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Executive Summary

Corn is a fundamental part of the US agricultural industry, being the crop of the greatest

gross tonnage produced and highest monetary value yielded each year.

In this report, we focused our analysis of climate change’s impact on corn yield and in-

surance claims in Southern Minnesota through an analysis of how temperature and precip-

itation are expected to change over the next 30 years, and how these changes are projected

to affect the relationship between the agriculture and the insurance industries with regards

to crop loss and indemnities.

Data regarding regional climate trends and historical indemnities is used in order to predict

changes to the agricultural industry, and how insurance industries can best react to mitigate

their losses. Sources such as the USDA (United States Department of Agriculture) RMA

(Risk Management Agency), NOAA (National Oceanic Atmospheric Administration), and

the USDA NASS (National Agricultural Statistics Service) are useful in developing a thor-

ough understanding of how regional climate changes, and how indemnities and crop losses

are affected by those changes.

Our methodology rests on the observation that both temperature and precipitation are

stochastic processes, i.e. they cannot ever be fully determined in the future, and thus war-

rant stochastic modeling and simulation. Thus, temperature and precipitation are modeled

individually as random processes viz. Markov process and random walk, respectively. The

two results are combined by means of a synthesis model to predict the volume of indemni-

ties. This synthesis model incorporates feature engineering and is trained by optimization

on past data. This pipeline (forecasts of temperature, precipitation, and the synthesis

model) is performed 1000 times, and combined with a Monte Carlo average to deduce the

forecasts for indemnity loss.

The results from our modeling demonstrated a clear increase in the volatility of temperature

and precipitation, with anomalous values occurring in short spikes rather than extended pe-

riods of time. After training and generating the combined model of these factors against

crop loss, we were able to quantify the expected total payout of insurance companies over

time using the upper bound of a 99.7% confidence interval to approximately $29.5 billion

in total over the next 30 years, which in comparison to current yearly loss, led to our rec-

ommendations focusing on increased premiums, diversification of the agricultural market

with crops that are more resilient to climate change and optimized growing patterns, and

an overall improvement to the infrastructure that supports irrigation and crop-growth.
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Introduction

Background Information

Agricultural Industry Background

Corn is one of the crops that is globally most susceptible to climate change due to its

vulnerability to extreme heat and susceptibility to precipitation damage. Estimates suggest

that only two degrees of warming globally would contribute to a 20− 40% decrease in corn

production globally with four degrees leading to a 40−60% decrease [1]. Corn alone consists

of over $4 billion of the Minnesota Agricultural Industry, and just under 50% of all crop

production of the state in a single year [2].

Figure 1: Percentage breakdown of crop production in 2018, with corn being the most widespread

form of agriculture.

Overall corn production in the US is concentrated in a small region, mostly in Minnesota,

Iowa, Illinois, and Nebraska [3]. Counties in Minnesota generate more than 20 million

bushels of corn annually, so naturally it makes up a large part of their economy. South-

ern Minnesota specifically is cut through by the Minnesota River, which has a large fertile

floodplain to grow corn, as well as provide water for irrigation.

There are two main types of insurance in Minnesota: crop yield insurance, which cov-

ers losses due to natural disasters, and crop revenue insurance, which covers losses due to

fluctuating prices. For our analysis we are mostly concerned with crop yield insurance,

since climate change affects natural disasters such as floods and hail, however we do have

recommendations for both. There are three main types of coverage: multi-peril crop insur-

ance, which covers all types of losses; crop hail, which covers fire, hail, and storage losses;

and replant, which covers the cost of replanting crops after a failure [4]. Multi-peril Crop

Insurance is a part of the Federal Crop Insurance Corporation, while crop hail insurance is

generally provided by a private insurance provider [5]. Corn is a especially susceptible to

hail damage, so it is important for farmers to purchase crop hail insurance in regions with

higher amounts of hail [6] [7].
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Climate Forecast Background

We choose to focus our analysis of climate factors on precipitation and temperature. Among

the commonly accepted Top 7 Factors in Crop Production [8], virtually every factor (soil,

nutrients, damage, etc) that affects crop production is affected by the amount and volatility

of precipitation and temperature .

According to the United Nations Framework on Climate Change (2010): “To prevent dan-

gerous interference with the climate system, the scientific view is that the increase in global

temperature should be below 2 degrees Celsius.” Global warming has resulted in an increas-

ing global mean temperature, however, the mean temperature in Minnesota is increasing

faster than the global mean. Forecasts suggest that even if the global mean temperature

only raises by 2 degrees Celsius, Minnesota’s mean temperature will see a rise of 3.3 degrees

Celsius [9].

Furthermore, Minnesota’s precipitation is also expected to change significantly. Multi-day

events of heavy rainfall which can be damaging to crop production have seen a 37% increase

in recent years in the region, suggesting an acceleration of weather events that significantly

impact crop yield. It’s important to note that while warming during the winter does indeed

increase the length of the growing seasons, it also directly correlates to an increase in the

number of pests and soil erosion, both of which negatively impact crop yield during the

harvesting season. Furthermore, when this warming occurs during the summer, it directly

corresponds to a lower crop yield.

Additionally associated with global warming is the increase in volatility of weather events

and the increased presence of extreme events which cause crop damage and soil loss. Our

analysis robustly incorporates increasing volatility values to best model this trend, so that

we make the most accurate insurance and policy recommendations as evidenced by the

literature on global warming in relation to agriculture.

Finally, warmer winters have led to reductions in the snowpack which has sped up the

process of water release to agriculture, in addition to precipitation in the winter falling as

rain instead of snow, increasing wildfire risk and the severity of droughts that occur in the

summer [10].
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Modeling

Data Methodology

We draw data from three main sources in our modeling: The National Oceanic and Atmo-

spheric Administration’s Climate Data Online archive of historical weather, The National

Agricultural Statistics Service of the USDA’s Quick Stats Data, and the US Department of

Agriculture Risk Management Agency’s Cause of Loss files.

Data from these sources allows us to specifically gain data regarding climate change over

time, crop production over time, and how indemnities have changed over time, which we

can then analyze in different pairwise models to make appropriate policy and insurance

recommendations while considering the multifaceted ways climate change can affect agri-

cultural indemnities.

In the following text, we present an overview of each of our data sources, including what

data points and measurements are being explored in our analysis.

USDA RMA Cause of Loss (Primary Data Set) [11]

• Scope and Parameters of data: Yearly indemnity data for corn for the selected

counties in Minnesota aggregated from the monthly indemnity data (historic insurance

claims) from 2001 to 2019 from the USDA Risk Management Agency’s “Cause of Loss

Files”.

• Purpose of data: The indemnity data provides us direct information on how the

insurance industry has been impacted over time, which we then use to train and

create a model against changes in the climate to forecast future losses to insurance

companies.

• Motivation: The usage of this primary data set is important to our analysis as

the insurance claims that have been filed by farmers provide us direct information

of how the insurance portion of the agricultural industry has been impacted over

time, which is the only way we could correlate our insurance recommendations to the

simultaneously occurring changes in the climate.

USDA National Agricultural Statistics Production Data (Supporting Data Set) [12]

• Scope and Parameters of data: Total amount of corn production for the selected

counties by year.

• Purpose of data: The production data is used in exploratory analysis to study

the key parameters that have large impact on crop yield and thus may be correlated
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to loss. The values themselves are not used in our analysis, but yielded important

insights for our modeling and parameter selection.

• Motivation: While indemnity data can allow us to see the overall losses due to

climate factors, production data allows us to investigate total impact of climate change

on corn. Production data is a key indicator of the overall health of the corn industry.

NOAA Climate Data Archive Daily Summaries (Supporting Data Set) [13]

• Scope and Parameters of data: Daily extreme and maximum precipitation/temperature

of the corn-growing counties between 1950 and 2018 sourced from “Climate Data On-

line” archives of the NOAA specific to the region of Minnesota.

• Purpose of data: Daily precipitation and temperature data is extracted as time

series data and converted to PDSI values (as detailed in the methodology), then used

for the forecasting for each of the parameters.

• Motivation: The usage of the NOAA Climate Archives provide us with official infor-

mation of climate, but also allows us to analyze specific factors that interest us such as

maximum daily temperatures and precipitation or the occurrence of multi-day events,

which were necessary to our definition of the two important climate factors we chose

to focus on as described in the Background Information section.

NOAA Climate Data Archive Yearly Summaries (Supporting Data Set) [13]

• Scope and Parameters of data: Yearly extreme and maximum precipitation/temperature

of the corn-producing counties between 1950 and 2018 sourced from “Climate Data

Online” archives of the NOAA specific to the region of Southern Minnesota.

• Purpose of data: In conjunction with the USDA datasets on loss and production,

yearly data (converted to PDSI values detailed below) is used to justify the use of our

temperature and precipitation parameters as a predictor of output.

• Motivation: Similar to the previous data set motivation, the usage of this supporting

data set was motivated by the need for specific data as we defined climate change in

our recommendations to insurance companies.

What additional data would have helped our model?

The changes in foreign supply and demand (or even domestic outside of Minnesota) caused

by climate change could exacerbate the results we see in our models below. This is important

to note because while our region of interest is solely Southern Minnesota, the data from

this wider scale would give a better picture of changes that we might not be able to identify

with models limited by information consisting of production, climate, and indemnity data

solely from Southern Minnesota.
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Mathematics Methodology

Overview

Our overall goal in our modeling is to predict future values of crop loss using forecasts

of precipitation and temperature. Thus, we must first independently arrive at those two

forecasts in order to get a coherent understanding of crop loss.

Here we present the workflow of our modeling methodology, with key steps labeled nu-

merically:

Figure 2: Analysis workflow to forecast the next thirty years of crop loss.

To summarize, after classic pre-processing of our data files we begin the iterative modeling

process. To forecast temperature, we use a mean-reverting process around a sinusoidal fit,

as shown in (1). The precipitation is forecasted using a random walk methodology (2).

These two independently stochastic models are combined via a synthesis model, which in-

corporates a regression along with feature engineering of our two previous forecasts (3).

This model allows us to make one simulation of future indemnities based on our simulated

parameters i.e. temperature precipitation (4). This methodology, steps (2), (3), (4) are re-

peated 1000 times, and the algorithm is subjected to leave-one-out validation (5) to prevent

overfitting. The resulting forecast is determined by averaging across our 1000 simulations.

Our methodology can be partitioned into three major steps:

1. Temperature and Sinusoidal simulations (Markov process, random walk)

2. Synthesis model (regression)
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3. Indemnity forecast of simulations (Monte Carlo)

Each section of the analysis will begin by introducing the methodology of that particular

analysis, followed by stating a few key assumptions. Then, the theory is presented, followed

by a justification of why the specific model is appropriate for the task at hand.

Forecasting Temperature

We will forecast temperature by beginning with a simple sinusoidal fit that estimates sea-

sonal and temporal behavior of the data. We begin by using literature and the intuitions

from our exploratory analysis to form a general four-parameter model for temperature. We

then learn individual parameters of the model via gradient descent to minimize a least-

squares loss function.

To simplify modeling, we make some assumptions about the data. We assume that the

NOAA temperature data takes a consistent measurement, and this measurement is a good

“summary” of temperature that ends up influencing our loss output. In this section, we

propose that the temperature in a given month is weakly correlated to the temperature in

all past months. The justification here is that even though hot months may precede hot

months, and cold months cold, this is largely due to seasonal variation (i.e. two hot months

will mostly likely occur during summer) that matters more than the monthly variation. We

also postulate that our data will exhibit a trend of increasing average temperature over

time, largely due to climate change. We will assume that the trend we identify will extend

into the future in the same manner. This seems reasonable because experts forecast that

climate change will only grow at an increasing rate (i.e. faster than linear), which means

our model is making a conservative forecast and likely not excessively extrapolating [14].

Based on our exploratory analysis, we observe that temperature obeys a sinusoidal trend

with respect to time, in particular the seasonal variations that are cyclic every year. We

propose the model below that has been applied in literature regarding temperature fore-

casting [15,16].

Tm(t) = a+ bt+ c sin
(2πt

12
+ d
)

(1)

where t is in months. We can then learn the parameters a, b, c, d by gradient descent,

minimizing our cost function with respect to our true temperatures T (t) and our estimation

for the mean temperature Tm:

J(t1, t2, . . . , tn, Tm) =
1

n

∑
t1,...,tn

(T (t)− Tm(t))2 (2)

Gradient descent is a mathematical technique where a loss function (Equation 2), which

quantifies the difference between our predictions and the data, is minimized by taking di-

rectional derivatives until a local minimum is reached. We use this method to optimize our
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parameters a, b, c, d so that the equation above has the smallest value, which is mathemat-

ical evidence that it is an optimized “fit” for the data at hand.

It is worth also mentioning here the bt term attempts to model global warming trends of

increasing average temperatures, and this is well-cited in temperature models used by [17].

So the bt term is indeed important to estimating the means of temperature.

We now begin our forecasting. We propose a mean-reverting Ornstein-Uhlenbeck processing

that is well cited in weather derivative pricing as a stochastic model for temperature [18].

Concretely, we propose that the sequences of temperatures {T (n)} be modeled by the

stochastic differential equation, where at some time t:

dT = dTm + α(Tm − T ) + σdW (3)

where W is Brownian motion [18]. But because we are dealing with discrete time series (as

opposed to particle motion) we work with the discrete form of Equation (3), namely that

Tt = Tm
t + α(Tm

t−1 − Tt−1) + σtεt (4)

which is just the discrete form of Equation (3), where εt is a random normal. This allows

to get one stochastic simulation of T (t). It remains for us to propose values of σt and α,

the daily volatility and the mean-reverting speed.

To deduce σt, we note that since our temperature value is roughly periodic (a key assump-

tion for our earlier sine model), we can make a discrete-time Fourier transform (DFFT) to

our daily temperature time series. Then Benth et al. derives the following expansion of σt

based on some parameters c0, c1, . . .:

σ2(t) = c0 +

I∑
i=1

ci sin
(2πit

365

)
+

J∑
j=1

cj cos
(2πjt

365

)
(5)

where the t indices are discrete time point t = 0, 1, 2, . . . 364 and the parameters c0, c1, . . .

are optimized by the same gradient descent method outlined in Equation (2) [16].

Concretely, we claim that the volatility σ(t) is dependent on the day of the year, so we

look at the 365 historical variances in our data, one for each day. A nonlinear regression is

performed then to estimate c0, which gives us discrete volatility.

The mean-reverting parameter α for this process is also estimated by Wang et al., who

propose the following closed form for α

α = − log
( ∑n

i=1((Ti−1 − Tm
i−1)/σ

2
i−1)(Ti − Tm

i )∑n
i=1((Ti−1 − Tm

i−1)/σ
2
i−1)(Ti−1 − Tm

i−1)

)
(6)



2019-20 MTFC Project Report (2/28/2020) Page 9

which results in considering the weather time series as a ideal martingale [16]. Although

the closed form itself is messy, conceptually it is a weighted average of how more the tem-

perature Tt deviates from the mean Tm than does Tt+1, for all t in the range. We compute

α using a simple iterative approach over our time intervals to estimate α = 0.3043.

Thus the resulting value T (t) can now be estimated for each increment of t. We eluci-

date the implementation of this stochastic process with the following pseudo-code, which is

implemented on Python and TensorFlow backend:

Algorithm 1 Mean-reverting stochastic to simulate temperature given mean temperature

Tm(t), mean-reverting speed α, volatility σ, and last observed temperature T , at some time

n in the future.

c← 0 {counter variable}
T ← T {last-seen temperature value}
while c < n do

ε← N (0, 1) {random normal sample}
T ← T + α(T − Tm(t)) + σε {execution of Equation 4}
c← c+ 1 {increment counter}

end while

return T

Forecasting Precipitation

To measure precipitation, we will use the Palmer Drought Severity Index (PDSI) monthly

data to forecast the future. This is an index that spans from -10 (dry) to 10 (wet) to

measure the relative amount of precipitation during a certain time period.

Because we believe that there is a weak relationship between months of precipitation (i.e. a

wet month has and subsequent wet month, especially given seasonal variations), we propose

the use of a random walk to best model precipitation. Literature regarding precipitation,

often citing El Niño, suggest that precipitation will be more volatile and variant in the

future as the climate itself becomes more unpredictable.

For this reason, we use the Brownian motion limit of random walk, a process whereby

each new precipitation value differs from the previous precipitation value by a difference

which is normally distributed. We choose this model primarily because its forecasts mathe-

matically shows increasing volatility over time [19]. The rationale here for the random walk

is that, unlike temperature, precipitation does not seem to exhibit any sort of cumulative or

seasonal trend, but it does seem to be more volatile over time (which is agreed upon by the

literature) [9, 20]. Therefore it seems reasonable to construct random walks starting from

our past data and aggregate our results into a model for the next thirty years. This seems
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like the most optimal way to forecast something that, mathematically speaking, we have

no reliable way to accurately estimate, even with complex models like neural networks. We

show the specific methodology further down in this section.

Before we present the methodology, we propose a few assumptions and conditions for ran-

dom walk: we assume there are no prominent seasonal effects of precipitation on a monthly

basis, so the random walk is well justified. This claim can be verified when the data is

presented in the Results section, where historic precipitation does not seem to follow any

such trends. We also assume that PDSI is a measure of purely climate-related precipitation

and water measurements, and not affected by human impacts on water levels. This means

the precipitation we are measuring is purely “natural” and thus its changes can be directly

attributed to climate change.

With those assumptions in mind, we are ready to present the random walk model: Given

monthly reads of precipitation P1, P2, ...Pn, we estimate the next monthly precipitation

amount Pn+1 as

Pn+1 = Pn + k
i.i.d∼ N (0, σ) (7)

where σ the historical volatility across all of our data that builds the normal value from

which we randomly sample k i.i.d. from a normal distribution from each step of the random

walk. We compute σ to be 0.9568 by taking the standard deviations of all of the monthly

differences in precipitation, which remains constant throughout. Each new precipitation

value, therefore, randomly deviates from the past one by an amount that is, over many

trials, normally distributed.

Combining models

We now wish to combine the precipitation and temperature time forecasts and prediction

for future loss using a synthesis model. Thus in this model, we present the methodology

assuming we have already arrived at our temperature forecasts and one iteration of the

random walk forecast for precipitation. Our goal here is to synthesize these models to pre-

dict a yearly loss amount, which will then be aggregated over 1000 iterations to achieve an

average loss estimate.

Whereas our previous forecasts were performed on a monthly basis, we choose to perform

loss predictions on a yearly basis. The justification is that predicting loss on a monthly

basis requires a level of granularity that simply cannot be represented with our random

walk and sinusoidal regression model. Furthermore, if it is of low value to the actuarial

industry to present loss on a monthly basis, especially if these values would naturally be

more inconsistent. We forecast instead yearly loss predictions, which we believe will be

more instrumental and suitable with our methodology.
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To achieve this, we propose a modified polynomial regression model. We find our loss

values per year from the USDA dataset, and these amounts will be used for our model to

learn its parameters.

For our assumptions, we assume that the precipitation and temperature are independent.

This allows us to deploy our model without worrying about confounding variables. While

there may indeed be some correlation between the two, because our models came up with

precipitation and temperature independently, an independence assumption seems reason-

able.

Moreover, we assume that crop growth and production follows a roughly quadratic rela-

tionship with climate variables from an optimal value. This is well-justified by Figure 3

(presented below), a graph presented by the US Global Climate Change Research Program,

which shows the conditions for optimal plant growth [17]. This clearly shows a quadratic

relationship with respect to some optimal value.

This particular graph and its mathematical implications will be implemented in our model,

as well. Finally, we assume that the cumulative effect of different climate variables is ad-

ditive, which follows largely from the independence assumption, and implies our resulting

model is quite appropriate for combining these two parameters.

Figure 3: Studies from the US Global Climate Change Research Program suggest that corn’s growth

is roughly quadratic, with optimal rate achieved at some ideal temperature. These observations are

incorporated in our synthesis model.

We are now ready to present the methodology. The underlying premise of this regression

is that we believe extreme climate behavior, whether it be high (temperature or precipita-

tion) or low, have similar effects on loss (generally some negative one). This is not much

an assumption but rather a hypothesis of the data that the regression will explore.

The data presented in the above Figure also suggest that there exist some optimal val-
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ues of temperature and precipitation Tideal and pideal where loss is minimized. We do not

know precisely where these values lie, but thankfully we can learn them by running gradient

descent on past data.

Given yearly precipitation reads p = p1, p2, . . . pn, temperature reads T = T1, T2, . . . Tn,

and crop losses y1, y2, . . . yn, we seek to fit the following function:

ŷ = β0 ∗ (T − Tideal)2 + β1 ∗ (p− pideal)2

where our parameters β0, β1, Tideal, pideal are learned by gradient descent to optimize least

squares error (similar to our temperature model).

The rationale for this model is that values of T and p that deviate from what the the

data suggests is “ideal” contribute in some way to loss, whether or not they are larger

or smaller. This is where the squared difference comes in. The amount with which they

contribute to loss is unknown, though, so parameters β0 and β1 are introduced so that the

model can learn the relative weight of these deviations (i.e. whether or not a significantly

non-ideal precipitation is more impactful than a non-ideal temperature).

Monte Carlo Simulations

Each of the predictions made by the Monte Carlo simulation are now averaged together to

generate the final results. Concretely, given loss predictions L1, L2, . . . , L1000 we compute

the average simulation L as the simple average:

L =
1

1000

1000∑
i=1

Li (8)

Model Results

Temperature Results

Based on our gradient descent model, we arrive at the following time-based modeling for

temperature, where t is in months.

T̂ (t) = 44.69 + 0.0019t+ 33.69 sin(1.728t+ 0.704) (9)

This equation is the mean temperature over time, and will serve as the baseline for our mean-

reverting model. The 0.0019 term indicates the average amount of degrees the temperature

has risen in per month based on the model. So above the sinusoidal trend for seasonality,

which is expected, we also see a non-negligible increase in temperature over time. We can

check our model on our historical data after our optimization process to ensure it is an

accurate representation of the data before we extrapolate for future time points.
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Figure 4: Sinusoidal fit on historical temperature monthly values between 1980 and 2007 overlaid

on true data.

Now, based on the algorithm described in the methods section, we are able to arrive at a

simulated forecast for the temperature. We showcase a portion of one simulated forecast,

showing the mean temperature, represented by a sine curve, as well as our forecast. It is

clear that the forecast is mean-reverting with respect to the sinusoidal curve of best fit.

Figure 5: Mean-reverting simulation, in black, for a period of time on training data. Overlaid over

sinusoidal fit.

This is one individual simulation that will be eventually combined by Monte Carlo methods,

and we can see that the simulation is indeed mean-reverting and seems to better capture the

volatility than a simple sinusoidal fit. We choose not to overlay the simulation over past data

here, because we do not wish to use a single random sample to generalize conclusions about

accuracy. We will perform validation later in the methodology, when we have combined

individual simulations.

Precipitation Results

We present our aggregated random walks for the PDSI values until 2050:
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Figure 6: A PDSI simulation using a random walk.

Figure 6 (above) shows that forecasted PDSI demonstrates a larger volatility than the his-

torical data. Additionally, extreme PDSI values are projected by the model, which surpass

historic extremes, particularly for positive PDSI. This could indicate the possibility for

higher amounts of extreme months, which poses interesting directions for analysis. The av-

erage results indicate a higher average precipitation but continues to show dry periods. The

complete implications of such projected behavior will be discussed in the Recommendations

section.

Combined Results

Using our synthesis model, converted our monthly forecasts into yearly forecasts, then

combined the two yearly forecasts (temperature and precipitation) to learn a model for loss,

based on past data to learn our parameters. The historical data of loss versus our prediction

is plotted below. The prediction themselves are not far off, but most importantly the model

is able to capture movement of loss over time quite accurately.
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Figure 7: Historical values of loss versus predicted values of loss based on precipitation and temper-

ature parameters. Predicted forecast shows large parallels with historical ground truth loss values.

The purposes of the previous few results were to justify the accuracy and appropriateness

of the individual pieces of our model. We are now able to combine the models to forecast

future loss, which we show here.

Figure 8: An example of forecasted loss values based on the model established in Figure 7 (com-

puted from one specific random walk). Large spikes in loss suggest an increasingly high volatility of

loss values in the future, but not necessarily a consistent increase in yearly loss values.

The forecast shows two large spikes in loss which seem larger than what has historically

been true, along with smaller valleys with relatively low loss. Thus the model does not seem

to suggest that loss necessarily will increase monotonically in the future but rather there

is a generally larger volatility in the amount of loss. The implications of this forecast as

well as the recommendations we conclude are discussed in depth in the Recommendations

section.
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Analysis

Risk Analysis

The risk of crop failures and reduced crop yields will likely increase in the coming decades

due to the effects of climate change. This risk will ultimately be the burden of insurance

companies, who will have to raise premiums. The price of increased premiums will be passed

on to the farmer, who in turn will pass it on to the consumer. Therefore, it is inevitable

that our food prices increase in the coming decades due to climate change [21].

Risks to the Agricultural Industry

Agriculture is a big part of the Minnesotan economy. In fact, employment in industries

related to agriculture accounts for 15% of total jobs. Specifically, in rural Minnesota, agri-

culture accounts for 24% of jobs and even in metro areas, agricultural accounts for 13% of

jobs [22]. A decrease in crop production in the years leading to 2050 will lead to unem-

ployment for many farmers, as they will be unable to keep up with production elsewhere in

the country, where the effects of climate change are not so pronounced. If crop production

declines, the economy will face a directly reduction of agricultural jobs, which is a crucial

component of the Minnesota economy and could lead to an increase in unemployment rates

in the state.

Overall corn production will decrease as temperature increases according to our model

(Figure 4). However, our model does not fully capture the extremely cold months, repre-

sented by the blue dots which lie under the red dotted line. This means that not only will

the average temperature increase in the future, but cold weather months will also become

more extreme. Therefore, it is imperative that farmers not only be prepared for extreme

hot weather, but also for extreme cold weather. Extreme cold weather, such as an early (or

late) season frost, could mean disaster for a corn harvest if not dealt with correctly.

Identification of Ancillary Risks

Since corn accounts for 48% of Minnesota agricultural production, a reduction to corn pro-

duction could mean widespread unemployment that ripples across the local area, even to

other industries up and down the supply chain. Suppliers of farm equipment could see

reduced sales, especially for equipment used on plants highly susceptible to climate change

such as corn. More troubling, though, heightened food prices due to a restricted and irreg-

ular supply of corn could mean reduced living conditions for many families, who will have

to spend a higher percentage of their income on food. The dual risks of increased unem-

ployment and higher food costs could mean many families will move out of the Minnesota

region in the near future.
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In addition, the highly variable water supply due to anomalous precipitation from the

effects of climate change means a greater frequency and magnitude of droughts. Excessive

precipitation poses a significant flooding and hail risk for farmers, as both of these events

severely damage corn crops. This risk will ultimately be passed on to the insurance compa-

nies who insure farmers through crop-hail insurance. Significant damage will also be made

to infrastructure in the event of a flood if a community is not sufficiently prepared.

Drought poses a more sizable risk, as it would lead to water scarcity which not only impacts

the agricultural industry but also the municipal water supply [10]. Crops cannot be grown

without a steady supply of water, and people cannot survive without reliable drinking wa-

ter. Water shortages will also have a negative impact on the local wildlife, which may lead

to more intrusion of wildlife into urban areas, causing disruptions with vehicles.

Furthermore, the aridity caused by the variations in temperature significantly increase the

risk of wildfires which can cause heavy damage to infrastructures such as those that Califor-

nia has dealt with in recent years if not properly prepared for. Spikes in heat can also leads

to spikes in heat-related illness, exasperate the spread of infectious disease, and increase the

amount of requests for emergency food assistance [10].

All of these are reasonable risks that must be considered in the face of highly volatile

precipitation and rising temperatures.

Recommendations

Insurance Recommendations

In our recommendations to insurance companies, we will focus on the results of our models

regarding expected losses of indemnities over the next 30 years until 2050. We begin by

considering the graph of relative frequencies of predicted losses from our random walks,

shown below:
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Figure 9: Histogram of predicted loss, in tens of billions USD, by random walks shows a right skew

to larger values of loss. This suggests that increased climate change and volatility runs the risk of

large, unprecedented losses in the next thirty years.

One of the first interesting aspects of our result is the skewness to the right of the figure.

Specifically, this skewness to the right indicates that there is a chance of extremely large

losses for farmers that would need to be covered by insurance companies. This risk can be

quantified with the following two sample statistics from our model of indemnity based on

average losses from a simulated random walk:

Mean Total Indemnity Loss over the next 30 Years $13.1 billion

Standard Deviation of Total Indemnity Loss over the next 30 Years $5.47 billion

Obviously, insurance companies need to be careful, so we consider the upper bound of a

95% confidence interval of losses over the next 30 years. It’s important to acknowledge here

that the data and simulated losses are indeed quite variant, but insurance companies are

most likely interested in protecting themselves from loss, which is why we choose to con-

sider the upper bound of such an interval. This upper bound comes out to approximately

$23.8 billion, which is thus a reasonable expectation of an upper bound to indemnities that

insurance companies should expect to pay out in total over the next 30 years.

With the effects of climate change becoming more and more dire each year, insurance

providers will need to re-evaluate their risks and potentially raise premiums in order to

keep up with the higher probability of disaster. Some types of insurance, like crop-hail

insurance, will be especially susceptible to the increase in frequency of abnormal weather

events brought on by an increase in overall temperature. Atmospheric phenomenon are all

driven by heat, so an increase in it will mean more frequent events such as hail, droughts,
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and thunderstorms, which all have the potential to wreak havoc on corn crops.

Our model of simulated PDSI data to 2050 (Figure 6) supports the idea of volatility in-

creasing in the years to come, with the extrapolated data demonstrating clear increases in

maxes and minimums of the data, and in general deviations from the mean. We are also

inclined to believe in the strength of this model, as if we consider the extrapolated data in

the same color as historical data as shown below:

Figure 10: Combined PDSI time series (historical and simulated) suggests an increasing volatility

of PDSI values in the future, especially regarding more wet PDSI values.

The graph is especially notable in that a new high for precipitation is achieved at least

6 different instances (with respect to the historical highs) — the severity of such severe

spikes precipitation without proper readiness systems very likely leading to immediate crop

damage. Insurance companies should not expect these events of severe precipitation to

continue over longer periods of time, as even in our model, they only appear in spikes

rather than large plateaus. Thus overall, it is highly likely that crop-hail insurers will

have to raise premiums in order to cover the higher costs of the abnormal weather events.

Consequently, crop-revenue insurance will be heavily impacted, as an increase in the number

and severity of weather events directly correlates to a greater volatility in the supply and

demand schemes of the crop market. The purpose of crop-revenue insurance is to protect

agricultural workers against the volatility of said market, thus the increased fluctuations

in crop yield due to the changing temperature and its direct correlation with the volatile

nature of weather events suggest that crop-revenue insurance will need to be wider spread

to be able to cater to these larger fluctuations, hence forcing insurance companies to either

raise the premiums for an increased coverage, or decrease the amount of loss in market
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fluctuation that they are willing to cover for agricultural workers.

Since our temperature forecast (Figure 4) does not accurately model the extremely cold

months, extra caution is needed to prepare for those cold months. For insurance providers,

this means reevaluating risks of crop failures due to extreme cold events such as frosts. At the

same time, the possibility of extreme hot weather events such need to be factored in as well.

Overall, this would mean increasing premiums for crop-hail insurance providers. Indeed,

it behooves insurance companies for using dynamic values for premiums that incorporate

these discrepancies. Perhaps in areas where there are temperature levels (high or low) that

cannot be accurately captured by a least-squares regression, insurance companies should

adjust their premiums to ensure that they do not suffer unprecedented losses.

Public Policy Recommendations

In our public policy and governmental regulation recommendations we will focus on miti-

gating the factors that actually result in crop damage and hence indemnities for insurance

companies. While the two factors with which we focused our definition of climate change on

are temperature and precipitation, the issue of temperature is often times out of the scope

of public policy to deal with, so instead we focus on the infrastructural solutions that can

be proposed to combat the problems that arise with precipitation and water in general.

Aside from its direct impact in the form of rain on crop production, water supply also

affects crop production in a region due to its effect on irrigation systems. Specifically, in re-

gions where irrigation systems are developed to support the current level of crop production,

irrigation systems that face a lack of water will not be able to successfully distribute water

to crops, directly leading to crop damage and decreased yield [23]. One way to mitigate

the effects of volatile precipitation and severe weather events, such as droughts, is to build

a more resilient water supply. The state of Minnesota could build additional canals and

wells in order to provide a sustainable supply water during times of drought. Investments

could also be made into drip irrigation systems, which have been shown to be much more

effective than traditional flood irrigation [24]. By investing in the water supply, as well as

further conserving the use of water, the effects of droughts on agricultural production and

urban life could be largely mitigated.

Floods must be considered as well, as they can wreak havoc on unprepared communities.

Structural mitigation, such as the construction of dikes and levees, as well as non-structural

mitigation, such as moving people away from flood-prone areas, are both needed to reduce

the effect of floods [25] [26]. These techniques must be used selectively in high flood risk

areas of the state to minimize flood damages as well as reduce costs.

Now aside from the direct mitigation of precipitation, public policy could potentially be
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beneficial if we consider the economic aspects of the corn and insurance markets. Specifi-

cally, one of the two major types of insurance as discussed in the background information is

crop-revenue insurance, which is dictated not by how much the farmers produce, but rather

how much revenue they can generate off of it.

Because of the increased volatility in the production of corn that is directly correlated

with the increased volatility of PDSI indexes that we see in the extrapolated portion of the

graph of PDSI’s, corn revenue is susceptible to severe price fluctuation. The government

should make active efforts to protect the economy by educating the relevant producers about

the necessities and benefits of hedging prices in the commodity market.

For example: farmers grow corn but risk that the price of corn will have declined by the

time they are ready to sell them. Farmers could hedge the risk by selling corn futures, which

lock in a price for their corn early in the growing season. In general, we would recommend

diversification of the market with other crops that may be more resilient to climate change,

as farmers are incentivized to create optimized growing patterns for different crops that

are more likely to survive in the more extreme scenarios of the current climate, than hedge

their bets on crops with a smaller ideal growth condition interval and smaller variety of

crops [20].

Further Recommendations

In the face of a warming climate, corn will be more and more difficult to grow. Instead

of changing the climate to adapt to the corn, we could change the corn to adapt to the

climate. Already 92% of corn grown in the United States is genetically modified [27], so

it should not be too difficult to invest in the creation of a new strain of corn that is more

resilient within a warming climate [28].

While this is an interesting and increasingly more novel approach to this issue, there are sev-

eral ways communities themselves can still participate in the mitigation of climate change

and harm to the economy. Communities that are on the frontlines of climate change in

Minnesota (such as farmers) stand to suffer the most. Communities that depend heavily on

resources that are projected to change with the climate ought to proactively take steps to

identify sources of alternatives or sources that can provide stability to income, basic needs

(drinking water, healthcare assistance, etc). Electric and gas companies should take steps

to mitigate the risks of wildfires immediately, and increase monitoring of their systems to

locate the existences of wildfires in a quicker amount of time.

Finally, there are still politicians in Congress that deny the existence of climate change,

ignoring the warnings and undisputed logic of many scientists. To accomplish effective

change from the national level, communities should leverage the power of social media



2019-20 MTFC Project Report (2/28/2020) Page 22

which has dramatically increased in influence in the past decade to counter disinformation

about climate change and to spread awareness about it.
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Appendix

Contributions

Authors are listed in alphabetical order in the title page and contributions section.

• Models were developed by BG and EZ.

• Technical computing was performed by BG and EZ.

• Background research was performed by PA and RL.

• Risk analysis and recommendations were performed by PA, RL, and EZ.

• Manuscript was assembled by PA and BG.
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