑𝑑𝑑𝑑 = 0.05− 4.906 ∗ .005− 2.54 ∗ 0.01 ≈ 0  

 
Alternative solution : 
 

 
1 (0,2) 2 (0,5)

2
1 (0,2) 2 (0,5)

( * * * (0,2) * * (0,5))*
1 *( * * * (0,2) * * (0,5))*
2

GIC Z Z

GIC Z Z

dV D GIC k D Z k D Z dr

C GIC k C Z k C Z dr

= − + +

+ + +
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5. Continued 
 

𝑑𝑑𝑑𝑑 = −(2.92 ∗ 6.662 − 4.906 ∗ 2 ∗ 0.923− 2.54 ∗ 5 ∗ 0.819) ∗ 0.0025 + 
1
2
∗ (10.523 ∗ 6.662− 4.906 ∗ 4 ∗ 0.923− 2.54 ∗ 25 ∗ 0.819) ∗ 0.00252 ≈ 0  

 
 
(d) Explain how to construct a barbell-bullet bond portfolio. 

 
A barbell-bullet bond portfolio consists of a barbell bond portfolio which is long both long-dated 
bonds and short-dated bonds, and a bullet bond portfolio which is short medium-dated bonds.  
 
The duration from the long-dated bonds and short-dated bonds is largely offset by the 
duration from the medium-dated bonds, resulting in an overall portfolio duration close to 
0 (or zero). The overall convexity of the portfolio is positive. 

 
 
(e) Explain whether the barbell-bullet bond portfolio can achieve a positive portfolio 

return when the moves of interest rates are small and in parallel. 
 

By construct, this portfolio is duration hedged but not convexity hedged.  
 

 
The first parenthesis is zero while the second parenthesis is positive.  
 

This shows that the portfolio can always achieve a positive portfolio return when 
the moves (dr) of interest rates are small and random. (Small is required because 
otherwise the formula for d V would not valid). 

 
(f) Critique the analyst’s claim. 
 
This shows that the portfolio can always achieve a positive portfolio return when the moves (dr) 
of interest rates are small and random. (Small is required because otherwise the formula for dV 
would not valid). 
The barbell-bullet trading strategy does not represent an arbitrage opportunity.  
 
The gain in value from higher convexity is offset by a lower gain due to passage of time. 
 
The formula for d V has one more component missing – the passage of time (Theta), which 
captures the changes in value in the long-dated, short-dated bonds and the medium-dated zero 
bonds due to passage of time exactly offset the convexity gain. 
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6. Learning Objectives: 
3. The candidate will understand: 

• The Quantitative tools and techniques for modeling the term structure of 
interest rates. 

• The standard yield curve models. 
• The tools and techniques for managing interest rate risk. 

 
Learning Outcomes: 
(3a) Understand and apply the concepts of risk-neutral measure, forward measure, 

normalization, and the market price of risk, in the pricing of interest rate 
derivatives. 

 
(3b) Understand and apply various one-factor interest rate models. 
 
(3f) Apply the models to price common interest sensitive instruments including: 

callable bonds, bond options, caps, floors, and swaptions. 
 
(3g) Understand and apply the techniques of interest rate risk hedging. 
 
Sources: 
Fixed Income Securities: Valuation, Risk, and Risk Management, Veronesi, Pietro, 2010 
 
Commentary on Question: 
Commentary listed underneath question component. 
 
Solution: 
(a) Show that these values are not consistent with a single factor arbitrage free model 

of the short rate. 
 

Commentary on Question: 
Candidates generally did poorly on this part of the question.  A significant portion 
skipped it outright and an additional portion just wrote a bunch of formulas 
without trying to explain what they were trying to show.  The answer below is 
illustrative of the approach needed but does not represent the only acceptable 
solution. 
 

In a long-short portfolio that is insensitive to the interest rate movement, the following should 
hold under the no arbitrage condition for any two bonds: 
 

𝜕𝜕𝑍𝑍1
𝜕𝜕𝜕𝜕 + 1

2
𝜕𝜕2𝑍𝑍1
𝜕𝜕𝑟𝑟2 𝜎𝜎

2 − 𝑟𝑟𝑡𝑡𝑍𝑍1
𝜕𝜕𝑍𝑍1
𝜕𝜕𝜕𝜕

=  
𝜕𝜕𝑍𝑍2
𝜕𝜕𝜕𝜕 + 1

2
𝜕𝜕2𝑍𝑍2
𝜕𝜕𝑟𝑟2 𝜎𝜎

2 − 𝑟𝑟𝑡𝑡𝑍𝑍2
𝜕𝜕𝑍𝑍2
𝜕𝜕𝜕𝜕

 

Rearrange the above by dividing both the numerator and demonimator by the pricing of bond, 
and we get:
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6. Continued 
 

1
𝑍𝑍1
𝜕𝜕𝑍𝑍1
𝜕𝜕𝜕𝜕 + 1

2 �
1
𝑍𝑍1

 𝜕𝜕
2𝑍𝑍1
𝜕𝜕𝑟𝑟2 �𝜎𝜎

2 − 𝑟𝑟𝑡𝑡
1
𝑍𝑍1
𝜕𝜕𝑍𝑍1
𝜕𝜕𝜕𝜕

=  

1
𝑍𝑍2
𝜕𝜕𝑍𝑍2
𝜕𝜕𝜕𝜕 + 1

2 �
1
𝑍𝑍2

 𝜕𝜕
2𝑍𝑍2
𝜕𝜕𝑟𝑟2 �𝜎𝜎

2 − 𝑟𝑟𝑡𝑡
1
𝑍𝑍2
𝜕𝜕𝑍𝑍2
𝜕𝜕𝜕𝜕

 

That is to say, if no arbitrage condition holds, the following ratio must be the same between any 
bonds 

𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒
𝑍𝑍 +  0.5 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 

And thus we can assess the ratio for each of the two bonds, respectively. 

1-year Bond ratio = 
0.791
0.9891+ 0.5∗ 0.821∗0.0222−0.01

0.906
= 0.002 

 

10-year Bond ratio = 
0.178
0.5917+ 0.5∗ 2.037∗0.0222−0.01

1.427
= 0.005 

 
The two ratios are signifiantly different, indicating that the non-arbitrage condition does not 
hold. 
 
(b) Calculate the pricing errors of the bonds. 
 

Commentary on Question: 
Candidates performed well on this part.  Most common mistakes tended to be 
calculation errors and the wrong sign for the pricing error. 
 

Using the Vasicek model, For 1-year bond: 
 

B(1) =
1
𝛾𝛾∗

 �1 − 𝑒𝑒−𝛾𝛾∗� = 0.7192 

 

A(1) = (𝐵𝐵(1) − 1) ∗  �𝑟̅𝑟∗ −
𝜎𝜎2

2(𝛾𝛾∗)2� −   
𝜎𝜎2

4𝛾𝛾∗
∗ 𝐵𝐵(1)2 

= (0.7192− 1) ∗  0.0595−  0.0002 ∗ 0.71922 
=  −0.01686 
 
Z1−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 =  𝑒𝑒(𝐴𝐴(1)−𝐵𝐵(1)∗𝑟𝑟0) = 𝑒𝑒(−0.01686−0.7192∗0.01) = 0.9762 
 
Pricing error is 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 98.91− 0.9762 ∗ 100 = 1.29 
Or 1.32% higher of the model prediction. 
 
Similarily, for the 10-year bond: 
 

B(10) =
1
𝛾𝛾∗

 �1 − 𝑒𝑒−10𝛾𝛾∗� = 1.4273 
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6. Continued 
 

A(10) = (𝐵𝐵(10) − 10) ∗  �𝑟̅𝑟∗ −
𝜎𝜎2

2(𝛾𝛾∗)2� −   
𝜎𝜎2

4𝛾𝛾∗
∗ 𝐵𝐵(10)2 

= (1.4273− 10) ∗  0.0595−  0.0002 ∗ 1.42732 
=  −0.5105 
 
Z10−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 =  𝑒𝑒(𝐴𝐴(10)−𝐵𝐵(10)∗𝑟𝑟0) = 𝑒𝑒(−0.5105−1.4273∗0.01) = 0.5917 
 
Pricing error is 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 59.17 −  0.5917 ∗ 100 = 0 

 
(c) Determine the optimal hedge ratio, instrument(s) to trade and position (long or 

short). 
 
Commentary on Question: 
Candidates performed generally poorly on this part.  Most recognized that the 1-
year bond needed to be shorted.  Difficulties arose in both calculating the hedge 
ratio and the development of the replicating portfolio and the need to use cash. 

 
Since 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 > 𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 1-year bond is over priced by the market. The 10-year bond is accurately 
priced.  

To arbitrage, we should sell the overpriced 1-year bond and replicate the Vasicek 
model price of 1-year bond using the 10-year bond and cash position. 

 
The optional hedge ratio is calculated as 

∆=
𝜕𝜕𝑍𝑍1
𝜕𝜕𝜕𝜕

/
𝜕𝜕𝑍𝑍2
𝜕𝜕𝜕𝜕

 

Under Vasicek model,  
𝜕𝜕𝑍𝑍
𝜕𝜕𝜕𝜕

=  𝑒𝑒(𝐴𝐴(𝑡𝑡;𝑇𝑇)−𝐵𝐵(𝑡𝑡;𝑇𝑇) 𝑟𝑟𝑡𝑡)(−𝐵𝐵(𝑡𝑡;𝑇𝑇) ) 

 
Therefore 

∆=
𝜕𝜕𝑍𝑍1
𝜕𝜕𝜕𝜕
𝜕𝜕𝑍𝑍2
𝜕𝜕𝜕𝜕

=
Z1−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 B(1)

Z10−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦B(10)
=

0.9762 ∗  0.7192
0.5917 ∗ 1.4273

= 0.8313 

 
For each 1-year bond sold, we must purchase 0.8313 of the 10-year bond. 
 

𝐶𝐶𝑡𝑡 =  −𝑃𝑃1−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + ∆ 𝑃𝑃10−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
The initial cash position is thus  
𝐶𝐶0 = −0.9762 ∗ 100 + 0.8313 ∗  59.17 = −48.32198 ≈ −48.32  
We lend at risk-free rate of 48.32 for each 100 1-year bond. 
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6. Continued 
 
(d) Calculate the initial profit. 
 

Commentary on Question: 
Candidates generally answered this question satisfactorily.  Most common error 
was not recognizing the initial cash position. 

 
The replicating portfolio is given by 
𝑃𝑃01−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 =  −𝐶𝐶0 + ∆ 𝑃𝑃10−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  = 48.32 +  0.8313 ∗  59.17 = 97.62  
Initial profit is thus 98.91−  97.62 = 1.29 for each 100 1-year bond sold. 
 
It was also acceptable to note that the initial mispricing calculated in part b would also be the 
initial profit. 
 
(e) Critique the following statement: 

 
“By executing the arbitrage strategy, we are hedged and will reap a guaranteed 
profit from the position.” 

 
Commentary on Question: 
Candidate generally did well if they attempted to answer this part.  Additional 
responses besides the model solution were accepted as long as they make a 
reasonable argument relevant to the question such as parametrization, or 
appropriateness of the model. 

 
The statement is not true.  

The position is hedged only at time zero and we make a profit only today. The 
position needs to be dynamically rebalanced going forward. 
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7. Learning Objectives: 
4. The candidate will understand: 

• How to apply the standard models for pricing financial derivatives. 
• The implications for option pricing when markets do not satisfy the common 

assumptions used in option pricing theory. 
• How to evaluate risk exposures and the issues in hedging them. 

 
Learning Outcomes: 
(4a) Demonstrate an understanding of option pricing techniques and theory for equity 

derivatives. 
 
(4d) Demonstrate an understanding of how to delta hedge, and the interplay between 

hedging assumptions and hedging outcomes. 
 
(4f) Appreciate how hedge strategies may go awry. 
 
(4h) Compare and contrast the various kinds of volatility, e.gl, actual, realized, implied 

and forward, etc. 
 
Sources: 
QFIQ-114-17: Chapter 2, 162-173 and 223-225 of Frequently Asked Questions in 
Quantitative Finance, Wilmott, Paul, 2nd Edision, 2009 
 
The Volatility Smile, Derman, Miller, and Park, 2016, Ch 5  
 
QFIQ-120-19: Chapters 6 and 7 of Pricing and Hedging Financial Derivatives, Marroni, 
Leonardo and Perdomo, Irene, 2014 
 
Commentary on Question: 
Commentary listed underneath question component. 
 
Solution: 
(a) Define actual volatility and realized volatility. 

 
Commentary: 
Candidates did well on this part of the question. Most candidates were able to 
provide a good description of actual and realized volatility.  
 
Model Solution: 
Actual volatility is the instantaneous amount of noise in a stock price return. 
Realized volatility is a backward-looking statistical measure of what volatility has 
been over a given period. 
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7. Continued 
 

(b) Estimate ACL’s realized volatility for the 5-day period expressed as annualized 
volatility assuming 252 trading days per year. 

 
Commentary: 
Most candidates did well on this question. Realized volatility should be calculated 
as the variance of the stock price returns, using the historical stock prices 
provided. Some candidates mistakenly calculated the variance of the stock prices.  
 
Actual volatility = 16.2% 

Day 0 1 2 3 4 5 
Daily price 
return* 

- 0.5% 2% -2% 0% -0.5% 

*Log return is also accepted, LN(S(t)/S(t-1)) 
 
Mean = (0.5% + 2% - 2% + 0% -0.5%)/5 = 0% 
**Daily var = (0.5%^2 + 2%^2 + 2%^2 + 0%^2 + 0.5%^2)/5 = 0.017% 
 Realized vol = (252* 0.017%)^0.5 = 20.7%. 
 
**Also valid if daily variance used divisor of 4 rather than 5: 
Daily var = (0.5%^2 + 2%^2 + 2%^2 + 0%^2 + 0.5%^2)/4 = 0.0213%  
Realized vol = (252* 0.0213%)^0.5 = 23.1%% 
 

(c) Determine if ACL’s implied volatility is greater than, equal to, or less than its 
actual volatility. 

 
Commentary: 
Many candidates did well in this part of the question. To compare the implied vol 
to the actual volatility, the actual volatility can be used to calculate the price of 
call option, which is then compared to the market price that is determined by 
implied volatility. Points are awarded to candidates who demonstrated the 
understanding of the positive correlation between call option price and volatility, 
even if calculation errors were carried forward from previous parts.  

 
Using the actual vol of 16.20% to calculate the option price.                                                     
Volatility σ   16.20%     
Stock price S   999.58     
Strike price K   1000.00     
Interest rate r   2%  
Maturity(year) T   1  
d1=[ln(S/K)+(r +0.5σ^2)]/(σ*T^0.5)=0.2019        
d2=d1 - σ * T^0.5=0.0399      
N(d1)=0.5800                    
N(d2)=0.5159      
Call = S*N(d1) - K*exp(-r*T)*N(d2)=74.07          
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7. Continued 
 
Since 74.07 < market price of 77, the implied vol > actual vol. 
 

(d) Determine if ACL’s implied volatility is greater than, equal to, or less than the 
volatility your firm used in its delta hedging strategy. 
 
Commentary: 
Many candidates did well on this question. Many reused the results from their 
answer to part (c). The key to this question is to realize that the delta of the option 
price calculated in part (c) is equivalent to the delta used in hedging.  
 
Given that the firm uses delta hedging, the call option delta = N(d1). The number 
of shares the firm bought to hedge = 100*N(d1) = 58. This means N(d1) = 0.58. 
From part (c), we have N(d1) = 0.58 when actual volatility is used.  
 
This means that the hedging volatility the firm used is equal to the actual 
volatility. Since, from part (c), we know that implied volatility > actual volatility, 
we can conclude that implied volatility > hedging vol. 
 
OR, since 𝑁𝑁(𝑑𝑑1) =  0.58, therefore, 𝑑𝑑1 = 0.2019 

                        That is,  𝑙𝑙𝑙𝑙(0.99958) + (0.02 + 0.5𝜎𝜎2) = 0.2019𝜎𝜎. 
𝜎𝜎 = 16.2% 𝑜𝑜𝑜𝑜 24.2% 

             
 If candidates solved the equation, with two solutions, and concluded the implied 
volatility < hedging volatility, full credits were also given.  

 
(e) Outline implications for your firm’s hedging profit/loss given your firm’s choice 

of the volatility in its delta hedging strategy. 
 

Commentary: 
Many candidates were able to identify at least one or two bullets listed below. 
Full points were awarded only to those candidates that identified all three bullets. 
 
Characteristics: 

• The firm’s present value of hedging P&L is locked in at inception if the 
firm’s view turns out to be correct. 

• The firm’s hedging P&L will exhibit large variations before reaching the 
maturity 

• It’s very difficult to foresee future realized volatility, thus, there is no 
assurance that the firm’s view is actually correct. 
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7. Continued 
 
(f) Determine the present value of your firm’s hedging profit/loss. 
 

Commentary: 
Some candidates left this question blank. Many candidates appropriately utilized 
the call option price calculated in part (c). Common mistakes were either the 
candidate forgot to multiply the difference in option prices by the number of call 
options sold (100) or the sign was switched.  

 
Because the hedging volatility is based on its view of 16.2% and its view turns out 
to be correct, the present value of hedging P&L is the difference between the 
option value the firm believes it should have been (which is 74.07),  and the price 
the firm actually transacted at (which is 77). Thus, PV of P&L = 100 * (77 – 
74.07) = 293. 
 

(g) Determine the simulated Index value at the end of year 3. 
 

Commentary: 
Very few candidates calculated this part correctly. Many candidates left it blank. 
For candidates who performed the calculations, most of them did not convert the 
spot volatility to forward volatility for year 2 and 3, instead, spot volatilities were 
applied to the formulae directly. In these cases, partial credits were given.  
 

               S(t) = S(t-1)* e [r-  σ(t)^2/2 +  σ(t) * N(t)] 
                * σ(1)=.17 
               S(1) = 1000 * e[.02-(.17)^2/2+ (.17)(.1)] = 1022.8 
               * σ(2)^2 = 2 (.19)^2 - (.17)^2  =>  σ(2) = 20.81% 
               S(2) = 1022.8 * e[.02-(.2081)^2/2+(.2081)(-.1)]= 1000.08 
               * σ(3)^2 = 3(.20)^2 - 2(.19)^2  =>  σ(3) = 21.86% 
               S(3) = 1000.08 * e(.02-(.2186)^2/2 +(.2186)(0)) = 996.19 
  OR 
             For year 1:   σ1 = 17% 
             For year 2:   2*19%^2 =  17%^2 + σ2^2 
              * σ2  = (2*19%^2 -  17%^2)^0.5 = 20.81% 
            For year 3:   3*20%^2 =  2*19%^2 + σ3^2 
             * σ3  = (3*20%^2 -  2*19%^2)^0.5 = 21.86% 
            S(3) = S0*e^((3*r -(σ1^2)/2-(σ2^2)/2-(σ3^2)/2   + σ1*N1  +σ2 *N2+σ3 *N3  )) 
            S(3)=1000*e^((3*2% -(17^2)/2-(20.81^2)/2-(21.86^2)/2   + 17%*0.1 +20.81%*(-           
0.1)+21.86%*0 )) 
            S(3) = 996.21 
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8. Learning Objectives: 
4. The candidate will understand: 

• How to apply the standard models for pricing financial derivatives. 
• The implications for option pricing when markets do not satisfy the common 

assumptions used in option pricing theory. 
• How to evaluate risk exposures and the issues in hedging them. 

 
Learning Outcomes: 
(4e) Analyze the Greeks of common option strategies. 
 
(4i) Define and explain the concept of volatility smile and some arguments for its 

existence. 
 
(4k) Describe and contrast several approaches for modeling smiles, including: 

stochastic volatility, local-volatility, jump-diffusions, variance-gamma, and 
mixture models. 

 
Sources: 
QFIQ 120-19 – The Volatility Smile, Derman, Emanuel and Miller, Michael B., 2016 
 
Commentary on Question: 
The purpose of this question is to find out the usefulness of straddle and strangle 
themselves, overall understanding of their Greeks, and valuation using local volatility 
models. Therefore, candidates were expected to include justification for problem-solving 
rather than simply filling out the answer. 
 
Solution: 
(a) Explain how a straddle strategy and a strangle strategy provide Vega protection 

with minimal exposure to other market risks.  
 

Commentary on Question: 
Most candidates understood what straddles and strangles were, and explained 
Vega protection well, but lacked explanations about why there was minimal 
exposure to other market risks. 
 

• A long straddle position consists of the simultaneous purchase of an at-
the-money call and an at-the-money put with the same maturity.  

• A long strangle position consists of the simultaneous purchase of an out-
of-money call and an out-of-the-money put with the different maturities, 
where the strike price of the call is higher than the strike of the put. 

 
Straddles and strangles have positive, large Vega because Vega is positive for 
both calls and puts.  Therefore, they show a strong sensitivity to the absolute level 
of volatility.  They also have very low sensitivity to 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. 
Therefore, they can be used to trade and to express views on the absolute level of 
volatility. 
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8. Continued 
 

Straddles and strangles have minimal exposure to other market risks because: 
• Straddles and strangles are considered to be delta-neutral because the 

positive delta of the call option offsets the negative delta of the put option. 
•  Straddles and strangles have positive gamma, which benefits the investors 

when the underlying price moves in either direction.  
 
(b)  

(i) Calculate the cost of each of the two strategies in part (a). 
 

(ii) Calculate Delta, Gamma, Vega, and Theta of each of the two strategies in part (a). 
 

Commentary on Question: 
Most candidates did well. Some candidates solved the question using formulas 
rather than calculating it using the information given in the problem. 
 
(i)  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 6.371 + 4.882 = 11.253 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1.767 + 0.977 = 2.744 

(ii)  
 
Delta 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  0.570 + (0.570 − 1) = 0.14 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  0.195 + (0.904 − 1) = 0.099 

Gamma 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 × 0.028 = 0.056 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.009 + 0.016 = 0.025 
Vega 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 × 27.772 = 55.544 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 12.089 + 19.521 = 31.610 

Theta 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = −7.074 − 4.035 = −11.109 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = −5.413 − 1.340 = −6.753 
 
(c) Estimate Delta and Vega of the two strategies in part (a) when 

 
(i) Underlying price moves from 100 to 50; 

 
(ii) Underlying price moves from 100 to 200. 
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8. Continued 
 

Commentary on Question: 
Most candidates struggled to approach the problem. Many candidates had shown 
attempts to compute Delta or Vega using their second derivatives (e.g. gamma). 
However, this can only be applied in the case of instantaneous underlying value 
change and cannot be used when there is a significant underlying value change, 
such as given in the exam problem. 
 

𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑒𝑒 = 𝑁𝑁(𝑑𝑑1) + [𝑁𝑁(𝑑𝑑1) − 1] = 2 × 𝑁𝑁(𝑑𝑑1) − 1 
 

𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑁𝑁�𝑑𝑑1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� + �𝑁𝑁�𝑑𝑑1
𝑝𝑝𝑝𝑝𝑝𝑝� − 1� 

 
Therefore, 𝑑𝑑1 → ∞ (𝑖𝑖. 𝑒𝑒.Δ → 1 + (1 − 1) = 1  𝑎𝑎𝑎𝑎  𝑆𝑆 → ∞ and 𝑑𝑑1 →
−∞ (𝑖𝑖. 𝑒𝑒.Δ → 0 + (0 − 1) = −1  𝑎𝑎𝑎𝑎  𝑆𝑆 → 0.  
 
𝑁𝑁(𝑑𝑑1) increases as 𝑆𝑆 increases and 𝑁𝑁(𝑑𝑑1) decreases as 𝑆𝑆 decreases.  
 
(i)  

If the underlying price decreases from 100 to 50, Delta will decrease. It 
can be negative and will converge to -1 
As the option gets more and more in-the-money or out-of-the-money, its 
Vega will stabilize at levels converging on 0. Hence, if 𝑆𝑆 decreases from 
100 to 50, Vega will decrease. Note that the call option will be more out-
of-the-money and the put option will be more in-the-money. 

 
(ii)  

If the underlying price increases from 100 to 200, Delta will increase and 
approach 1. 
As the option gets more and more in-the-money or out-of-the-money, its 
Vega will stabilize at levels converging on 0. Hence, if 𝑆𝑆 increases from 
100 to 200, Vega will decrease. Note that the call option will be more in-
the-money and the put option will be more out-of-the-money. 

 
(d) Describe how Vega changes with: 

 
(i) The time to maturity; 

 
(ii) The underlying value. 

 
Commentary on Question: 
Many candidates showed the right approach, but some candidates misunderstood 
the nature of Vega. 
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8. Continued 
 

(i)  
As the expiry approaches, the tails of the Vega function get thinner, and 
the dynamics that can be observed become increasingly stronger.  
 
The effect of the reduction in the time to expiration on Vega is to reduce 
progressively the range of prices within which changes in volatility have 
meaningful effects. 
 
For long-dated options, not only will the Vega tend to be bigger, but its 
effects are observable even for large deviations of the price of the 
underlying assets from the strike. 
 

(ii)  
When the option is not very far away from being at-the-money, the 
magnitude of Vega is not particularly affected by the level of volatility.  
When the option is closest to at-the-money, the option is most sensitive to 
underlying price changes, and therefore the Vega is maximized. 
 
For very deep in-the-money or out-of-the-money options, the Vega 
exposure is close to zero, since it would take a significant change in stock 
price to impact the in or out of the moneyness of the options. 

 
(e) Calculate the cost of the two strategies in part (a) using a tree assuming that 

0 25t .∆ = and the continuous risk-free interest rate is 3%. 
 
Commentary on Question: 
Most candidates had difficulty solving this problem.  Very few completed the 
entire answer and many received no credit or very little credit. 
 

    𝑆𝑆𝑢𝑢𝑢𝑢 
   𝑞𝑞𝑢𝑢𝑢𝑢  
  𝑆𝑆𝑢𝑢   
 𝑞𝑞𝑢𝑢  𝑞𝑞𝑢𝑢𝑢𝑢  

𝑆𝑆0    𝑆𝑆𝑢𝑢𝑢𝑢/𝑆𝑆𝑑𝑑𝑑𝑑 
 𝑞𝑞𝑑𝑑  𝑞𝑞𝑑𝑑𝑑𝑑  
  𝑆𝑆𝑑𝑑   
   𝑞𝑞𝑑𝑑𝑑𝑑  
    𝑆𝑆𝑑𝑑𝑑𝑑 

 
𝑆𝑆𝑢𝑢 = 𝑆𝑆0 × 𝑒𝑒𝜎𝜎(𝑆𝑆0)⋅√Δ𝑡𝑡 = 100 × 𝑒𝑒0.2×√0.25 = 110.52 
𝑆𝑆𝑑𝑑 = 𝑆𝑆0 × 𝑒𝑒−𝜎𝜎(𝑆𝑆0)⋅√Δ𝑡𝑡 = 100 × 𝑒𝑒−0.2×√0.25 = 90.48 
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8. Continued 
 

𝑞𝑞𝑢𝑢 =
𝐹𝐹(= 𝑆𝑆0 × 𝑒𝑒𝑟𝑟Δ𝑡𝑡) − 𝑆𝑆𝑑𝑑

𝑆𝑆𝑢𝑢 − 𝑆𝑆𝑑𝑑
=

100.75 − 90.48
110.52 − 90.48

= 51.26% 

 
𝑞𝑞𝑑𝑑 = 1 − 𝑞𝑞𝑢𝑢 = 1 − 0.5126 = 48.74% 

𝜎𝜎𝑢𝑢 =
(110.52 − 100)2

110.522
+ 0.2 = 20.91% 

𝜎𝜎𝑑𝑑 =
(90.48 − 100)2

90.482
+ 0.2 = 21.11% 

𝑆𝑆𝑢𝑢𝑢𝑢 = 𝑆𝑆𝑑𝑑𝑑𝑑 = 𝑆𝑆0 = 100 
 

𝑆𝑆𝑢𝑢𝑢𝑢 = 𝑆𝑆𝑢𝑢 × 𝑒𝑒𝑟𝑟Δ𝑡𝑡 +
(𝑆𝑆𝑢𝑢)2 × 𝜎𝜎(𝑆𝑆𝑢𝑢)2 × Δ𝑡𝑡
𝑆𝑆𝑢𝑢 × 𝑒𝑒𝑟𝑟Δ𝑡𝑡 − 𝑆𝑆𝑢𝑢𝑢𝑢

= 110.52 × 𝑒𝑒0.03×0.25 +
110.522 × 0.20912 × 0.25
110.52 × 𝑒𝑒0.03×0.25 − 100

= 123.11 
 

𝑆𝑆𝑑𝑑𝑑𝑑 = 𝑆𝑆𝑑𝑑 × 𝑒𝑒𝑟𝑟Δ𝑡𝑡 −
(𝑆𝑆𝑑𝑑)2 × 𝜎𝜎(𝑆𝑆𝑑𝑑)2 × Δ𝑡𝑡
𝑆𝑆𝑑𝑑𝑑𝑑 − 𝑆𝑆𝑑𝑑 × 𝑒𝑒𝑟𝑟Δ𝑡𝑡

= 90.48 × 𝑒𝑒0.03×0.25 +
90.482 × 0.21112 × 0.25
100 − 90.48 × 𝑒𝑒0.03×0.25       = 80.84 

 

𝑞𝑞𝑢𝑢𝑢𝑢 =
𝑆𝑆𝑢𝑢 × 𝑒𝑒𝑟𝑟Δ𝑡𝑡 − 𝑆𝑆𝑢𝑢𝑢𝑢
𝑆𝑆𝑢𝑢𝑢𝑢 − 𝑆𝑆𝑢𝑢𝑢𝑢

=
110.52 × 𝑒𝑒0.03×0.25 − 100

123.11 − 100
= 49.11% 

 
𝑞𝑞𝑢𝑢𝑢𝑢 = 1 − 𝑞𝑞𝑢𝑢𝑢𝑢 = 50.89% 

 

𝑞𝑞𝑑𝑑𝑑𝑑 =
𝑆𝑆𝑑𝑑 × 𝑒𝑒𝑟𝑟Δ𝑡𝑡 − 𝑆𝑆𝑑𝑑𝑑𝑑
𝑆𝑆𝑑𝑑𝑑𝑑 − 𝑆𝑆𝑑𝑑𝑑𝑑

=
90.48 × 𝑒𝑒0.03×0.25 − 80.84

100 − 80.84
= 53.88% 

 
𝑞𝑞𝑑𝑑𝑑𝑑 = 1 − 𝑞𝑞𝑑𝑑𝑑𝑑 = 46.12% 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑒𝑒−𝑟𝑟×2Δ𝑡𝑡{[max(𝑆𝑆𝑢𝑢𝑢𝑢 − 100,0) × 𝑞𝑞𝑢𝑢𝑢𝑢 × 𝑞𝑞𝑢𝑢]
+ [max(𝑆𝑆𝑢𝑢𝑢𝑢 − 100,0) × 𝑞𝑞𝑢𝑢𝑢𝑢 × 𝑞𝑞𝑢𝑢]
+ [max(𝑆𝑆𝑑𝑑𝑑𝑑 − 100,0) × 𝑞𝑞𝑑𝑑𝑑𝑑 × 𝑞𝑞𝑑𝑑]
+ [max(𝑆𝑆𝑑𝑑𝑑𝑑 − 100,0) × 𝑞𝑞𝑑𝑑𝑑𝑑 × 𝑞𝑞𝑑𝑑]
+ [max(100 − 𝑆𝑆𝑢𝑢𝑢𝑢, 0) × 𝑞𝑞𝑢𝑢𝑢𝑢 × 𝑞𝑞𝑢𝑢]
+ [max(100 − 𝑆𝑆𝑢𝑢𝑢𝑢, 0) × 𝑞𝑞𝑢𝑢𝑢𝑢 × 𝑞𝑞𝑢𝑢]
+ [max(100 − 𝑆𝑆𝑑𝑑𝑑𝑑, 0) × 𝑞𝑞𝑑𝑑𝑑𝑑 × 𝑞𝑞𝑑𝑑]
+ [max(100 − 𝑆𝑆𝑑𝑑𝑑𝑑 , 0) × 𝑞𝑞𝑑𝑑𝑑𝑑 × 𝑞𝑞𝑑𝑑]} = 9.97 
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8. Continued 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑒𝑒−𝑟𝑟×2Δ𝑡𝑡{[max(𝑆𝑆𝑢𝑢𝑢𝑢 − 120,0) × 𝑞𝑞𝑢𝑢𝑢𝑢 × 𝑞𝑞𝑢𝑢]
+ [max(𝑆𝑆𝑢𝑢𝑢𝑢 − 120,0) × 𝑞𝑞𝑢𝑢𝑢𝑢 × 𝑞𝑞𝑢𝑢]
+ [max(𝑆𝑆𝑑𝑑𝑑𝑑 − 120,0) × 𝑞𝑞𝑑𝑑𝑑𝑑 × 𝑞𝑞𝑑𝑑]
+ [max(𝑆𝑆𝑑𝑑𝑑𝑑 − 120,0) × 𝑞𝑞𝑑𝑑𝑑𝑑 × 𝑞𝑞𝑑𝑑]
+ [max(80 − 𝑆𝑆𝑢𝑢𝑢𝑢, 0) × 𝑞𝑞𝑢𝑢𝑢𝑢 × 𝑞𝑞𝑢𝑢]
+ [max(80 − 𝑆𝑆𝑢𝑢𝑢𝑢 , 0) × 𝑞𝑞𝑢𝑢𝑢𝑢 × 𝑞𝑞𝑢𝑢]
+ [max(80 − 𝑆𝑆𝑑𝑑𝑑𝑑, 0) × 𝑞𝑞𝑑𝑑𝑑𝑑 × 𝑞𝑞𝑑𝑑]
+ [max(80 − 𝑆𝑆𝑑𝑑𝑑𝑑 , 0) × 𝑞𝑞𝑑𝑑𝑑𝑑 × 𝑞𝑞𝑑𝑑]} = 0.77 

 
(f) Describe advantages and disadvantages of the local volatility model. 
 

Commentary on Question: 
Some candidates understood the local volatility model well, but many candidates 
showed incorrect analysis. 

 
Advantages 
A great advantage of the model is its closeness to the original Black-Scholes 
Model and its dynamics. The notion that the implied Black-Scholes Model 
volatility is the average of the local volatilities from the initial stock price to the 
strike leads to intuitive rules of thumb about how options values and hedge ratios 
differ from their Black-Scholes Model values in the presence of a skew. 
 
Disadvantages 
• The models need to be frequently recalibrated. (The necessity for periodic 

recalibration) 
• The models tend to have difficulty matching the future short-term skew. 

(Inability to match the short-term skew) 
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9. Learning Objectives: 
4. The candidate will understand: 

• How to apply the standard models for pricing financial derivatives. 
• The implications for option pricing when markets do not satisfy the common 

assumptions used in option pricing theory. 
• How to evaluate risk exposures and the issues in hedging them. 

 
Learning Outcomes: 
(4a) Demonstrate an understanding of option pricing techniques and theory for equity 

derivatives. 
 
(4c) Demonstrate an understating of the different approaches to hedging – static and 

dynamic. 
 
(4i) Define and explain the concept of volatility smile and some arguments for its 

existence. 
 
Sources: 
The Volatility Smile, Derman, Emanuel and Miller, Michael B., 2016 Ch. 2-3 
 
Commentary on Question: 
To receive full credit, candidates should have solid knowledge in understanding option 
payoffs, use options to replicate payoffs, understanding the difference of difference 
replication approaches and their limitations.  
 
Solution: 
(a) Compare and contrast static and dynamic replication. 
 

Commentary on Question: 
Candidates generally did well on this question.  
 
Static replication:  
 Reproduces the payoffs of the target security over its entire lifetime with an 

initial portfolio of securities whose weights will never need to be changed. 
 No additional trading is required for the lifetime of the security once static 

replicating portfolio is created 
 

Dynamic replication: 
 the components and weights of the replicating portfolio must change over 

time.  
 need to continually buy and sell securities as time passes and price changes to 

achieve replication 
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9. Continued 
 
(b) List four limitations of replication. 
  

Commentary on Question: 
Candidates generally were able to identify some limitations. Candidates who did 
not list a) and d) below received partial credit.  
 
a) It is challenging to choose a financial model with the right balance of 
complexity and accuracy 
b) Have to adjust weights in the market where you are subject to bid-ask spreads, 
illiquidity, and other market impacts 
c) Transaction cost 
d) Estimation the future values of certain parameters that are difficult or 
impossible to observe in the market. 

 
(c) Construct a structured product using the options above to meet ABC’s goal. 
 Not understand call/put options 

 
Commentary on Question: 
Some candidates did not know how to use options to construct portfolios with 
desired payoff. 

 
To construct the product:  
Bank ABC can create a collar is created by buying a put P90(100,1), with a strike 
price of 90 (L) and stock price 100 (S) and selling a call C110(100,1), with a strike 
price of 110 (U) and stock price 100 (S), where L < S < U. Both options have the 
same expiration date T=1.   
 
The put will limit our losses if the price of the stock falls below L=90, and the call 
will cap our profits if the stock rises above U=110. 

 
(d) Calculate the price at time 0 of the structured product constructed in part (c). 
 Most candidates did well 

 
Commentary on Question: 
Most candidates did well on this part. 

 
Value of a collar at time 1   = S1 + P90 (100,1) – C110 (100,1)  
= S1 + 2 -1.9 = S1 + 0.1 
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9. Continued 
 
(e) Replicate the payoff of the alternative product using only riskless bonds, the 

stock, and calls/puts on the stock.  
 
Commentary on Question: 
Similar to part (c), some candidates did not know how to use options to construct 
portfolios with desired payoff, particularly some failed to identify the ½ put option 
to protect 50% of the downside risk. Most candidates knew to use the call option 
with strike $115 to cap the gains.  
Candidates received full credits using the alternative construction. 

 
The payoff of a structured product is a piecewise-linear function of an underlying 
stock, S. The payoff has the following break points:  
S = $0: payoff = $50 
S = $100: payoff = $100 
S = $115: payoff = $115 
S= $140: payoff = $115 
 
The portfolio’s value at t is V(t) = Ie−r(T−t) + 𝜆𝜆0St + (𝜆𝜆1 − 𝜆𝜆0) C(K0) + (𝜆𝜆2 − 𝜆𝜆1) 
C(K1) + ⋯  
 
Because the riskless rate is 0%, we do not need to worry about the e−r(T–t) term, 
but I is 0.5*B (y-axis intercept) 
 
Slope between the first and second break points: ($100 – $50)/ ($100 − $0) =1/2.  
Slope between the second and third: ($115−$100))/ ($115 − $100) = 1  
Change in slope between them: 1 −1/2 = 1/2. 
 
Slope between the third and fourth break points: ($115 – $115))/ ($140 − $115) 
=0.  
Change in slope between them: 0 −1 = -1. 
We need to buy 1 share of the underlying stock, buy ½ Put option at the strike of 
$100 and short one call option at the strike of $115. 
 
Alternatively, we buy $50 of riskless bonds, buy 1/2 share of the underlying 
stock, buy ½ call option with a strike price of $100 and short one call option of a 
strike price of $115  (this can be derived by applying the put-call parity on the 0.5 
of put option with $100 strike). 
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9. Continued 
 
(f) Sketch the payoffs of the strategies in part (c) and part (e) and compare their 

costs. 
   

Commentary on Question: 
Few candidates compared the cost between part (c) and part (e), some did not 
have labels in the payoff chart and thus earned partial credits. 
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9. Continued 
 
Value of the structured product at time 1    
= 0.5*B + 0.5*S1 + 0.5* C100(100,1) - C115(100,1) 
= 0.5*B + 0.5* C100(100,1) - C115(100,1) +0.5*S1 (re-arranging) 
= 0.5*S1 + 0.5*P100(100,1) - C115(100,1) +0.5*S1 (call put parity) 
= S1 + 0.5*P100(100,1) - C115(100,1)   
= S1 + 0.5* 6 – 1.5 = S1 + 1.5  
 
Value of the structured product at time 1   = S1 + 1.5 
comparing to collar = S1 + 0.1 
The portfolio in part (e) has richer optionality. 
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10. Learning Objectives: 
2. The candidate will understand the fundamentals of fixed income markets and 

traded securities. 
 
Learning Outcomes: 
(2a) Understand the characteristics of fixed rate, floating rate, and zero-coupon bonds. 
 
(2b) Bootstrap a yield curve. 
 
(2c) Understand measures of interest rate risk including duration, convexity, slope, and 

curvature. 
 
Sources: 
Fixed Income Securities: Valuation, Risk, and Risk Management, Veronesi, Pietro, 2010 
(Chapter 2, 3, and 4) 
 
Commentary on Question: 
This question tests candidates’ understanding of the basics of fixed income securities and 
the application of interest risk management. Candidates perform as expected. Partial 
credits were given for each step that was completely correctly.  
 
Solution: 
(a) Calculate the discount factors Z(0,0.5) and Z(0,1) as of Dec 31, 2018. 
 

Commentary on Question: 
Candidates performed well on this part. 
 
Pbill (0, 0.5) = $97 = $100 * Z(0, 0.5) 
Therefore, Z (0,0.5) = 97 / 100 = 0.97 
 
Pnote (0, 1) = $95.85 = $1.5 * Z(0, 0.5) + $101.5 * Z(0,1) 
           Substituting Z(0,0.5) into the equation above, we have 
           $95.85 = $1.5 * 0.97 + $101.5 * Z(0,1) 
Z(0,1) = 0.93 

 
(b) Describe two disadvantages of yield curve bootstrapping and how alternative 

approaches can be used to overcome each of the disadvantages. 
 
Commentary on Question: 
Candidates performed as expected on this part. Many were able to identify the 
disadvantages of bootstrapping correctly suggested the alternatives. Descriptions 
of how to apply the alternatives are required to receive full marks. 
 
Disadvantage: For short-term maturities, there are too many bonds that mature on 
the same day to choose from. To perform the bootstrap methodology, we then 
must cherry pick the bonds that we deem have the highest liquidity. 
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10. Continued 
 
Alternative: Regression  
Estimates the yield curve based on the bond prices observed using Ordinary Least 
Squares regression 
 
Disadvantage: For longer maturities, not all of the bonds may be available 
Alternative: Curve fitting 
We can postulate a parametric functional form for the discount factor Z(0,T) as a 
function of maturity T and use the current bond prices to estimate the parameters 
of this functional form. 

 
(c)  

(i) Calculate the Macaulay duration of the one-year Treasury note. 
 

(ii) Explain why the Macaulay duration of the one-year Treasury note is 
shorter than one year. 

 
Commentary on Question: 
Candidates performed well on this part. For part (ii), full credit is awarded for 
correctly identifying the coupon at 6th month reduces the weighted average of the 
CFs. Interest rate sensitivity is not a must-have to receive full credit for this part. 
 
(i) 
 

              𝑤𝑤1 =
0.03 2⁄  ∗  𝑃𝑃𝑧𝑧(0,0.5)

𝑃𝑃𝑐𝑐(0, 1) =  
0.015 ∗ 97

95.85
= 0.01518 

 
              𝑤𝑤2 = (1+ 0.03 2)⁄  ∗ 𝑃𝑃𝑧𝑧(0,1)

𝑃𝑃𝑐𝑐(0,1) =  1.015∗(100∗0.93)
95.85

= 0.98482 
 
             𝐷𝐷𝑐𝑐 = ∑ 𝑤𝑤𝑖𝑖𝑇𝑇𝑖𝑖2

𝑖𝑖=1 = (0.01518 ∗ 0.5) + (0.98482 ∗ 1) = 0.99241 
   
            (ii) 
 

Since we are receiving intermediate coupons before its maturity, the average time 
to cash flow payments is lower 
 
Cash flows that arrive sooner rather than later are less sensitive to changes in 
interest rate. Since we are receiving semi-annual coupons, it implies an overall 
lower sensitivity to changes in discount rates when compared to a one-year zero 
coupon bond. 
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10. Continued 
 
(d) Explain the differences of cash flow matching and immunization in terms of 

hedging a stream of liability annuity cash flows. 
 
Commentary on Question: 
Candidates performed as expected on this part. Difference in practicality such as 
liquidity and cost are required to receive full credit. 

             
Cash flow matching 

• Purchase a set of securities that matches the cash outflows with the cash 
inflows.   

• Not guaranteed to be able to find exactly the type of securities that are 
required for cash flow matching as these securities could be costly and 
illiquid. 

 
Immunization 

• Invest in a portfolio of securities with the same present value and duration 
of the cash flow commitments to pay  

• Able to choose securities that have favorable properties in terms of 
liquidity and transaction costs 

 
(e) Recommend a duration hedge strategy that uses the six-month Treasury bill to 

mitigate the interest rate risk. 
 

Commentary on Question: 
Candidates performed below expectation on this part. Many candidates simply 
calculated Ks as the ratio of the durations of the Treasury note and the 6-month 
Treasury bill.  

 
The six-month Treasury bill does not pay any coupon and therefore its duration is 
0.5 years.  
 
The market price for the Treasury bill is $97  
The market price for the Treasury note is $95.85  
 
The Macaulay duration of the Treasury note is 0.99241  
 
The recommended duration hedging can be achieved by taking a position Ks in 
the short-term T-bill 
 

-  0.99241∗95.85
0.5∗97

 = - -1.96129  
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10. Continued 
 
This means that you must short 1.96129* 10 = 19.6129 units of the Treasury bill 
to hedge the interest rate risk.  
 
At the six-month maturity of the T-bill, the positions have to be rolled forward for 
another six months. 

 
(f) Determine Sk  and Lk  in terms of 1 2 1 2 1, , , , , , , ,S L S S LP P P D D D D D  and 2

LD  such that 
the portfolio P  plus the short-dated and the long-dated bonds is immunized 
against changes in the level and slope factors.  

 
Commentary on Question: 
Candidates performed as expected on this part. Candidates didn’t receive full 
credit when they do not follow the proof steps exactly. In fact, this part is directly 
coming from the source material. 

 

 
 
Substituting into 𝑑𝑑𝑑𝑑, d𝑃𝑃𝑧𝑧𝑆𝑆 , d𝑃𝑃𝑧𝑧𝐿𝐿 

  
 
We have 

 
 
Pool together all the elements containing the level and slope factors 𝑑𝑑𝜙𝜙1 and 𝑑𝑑𝑑𝑑2 
 

 
 
In order for the equation to be zero for all possible values of 𝑑𝑑𝜙𝜙1 and 𝑑𝑑𝑑𝑑2, each 
parenthesis on the right-hand side must be zero, thus we have, 
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10. Continued 
 
The determination of  𝑘𝑘𝑠𝑠 and 𝑘𝑘𝐿𝐿 
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11. Learning Objectives: 
1. The candidate will understand the foundations of quantitative finance. 
 
3. The candidate will understand: 

• The Quantitative tools and techniques for modeling the term structure of 
interest rates. 

• The standard yield curve models. 
• The tools and techniques for managing interest rate risk. 

 
Learning Outcomes: 
(1c) Understand Ito integral and stochastic differential equations. 
 
(3b) Understand and apply various one-factor interest rate models. 
 
(3c) Calibrate a model to observed prices of traded securities. 
 
(3f) Apply the models to price common interest sensitive instruments including: 

callable bonds, bond options, caps, floors, and swaptions. 
 
(3i) Understand and apply the Heath-Jarrow-Morton approach including the Libor 

Market Model. 
 
Sources: 
Fixed Income Securities: Valuation, Risk, and Risk Management, Veronesi, Pietro, 2010 
Chapters 14, 15, 19-21 
 
An Introduction to the Mathematics of Financial Derivatives, Hirsa, Ali and Neftci, Salih 
N., 3rd Edition 2nd Printing, 2014, Chapters 9, 11 
 
Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, Nel, 
Dian and Olafsson, Sverrir, 2014, Chapter 3 
 
Commentary on Question: 
This question tested a candidate’s understanding of one-factor interest models and the 
usage of these models in pricing interest rate sensitive instruments. 
 
Solution: 
(a) Compare and contrast the LIBOR market model, the Vasicek model, and the 

Black, Derman, and Toy (BDT) model in terms of:  
 

(i) The interest rates being modeled; 
 

(ii) Diffusion processes for interest rates. 
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11. Continued 
 

Commentary on Question: 
Most candidates did well and were awarded marks for applicable statements that 
were not necessarily in the model solution. 
 

(i) LIBOR market model (or BGM model) uses forward LIBOR rates that are observable. 
 
The Vasciek model and Black, Derman and Toy (i.e. BDT) model use spot rate inputs. 
 
(ii) LIBOR market model is a model for the LIBOR-based forward rates, according to 
which each forward rate with maturity T follows a lognormal diffusion process under the 
dynamics implied by the zero-coupon bond with maturity T. 
 
BDT assumes that the logarithm of interest rates is normally distributed, implying that 
interest rates are always positive.  
 
Vasicek model assumes that interest rate is normally distributed. 
 
(b) Describe briefly the common approach of calibrating the BDT results to observed 

prices of caplets. 
 

Commentary on Question: 
Most candidates did poorly on this question and did not describe a correct 
approach. 
 

Common practice is to use directly the forward volatilities 𝜎𝜎𝑖𝑖 , computed from caps and 
floors from the Black formula. 
 
Using this methodology, the BDT tree results are simpler to build, 
as at each step i, it is necessary to search only for one variable, ri,1 that matches the term 
structure of interest rates. 
 

(c) Prove that 00
0

tt s
t

s t t
ds

X
tr r e e

σ θ
σ

σ σ σ∫
= .    

 

Hint:  First find the SDE for t

t

y
σ

.   

 
Commentary on Question: 
Most candidates were able to follow the hint to derive an appropriate proof. 
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11. Continued 
 

𝑑𝑑𝑑𝑑𝑡𝑡 = �𝜃𝜃𝑡𝑡 +
𝜕𝜕𝜎𝜎𝑡𝑡
𝜕𝜕𝜕𝜕
𝜎𝜎𝑡𝑡

𝑦𝑦𝑡𝑡�𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑡𝑡𝑑𝑑𝑋𝑋𝑡𝑡 

𝑑𝑑𝑦𝑦𝑡𝑡
𝜎𝜎𝑡𝑡

= �
𝜃𝜃𝑡𝑡
𝜎𝜎𝑡𝑡

+
𝜕𝜕𝜎𝜎𝑡𝑡
𝜕𝜕𝜕𝜕
𝜎𝜎𝑡𝑡2

𝑦𝑦𝑡𝑡�𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑋𝑋𝑡𝑡 

 

𝑑𝑑𝑦𝑦𝑡𝑡
𝜎𝜎𝑡𝑡

−
𝜕𝜕𝜎𝜎𝑡𝑡
𝜕𝜕𝜕𝜕
𝜎𝜎𝑡𝑡2

𝑦𝑦𝑡𝑡dt = �
𝜃𝜃𝑡𝑡
𝜎𝜎𝑡𝑡
� 𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑋𝑋𝑡𝑡 

 

𝑑𝑑 �
𝑦𝑦𝑡𝑡
𝜎𝜎𝑡𝑡
� = �

𝜃𝜃𝑡𝑡
𝜎𝜎𝑡𝑡
� 𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑋𝑋𝑡𝑡 

 
Integrating on both sides from 0 to t and solving for yt leads to 
 

𝑦𝑦𝑡𝑡 =
𝑦𝑦0
𝜎𝜎0
𝜎𝜎𝑡𝑡 + 𝜎𝜎𝑡𝑡 � 𝜃𝜃𝑠𝑠/𝜎𝜎𝑠𝑠𝑑𝑑𝑑𝑑

𝑡𝑡

0
+ 𝜎𝜎𝑡𝑡𝑋𝑋𝑡𝑡 

 

𝑒𝑒𝑦𝑦𝑡𝑡 = 𝑒𝑒
𝑦𝑦0
𝜎𝜎0
𝜎𝜎𝑡𝑡+𝜎𝜎𝑡𝑡 ∫ 𝜃𝜃𝑠𝑠/𝜎𝜎𝑠𝑠𝑑𝑑𝑑𝑑

𝑡𝑡
0 +𝜎𝜎𝑡𝑡𝑋𝑋𝑡𝑡  

𝑟𝑟𝑡𝑡 = 𝑒𝑒𝑦𝑦𝑡𝑡 = 𝑟𝑟0
𝜎𝜎𝑡𝑡
𝜎𝜎0 𝑒𝑒𝜎𝜎𝑡𝑡 ∫  𝜃𝜃𝑠𝑠𝜎𝜎𝑠𝑠𝑑𝑑𝑑𝑑

𝑡𝑡
0 𝑒𝑒𝜎𝜎𝑡𝑡𝑋𝑋𝑡𝑡           as 𝑒𝑒

𝑦𝑦0
𝜎𝜎0
𝜎𝜎𝑡𝑡 =  𝑒𝑒

𝜎𝜎𝑡𝑡
𝜎𝜎0

 ln 𝑟𝑟0 = 𝑟𝑟0
𝜎𝜎𝑡𝑡
𝜎𝜎0 

 
 
(d) Evaluate ( )tE r  and ( )tVar r , assuming tσ σ=  for all 0t ≥  where σ  is a 

constant. 
 

Commentary on Question: 
Most candidates were able to answer this question well, though some candidates 
missed a simplification step by not using the assumption regarding 𝜎𝜎𝑡𝑡 or failed to 
show intermediate steps in the calculations. 

 
When 𝜎𝜎𝑡𝑡 = 𝜎𝜎,  𝑟𝑟𝑡𝑡 = 𝑒𝑒𝑦𝑦𝑡𝑡 = r0 𝑒𝑒∫  θs𝑑𝑑𝑑𝑑

𝑡𝑡
0 𝑒𝑒σ𝑋𝑋𝑡𝑡  

 
As 𝑋𝑋𝑡𝑡 is normally distributed random variable with mean zero and variance t, by using the 
moment generating funtion property of a normal random variable 
 

𝐸𝐸(𝑒𝑒𝜎𝜎𝑋𝑋𝑡𝑡) = 𝑒𝑒1(0)+12(1)2𝜎𝜎2𝑡𝑡 = 𝑒𝑒
𝜎𝜎2𝑡𝑡
2  

 

This also follows from the property 𝐸𝐸(𝑒𝑒𝑌𝑌) = 𝑒𝑒𝐸𝐸(𝑌𝑌)+𝑉𝑉𝑉𝑉𝑟𝑟(𝑌𝑌)
2 : 

𝐸𝐸(𝑒𝑒𝜎𝜎𝑋𝑋𝑡𝑡) = 𝑒𝑒0+
𝜎𝜎2𝑡𝑡
2 = 𝑒𝑒

𝜎𝜎2𝑡𝑡
2  
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11. Continued 
 

𝐸𝐸(𝑟𝑟𝑡𝑡) = r0 𝑒𝑒∫  θs𝑑𝑑𝑑𝑑
𝑡𝑡

0 𝑒𝑒
𝜎𝜎2𝑡𝑡
2  

 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑒𝑒𝜎𝜎𝑋𝑋𝑡𝑡) = 𝑒𝑒𝜎𝜎2𝑡𝑡(𝑒𝑒σ2𝑡𝑡 − 1) 

Again this follows from the property 𝐸𝐸(𝑒𝑒𝑌𝑌) = 𝑒𝑒𝐸𝐸(𝑌𝑌)+𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌)
2 : 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑒𝑒𝜎𝜎𝑋𝑋𝑡𝑡) = 𝐸𝐸(𝑒𝑒2𝜎𝜎𝑋𝑋𝑡𝑡) − (𝐸𝐸(𝑒𝑒𝜎𝜎𝑋𝑋𝑡𝑡))2 = 𝑒𝑒
4𝜎𝜎2𝑡𝑡
2 − 𝑒𝑒

2𝜎𝜎2𝑡𝑡
2 = 𝑒𝑒𝜎𝜎2𝑡𝑡(𝑒𝑒σ2𝑡𝑡 − 1) 

 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑟𝑟𝑡𝑡) = r02 𝑒𝑒2∫  θs𝑑𝑑𝑑𝑑

𝑡𝑡
0 𝑒𝑒𝜎𝜎2𝑡𝑡(𝑒𝑒σ2𝑡𝑡 − 1) 

 
 
(e) Demonstrate that *

Kr  = 3.32325%.  
 

Commentary on Question: 
Most candidates did poorly, primarily due to incorrectly setting up the initial 
pricing equation. For candidates who had the correct pricing equation, common 
mistakes were not to fully calculate the final steps to numerically prove that 𝑟𝑟𝐾𝐾∗ =
3.32325% produced the desired price. 

 
The first step is to define the equation that solves the interest rate 𝑟𝑟𝐾𝐾∗  at time 2.1 years such 
that the value of the underlying coupon bond at time 2.1 years is the strike price of  99. 
 
Coupon of $1 will be paid at time 2.5 years and 3 years. Principal of $100 will be paid at 
time 3 years. 
 
1 ∗ 𝑒𝑒𝐴𝐴(2.1,2.5)−𝐵𝐵(2.1,2.5)𝑟𝑟𝐾𝐾

∗
+ 101 ∗ 𝑒𝑒𝐴𝐴(2.1,3.0)−𝐵𝐵(2.1,3.0)𝑟𝑟𝐾𝐾

∗
= 99 

𝐵𝐵(𝑡𝑡,𝑇𝑇) = 𝐵𝐵(0,𝑇𝑇 − 𝑡𝑡) =
1
𝛾𝛾

(1 − 𝑒𝑒−𝛾𝛾(𝑇𝑇−𝑡𝑡)) 

𝐴𝐴(𝑡𝑡,𝑇𝑇) = 𝐴𝐴(0,𝑇𝑇 − 𝑡𝑡) = �𝐵𝐵(𝑡𝑡,𝑇𝑇) − (𝑇𝑇 − 𝑡𝑡)� �𝑟̅𝑟 −
𝜎𝜎2

2𝛾𝛾2�
−
𝜎𝜎2𝐵𝐵(𝑡𝑡,𝑇𝑇)2

4𝛾𝛾
 

𝛾𝛾 = 0.05, 𝑟̅𝑟 =
0.002
0.05

= 0.04,𝜎𝜎 = 0.015 
 
𝐵𝐵(2.1, 2.5) = 0.39602653 
𝐴𝐴(2.1, 2.5) =  −0.00015657 
 
𝐵𝐵(2.1, 3) = 0.88005036 
𝐴𝐴(2.1, 3) = −0.00077155 
 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐾𝐾𝑖𝑖 = 𝑍𝑍(𝑟𝑟𝐾𝐾∗ , 2.1,𝑇𝑇𝑖𝑖)  𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑇𝑇𝑖𝑖 
 
100 𝑥𝑥0.01𝑥𝑥 𝐾𝐾1 = 1 ∗ 𝑍𝑍(𝑟𝑟𝐾𝐾∗ , 2.1, 2.5) = 1 ∗ 𝑒𝑒𝐴𝐴(2.1,2.5)−𝐵𝐵(2.1,2.5)𝑟𝑟𝐾𝐾∗  
 

100 𝑥𝑥1.01𝑥𝑥 𝐾𝐾2 = 101 ∗ 𝑍𝑍(𝑟𝑟𝐾𝐾∗ , 2.1, 3.0) = 101 ∗ 𝑒𝑒𝐴𝐴(2.1,3.0)−𝐵𝐵(2.1,3.0)𝑟𝑟𝐾𝐾∗
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11. Continued 
 
When 𝑟𝑟𝐾𝐾∗ = 3.32325%,  
 
1 ∗ 𝑒𝑒𝐴𝐴(2.1,2.5)−𝐵𝐵(2.1,2.5)𝑟𝑟𝐾𝐾

∗
+ 101 ∗ 𝑒𝑒𝐴𝐴(2.1,3.0)−𝐵𝐵(2.1,3.0)𝑟𝑟𝐾𝐾

∗
 

 
= 𝑒𝑒−0.00015657−0.39602653∗0.0332325 
+101 ∗ 𝑒𝑒−0.00077155−0.88005036∗0.0332325 
 
= 0.9867708 + 98.013252 
=99.000023 (difference due to rounding) 
 
(f) Compute the value at time t = 0 of the above European call option on the coupon 

bond. 
 

Commentary on Question: 
Most candidates did poorly on this question as they were not able to set up 
appropriate pricing formulas and numerical calculation mistakes were common. 
Partial marks were awarded for stating the correct formulas (e.g. 𝑠𝑠𝑍𝑍 (𝑇𝑇𝑜𝑜 ,𝑇𝑇1)).  

 
Based on part (e ), the call option on the coupon bond can be decomposed into:  
 

(1) A call option with a strike price of 0.9867708 on a bond that pays off $1 at time 2.5 
years and  

(2) A call option with a strike price of 98.013252 on a bond that pays off $101 at time 3 
years. 

 
For the first option, c(1)= 0.01,  principal=100 
 

𝜎𝜎𝜎𝜎(2.1, 2.5) =
0.015
0.05 �1 − 𝑒𝑒−0.05(2.5−2.1)� = 0.005940398 

𝑠𝑠𝑍𝑍 (𝑇𝑇𝑜𝑜,𝑇𝑇1) = 𝐵𝐵(𝑇𝑇𝑜𝑜,𝑇𝑇𝐵𝐵) ∗ �
σ2

2𝛾𝛾
(1 − 𝑒𝑒−2𝛾𝛾𝑇𝑇𝑂𝑂)  

𝑠𝑠𝑍𝑍 (2.1, 2.5) = 𝐵𝐵(2.1, 2.5) ∗ �
0.0152

2 ∗ 0.05
(1 − 𝑒𝑒−2∗0.05∗2.1) 

 

𝑠𝑠𝑍𝑍 (2.1, 2.5) = [𝐵𝐵(2.1, 2.5) ∗ 0.015] ∗ �
1

2 ∗ 0.05
(1 − 𝑒𝑒−2∗0.05∗2.1) 

 
𝑠𝑠𝑍𝑍 (2.1, 2.5) = 0.005940398 ∗ 1.376284=0.00817567 
 

𝑑𝑑1(1) =
1

𝑠𝑠𝑍𝑍 (𝑇𝑇𝑜𝑜,𝑇𝑇1) 
ln(𝑍𝑍(0, 𝑟𝑟0;𝑇𝑇1)/(𝐾𝐾𝑖𝑖𝑍𝑍(0, 𝑟𝑟0𝑇𝑇𝑜𝑜) ) +

𝑠𝑠𝑍𝑍 (𝑇𝑇𝑜𝑜,𝑇𝑇1)
2

 

𝑑𝑑1(1) =
1

0.00817567 
ln �

0.9268484
0.9382455 ∗ 0.9867708

� +
0.00817567

2
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= 0.1381309 
 
𝑑𝑑2(1) = 𝑑𝑑1(1) − 𝑠𝑠𝑍𝑍 (𝑇𝑇𝑜𝑜,𝑇𝑇1) = 0.1299552 
 
𝑁𝑁�𝑑𝑑1(1)� = 0.5549315,   𝑁𝑁�𝑑𝑑2(1)� = 0.5516991
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11. Continued 
 
The price of the first call option 
𝑉𝑉(𝑟𝑟0) = 𝑍𝑍(0, 𝑟𝑟0;𝑇𝑇𝐵𝐵)𝑁𝑁�𝑑𝑑1(1)� − 𝐾𝐾𝐼𝐼𝑍𝑍(0, 𝑟𝑟0;𝑇𝑇𝑂𝑂)𝑁𝑁�𝑑𝑑2(1)� 
=0.9268484 * 0.5549315 -0.9867708 ∗ 0.9382455 ∗ 0.5516991 
=0.0035561 
 
Hence the value at time t = 0 of the European Call option on the coupon bond= 
0.0035561+0.790097=0.7936534. 
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12. Learning Objectives: 
3. The candidate will understand: 

• The Quantitative tools and techniques for modeling the term structure of 
interest rates. 

• The standard yield curve models. 
• The tools and techniques for managing interest rate risk. 

 
Learning Outcomes: 
(3a) Understand and apply the concepts of risk-neutral measure, forward measure, 

normalization, and the market price of risk, in the pricing of interest rate 
derivatives. 

 
(3g) Understand and apply the techniques of interest rate risk hedging. 
 
Sources: 
Fixed Income Securities: Valuation, Risk, and Risk Management, Veronesi, Pietro, 2010 
– Chapter 14: Page 515-520, Chapter 15: 535 -537 
 
Commentary on Question: 
Most of the candidates attempted part (a) to (c). Many of the candidates were not able to 
get full credits due to solving (b) and (c) using the same approach. 
 
Solution: 
(a) Show that ( ), ;Z r t T  follows the process: 
 

( )
( ) ( ) ( ), ;

, ; , ;
, ; t

dZ r t T
a r t T dt q r t T dX

Z r t T
= −  

 
where 

 

( ) ( )
2

2
2

1 1, ; ( ) ( )
, ; 2

Z Z Za r t T a r r
Z r t T r r t

σ
 ∂ ∂ ∂

= + + ∂ ∂ ∂ 
 

( ) ( )
1, ; ( )
, ;

Zq r t T r
Z r t T r

σ∂
= −

∂
 

 
Commentary on Question: 
Most candidates were able to solve this question and receive full marks. Some 
common mistakes are: 
• Candidates started with equation dZ = (Zr dr + 0.5Zrr(dr)2+Zt dt)*Z 
• Solving the question specifically to a certain interest rate model 
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12. Continued 
 

Since the price of a bond is a function of 𝑟𝑟, using Ito’s Lemma, we have: 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 +
1
2
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑟𝑟2

(𝑑𝑑𝑑𝑑)2 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 

      =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

[𝑎𝑎(𝑟𝑟)𝑑𝑑𝑑𝑑 + 𝜎𝜎(𝑟𝑟) 𝑑𝑑𝑋𝑋𝑡𝑡] +
1
2
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑟𝑟2

[𝑎𝑎(𝑟𝑟)𝑑𝑑𝑑𝑑 + 𝜎𝜎(𝑟𝑟) 𝑑𝑑𝑋𝑋𝑡𝑡]2 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 

      = 𝑎𝑎(𝑟𝑟)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 + 𝜎𝜎(𝑟𝑟)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑋𝑋𝑡𝑡 +
1
2
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑟𝑟2

[𝜎𝜎(𝑟𝑟)]2𝑑𝑑𝑑𝑑 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 

      = �𝑎𝑎(𝑟𝑟)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
1
2
𝜕𝜕2𝑍𝑍
𝜕𝜕𝑟𝑟2

[𝜎𝜎(𝑟𝑟)]2 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑑𝑑 + 𝜎𝜎(𝑟𝑟)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑋𝑋𝑡𝑡 

      = 𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇) ⋅ 𝑍𝑍 𝑑𝑑𝑑𝑑 − 𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇) ⋅ 𝑍𝑍 𝑑𝑑𝑋𝑋𝑡𝑡 
 
Dividing both sides by 𝑍𝑍, we have: 
𝑑𝑑𝑑𝑑
𝑍𝑍

= 𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇) 𝑑𝑑𝑑𝑑 − 𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇) 𝑑𝑑𝑋𝑋𝑡𝑡 
 

(b) Show that for a delta-hedged portfolio 
 

( ) ( )
( ) ( )

1 1

2 2

, ;  , ;
, ;  , ;

Z r t T q r t T
N

Z r t T q r t T
=  

 
Commentary on Question: 
Only small number of candidates were able to score full marks on this question.  
Many candidates used approach in question (c) to solve this question. To receive 
full marks, candidates have to show that they are using q(r,t,T) in (a) to get to the 
final equation for N. 
 

The delta of the portfolio is: 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)

𝜕𝜕𝜕𝜕
− 𝑁𝑁 ⋅

𝜕𝜕𝜕𝜕(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)
𝜕𝜕𝜕𝜕

 
 
To delta hedge, set the delta of the portfolio to 0: 
 

 
𝜕𝜕𝜕𝜕(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)

𝜕𝜕𝜕𝜕
− 𝑁𝑁 ⋅

𝜕𝜕𝜕𝜕(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)
𝜕𝜕𝜕𝜕

= 0 
 
Rearranging, we have: 
 

𝑁𝑁 =
𝜕𝜕𝜕𝜕(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)

𝜕𝜕𝜕𝜕
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12. Continued 
 
From (a), we have: 

𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇) = −
1

𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜎𝜎(𝑟𝑟) ⇒
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇)

𝜎𝜎(𝑟𝑟)  

 
 

    N =
−𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)

𝜎𝜎(𝑟𝑟)

−𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)
𝜎𝜎(𝑟𝑟)

=
𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) ⋅ 𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)
𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) ⋅ 𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) 

 
(c) Demonstrate that ( ),r tΠ with a delta-hedged position has no volatility. 
 

Commentary on Question: 
Most of the candidates use the following to solve question (b). Marks were 
credited to question (b) in this case. Partial marks were given if candidate 
mention that the diffusion term vanish implies no volatility. 

 
dΠ(𝑟𝑟, 𝑡𝑡) = 𝑑𝑑𝑑𝑑(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) −𝑁𝑁 ⋅ 𝑑𝑑𝑑𝑑(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) 
                 = [𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) 𝑑𝑑𝑑𝑑 − 𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) 𝑑𝑑𝑋𝑋𝑡𝑡]𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) −  𝑁𝑁

⋅ [𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) 𝑑𝑑𝑑𝑑 − 𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) 𝑑𝑑𝑋𝑋𝑡𝑡]𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) 
                 = [𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) − 𝑁𝑁 ⋅ 𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)]𝑑𝑑𝑑𝑑 

+ [−𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) + 𝑁𝑁 ⋅ 𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)]𝑑𝑑𝑋𝑋𝑡𝑡 
 
Considering the coefficient of 𝑑𝑑𝑋𝑋𝑡𝑡 and substituting 𝑁𝑁: 
 
−𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) + 𝑁𝑁 ⋅ 𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) 

= −𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) +
𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) ⋅ 𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)
𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) ⋅ 𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) ⋅ 𝑞𝑞

(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) 

= −𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) + 𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) ⋅ 𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) 
= 0 
Since the coefficient of 𝑑𝑑𝑋𝑋𝑡𝑡 is 0, it follows that the volatility of Π(𝑟𝑟, 𝑡𝑡) is 0. 
 
Approach 2: 
 
dΠ(𝑟𝑟, 𝑡𝑡) = 𝑑𝑑𝑑𝑑(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) −𝑁𝑁 ⋅ 𝑑𝑑𝑑𝑑(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) 
 

                = �
𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 +
1
2
𝜕𝜕2𝑍𝑍1
𝜕𝜕𝑟𝑟2

(𝑑𝑑𝑑𝑑)2 +
𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑� − 𝑁𝑁 �
𝜕𝜕𝜕𝜕2
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 +
1
2
𝜕𝜕2𝑍𝑍2
𝜕𝜕𝑟𝑟2

(𝑑𝑑𝑑𝑑)2 +
𝜕𝜕𝜕𝜕2
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑� 
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12. Continued 
 
From (b), we have 
 
𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

− 𝑁𝑁 ⋅
𝜕𝜕𝜕𝜕2
𝜕𝜕𝜕𝜕

= 0 
 
𝑑𝑑𝑑𝑑2 = 𝜎𝜎(𝑟𝑟)2𝑑𝑑𝑑𝑑 

dΠ(𝑟𝑟, 𝑡𝑡) = �
1
2
𝜕𝜕2𝑍𝑍1
𝜕𝜕𝑟𝑟2

𝜎𝜎(𝑟𝑟)2𝑑𝑑𝑑𝑑 +
𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑� − 𝑁𝑁 �
1
2
𝜕𝜕2𝑍𝑍2
𝜕𝜕𝑟𝑟2

𝜎𝜎(𝑟𝑟)2𝑑𝑑𝑑𝑑 +
𝜕𝜕𝜕𝜕2
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑� 

Since the coefficient of 𝑑𝑑𝑋𝑋𝑡𝑡 is 0, it follows that the volatility of Π(𝑟𝑟, 𝑡𝑡) is 0. 
 
(d) Show that: 

 
( )
( )

( )
( )

1 2

1 2

, ; , ;
, ; , ;

a r t T r a r t T r
q r t T q r t T

− −
=  

 
Commentary on Question: 
Half of the candidates did not attempt this question. Partial marks were given if 
candidate mentioned riskless portfolio earn risk-free rate, or market price of risk 
is the same for no-arbitrage riskless portfolio. 

 
Since the volatility of Π(𝑟𝑟, 𝑡𝑡) is 0, the portfolio is riskless. The no arbitrage principle that 
the portfolio Π must now earn the risk-free rate, and thus: 
 

 
dΠ(𝑟𝑟, 𝑡𝑡)
Π(𝑟𝑟, 𝑡𝑡)

= 𝑟𝑟𝑟𝑟𝑟𝑟 

 
dΠ(𝑟𝑟, 𝑡𝑡) = 𝑟𝑟Π(𝑟𝑟, 𝑡𝑡) 𝑑𝑑𝑑𝑑 
 
Setting the coefficient of 𝑑𝑑𝑑𝑑 to 𝑟𝑟Π(𝑟𝑟, 𝑡𝑡): 
 
𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) − 𝑁𝑁 ⋅ 𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) = 𝑟𝑟Π(𝑟𝑟, 𝑡𝑡) 
 
Substituting Π(𝑟𝑟, 𝑡𝑡): 
 
𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) − 𝑁𝑁 ⋅ 𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) = 𝑟𝑟[𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) − 𝑁𝑁𝑁𝑁(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)] 
𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) − 𝑁𝑁 ⋅ [𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) − 𝑟𝑟𝑟𝑟(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)] = 𝑟𝑟𝑟𝑟(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) 
 
Substituting 𝑁𝑁: 

𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) −
𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) ⋅ 𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)
𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) ⋅ 𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) ⋅

[𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)𝑍𝑍(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) − 𝑟𝑟𝑟𝑟(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)]

= 𝑟𝑟𝑟𝑟(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) 
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12. Continued 
 

𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) −
𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)
𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) ⋅

[𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) − 𝑟𝑟] = 𝑟𝑟 

 
𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇1)− 𝑟𝑟
𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇1) =

𝛼𝛼(𝑟𝑟, 𝑡𝑡,𝑇𝑇2) − 𝑟𝑟
𝑞𝑞(𝑟𝑟, 𝑡𝑡,𝑇𝑇2)  
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13. Learning Objectives: 
3. The candidate will understand: 

• The Quantitative tools and techniques for modeling the term structure of 
interest rates. 

• The standard yield curve models. 
• The tools and techniques for managing interest rate risk. 

 
Learning Outcomes: 
(3a) Understand and apply the concepts of risk-neutral measure, forward measure, 

normalization, and the market price of risk, in the pricing of interest rate 
derivatives. 

 
(3b) Understand and apply various one-factor interest rate models. 
 
(3e) Demonstrate understanding of option pricing theory and techniques for interest 

rate derivatives. 
 
(3f) Apply the models to price common interest sensitive instruments including: 

callable bonds, bond options, caps, floors, and swaptions. 
 
(3h) Understand the application of Monte Carlo simulation to risk neutral pricing of 

interest rate securities. 
 
Sources: 
Fixed Income Securities: Valuation, Risk, and Risk Management, Veronesi, Pietro, 2010 
Chapter 21 – Forward Risk Neutral Pricing and The LIBOR Market Model. 
 
Commentary on Question: 
This question is testing the understanding of the forward risk neutral pricing models 
(emphasis on the forward volatilities) and the ability to apply appropriate analytic 
formula to calculate option value. Most candidates demonstrated a good understanding 
of the basic concepts and the relationship among variances and the Monte Carlo method. 
Only a number of candidates applied the correct analytic formula to calculate the power 
option value. A significant portion of candidates skipped this question completely or 
partially.   
 
Solution: 
(a) Describe the distribution of ( ),nr Tτ  in the LIBOR market model. 

 
Commentary on Question: 
Most candidates answered that ( ),nr Tτ  follows lognormal distribution and 
specified the mean and the variance of the distribution. Few of them mentioned 
the boundary condition.  
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13. Continued 
 

Under the T-forward risk neutral dynamics, the LIBOR spot rate 𝑟𝑟𝑛𝑛(𝜏𝜏,𝑇𝑇) has a log-normal 
distribtution with mean 𝑓𝑓𝑛𝑛(0, 𝜏𝜏,𝑇𝑇) and variance ∫ 𝜎𝜎𝑓𝑓2

𝜏𝜏
0 (𝑡𝑡)𝑑𝑑𝑑𝑑: 

• 𝑟𝑟𝑛𝑛(𝜏𝜏,𝑇𝑇)~𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑓𝑓𝑛𝑛(0, 𝜏𝜏,𝑇𝑇),∫ 𝜎𝜎𝑓𝑓2
𝜏𝜏
0 (𝑡𝑡)𝑑𝑑𝑑𝑑) 

i.e.𝐸𝐸[𝑟𝑟𝑛𝑛(𝜏𝜏,𝑇𝑇)] = 𝑓𝑓𝑛𝑛(0, 𝜏𝜏,𝑇𝑇) and 𝑉𝑉𝑉𝑉𝑉𝑉[ln(𝑟𝑟𝑛𝑛(𝜏𝜏,𝑇𝑇)] = ∫ 𝜎𝜎𝑓𝑓2
𝜏𝜏
0 (𝑡𝑡)𝑑𝑑𝑑𝑑 

The forward rate converges to the spot rate at maturity, 𝑟𝑟𝑛𝑛(𝜏𝜏,𝑇𝑇) = 𝑓𝑓𝑛𝑛(𝜏𝜏, 𝜏𝜏,𝑇𝑇) . 
 
(b) Define caplet forward volatilities, ( )1 ,  0,  1, ...,Fwd

f iT iσ + =  and identify their 
advantages in pricing caps. 

 
Commentary on Question: 
Most candidates demonstrated a good understanding of the concept by pointing 
out that caplet forward volatilities are implied volatilities and are constant over 
(𝑡𝑡,𝑇𝑇𝑖𝑖).  A number of candidates mentioned that the caplet forward volatilities are 
independent of which cap the caplet belongs to and described the main 
advantages in pricing caps. 
 

The caplet forward volatility 𝜎𝜎𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹(𝑇𝑇𝑖𝑖+1) is the volatility that characterizes particular caplet (i.e. 
implied volatility for a particular caplet)), independent of which cap the caplet belongs to. 
(Definition 20.2) 
 
For each caplet expiry time 𝑇𝑇𝑖𝑖+1, the caplet forward volatility in  𝜎𝜎𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹(𝑇𝑇𝑖𝑖+1) is constant over 
(𝑡𝑡,𝑇𝑇𝑖𝑖). The forward rate volatility 𝑆𝑆𝑖𝑖 is constant  over each time period (𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖) and 
may not be constant over (𝑡𝑡,𝑇𝑇𝑖𝑖). The variance derived from the caplet forward volatility and 
the variance derived from the forward rate volatility are equal for all 𝑇𝑇𝑖𝑖+1.  
 
The forward risk neutral pricing methodology and information about caplet volatilities provide a 
straightforward way to value a  fixed income secuity  regardless of the payoff function. 
 
(c) Calculate the value of the call option. 
 

Commentary on Question: 
Only couple of candidates recognized the power option and applied the correct 
Black’s formula to solve this question.    

 
Denote the (T-forward risk neutral) expected 6-month LIBOR raised up to cubic, and its variance, 
respectively by 
𝑔𝑔(0,0.5,1) and 𝜎𝜎𝑇𝑇2. Then 

𝑔𝑔(0,0.5,1) =  𝐸𝐸𝑓𝑓∗[𝑟𝑟𝑛𝑛(0.5,1)] = 𝑓𝑓𝑛𝑛(0,0.5,1)0.5𝑒𝑒
0.5(0.5−1)𝜎𝜎𝑓𝑓

𝐹𝐹𝐹𝐹𝐹𝐹2∗0.5
2
�

 
  = 0.172773  

𝜎𝜎12 = 𝑉𝑉𝑉𝑉𝑉𝑉[ln (𝑟𝑟𝑛𝑛(0.5,1)0.5)] = 0.52𝜎𝜎𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹(1)2 ∗ 0.5 = 0.005. 
𝜎𝜎1 = 0.0707. 

From the Black’s formula,
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13. Continued 
 
Power call = 𝑁𝑁𝑁𝑁(0,1)[𝑔𝑔(0,0.5,1)𝑁𝑁(𝑑𝑑1) − 𝐾𝐾𝐾𝐾(𝑑𝑑2)] 
Where 

𝑑𝑑1 =
1
𝜎𝜎1

ln �
𝑔𝑔(0,0.5,1)

𝐾𝐾 �+ 0.5 ∗ 𝜎𝜎1 = −2.0342 

𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎1 = −2.1049 
Power call = $87.77 

 
(d) Outline an algorithm to calculate the option value using the Monte Carlo method. 
 

Commentary on Question: 
Most candidates knew the main steps of the Monte Carlo method. However, only 
a number of candidates received full marks. Many candidates lost partial marks 
due to missing formula in steps.  

 
Since we know under the T-forward risk neutral dynmics, the 6-month LIBOR rate 𝑟𝑟𝑛𝑛(𝜏𝜏,𝑇𝑇) has a 
log-normal distribution. Log (𝑟𝑟𝑛𝑛(𝜏𝜏,𝑇𝑇))~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(log �𝑓𝑓𝑛𝑛(0, 𝜏𝜏,𝑇𝑇) − 1

2
𝜎𝜎𝑓𝑓2𝜏𝜏,𝜎𝜎𝑓𝑓2𝜏𝜏�), here 𝜎𝜎𝑓𝑓 means 

the caplet forward volatility 𝜎𝜎𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹. We can proceed as follows: 
From 𝑖𝑖 = 1,2, …𝑁𝑁 (where N is large number such as 10,000) 

1. Simulating  𝑟𝑟𝑛𝑛(𝜏𝜏,𝑇𝑇) 

𝑟𝑟𝑛𝑛𝑖𝑖 = 𝑒𝑒log (𝑓𝑓(0,𝜏𝜏,𝑇𝑇)−12𝜎𝜎𝑓𝑓
2𝜏𝜏+𝜎𝜎𝑓𝑓

2√𝜏𝜏𝜀𝜀, 
where 𝜀𝜀~𝑁𝑁(0,1)  

2. Compute the discount final payoffs 
𝑉𝑉𝑖𝑖 = 𝑍𝑍(0,𝑇𝑇)𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(−𝜆𝜆|𝑟𝑟𝑛𝑛 − 𝐾𝐾|) 

3. Compute the call option price as the average of N values 

𝐶𝐶 =
1
𝑁𝑁
�𝑉𝑉𝑖𝑖
𝑁𝑁

𝑖𝑖

 

 
(e) Critique your colleague’s suggestion in light of the relationship between ( )1i

f tσ +  

and ( )1
Fwd
f iTσ +  for 0, 1, 2, ..., 1i M= − . 

 
Commentary on Question: 
The purpose of this question is to test the candidates’ understanding of the two 
variances: The variance derived from the Black formula and the variance implied 
by the forward rates. Many candidates shown the correct formula describing the 
relationship between the two variances. Few candidates compared the two 
variances and specified the main difference between the two variances.      
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13. Continued 
 
Assuming 𝜎𝜎𝑓𝑓𝑖𝑖+1 constant for each forward rate is not reasonable. 
 
In most situations caplet volatitlities shows a hump at around two years to maturity and this 
relatively stable over time. Standard alternate assumptions about 𝜎𝜎𝑓𝑓𝑖𝑖+1(𝑡𝑡)  is 
𝜎𝜎𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹(𝑇𝑇𝑖𝑖+1)2 ∗ (𝑇𝑇𝑖𝑖 − 𝑡𝑡) =  𝑆𝑆𝑖𝑖2 ∗ (𝑇𝑇1 − 𝑡𝑡) + 𝑆𝑆𝑖𝑖−12 ∗ ∆ +⋯+ 𝑆𝑆12 ∗ ∆, 
Where 𝜎𝜎𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹(𝑇𝑇𝑖𝑖+1)2 is the implied volatility of a caplet maturing at 𝑇𝑇𝑖𝑖+1 
 
(f) Calculate the corresponding forward rate volatilities iS  in your plan.  
 

Commentary on Question: 
Most candidates did well in this question.  
 
Based on the formula (21.39), 𝑆𝑆𝑖𝑖 can be derived as follows: 
𝑆𝑆1 = 0.03 , 

𝑆𝑆2 = �(0.0452 ∗ 1 − 0.032 ∗ 0.5)
0.5� = 0.056, 

𝑆𝑆3 = �(0.052 ∗ 1.5− 0.032 ∗ 0.5− 0.0562 ∗ 0.5)
0.5� = 0.059, 

𝑆𝑆4 = �(0.0452 ∗ 2 − 0.032 ∗ 0.5− 0.0562 ∗ 0.5− 0.0592 ∗ 0.5)
0.5� = 0.024, 

 
Alternatively, 
𝑆𝑆1 = 0.03 , 

𝑆𝑆2 = �(0.0452 ∗ 1 − 0.032 ∗ 0.5)
0.5� = 0.056, 

𝑆𝑆3 = �(0.052 ∗ 1.5− 0.0452)
0.5� = 0.059, 

𝑆𝑆4 = �(0.0452 ∗ 2 − 0.052 ∗ 1.5)
0.5� = 0.024, 
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14. Learning Objectives: 
5. The candidate will learn how to apply the techniques of quantitative finance to 

applied business contexts. 
 
Learning Outcomes: 
(5a) Identify and evaluate embedded options in liabilities, specifically indexed annuity 

and variable annuity guarantee riders (GMAB, GMDB, GMWB, and GMIB). 
 
(5b) Demonstrate an understanding of embedded guarantee risk including: market, 

insurance, policyholder behavior, and basis risk. 
 
(5c) Demonstrate an understanding of dynamic and static hedging for embedded 

guarantees, including:  
(i)  Risks that can be hedged, including equity, interest rate, volatility and cross 

Greeks. 
(ii)  Risks that can only be partially hedged or cannot be hedged including 

policyholder behavior, mortality and lapse, basis risk, counterparty exposure, 
foreign bonds and equities, correlation and operation failures 

 
(5e) Demonstrate an understanding of how differences between modeled and actual 

outcomes for guarantees affect financial results over time. 
 
Sources: 
QFIQ-126-20:  Malcolm Life Enhances its Variable Annuities  
 
On the Importance of Hedging Dynamic Lapses in Variable Annuities, Risk and 
Rewards, 2015 issue 66   
 
Commentary on Question: 
This question tests candidates on their understanding of the embedded options in a VA 
product and the effectiveness of hedging VA guarantees in the presences of model risk.  
 
Solution: 
(a) Explain how these features impact the value of the embedded options in the 

riders.  
 

Commentary on Question: 
This question is relatively straightforward question but only half of the candidates 
provided the correct answers. Candidates are expected to demonstrate an 
understanding of how the product features impact the value of the embedded 
guarantees of VA. 
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14. Continued 
 
• The higher the floor value, the more costly is the value of the embedded 

options to insurer. Thus, no floor value in the first 5 years would lower the 
embedded option value. 

• An annual ratchet feature resets the guaranteed amount to the higher of 
contract value and initial/current guaranteed amount on an annual basis. This 
will cost more to insurer as this would increase the value of the embedded 
option. 

 
(b)  

(i) Explain how this assumption could be adjusted in order to make the 
products more competitive. 
 

(ii) Suggest one way to manage the longevity risk after making this change. 
 
Commentary on Question: 
This question is relatively straightforward question but only half of the candidates 
provided the correct answers. Candidates are expected to demonstrate an 
understanding of the embedded guarantee risk associated with insurance risk. 
 
• Increase the mortality rate assumption such that their expectation of how long 

they need to make the income payment is shorter than the industry average. 
So, the value of the embedded option in the riders is relatively lower, which 
make their products more competitive than competitors.  

• Actually, it is the longevity risk that they need to manage. The insurer will 
incur a loss when making income payment for longer than expected. They can 
reinsure the longevity risk with a reinsurer. 

 
(c)  

(i) Identify the financial instruments that can be used to hedge against the 
following financial risks inherent in the GMWB: 
 

• stock market volatility 
• increase in stock market volatility. 

 
(ii) State two reasons why the risks in the GMWB cannot be perfectly hedged. 

 
Commentary on Question: 
This is a relatively straight forward question but only half of the candidates 
provided the correct answers. Candidates are expected to demonstrate an 
understanding of dynamic and static hedging for embedded guarantees, including 
risks that can be hedged, risks that can only be partially hedged or cannot be 
hedged. For part (ii), most candidates were able to indicate that policyholder 
behavior cannot be perfectly hedged but failed to identify other risks.
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14. Continued 
 

 (i) 
• For stock market volatility: Long an at-the-money put option in stock market  
• For increase in stock market volatility: Long a VIX futures / volatility swap 

to hedge against non-linear change in option value  
 

(ii) 
 
• Future behavior of customers who purchase the GMWB rider cannot be 

directly hedged  
o More owners than expected exercise to take the guaranteed minimum 

withdrawal 
o Customers may not hold the contracts as long as expected 
o How long the owner will keep the rider in force cannot be known in 

advance, so can’t establish a perfectly hedged position  
• If owner invested in mutual fund, the risk cannot be perfectly hedged with an 

index fund option  
• Assets used to back the rider are not received up front, so the insurer doesn’t 

receive the amount at which it has priced the stock market put from the 
customer on day one. 

• Counterparty risk in the hedged position cannot be perfectly hedged. For 
example, derivatives markets might be close while the annuity contract values 
are changing drastically, the basis risk arising from difference between 
counterparty name and the reference entity of the CDS, etc.   

 
(d)  

(i) Justify your assertion. 
 

(ii) Identify and explain the conclusions that can be drawn from comparing 
the above results after switching the results for Assumption Set III and IV. 
 

(iii) Compare the above results with respect to the following aspects between 
the Black-Scholes and RS-GARCH models (assuming that insurer uses 
delta-hedging under the Black-Scholes model to manage the risk of the 
GMMBs): 
 

• Risk measures (including standard deviation) 
• Model risk 
• Hedging error 

 
(iv) Explain whether dynamic lapsation should be hedged, based on the 

comparison in part (iii). 
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14. Continued 
 

Commentary on Question: 
For part (i), most candidates were able to provide the justification with a direct 
comparison between scenario III and IV. But, most of them, didn’t provide 
justification with a comparison with scenario II. Also, they failed to explicitly 
state that the scenarios are flipped. 
 
For part (ii), most candidates were able to comment on the incorrect moneyness 
ratio. Other than that, most of them failed to comment with respect to hedging 
under the ideal conditions, standard deviation and risk measures, and the risk 
reduction associated with hedging dynamic lapses. 
 
For part (iii), only a few candidates were able to clearly state the difference in the 
model risk between Black-Scholes and Regime Switching-GARCH, and to provide 
the correct answer on the model comparison with respect to mean, standard 
deviation and risk measures. 
 
Most candidates answered part (iv) correctly. 

 
(i)  

• The outcome for scenario III and scenario IV appears to be flipped  
• Regardless of model used, the mean, standard deviation, and risk measures 

of the net hedging error should be higher when dynamic lapsation is not 
hedged at all compared to when it is hedged at an incorrect moneyness 
ratio assumption  

• Risk measures are similar between scenario III and scenario II under the 
Black-Scholes (BS) model, suggesting that scenario III does have a hedge 
in place for dynamic lapses; it is unlikely that the numbers are so close if 
no hedge is in place for dynamic lapses at all  

• Risk measures in scenario IV are significantly higher compared to a 
perfectly hedged scenario II, suggesting that no hedge is in place for the 
dynamic lapses at all 

 
(ii) 

• By analyzing scenarios I and II, hedging under ideal conditions where 
there are no model or policyholder behavior risks yields an important risk 
reduction 

• Even if the moneyness ratio is assumed incorrectly in the hedge, the risk 
measures are much lower than those obtained when dynamic lapsation risk 
is not hedged at all  

• The standard deviation and risk measures under wrong moneyness ratio 
are approximately twice as large as in scenario II (perfect hedge) but when 
dynamic lapses are not hedged, they are about five times larger 
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14. Continued 
 
• Even if the assumption on the moneyness ratio is set wrong in the hedge, it 

is still possible to achieve a very significant risk reduction by hedging 
dynamic lapses 
 
 

(iii) 
• The BS model assumes that the value of the reference portfolio follows a 

geometric Brownian motion. Since the hedging Greeks are computed 
under the BS model as well, there will be no model risk  

• The RS-GARCH market model assumes the state of economy is driven 
by a latent Markov chain and captures jumps in returns and volatility 
dynamics.  

• RS-GARCH model gives a lower mean of net hedging error compared to 
the BS model   

• When hedging under RS-GARCH model, standard deviation is higher 
compared to the BS model  

• Risk measures under RS-GARCH model are roughly twice compared to 
the BS model for all scenarios except when lapsation risk is not hedged at 
all  

 
(iv) 

• Even if the market model significantly deviates from the BS model, the 
analysis still points to hedging dynamic lapses with the wrong moneyness 
ratio as better off than not hedging at all 
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15. Learning Objectives: 
5. The candidate will learn how to apply the techniques of quantitative finance to 

applied business contexts. 
 
Learning Outcomes: 
(5d) Demonstrate an understanding of target volatility funds and their effect on 

guarantee cost and risk control. 
 
Sources: 
QFIQ-124-20: Variable Annuity Volatility Management: An Era of Risk-Control 
 
Commentary on Question: 
This question is to test how well the candidates be able to apply the techniques of 
quantitative finance to applied business contexts, with the focus on the ability of the 
candidates to demonstrate an understanding of target volatility funds and their effect on 
guarantee cost and risk control. The question strikes a balance among Retrieval, 
Comprehension, Analysis, and/or Knowledge Utilization.  
 
Solution: 
(a) Describe principal objectives of volatility management strategies of equity-based 

guarantee products from the perspectives of manufacturer and client respectively. 
 

Commentary on Question: 
Quite a few candidates answered this question by listing the different perspectives 
without any description. The candidates are expected to give more explanations 
(rather than list) for each perspective.    
 
Manufacturer perspective: 

• Write profitable business – product teams must satisfy bottom-line at-issue 
economic value / IRR thresholds 

• Stabilize ALM & hedging performance – volatility management solutions 
stabilize ALM performance by narrowing dispersion in liability value 
changes; another concern specific to certain volatility solutions is “basis 
risk” 

• Optimize capital requirements – reduce the liability performance “tails” 
that drive increased statutory reserves and capital levels 

 
Client perspective: 

• Maintain investment upside potential – clients invest in equity-based 
portfolios to harness potential market upside 

• Minimize impact to guarantee value – clients invest in VAs to obtain 
income guarantee 
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15. Continued 
 
(b) Determine the equity allocation of the portfolio after any changes driven by the 

capped volatility strategy. 
 
Commentary on Question: 
Less than half candidates were able to answer this question well. The remaining 
were unable to either to recall or apply the relevant formula for the calculations.   
 
formula for determining if volatility is too high; realized equity vol = SQRT(252 
* 21-day sum of squared daily returns / 21) 
 
realized equity vol = SQRT(252*.0081 / 21) = 31.177% 
31.177% > 30% the trigger level, so adjustment needed 
 
formula for determining new equity ratio; equity ratio = minimum (100%, 
30%/realized equity volatility) 
 
equity ratio = min (100%, 30%/31.177%) = 96.225% 
current allocation is 60%, so new allocation is 96.225% * 60% = 57.735% 

 
(c) Describe actions, if any, to take to achieve the changes in equity allocation in part 

(b). 
 
Commentary on Question: 
This question is directly related to part b). Credits were also awarded for 
candidates who were able to identify the correct actions, e.g., reduce the equity 
allocation. Candidates are expected to provide solutions/actions that are clearly 
effective. 

 
• Action required is to de-risk using futures  
• To reduce the exposure, sell futures 

 
(d) Critique your coworker’s thoughts on VIX-indexed volatility management 

strategies. 
 

Commentary on Question: 
Very few candidates can articulate the critique well. But most candidates could 
identify at least one or two of the properties below:  

 
 



QFI QF Spring 2020 Solutions Page 68 
 

15. Continued 
 

• VIX-indexed fee rider allows insurer to adjust charges periodically as needed 
(e.g., quarterly, etc.) 

• Rider fee adjusts around a base fee level plus an increment amount for every 
unit the VIX exceeds a target value 

• Rider fee is bounded overall by a floor and ceiling 
• VIX-based solutions are  

o most effective in “body” of volatility distribution 
o least effective in “tail” of distribution 
o incremental fee in “spike” scenario are insufficient to offset the hedge 

losses driven by square of volatility (and/or) reduced fees are too great 
in periods of extremely low volatility 

 
(e) A consulting firm recommended a joint VIX-indexed and capped volatility 

strategy as the volatility management strategy. 
 
Evaluate the recommended strategy. 

 
Commentary on Question: 
A few candidates are able to correctly draw the right recommendation/conclusion 
based on the information provided in the question. Albeit, most candidates failed 
to perform well for this part.  

 
• Reducing volatility and Vega is important from insurer (company) perspective 

while minimizing impact on returns is important from client perspective 
• Joint strategy is more effective than using only capped volatility strategy 

o reduction in volatility (40% v 15%) and Vega (0.24% v 0.40%) 
(insurer perspective) with  

o negligible impact on returns and minimal increase in fees (client 
perspective)  

• Target volatility can increase equity allocations beyond 60% in calm markets / 
heavy allocation to cash in high volatility times  

o loss of upside potential which would be negative from client 
perspective  

• Capital preservation strategy has better reduction in volatility cost and Vega 
metrics but has significantly lower returns from 2010-17 which would be 
unfavorable from client perspective 
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