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Projecting Dependent Loss Ratio Under  
Shifting Parameters 
 
Abstract 
Reserving and ratemaking calculations are vital to how insurance companies perform financially. Current-
day practices for predicting future loss ratio or pure premiums for reserving and ratemaking rates are not 
based on low prediction errors—mean squared error (MSE) criterion. The paper provides mathematically 
optimal weights that lead to minimum MSE prediction errors, and the formulas are validated using retro-
testing with real-world datasets. The approach is applicable to all lines where triangulation of data is 
feasible and ratios are available (i.e., either loss ratios or pure premium). 
 
In this report, two main theorems are discussed, each addressing prediction of future loss ratio or pure 
premium and improving upon current practices for how rates and reserves are calculated. The theorems 
provide a more stable and accurate way to calculate rates and reserves for immature (or recent) periods 
while utilizing all the data available to the fullest. Additionally, model stability is explored under time-
dependent shifting parameters and prove an important theorem.  
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Section 1. Introduction 

The paper has two goals, namely stable and accurate loss ratio projections for reserving and ratemaking. 

1.1 BACKGROUND 
Ratemaking, like many actuarial practices, is inherently risky. Actuaries are faced with the challenge of 
determining rates for a year with no emergent data. These rates must be fair such that they are 
competitive for marketability, as well as computationally sound. Undesirable consequences can arise due 
to predictive inaccuracies: If rates are too high, policyholders will take their business elsewhere; conversely, 
if rates are too low, companies will impose larger rate increases in subsequent years resulting in rate 
swings.  
 
Naturally, this is not an exhaustive list of consequences that arise from imprecise ratemaking. Ultimately, 
the goal of any company is to minimize the discrepancy between projected and realized loss ratios. In this 
paper, a least squares approach is proposed to minimize this discrepancy. Table 1 summarizes the current 
ratemaking practice versus the proposed model presented in the paper. 
 

Table 1 
RATEMAKING: PROJECTING OVERALL FUTURE LOSS RATIO 

No. Current Ratemaking Practice Proposed Model Comment 
1 Projection is done using a 

linear combination of previous 
accident year’s developed loss 
ratios.  

Projection is done using a linear 
combination of previous accident 
year’s developed loss ratios. 

There is no change. 

2 Weights are set judgmentally. 
Approach may result in 
projected rates that are high 
or low compared to actual. 

Weights on previous accident 
year’s developed loss ratios are set 
using least squares technique that 
minimizes the distance between 
actual and projected loss ratios. 
 

Improvement: Data is 
utilized to find the best 
possible weight structure, 
which is more precise and 
stable overall rate level. 

3 This provides limited 
application to update 
experience weights in the 
projection of (future) loss 
ratio. 

Proposed model can be used to 
update experience weights used in 
selecting ultimate estimates based 
on a least squares fit of selected 
ultimate loss ratios from historical 
accident years. Further, since the 
future loss ratio is projected as a 
linear combination of historical 
accident year loss ratios, these 
updates will also improve the 
projected loss ratio. 

Proposed model 
enhances accuracy and 
stability of the projected 
loss ratio estimates and 
therefore, improves the 
accuracy of rates. 
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Additionally, adequate reserve amounts have to be set aside for past accident years. Predicting adequate 
reserve amounts imposes a vexing challenge: reserve changes due to inaccuracies in predicting the 
ultimate loss ratio subject companies to significant repercussions. If reserves are set too high, it will 
depress the annual year’s profit and vice versa. If these unwanted reserve swings due to modeling errors 
occur excessively, stakeholders will be dissatisfied with the subsequent volatility, and shareholders will 
likely invest elsewhere. For example, in November 2017 American International Group (AIG) incurred a 
third-quarter loss and had to add $836 million to its reserves (Subba & Barlyn 2017). In response, many AIG 
shareholders sold their shares, resulting in a stock price decrease of 2.3%. While AIG’s reserve increase may 
be justified, this example demonstrates the sensitivity of reserve swings to stock price. Table 2 summarizes 
the current reserving practice (using the Bornhuetter-Ferguson, B-F, method as an example) versus the 
proposed model presented in this paper. 

 

Table 2 
LOSS RESERVING COMPARISON TO B-F METHOD, PROJECTING AN IMMATURE ACCIDENT YEAR LOSS RATIO 

No. Current Reserving Practice Proposed Model Comment 
1 For immature accident years 

(AYs), the a prior loss ratio can 
be judgement or experience-
based.1  

AY projections are calculated using 
a linear combination of B-F 
Method and older (prior to the AY) 
ultimate loss ratios.2 

Improvement: This 
enables full utilization of 
data and, hence, provides 
stability and accuracy in 
AY ultimate loss ratio 
estimation.   

2 B-F Method weights can lead 
to erroneous conclusions. For 
example, a long-tailed line 
with stable link ratios will 
result in most of the weight on 
the expected loss ratio for the 
most recent AY.  

This corrects for the weight 
problem in the B-F Method. It 
spreads weight to older historical 
ultimate AY losses, expected loss 
ratio and chain ladder method for 
the most recent AY.  

Improvement: The AY 
ultimate loss ratio is more 
accurate and stable. 

3 B-F Method weights are based 
on judgement and not 
statistical properties. 

Weights under the proposed 
model have least squares 
properties and are designed to 
minimize expected distance 
between actual and projected loss 
ratio. 

Improvement: The AY 
ultimate loss ratio is more 
accurate. 

 
 

 
 
1 The Bornhuetter-Ferguson (B-F) Method takes a linear combination of chain ladder and expected loss ratio. The weight on the chain ladder 
estimate is (1/age-to-ultimate-factor) and the complement are the weight on expected loss ratio. Our paper considers this method in its most 
general sense—any selection of ultimate loss ratio can be justified by solving for the implied age to ultimate link ratio. Hence, the B-F Method 
justifies any ultimate loss selection and poses no restriction in this paper.  
 
2 In ratemaking, the future accident year loss ratio is projected using the previous historical developed loss ratios. Continuing this reasoning, in 
the reserving context, we should also use the previous historical loss ratio data to project the latest AY. However, we should also use partially 
emerged data for the accident year. 
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Actuaries have historically implemented various methods to project losses, with the B-F methods being two 
of the most recognizable. Despite having widespread application in valuation, those methods have evident 
inadequacies as explained by various researchers. For instance, the chain ladder method has an implicit 
assumption that future loss patterns mimic historical patterns, and thus, the chain ladder method does not 
function optimally in a volatile environment (Friedland 2010). Because of this potential periodic volatility, 
actuaries may turn to intuition and rely on more recent development patterns rather than focusing on 
patterns that have occurred throughout a lengthier period of time (e.g., only crediting the previous three 
years rather than the past decade) (Werner & Modlin 2016). This may be problematic due to the fact that 
such intuition considers less data. On the other hand, a notable drawback of the B-F method is its basis on 
an expected loss ratio that may be too high or too low (Arico et al. 2016). However, the critical drawback of 
the B-F method that we are focused on is its consideration of the abstract target loss ratio that has never 
been observed historically.  

 
There are additional methods available, one of which is the approach proposed by Brehm (2006). In 
essence, he revises the B-F method by replacing the target loss ratio with a least squares loss ratio. 
However, the problem remains the same: This calculated loss ratio has never been observed historically. 
Additionally, we consider more sources of information by combining conventional approaches with a newly 
devised least-squares method that will be discussed later in this paper. 
 
Ultimately, actuaries thus far have not optimally or completely addressed problems arising from inaccurate 
projections. In this paper, we enhance conventional actuarial methods using methodology that minimizes 
least-squared error. Project loss ratio and pure premium can be used in a variety of situations. B-F is one 
application and so is ratemaking. To clarify, our intent is not to address or resolve the problems that 
conventional methods such as chain ladder and B-F present; rather, we augment current methodology 
using mathematical properties and extend it for practical application in the industry.  
 
To preface, the scope of our paper is international, with the United States being an example. A resounding 
strength of the model presented in this paper is its versatility and practicality: This approach is applicable to 
all lines where triangulation of data is feasible and ratios are available (either loss ratios or pure premium), 
whether focused on property and casualty, life and health, disability insurance, etc. Additionally, for 
illustrative reasons, we use accident year triangles, but we could have used any type of year, such as a 
policy, report or calendar year. Furthermore, our method can be applied to pure premium triangles. 
Typically, actuaries adjust the premium to current rate level or put the premium on-level (Werner & Modlin 
2016) for ratemaking purposes; however, this approach can also be applied to a pure premium triangle, 
which would mean on-leveling would not be needed for ratemaking.  
 
An important and related line of work relates to generalized linear modeling (GLM). There are various 
limitations that are identifiable when modeling with GLMs, and these are summarized in Table 3. These 
include the assumption of uncorrelated randomness in outcomes and the full credibility that data receive 
(Goldburd, Khare, & Tevet 2016). Accident year samples cannot be assumed to be independent; that is, 
they maintain some degree of correlation. This is attributable to the fact that several of the same 
policyholders from previous years may still constitute part of the sample in a current year. Our model does 
not encounter this complexity due to the fact that it does not assume independence. Second, insurance 
datasets involve newer accident years that have  incomplete incurred or paid losses, and these data are not 
fully credible for parameter estimation purposes. Third, GLMs are concerned with least squared errors of 
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historical data, and the actuarial problem of predicting future loss ratios relates to minimizing prediction 
errors.  
 
Table 3 
COMPARISON WITH GLM 

No. GLM Proposed Model Comment 
1 Observations are assumed to 

be independent. 
Observations are not assumed to 
be independent. 

GLM parameter 
estimates are inaccurate 
because AYs are not 
independent. 

2 Model provides best historical 
data fit using least squares 
metric. 

Model minimizes prediction error 
using least squares metric. 

Proposed model achieves 
the true goal of future 
predictions. 

3 Parameter estimation is 
carried out assuming that 
incurred loss for recent 
(immature) accident years is 
fully credible. 

Parameter estimation is carried 
out without assuming that 
incurred loss for recent accident 
years is fully credible. 

GLM parameter 
estimates are inaccurate 
when recent accident 
years are included in the 
calculation. 

1.2 THEOREMS 
We now discuss the contents of our paper. These include two critical theorems (namely one for ratemaking 
and one for reserving), key definitions, supporting proofs, derivations and several mechanisms for 
calculation. First, it is important to identify and establish our incomplete accident year distribution. This 
distribution is derived in Appendix A and treats all years as partially developed with varying loss ratio 
means. It is important to note that the covariance calculation pertaining to accident year one will be zero 
due to the fact that the data is complete (fully developed) for that year. 

 
Our first theorem predicts the future loss ratio as a linear predictor of past ultimate loss ratio using least 
squares. The least squares approach minimizes the deviation between predicted and actual future loss 
ratio. In terms of Figure 1, we are projecting the future loss ratio downward using a linear combination of 
historically observed ultimate loss ratios for each accident year. The ultimate historical loss ratios are 
assumed to be provided by actuaries using a triangulation method such as the B-F method. While this may 
seem restrictive, the age to ultimate loss ratio in the B-F method can always be adjusted to match the 
actuary’s selection, thus covering all possibilities, including hand-picked numbers that an actuary provides. 
Our approach is not changing the ultimate loss ratios results for the historical AYs. Rather, our approach is 
applying objective weights to these historical loss ratios in order to project a future loss ratio.   
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Figure 1 
THEOREM 1 DEPICTION 

 
In Theorem 2, we enhance the B-F method by considering these B-F estimates as starting points while also 
using vertical loss ratio projections, as shown in Figure 2. For example, suppose a data set is comprised of 
AY 2000 to 2010 loss ratios, and we want to estimate the 2006 ultimate loss ratio using Theorem 2.3 Then 
we will use Theorem 1 to first calculate weights used in the linear combination of AY 2000–2005 (the blue 
line in Figure 2). We can choose which years we want to apply in the linear combination (i.e., choose 
weights that match with the year we are trying to predict).4 Then we would use the B-F estimate for 2006 
and this new estimate and take a linear combination of the two. The weights used in this linear 
combination are provided by Theorem 2. 
 

Figure 2 
THEOREM 2 DEPICTION 

The horizontal loss ratio projections are assumed to be provided by the actuary, while the vertical 
projections are a new estimate provided in this paper. The vertical projections utilize Theorem 1; thus, 
combining two estimates stabilizes the B-F method estimates. The advantage in this approach is that it will 
likely result in a more accurate and stable estimate in a year with little to no emergent data. Previously, 
without the consideration of previous loss ratios, projection is subject to considerable and unwanted 
amounts of inherent randomness, which we are minimizing. We emphasize that actuaries may still use 

 
 
3 Note that if we wanted to predict AY 2006, then the weights would need to be recalculated using Theorem 1. This time, the AY used for the 
weight calculation would be 2000–2005. Hence, Theorem 1 would need to be used repetitively to project all historical AY, and there will be a 
set of weights for each estimates AY rather than a single fixed set. 
4 This is a critical issue in reserving. For any given AY and age combination, the selected historical AYs should be those that have a similar loss 
ratio emergence at that age. This would make such other AY similar to the current AY. 
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their selected ultimate loss ratios to project vertically using Theorem 1. Theorem 2 then uses these 
projections to stabilize loss reserves (horizontally).  
 
Theorem 2 provides stability and accuracy to loss ratio estimates, partly because it uses actual observed 
loss ratios (vertical projections in Figure 1) as opposed to a target loss ratio, which we questioned earlier. 
By careful, weighted incorporation of both a horizontal and vertical approach, we consider the 
minimization of deviations. Thus, we arrive at a more accurate estimate. The weight given to vertical 
projections versus horizontal projections depends on the maturity of the year. More mature years will 
receive greater weight for horizontal projections and vice versa. Thus, the model adds great value to new 
accident years where loss ratio projections are difficult to make and future loss emergence leads to noise 
as the year converges to ultimate. This noise leads to reserve and income statement fluctuations that are 
undesirable to stakeholders. 5 
 
In the derivation of Theorems 1 and 2, we need the expected loss ratio for both the historical and 
projected accident year. Since these are not always available, we make the simplifying assumption that the 
target loss ratio equals the expected loss ratio and work with the target loss ratio. The assumption has 
merit, because rate changes are implemented each year based on the target loss ratio, and the company 
attempts to set rates with the goal to have the actual loss ratio equal the target loss ratio. However, this 
assumption can be problematic in cases where loss ratios in the future are too volatile to project. Appendix 
B provides two approaches to calculate the target loss ratio using commonly used loss ratio triangles. While 
readers may find newness in these results, our overarching goal was to make the paper as much self-
contained as possible.  
 
In Theorem 1, while no assumption is made about using on-level premiums, most actuaries commonly use 
on-level premiums for historical accident years. Second, this paper could be extended to project other 
quantities such as pure premiums. In this paper, we do not discuss such extensions, since actuarial 
ratemaking and reserving involving projections using historical datasets are widely carried out on loss 
ratios.6 

1.3 DATA AND MODEL VALIDATION 
To test the validity of our proposed model, we tracked loss ratio data triangles for 15 accident years across 
three business lines with varying volatility: Commercial Auto, stable volatility; Commercial General Liability, 
less stable volatility; and Commercial Umbrella, most volatility.7 The AY triangles commence at year zero. 
Year zero is the target loss ratio (the target loss ratio is assumed to be the expected ultimate loss ratio. It 
can be replaced by expected loss ratio when available). Because the data starts at year zero, the model 
incorporates risk at time 0. After that interval, the model incorporates reserving risk.  
 
The data utilized is obtained from an anonymous but real source; furthermore, the AYs were changed to 
ensure that the data cannot be used for commercial purposes. Also, the ultimate historical loss ratios were 

 
 
5 Reserve ranges are not discussed in this paper, because these have been discussed at length elsewhere. For example, the Rehman-Klugman 
Method provides a confidence interval for future ultimate loss ratios (Rehman & Klugman 2009) based on actuary’s selected loss ratios. The 
calculated loss ratio provided by this model would also be covered by that paper.  
6 The Pure Premium Method for ratemaking does not require projecting pure premiums using historical data.  
7 It is important to note here that the data obtained will only be utilized to test Theorem 1. Model validation for both theorems in a single 
paper would make it too long, and a sequel to this paper is suggested to validate Theorem 2.  
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determined by the actuary using the B-F method. While utilizing the B-F method may seem restrictive, it is 
important to distinguish that the aforementioned method is general and broad in how it can be 
incorporated; the age to ultimate loss ratio was adjusted such that it was in accordance with the actuary’s 
selection. Moreover, for the model, we utilize on-level premiums (i.e., premiums at the current rate level) 
along with trended loss ratios (i.e., loss ratios that have been trended to the current date). Furthermore, 
using a retrospective model validation, we assessed the strength of our model and compared it to the 
performance of two alternative methods: latest three-year average and an overall straight average. We 
quantitively evaluated the efficacy of each model using MSE. It is important to note that our model 
validation is a retrospective model validation, meaning our model predicts the loss ratio value first and then 
compares that to the actual future loss ratio. Thus, the loss ratio MSE is calculated as follows:  
 

( )2PrMSE Actual ojected= − . 
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Section 2. Linear Predictor 
The first part of the paper will assume constant parameters over time. We study shifting distributional 
parameters in the end and will alert the reader when that happens. 

2.1 DISTRIBUTION OF EXPERIENCE YEAR LOSS RATIOS 

Let the experience years (accident years or policy years) be 1.. , 1s M M= + . A marginal set of lognormal 

distributions for a random loss ratio , 1s MU + with some known parameter set { }2,s sφ ω  are defined as:  

 

2
2

, 1ln ~ ln ,
2

s
s M s sU N ωφ ω+

 
− 

 
  . . . . . . (1)  

 

Appendix A discusses these distributions.  

2.2 THEOREM 1: LINEAR PREDICTOR OF FUTURE YEAR 

Define { }, 1 : 1,2.. 1s MU s M+ = + , 
1

: 1,0 1
M

s s s
s

α α α
=

 
= < ≤ 

 
∑  and known B-F estimate,8 0sφ > . 

Then the MSE predicted loss ratio is given by 1 , 1
1

s M
P
M s s M

s
U Uα

=

+ +
=

= ∑  whenever,   

 

( )

( ) ( ) ( )

( )

( ) ( ) ( )

1 1

1 2 1 1 2 1

1cov , cov ,
1 1

cov , cov , cov , cov , cov , cov ,
1 1 2 1 2... ...

s M s M

s s s M s s s M

s M
M M

s
s M M

e e
e e e e e e

ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε

φ φα
φ φ φ φ φ φ

+ +

+ +

−
=

+ +

=

   
=       + + + + + +   
∑  

 

Further given known historical values , 1
P
s MU + , linear predictor is given by, 

• 1 , 1 , 1
1 1

s M s M
P P
M s s M s s M

s s
EU EU Uα α

= =

+ + +
= =

= =∑ ∑   

 

One reasonable choice is , 1
P
s M sU φ+ = .   

2.2.1 PROOF 

 
 
8 See Appendix B. 
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The table below is explained in Appendix 4 and we reproduce here convenience.  

Table 4 
USING MSE PREDICTOR TO ESTIMATE ONE CELL 

 1 2 … 1M s− +  2M s− +  1M −  M  1M +  

1 
1,1 1U u=  1,2 1,2U u=  … 

1, 1M su − +  1, 2M su − +  1, 1Mu −  1,Mu  1, 1Mu +  

2 
2,1 2U u=  2,2 2,2U u=  … 

2, 1M su − +  2, 2M su − +  2, 1Mu −  2,Mu   

… … … … … …    

s  
,1s sU u=  ,2 ,2s sU u=   

, 1s M su − +  , 2s M su − +     

1s +  
1,1 1s sU u+ +=  1,2 1,2s sU u+ +=   

1, 1s M su + − +      

…         

M  ,1M MU u=  ,2 ,2M MU u=        

         

1M +  1,1 1M MU u+ +=        
1

P
MU +  

 

Define the linear predictor used to predict the next year’s loss ratio, 1, 1M MU + +  

 1 , 1
1

s
s M

P
M s M

s
U e Uθρ

=
−

+ +
=

= ∑   

The quantity ρ  is some unknown constant. The uncertainty is due to the fact that 1, 1M MU + + is random for 

any year whenever it starts brand new. We will minimize MSE to estimate the set sθ , 

 

2

, 1 1, 1
1

s
s M

s M M M
s

E e U Uθρ
=

−
+ + +

=

 
− 

 
∑  

 

2

, 1 1, 1
1

0s
s M

s M M M
ss

E e U Uθρ
θ

=
−

+ + +
=

∂  
− = ∂  

∑   
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CASE 1: ( ) { }{ }: 0 , 1, 2...s s s Mθ θ ≥ ∈ . 

 

Some of the 0sθ ≥  but not necessarily all, and we restrict ourselves to such cases when 0sθ ≥ . 

Proceeding with differentiation,   

 

( ), 1 1, 1 , 1
1

0s s

s M

s M M M s M
s

E e U U e Uθ θρ ρ
=

− −
+ + + +

=

  
− − =  

  
∑  

 

( ), 1 , 1 1, 1 , 1
1

s

s M

s M s M M M s M
s

E U e U E U Uθρ
=

−
+ + + + +

=

 
= 

 
∑  

 

( ) ( ) ( ) ( )1, 1 , 1 2, 1 , 1 , 1 , 1 1, 1 , 1...s
M s M M s M M M s M M M s Me E U U E U U E U U E U Uθρ −
+ + + + + + + + + + + + =  . 

 

From equation (1),  

 

( )
2 2

2 2
, 1 , 1 , 1 , 1ln ln ln ln ln , 2cov ,

2 2s M t M s M t M s t s tU U U U N ω ωφ φ ω ω ε ε+ + + +

 
= + − + − + + 

 
 .  

 

Hence, , 1 , 1s M t MU U+ +  is also lognormal. Therefore, 

 

( )2 22 2

, 1 , 1

2cov ,
exp ln ln

2 2 2
s t

s M t M s tE U U
ω ω ε εω ωφ φ+ +

 + +
  = − + − +  

 
 

( )cov ,
, 1 , 1

s t
s M t M s tE U U e ε εφ φ+ +  =  .  

 

Thus, we get, 
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( ) ( ) ( ) ( )1 2 1 1cov , cov , cov , cov ,
1 2 1...s s s M s Ms

s s s M s Me e e e eε ε ε ε ε ε ε εθρ φ φ φ φ φ φ φ φ+ +−
+

 + + + =   

 

( )

( ) ( ) ( )

1

1 2 1

cov ,
1

cov , cov , cov ,
1 2

1ln
...

s M

s s s M

M
s

M

e
e e e

ε ε

ε ε ε ε ε ε

φθ
ρ φ φ φ

+

+

+= −
+ + +

 . . . . (2) 

 

 

CASE 2: ( ) { }{ }: 0 , 1, 2...s s s Mθ θ < ∈ . 

 

Some of the 0sθ <  but not necessarily all, and we restrict ourselves to such cases when 0sθ < . Let 

, 0.s s sθ τ τ= − >  Proceeding with differentiation,   

 

( ), 1 1, 1 , 1
1

0s s

s M

s M M M s M
s

E e U U e Uτ τρ
=

− −
+ + + +

=

  
− − =  

  
∑ . 

 

The above is identical to case 1 except that sτ replaces sθ . We can proceed with minimizing the MSE with 

respect to sτ to obtain a similar result as case 1, 

 

( )

( ) ( ) ( )

1

1 2 1

cov ,
1

cov , cov , cov ,
1 2

1ln
...

s M

s s s M

M
s s

M

e
e e e

ε ε

ε ε ε ε ε ε

φθ τ
ρ φ φ φ

+

+

+= − =
+ + +

 . . . (4) 

 

Combining both cases,  

 

( )

( ) ( ) ( )

1

1 2 1

cov ,
1

cov , cov , cov ,
1 2

1ln
...

s M

s s s M

M
s

M

e
e e e

ε ε

ε ε ε ε ε ε

φθ
ρ φ φ φ

+

+

+= −
+ + +

 

 

( ) ( ) ( )

( )

1 2 1

1

cov , cov , cov ,
1 2

cov ,
1

...1ln
s s s M

s M

M
s

M

e e e
e

ε ε ε ε ε ε

ε ε

φ φ φθ
ρ φ

+

+
+

+ + +
=  . . . . (5) 



   16 

 

 Copyright © 2020 Society of Actuaries 

 

The unit sum constraint (both cases) requires, 

 

1
1s

s M

s
e θρ

=
−

=

=∑  

 

( ) ( ) ( )

( )

cov , cov , cov ,1 2 1
1 2

cov , 1
1

...1ln

1
1

s s s M
M

s M
M

e e e
s M

e

s
e

ε ε ε ε ε ε

ε ε
φ φ φ

ρ φρ

+

+
+

+ + +
−=

=

=∑  

 

Note that since 0sφ > , we require 0ρ > . Additionally, since 1Mφ +  is of the same magnitude as sφ , the 

only solution exists when 

 

( ) ( ) ( ) ( )1 2 1 1cov , cov , cov , cov ,
1 2 1...s s s M s M

M Me e e eε ε ε ε ε ε ε εφ φ φ φ+ +
++ + + > .  

 

( ) ( ) ( )

( )

1 2 1

1

cov , cov , cov ,
1 2

cov ,
1

...1ln 0
s s s M

s M

M

M

e e e
e

ε ε ε ε ε ε

ε ε

φ φ φ
ρ φ

+

+
+

+ + +
>  

 

In this case, we require, 

 

 

( ) ( ) ( )

( )

1 2 1

1

cov , cov , cov ,
1 2

cov ,
1

...0
s s s M

s M

M

M

e e e
e

ε ε ε ε ε ε

ε ε

φ φ φρ
φ

+

+
+

+ + +
< < .  . . . . (6) 

 

Then the solution is, 

 

( )

( ) ( ) ( )

1

1 2 1

1
cov , 2

1
cov , cov , cov ,

1 1 2 ...

s M

s s s M

s M
M

s M

e
e e e

ε ε

ε ε ε ε ε ε

φρ
φ φ φ

+

+

−
=

+

=

 
= +  

+ + +  
∑   . . (7) 
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An intuitive explanation of the formula is given below. Suppose that data is such that  

 

 

( ) ( ) ( )

( )

cov , cov , cov ,1 2 1
1 2

cov , 1
1

...1
ln 0

s s s M
M

s M
M

e e e

e

ε ε ε ε ε ε

ε ε
φ φ φ

ρ φ

+

+
+

+ + +
>

 

 

Then the weight, 

 

( ) ( ) ( )

( )

cov , cov , cov ,1 2 1
1 2

cov , 1
1

...1ln
s s s M

M
s M

s M

e e e

e
s e e

ε ε ε ε ε ε

ε ε
φ φ φ

ρθ φα ρ ρ

+

+
+

+ + +
−

−= =   

 

( )

( ) ( ) ( )

( )

( ) ( ) ( )

1

1 2 1

1

1 2 1

cov ,
1

cov , cov , cov ,
1 2

cov ,
1

cov , cov , cov ,
1 1 2

...

...

s M

s s s M

s M

s s s M

M

M
s s M

M

s M

e
e e e

e
e e e

ε ε

ε ε ε ε ε ε

ε ε

ε ε ε ε ε ε

φ
φ φ φ

α
φ

φ φ φ

+

+

+

+

+

=
+

=

 
  + + + =

+ + +
∑

.     ■ 

 

The above shows the “balance” the formula provides: 

 

1. If all years are uncorrelated with the projected year M+1, then all years would get an equal weight 

of 1M − . This is the “default” situation. 
 

2. Positively correlated years with the projected year M+1 will get a larger weight than the default 
case. These years carry the highest predictive power. The most recent years will have maximal 
impact, because the older years have decreasing covariance terms with the oldest year having 0 
covariance terms, because it is fully developed and has no randomness. 
 

3. Negatively correlated years with the projected year M+1 will get a lower weight than the default 
case. These reflect cyclicality years and carry the least predictive power. The most recent years 
will have maximal impact, because the older years have decreasing covariance terms with the 
oldest year having 0 covariance terms, because it is fully developed and has no randomness. 
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2.3 THEOREM 2 

Suppose for a fixed 1s > , we are given coefficients and weights 
1

1
: 1,2.. 1, 1

s

t t
t

t sα α
−

=

 
= − = 

 
∑  under 

Theorem 1. Let the random latest emergent observation be , 2s M su − +  for the s year (Appendix A) and B-F 

estimates sφ  given (Appendix B). Then an MSE predictor of , 1s MU +  is given by,  

 

( )
1

, 1
1

1
t s

P
s M s t t s s

t
U β α φ β φ

= −

+
=

= − +∑  

 

s
s e µβ −=  

 

( )

( ) ( )

1 1 1
cov ,2

1 1 1
1 1 1 1

cov , cov ,2

1 1 1 1

2 2
ln

2

s t

s t s t

t s t s r s

s t t s t r t r
t t r

s t s t s t s r s

s t t s t t s t r t r
t t t r

e

e e

ε ε

ε ε ε ε

φ α φ φ α α φφ
µ

φ α φ φ α φ φ α α φφ

= − = − = −

= = =
= − = − = − = −

= = = =

− −
=

+ − −

∑ ∑ ∑

∑ ∑ ∑ ∑
 

 

2.3.1 PROOF  

The derivation is similar to Theorem 1 with the following situation: moving row-wise (see Table 5) for any 

single historical year { }1,..,s M∈ . We will also use only two different loss ratios to be combined in the 

linear predictor. One is 
1

, 1
1

t s

t t M
t

Uα
= −

+
=
∑  with coefficients tα  given under Theorem 1 and the other given by 

sφ .  

Table 5 
COMBINING TWO PREDICTORS TO ESTIMATE ONE CELL 

 1 2 … 1M s− +  2M s− +  1M −  M  1M +  

1 
1,1 1U u=  1,2 1,2U u=  … 

1, 1M su − +  1, 2M su − +  1, 1Mu −  1,Mu  1, 1Mu +  

2 
2,1 2U u=  2,2 2,2U u=  … 

2, 1M su − +  2, 2M su − +  2, 1Mu −  2,Mu   

… … … … … …    

s  
,1s sU u=  ,2 ,2s sU u=   

, 1s M su − +  , 2s M su − +    
, 1s MU +  
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1s +  
1,1 1s sU u+ +=  1,2 1,2s sU u+ +=   

1, 1s M su + − +      

…         

M  ,1M MU u=  ,2 ,2M MU u=        

 

The linear predictor for , 1s MU +  under unit sum coefficient constraint is 

 

( )
1

, 1 , 1
1

1
t s

P
s M s t t M s s

t
U Uβ α β φ

= −

+ +
=

= − +∑ .  

 

Since it is desirable to have 0 1sβ≤ ≤ , we will setup the problem differently. Define, 

 

s
s e µβ −= . 

 

The above model formulation ensures that 0 1sβ≤ ≤ . Setting up the MSE with respect to sµ , 

 

( )
21

, 1 , 1
1

1 s s
t s

t t M s s M
t

E e U e Uµ µα φ
= −

− −
+ +

=

 
− + − 

 
∑  

 

CASE 1 ( 0sµ ≥ ): 

 

( )
21

, 1 , 1
1

1 s s

t s

t t M s s M
t

E e U e Uµ µα φ
= −

− −
+ +

=

 
− + − 

 
∑ . 

 

Taking derivatives with respect to sµ  and setting it equal to zero, 
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( ) ( )
1 1

, 1 , 1 , 1
1 1

2 1 0s s s s

t s t s

t t M s s M t t M s s
t t

E e U e U e U eµ µ µ µα φ α λ φ
= − = −

− − − −
+ + +

= =

    
− + − − =    

    
∑ ∑  

1 1
, 1

, 1 , 1
1 1

1 0
s s

s s s s

t s t s
s M

t t M s s t t M
t t

UeE U U
e e

µ λ

µ λ µ λα φ φ α
− = − = −

+
+ +− −

= =

   −   + − − =     
     

∑ ∑  

 

( )
1 1

, 1 , 1 , 1
1 1

1 0s s

t s t s

t t M s s M s t t M
t t

E e U e U Uµ µα φ φ α
= − = −

+ + +
= =

    
− + − − =    

    
∑ ∑  

 

( ) ( )

{ }

1 1 1

, 1 , 1 , 1
1 1 1

1

, 1 , 1 , 1
1

1 1

0

s s

s s

t s t s t s

t t M s t t M t t M
t t t

t s

s s M s s s M t t M
t

E e U E e U U

E e U E e U U

µ µ

µ µ

α φ α α

φ φ φ α

= − = − = −

+ + +
= = =

= −

+ + +
=

      
− − −      

      
    + − − − =     

∑ ∑ ∑

∑
 

 

( ) ( )

( )

1 1 1 1 1 1

, 1 , 1 , 1 , 1 , 1 , 1
1 1 1 1 1 1

1
2 2

, 1 , 1 , 1 , 1 , 1
1 1

s s

s s s

t s t s t s r s t s r s

s t t M s t t M t r t M r M t r t M r M
t t t r t r

t s t s

s s s M s s s M s t t M t s M t M
t t

e EU EU e E U U E U U

e EU e EU EU e E U U

µ µ

µ µ µ

φ α φ α α α α α

φ φ φ φ φ α α

= − = − = − = − = − = −

+ + + + + +
= = = = = =

= − = −

+ + + + +
= =

− − +

+ − + − − +

∑ ∑ ∑ ∑ ∑ ∑

∑
1

0=∑
 

 

Replacing, , 1t M tEU φ+ = and using Appendix C, ( )cov ,
, 1 , 1

s t
s M t M t sE U U e ε ε φφ+ +  =  ,  

 

( ) ( )

( )

1 1 1 1 1 1
cov , cov ,

1 1 1 1 1 1
1 1

cov ,2 2 2

1 1
0

s t s ts s

s ts s s

t s t s t s r s t s r s

s t t s t t t r t r t r t r
t t t r t r

t s t s

s s s s s s t t t t s
t t

e e e e

e e e e

ε ε ε εµ µ

ε εµ µ µ

φ α φ φ α φ α α φφ α α φφ

φ φ φ φ φ φ α φ α φφ

= − = − = − = − = − = −

= = = = = =

= − = −

= =

− − +

+ − + − − + =

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑
 

 

( )

( ) ( )

1 1 1
cov ,2

1 1 1
1 1 1 1

cov , cov ,2

1 1 1 1

2 2
ln

2

s t

s t s t

t s t s r s

s t t s t r t r
t t r

s t s t s t s r s

s t t s t t s t r t r
t t t r

e

e e

ε ε

ε ε ε ε

φ α φ φ α α φφ
µ

φ α φ φ α φ φ α α φφ

= − = − = −

= = =
= − = − = − = −

= = = =

− −
=

+ − −

∑ ∑ ∑

∑ ∑ ∑ ∑
. 
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CASE 2 ( 0sµ < ): 

 

Let , 0.s s sµ λ λ= − >  The MSE is 

 

( )
21

, 1 , 1
1

1 s s

t s

t t M s s M
t

E e U e Uλ λα φ
= −

− −
+ +

=

 
− + − 

 
∑ . 

 

The above is identical to CASE 1, and the solution is 

 

( )

( ) ( )

1 1 1
cov ,2

1 1 1
1 1 1 1

cov , cov ,2

1 1 1 1

2 2
ln

2

s t

s t s t

t s t s r s

s t t s t r t r
t t r

s s t s t s t s r s

s t t s t t s t r t r
t t t r

e

e e

ε ε

ε ε ε ε

φ α φ φ α α φφ
µ λ

φ α φ φ α φ φ α α φφ

= − = − = −

= = =
= − = − = − = −

= = = =

− −
= − = −

+ − −

∑ ∑ ∑

∑ ∑ ∑ ∑
. 

 

Combining both cases,  

 

( )

( ) ( )

1 1 1
cov ,2

1 1 1
1 1 1 1

cov , cov ,2

1 1 1 1

2 2
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2

s t

s t s t

t s t s r s

s t t s t r t r
t t r

s t s t s t s r s

s t t s t t s t r t r
t t t r

e

e e

ε ε

ε ε ε ε

φ α φ φ α α φφ
µ

φ α φ φ α φ φ α α φφ

= − = − = −

= = =
= − = − = − = −

= = = =

− −
=

+ − −

∑ ∑ ∑

∑ ∑ ∑ ∑
. 

 

A special case arises when the year s is fully developed, and the best predictor should be 

, 1 , 2
P
s M s M sU U+ − += , implying 1s

s e µβ −= =  and hence 0sµ = . We can recover this special case from 

the above formula by noting that years t s<  will also be fully developed. Hence, ( )cov , 1s te ε ε = . Then, 

 

1 1 1
2

1 1 1
1 1 1

2

1 1 1

2 2
ln 0

2 2

t s t s r s

s t t s t r t r
t t r

s t s t s r s

s t t t r t r s
t t r

φ α φ φ α α φφ
µ

φ α φ α α φφ φ

= − = − = −

= = =
= − = − = −

= = =

− −
= =

− −

∑ ∑ ∑

∑ ∑ ∑
.     ■ 
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The above special case shows that the formula is most useful in projecting (subject) recent years as in those 

cases 1sβ < , and the older years will get more weight in the formula than the subject (recent) year 

because there is little emergence of data to make the B-F estimate credible. In loss reserving, it is indeed 
the case that recent years hold the largest reserves and require valuable insights. 

The most important term in the formula is in the denominator ( )
1

cov ,

1

s t
t s

t t
t

e ε εα φ
= −

=
∑ . If the past 1s −  years 

are uncorrelated with the year s (no pattern in past data), ( )cov , 0s tε ε = and 1sβ =  (shown above). 

However, if ( )cov , 0s tε ε =  and there is positive correlation between past 1s −  years and year s
(pattern in the data), this displaces less weight on the B-F method and picks up the pattern in the historical 

loss ratios through 1sβ < . The magnitude of the displacement depends on the degree of the net 

correlation. 
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Section 3. Data Analysis and Findings 
With regard to our findings, it is critical to start with a walkthrough of the model and how the predicted 
loss ratio is derived. Due to space restrictions, the data illustrated in the process will be limited to seven 
AYs. However, it is important to note that the model analysis was actually performed on a 15-by-15 
triangle. To begin with, we will be walking through an example analysis and prediction of the Commercial 
Umbrella, which has the most volatility. 

3.1 LOSS RATIO PREDICTION PROCESS 
Starting off, the loss ratios are displayed in the first table below. Table 6 displays how the model 
encompasses both risk at time 0, displayed by the interval from AY zero to one, and reserving risk, 
displayed by the intervals after AY one. These ratios have been calculated by dividing the incurred loss by 
the on-level premium; but because these loss ratios aren’t up to the current date, the ratios need to be 
trended to the level of year 15, which is displayed by the second table, Table 7. With the loss ratios being 
trended, the trended Ultimate B-F ratio can be produced, which we consider as our φ’s. 

Table 6 
INCURRED LOSS RATIOS9 

 Target LR Incurred Loss Ratios 

Accident 

Loss Year 
0 1 2 3 4 5 6 7 

1 62.0% 2.9% 11.1% 11.1% 11.9% 12.3% 17.8% 19.4% 

2 62.0% 0.0% 0.4% 0.1% 0.2% 3.5% 3.5% 3.5% 

3 62.0% 2.3% 13.7% 13.8% 13.8% 13.8% 13.8% 14.4% 

4 62.0% 1.2% 1.2% 2.4% 2.4% 2.4% 2.4% 2.4% 

5 62.0% 19.0% 27.9% 26.7% 31.3% 31.4% 44.0% 44.0% 

6 62.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.0% 2.5% 

7 62.0% 0.0% 18.3% 23.6% 36.6% 57.6% 59.0% 59.0% 

 

  

 
 
9 Target loss ratio can be different for AYs. In this case, it happens to be equal. 
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Table 7 
TRENDED INCURRED LOSS RATIOS 

 

Following the calculation of the trended Ultimate B-F ratios, which will be utilized in the latter steps, the 
calculation of the errors10 can be performed, which is displayed by the Table 8. 

Table 8 
ERRORS 

 

 
 
10 Errors are calculated by performing the natural log of the trended loss ratios divided by the target loss ratio; and if the natural log cannot be 
performed, the error will result in zero. 

 Target LR Trended Incurred Loss Ratios 

Accident 

Loss Year 
0 1 2 3 4 5 6 7 

1 0.62 4.5% 17.2% 17.1% 18.3% 18.9% 27.4% 30.0% 

2 0.62 0.1% 0.6% 0.1% 0.4% 5.4% 5.4% 5.4% 

3 0.62 3.5% 20.8% 20.8% 20.8% 20.8% 20.8% 21.8% 

4 0.62 1.8% 1.8% 3.6% 3.6% 3.6% 3.6% 3.6% 

5 0.62 28.2% 41.4% 39.6% 46.4% 46.5% 65.2% 65.2% 

6 0.62 0.0% 0.0% 0.0% 0.0% 1.5% 0.0% 3.7% 

7 0.62 0.0% 26.6% 34.2% 53.2% 83.6% 85.6% 85.6% 

  Errors 
 

Accident 
Loss Year 

1 2 3 4 5 6 7 

1 −2.61910 1.33444 −0.00099 0.06494 0.03398 0.37031 0.08883 

2 −6.77586 2.09647 −1.69420 1.24223 2.69356 0.00000 −0.00467 

3 −2.88681 1.79343 0.00050 0.00000 −0.00017 0.00000 0.04870 

4 −3.54946 0.00359 0.68955 0.00000 0.00265 −0.00265 0.00000 

5 −0.78731 0.38351 −0.04394 0.15685 0.00413 0.33649 0.00110 

6 −9.04828 0.26159 1.57880 −1.57880 5.04171 −5.30330 6.21661 
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We can then proceed to produce our covariance from the errors table.11 Table 9 and Table 10 display 
covariance. In Table 10, it is imperative to note that the covariance is zero for the first accident year 
because, as explained in the introduction, the data are complete, so there is no covariance. 

Table 9 
COVARIANCE 

 

Table 10 
COVARIANCE POST 1ST ACCIDENT YEAR 

 Covariance - COV(εs,εt) 

 1 2 3 4 5 6 7 8 

1 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

2 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 

3 0.00000% 0.00000% 0.25275% 1.43752% 1.43574% 1.43217% 1.67770% 2.18789% 

4 0.00000% 0.00000% 1.43752% 7.21418% 6.85006% 6.83218% 8.07903% 10.49200% 

5 0.00000% 0.00000% 1.43574% 6.85006% 6.60632% 6.58917% 7.78336% 10.12463% 

6 0.00000% 0.00000% 1.43217% 6.83218% 6.58917% 6.70101% 8.04769% 10.44597% 

7 0.00000% 0.00000% 1.67770% 8.07903% 7.78336% 8.04769% 9.70782% 12.42276% 

8 0.00000% 0.00000% 2.18789% 10.49200% 10.12463% 10.44597% 12.42276% 15.74629% 

 

 
 
11 For example, the covariance for row two, column two in Table 9 is calculated by taking the covariance between the error in column one and 
the error in column two in Table 8.  

 Covariance - COV(εs,q,εt,r) 

 1 2 3 4 5 6 7 

1 1783.84519% −1166.28926% 153.07308% 151.12301% −540.42889% 319.85186% −428.60678% 

2 −1166.28926% 1507.98589% −288.33474% 117.50124% −315.78544% 17.44929% −25.55556% 

3 153.07308% −288.33474% 825.45940% 156.08415% −400.57156% −56.61313% 39.03332% 

4 151.12301% 117.50124% 156.08415% 337.23832% −720.71137% 56.54713% −113.83959% 

5 −540.42889% −315.78544% −400.57156% −720.71137% 1633.88366% -162.58023% 286.04787% 

6 319.85186% 17.44929% −56.61313% 56.54713% −162.58023% 263.22387% −330.26139% 

7 −428.60678% −25.55556% 39.03332% −113.83959% 286.04787% −330.26139% 380.25163% 
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After the covariances are produced, the next step is producing the product of the φ’s, which are the 
trended Ultimate B-F ratios that were calculated in a former step and the exponentials of the covariances 
as displayed in Table 11. Finally, after the products are calculated, the ratios and the weights, α’s, can be 
derived. With the weights produced, we can finally derive next year’s predicted loss ratio by taking the 
summation of each φ multiplied by the corresponding α . In Table 12, it is vital to point out all 15 years 
have been displayed to demonstrate the predicted 16th year loss ratio. 

Table 11 
PRODUCT OF B-F RATIO AND COVARIANCES 

 Product of φ’s and Exponential of Covariances  --  φ·EXP(Cov(ε’s)) 

 1 2 3 4 5 6 7 

1 0.28096334 0.80940946 0.27216902 0.21040947 1.21357299 0.26509313 1.00828807 

2 0.28096334 0.80940946 0.27216902 0.21040947 1.21357299 0.26509313 1.00828807 

3 0.28096334 0.80940946 0.27285779 0.21345601 1.2311224 0.26891703 1.02534686 

4 0.28096334 0.80940946 0.27610977 0.22614974 1.29961686 0.28383781 1.09312897 

5 0.28096334 0.80940946 0.27610483 0.22532777 1.29645309 0.2831489 1.08990172 

6 0.28096334 0.80940946 0.27609498 0.22528748 1.29623072 0.28346576 1.09278649 

7 0.28096334 0.80940946 0.27677373 0.22811407 1.31180298 0.28730896 1.11107959 
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Table 12 
FINAL OUTPUTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 SUMMARY AND FINDINGS 
12Throughout our data analysis and model validation process, the overarching conclusion was that the 
model proposed in this paper performed considerably better than a common industry practice, the three-
year average. Comparing across all three business lines, during stable volatility (Commercial Auto), all three 
methods performed relatively well. As shown in Table 13, the MSE of the three-year average, .0243, is 
slightly better than the MSE of the other two methods, .02816 and .02816 but within striking distance. 

  

 
 
12 Reserve ranges are not discussed in this paper, because these have been discussed at length elsewhere. For example, the Rehman-Klugman 
Method provides a confidence interval for future ultimate loss ratios (Rehman & Klugman 2009) based on actuary’s selected loss ratios. Hence, 
the calculated loss ratio provided by this model would also be covered by that paper.  

  Ratios αs Ultimates 

1 0.07038 0.13603 28.1% 

2 0.07038 0.13603 80.9% 

3 0.06727 0.13002 27.2% 

4 0.05467 0.10566 21.0% 

5 0.05576 0.10777 121.4% 

6 0.05750 0.11114 26.5% 

7 0.05973 0.11545 100.8% 

8 0.05655 0.10929 29.4% 

9 0.01966 0.03800 60.2% 

10 0.00021 0.00041 102.0% 

11 0.00524 0.01013 119.5% 

12 0.00000 0.00000 92.9% 

13 0.00000 0.00000 133.2% 

14 0.00004 0.00007 124.1% 

15 0.00000 0.00000 102.5% 

AY 16 Predicted LR 55.0% 
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Table 13 
COMMERCIAL AUTO—STABLE DATA 

 

But once the business lines start to have more volatility, there is a stark difference in model accuracy, 
because the three-year average lags behind. When analyzing the Commercial GL business line with less 
stable volatility, it is quite lucid that the three-year average begins to underperform. Table 14 reaffirms this 
fact, and it is clear that the MSE of the three-year average, .27614, is underperforming quite significantly 
when compared to the MSEs of the other two methods, .18830 and .18814. 

  

 Predicted LR 

Acc 
Year 

 
Actual LR 

Proposed 
Model 

Straight 
Average 

Last 3 
years 

16 0.88531 0.94704 0.94705 0.89917 

17 0.87954 0.93618 0.93618 0.89618 

18 0.84673 0.93040 0.93040 0.86886 

19 0.85557 0.91474 0.91474 0.85630 

20 0.87175 0.89871 0.89872 0.84334 

21 0.85501 0.88587 0.88587 0.82222 

22 0.85073 0.88211 0.88211 0.82504 

23 0.84064 0.88047 0.88048 0.82236 

24 0.83851 0.87268 0.87269 0.80122 

25 0.84527 0.85971 0.85971 0.79866 

26 0.85507 0.85448 0.85448 0.79915 

27 0.88052 0.85201 0.85200 0.79957 

28 0.86128 0.83457 0.83457 0.79056 

29 0.82942 0.82930 0.82930 0.79236 

30 0.74238 0.80140 0.80140 0.77140 

 

MSE 

Proposed 
Model 

Straight 
Average 

Last 3 
years 

0.00381 0.00381 0.00019 

0.00321 0.00321 0.00028 

0.00700 0.00700 0.00049 

0.00350 0.00350 0.00000 

0.00073 0.00073 0.00081 

0.00095 0.00095 0.00108 

0.00098 0.00099 0.00066 

0.00159 0.00159 0.00033 

0.00117 0.00117 0.00139 

0.00021 0.00021 0.00217 

0.00000 0.00000 0.00313 

0.00081 0.00081 0.00655 

0.00071 0.00071 0.00500 

0.00000 0.00000 0.00137 

0.00348 0.00348 0.00084 

0.02816 0.02816 0.02430 
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Table 14 
COMMERCIAL GL—LESS STABLE DATA 

Furthermore, during the most volatile situations, which is the Commercial Umbrella business line, our 
proposed method truly begins to distinguish itself from the other two methods. We summarize how the 
proposed method and the other methods perform over the experience years based on the average MSE. In 
Table 15, the MSE of our proposed model, 1.3495, compared to the MSE of the other two methods, 
2.25526 and 4.30800, illustrates the efficacy of our proposed model and reaffirms the notion that the 
current industry practice falls short quite remarkably. 

  

 Predicted LR 

Acc 
Year 

 
Actual LR 

Proposed 
Model 

Straight 
Average 

Last 3 
years 

16 0.60675 0.74226 0.74218 0.85545 

17 0.66135 0.76336 0.76324 0.94771 

18 0.89079 0.71109 0.71104 0.86244 

19 0.76316 0.71528 0.71531 0.82324 

20 0.87433 0.72310 0.72316 0.86119 

21 0.74887 0.71014 0.71024 0.90708 

22 0.84500 0.70577 0.70593 0.87133 

23 0.81658 0.70991 0.71011 0.88932 

24 0.94813 0.73783 0.73792 0.89841 

25 0.74547 0.74928 0.74944 0.93342 

26 0.78772 0.75000 0.75014 0.87572 

27 0.66745 0.76108 0.76111 0.86517 

28 0.69416 0.76385 0.76395 0.78330 

29 0.74921 0.78878 0.78885 0.76952 

30 0.67586 0.77049 0.77056 0.73667 

 

MSE 

Proposed 
Model 

Straight 
Average 

Last 3 
years 

0.01836 0.01834 0.06185 

0.01041 0.01038 0.08200 

0.03229 0.03231 0.00080 

0.00229 0.00229 0.00361 

0.02287 0.02285 0.00017 

0.00150 0.00149 0.02503 

0.01938 0.01934 0.00069 

0.01138 0.01134 0.00529 

0.04423 0.04419 0.00247 

0.00001 0.00002 0.03532 

0.00142 0.00141 0.00774 

0.00877 0.00877 0.03909 

0.00486 0.00487 0.00795 

0.00157 0.00157 0.00041 

0.00896 0.00897 0.00370 

0.18830 0.18814 0.27614 
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Table 15 
COMMERCIAL UMBRELLA—VOLATILE DATA 

 

Overall, after analyzing each business line, the performance of the current industry practice fails to perform 
adequately. Instead, utilizing the proposed model will enhance the way ratemaking is performed. 

  

 Predicted LR 

Acc 
Year 

 
Actual LR 

Proposed 
Model 

Straight 
Average 

Last 3 
years 

16 0.49662 0.55021 0.77984 1.19923 

17 0.05442 0.53565 0.79813 1.06617 

18 0.08553 0.46989 0.75034 0.95359 

19 0.67143 1.01800 1.02891 0.86594 

20 0.05997 0.53104 0.70886 0.86492 

21 0.72346 0.65532 0.73263 0.85197 

22 0.65134 0.63677 0.68840 0.92844 

23 0.58267 0.59113 0.64774 0.92687 

24 0.46779 0.49795 0.59621 0.90427 

25 1.00313 0.50457 0.65056 0.87413 

26 0.84827 0.66540 0.72758 0.96983 

27 0.28580 0.71183 0.78574 0.97223 

28 0.73447 0.68999 0.74269 0.89522 

29 0.48957 0.69368 0.72947 0.82586 

30 0.25914 0.59425 0.66225 0.81370 

 

MSE 

Proposed 
Model 

Straight 
Average 

Last 3 
years 

0.00287 0.08021 0.49366 

0.23159 0.55311 1.02364 

0.14773 0.44197 0.75352 

0.12011 0.12779 0.03783 

0.22191 0.42106 0.64795 

0.00464 0.00008 0.01651 

0.00021 0.00137 0.07679 

0.00007 0.00423 0.11848 

0.00091 0.01649 0.19052 

0.24856 0.12430 0.01664 

0.03344 0.01457 0.01478 

0.18150 0.24994 0.47120 

0.00198 0.00007 0.02584 

0.04166 0.05755 0.11309 

0.11230 0.16250 0.30754 

1.34950 2.25526 4.30800 
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Section 4. Shifting Parameters Over Time 

All parameters—the calculated coefficients in Theorems 1 and 2—have been assumed fixed so far. In 
practice, this never happens, and these parameters change or shift over time. In practice, time-dependent 
parameters are updated as new data emerges in data triangles, possibly annually and no explicit formulas 
for such time dependent parameters exist. 

4.1 MODEL STABILITY 
For the weights to be stable under Theorems 1 and 2, we would require the entire covariance matrix to 
remain unchanged over time. This is unlikely to happen, and the weights should be re-derived at each such 
study. Instead, we explore the changes in the total variance, namely sum of entries of the covariance 

matrix, 2ω . Additionally, this leads to the stability of target loss ratio. We call this phenomenon “Model 
Stability.”  

Second, we will need to invoke arguments that involve some basic understanding of loss reserving and loss 
emergence. To explore model stability, we need to develop the concept of reserve function.  

 

4.1.1. DEFINITION OF RESERVE FUNCTION 

Let the written premiums be denoted by ( )kp t  at time t  for year k . Denote cumulative reserve (due to 

newly added year only) to premium ratio function, resulting from newly written premiums by 1( )Mc t+ . 

Then reserve function ( )k tθ  is defined by the differential equation for some function ( )k tπ , and all 

functions are assumed differentiable and (0,1)t∈ .  

 

{ }
1

' '
1 1

1
( ) 1 ( ) ( ) ( )

M

k k M M
k

t t p t c tθ π
+

+ +
=

− =∑        ■ 

 

The above definition is motivated as follows: Over the course of a year (0,1)t∈ , the insurance company 

issues policies at different times, and policies age continuously, supporting development of a continuous 

model that explicitly incorporates time. In a small but finite time interval 0tδ > , the reserve function 

changes due to aging of existing years and grows due to addition of a new year. In a time interval tδ , a 

new set of policies are written with premium volume ( ) ( )k kp t t p tδ+ −  at a reserve to premium ratio 

function ( )kc t . Let { }( ) ( ) ( )k k kt t t tθ δ θ π+ −  to represent reserve change due to aging, where ( )k tπ
represents some multiplicative function for aging. Thus,  
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{ } { } { }
1 1 1

1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

M M M

k k k k k k k k
k k k

t t t p t t p t c t t t t tθ δ θ δ θ δ θ π
+ + +

= = =

+ − = + − + + −∑ ∑ ∑ . 

 

The function ( )k tπ  accounts for growth or decline in premiums relative to reserve function. For example, 

if ( ) ( )k kp t t p tδ+ = k∀ , then ( ) 1k tπ = . Assuming13 that ( ) ( )k kt t tθ δ θ+ ≠ ,   

 

{ }{ } { }1 1

1 1

( ) ( ) ( ) ( ) ( )
1 ( )

M M
k k k k k

k
k k

t t t p t t p t c t
t

t t
θ δ θ δ

π
δ δ

+ +

= =

+ − + −
− =∑ ∑ . 

 

Taking limits 0tδ →  and assuming ( )k tθ  and ( )kp t  are differentiable, 

 

{ }
1 1

' '

1 1
( ) 1 ( ) ( ) ( )

M M

k k k k
k k

t t p t c tθ π
+ +

= =

− =∑ ∑ . 

 

Now ' ( ) 0kp t =  for 1..k M= as cumulative premiums for fixed for older years. Hence, 

 

{ }
1

' '
1 1

1
( ) 1 ( ) ( ) ( )

M

k k M M
k

t t p t c tθ π
+

+ +
=

− =∑ . 

 

4.1.2 DEFINITION OF STABILITY (REVISITED) 

We define stability as a condition whenever ( )k ktπ π= (constant decay) and 1 1( )M Mc t c+ +=  for 0t > . 

The motivation is as follows. From our derivations for priori distributions, we know that under a constant

1Mc + and 2ω , the parameter 1Mu + will remain unchanged. The condition ( )k ktπ π=  implies that error 

triangle in Figure 2 will be “stable”. Hence 2ω will be stable.  

Theorem 3 

A necessary and sufficient condition for stability is given by 

 
 

13 In that case, 1 1( ) ( )M Mp t t p tδ+ ++ = and ( ) 1k tπ = . 
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{ }
1

1 1
1

( ) 1 ( ) ( ) ( )
M

k k M M
k

t t p t c tθ π
+

+ +
=

− =∑ .  

Hence, additional reserve required due to a new premium at any time 0t >  equals release of reserve due 
to aging older years. 

Proof 

From the definition of reserve function, we can solve the first order differential equation using second 
fundamental theorem of calculus, 

{ }
1

' '
1 10

1 0

( ) 1 ( ) ( ) ( )
tM t

k k M M
k

t t dt p t c tθ π
+

+ +
=

− =∑ ∫ ∫ . 

Since 1(0) 0Mp + = and (0) 1kπ =  as a boundary condition and integrating by parts, 

{ } [ ]
1 1

'
1 1 1 100

1 1 0 0

( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( )
t tM Mt t

k k k k M M M M
k k

t t t t dt p t c t p t c t dtθ π θ π
+ +

+ + + +
= =

 − + = − ∑ ∑∫ ∫  

{ }
1 1

' '
1 1 1 1

1 1 0 0

( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( )
t tM M

k k k k M M M M
k k

t t t t dt p t c t p t c t dtθ π θ π
+ +

+ + + +
= =

− + = −∑ ∑∫ ∫ . (8) 

From the definition of stability ( )k ktπ π=  (constant decay) and 1 1( )M Mc t c+ +=  for 0t > . Hence, 

{ }
1

1 1
1

( ) 1 ( ) ( ) ( )
M

k k M M
k

t t p t c tθ π
+

+ +
=

− =∑ . For sufficiency, suppose 

{ }
1

1
1

1

( ) 1 ( )
( )

( )

M

k k
k

M
M

t t
p t

c t

θ π
+

=
+

+

−
=

∑
. 

Then from (8), { }
'1 1

' 1

1 110 0

( )( ) ( ) ( ) 1 ( )
( )

t tM M
M

k k k k
k kM

c tt t dt t t dt
c t

θ π θ π
+ +

+

= =+

= − −∑ ∑∫ ∫ . One solution to this equation 

is: ( )k ktπ π= (constant decay) and 1 1( )M Mc t c+ +=  .   



   34 

 

 Copyright © 2020 Society of Actuaries 

Section 5. Conclusion 
This paper provides a stable and accurate weighting structure using minimum mean square prediction 
error criterion to predict loss ratio or pure premiums for ratemaking and loss reserving. 

The modeled ratemaking weights were validated using retro-testing and real-world datasets using loss ratio 
triangles. Three different models (the current industry practice, the straight average and our proposed 
model) were tested along three different business lines with varying volatility. Compared with a common 
industry practice being the latest three-year average, the results of the data analysis conclusively illustrate 
the deficiency of current industry practice. Over all three business lines, the current industry practice 
performed relatively effectively only for the Commercial Auto business line. As volatility increased across 
the business lines, the industry practice significantly underperformed, whereas the model proposed in this 
paper conclusively performed at the worst on par with the industry practice and at best performed 
remarkably better than current industry practice. The proposed model, even under shifting parameters 
(i.e., time), still performed at a more stable and accurate rate compared to the current industry practice. 
While the proposed model doesn’t obviate all errors, it enjoys minimum squared prediction errors, and the 
industry can and should incorporate it into the ratemaking process, due to its superior ability to predict a 
quality loss ratio. As prediction of loss estimates improves, the proposed model serves to provide a more 
theoretical correct rates or loss, but it should be noted this proposed model is not the only method; it is 
just one of the reasonable methods among others. 
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Appendix A: Distribution for Incomplete Year 
Lowercase letters denote realized values; these are known and fixed. Uppercase letters denote random 

variables. In Table 16, half the rectangle is observed, and the remaining is unobserved. Our interest lies in 

the unobserved values for future policy year 1i M= + . The unobserved errors { }1, 1M q q M
ε + ≤ ≤

 are 

generally postulated to be multivariate normally distributed.14 More important, for estimation purposes, 

we make the following two assumptions (Table 17):  

 

(i) Entries in any given column have the same marginal variance. This permits sample variance as an 

estimate of population variance 1,( )M qVar ε + . 

 

(ii) Entries in any two columns have the same covariance. This permits sample covariance as an 

estimate of population covariance ( )1, 1,,M q M pCov ε ε+ +  with p q≠ . 

 

The last two postulates are necessary for calibration of the parameters. However, note the following 
caveats. First, as new data come each year, the sample estimates are updated. Second, the old “completed 
rows” (Table 16) greatly enhance accuracy in estimation and should be retained. Reference to these 
postulates will not be provided, henceforth in the paper, and all estimation is done using these postulates.  

The premiums underlying the different years in Table 16 are usually on-level; they are recalculated at 
current rate levels (including past years). This is necessary to make all years identical except for different 
random loss experience.  

By construction, the first column in Figure 3 is always the target loss ratio of the respective policy years. For 

year M+1, the company uses target loss ratio in its rate filings 1,1 1M MU u+ += . We will assume that 1Mu +  

is available, and its measurement is discussed in Appendix B.  

 

Table 16 
DATA TRIANGLE OF LOSS RATIO [MXM+1] 

 1 2 … 1M s− +  2M s− +  1M −  M  1M +  

1 
1,1 1U u=  1,2 1,2U u=  … 

1, 1M su − +  1, 2M su − +  1, 1Mu −  1,Mu  1, 1Mu +  

2 
2,1 2U u=  2,2 2,2U u=  … 

2, 1M su − +  2, 2M su − +  2, 1Mu −  2,Mu   

… … … … … …    

 
 
14 Theoretical rationale and empirical support for this is found in Rehman, Klugman (2010). 
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s  
,1s sU u=  ,2 ,2s sU u=   

, 1s M su − +  , 2s M su − +     

1s +  
1,1 1s sU u+ +=  1,2 1,2s sU u+ +=   

1, 1s M su + − +      

…         

M  ,1M MU u=  ,2 ,2M MU u=        

         

1M +  1,1 1M MU u+ +=         

 

Table 17 
ERROR TRIANGLE OF LOSS RATIO [MXM] 

 1 2 … M s−  1M s− +  … 1M −  M  

1 
1,1ε  1,2ε  … 

1,M sε −  1, 1M sε − +  … 
1, 1Mε −  1,Mε  

2 
2,1ε  2,2ε  … 

2,M sε −  2, 1M sε − +  … 
2, 1Mε −   

… … … … … …    

s  
,1sε  ,2sε  … 

,s M sε −  , 1s M sε − +     

1s +  
1,1sε +  1,2sε +  … 

1,s M sε + −      

         

… … … …      

M  ,1Mε         

         

1M +          

 

A.1 STATISTICAL MODEL 

For any year s , , 1

, 2

ln s M
s

s M s

U
U

ε +

− +

 
=   

 
 and 2

, 1lns s MVar Uω += . If sε  is normal, then , 1s MU +  is 

lognormal. Further, we can write: 
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2
2

, 1 , 1ln ~ ln ,
2

s
s M s M sU N EU ω ω+ +

 
− 

 
 . . . . . . (1) 

This leads to 

 

2
2

, 1ln ~ ln ,
2

s
s M s sU N ωφ ω+

 
− 

 
 . . . . . . (2) 

 

A.2 ESTIMATION OF
2
sω  

We will rely on notation introduced in Tables 16 and 17. For 1,2... 1s M= +  

 

, 2
, 1

, 1

ln s M s
s M s

s M s

u
u

ε − +
− +

− +

=  

 

1 1
, 2 , 1

, 1
1 1 , 1 , 2

ln ln
s s

s M s q s M
s s M s q

q q s M s q s M s

U U
U u

ε ε
− −

− + + +
− + +

= = − + + − +

   
= = =        
∑ ∑   

 

, 1

, 2

ln s M
s

s M s

U
u

ε +

− +

 
=   

 
  . . . . . . . (3) 

 

Note that due to the multivariate normality of the errors { }, 1 1 1s M s q q s
ε − + + ≤ ≤ −

, 1... 1s M= +  the 

cumulative error 
1

, 1
1

s

s s M s q
q

ε ε
−

− + +
=

= ∑  is also normally distributed. Then for 1... 1s M= + , 

( ) ( )
1 1 1 1

2
, 1 , 1 , 1 , 1

1 1 1 1
cov , cov , cov ,

s s s s

s s s s M s q s M s p s M s q s M s p
q p q p

ω ε ε ε ε ε ε
− − − −

− + + − + + − + + − + +
= = = =

 
= = = 

 
∑ ∑ ∑∑  (4) 

Where ( ), 1 , 1cov ,s M s q s M s pε ε− + + − + +  can be estimated from Figure 2 using postulates. 
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A.3 MEAN CALCULATION INVOLVING PARTIALLY COMPLETED YEAR 

Recall equation (2),  

2
2

, 1ln ~ ln ,
2

s
s M s sU N ωφ ω+

 
− 

 
. 

For a partially completed year, we can proceed as in Appendix A and define 

1

, 1
1

:
s

s s M s q
q

ε ε
−

− + +
=

=∑  . . . . . . . . (5) 

We now determine covariance calculation involving , 1 , 1s M t MEU U+ + , t s< . Hence, 

 

2
2

, 1ln ~ ln ,
2
t

t M t tU N ωφ ω+

 
− 

 
 

2
2

, 1ln ~ ln ,
2

s
s M s sU N ωφ ω+

 
− 

 
 

 

, 1 , 1 , 1 , 1ln ln lns M t M s M t MU U U U+ + + += +  

 

( )
2 2

2 2ln ln , 2cov ,
2 2
t s

t s t s s tN ω ωφ φ ω ω ε ε
 

− + − + + 
 

  

 

Hence, , 1 , 1s M t MU U+ +  is also lognormal. Therefore, 

 

, 1 , 1s M t ME U U+ +  =   
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( )

( )

2 22 2

cov ,

2cov ,
exp ln ln

2 2 2
s t

t s s tt s
t s

t se
ε ε

ω ω ε εω ωφ φ

φφ

 + +
− + − + 

 

=

 

 

 

( )cov ,
, 1 , 1

s t
s M t M t sE U U e ε εφ φ+ +  =    . . . . . (6) 

 

A.4 COVARIANCE CALCULATION INVOLVING PARTIALLY COMPLETED YEAR 

Equation (6) requires cov( , )s tε ε , where t s< . We are given that , 1

, 2

ln s M
s

s M s

U
u

ε +

− +

 
=   

 
and s  is a 

partially completed year, and year t  is priori. From equation (5), 

 

1

, 1
1

s

s s M s q
q

ε ε
−

− + +
=

= ∑   

 

Hence, 

 

( )
1 1 1 1

, 1 , 1 , 1 , 1
1 1 1 1

cov( , ) cov , cov ,
s t t s

s t s M s q t M t q s M s q t M t r
q q r q

ε ε ε ε ε ε
− − − −

− + + − + + − + + − + +
= = = =

 
= = 

 
∑ ∑ ∑∑  . (7) 
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Appendix B: B-F Estimate & Target Loss Ratio 
As before, a typical triangle data set with years 1.. , 1k M M= +  is shown in Appendix A along with 

standard lognormal model postulates. This section will also show derivation of the target loss ratio ku .  

B.1 BORNHUETTER- FERGUSON ESTIMATE 

Define random age to ultimate factor , 2s M sA − + ,  

, 2 , 2
, 1

, 2 , 2

11s M s s M s
s M s

s M s s M s

A u
U u

A A
− + − +

+
− + − +

 
= + −  

 
 

, 1 , 2
, 2

11s M s M s s
s M s

U u u
A+ − +

− +

 
= + −  

 
. . .  . . . (1) 

 

We can replace the realized quantity , 2s M sa − +  to obtain the B-F estimate,  

, 2
, 2

11s s M s s
s M s

u u
a

φ − +
− +

 
= + −  

 
 . . . . . . (2) 

We will assume that , 2s M sa − +  is fixed and known age to ultimate factor for year s . This appendix will 

discuss the determination of su . For now, we note that we can replace su  with other quantities. This 

makes sφ  much less restrictive than it appears. For example, if , 2 , 2*s s M s s M su u a− + − += , then

, 2 , 2*s s M s s M su aφ − + − += , which is the chain ladder estimate.  

 

B.2 ESTIMATION OF TARGET LOSS RATIO ku  USING VAR APPROACH 

Since this section will only deal with the projected year M+1, we will drop the subscript for the 

development year. For example, 1Mω ω += . 

Target loss ratios are a subject in themselves and widely used in actuarial ratemaking as well as rate 
regulation. Insurance companies and regulators adjust rates to ensure that long-term average loss ratios 
equal these target loss ratios. In exchange, the target loss ratios are based on fairness from a consumer and 
insurer standpoint. The model presented in this paper leads to elegant closed form results for target loss 
ratio and is easy to calculate due to availability of data.  

The parameter ku  is also called the permissible loss ratio (PLR), and the motivation will be made obvious in 

this section. We present two distinct approaches. The first, value at risk (VaR), provides a percentile 
measure of risk tolerance . The second, conditional value at risk (CVaR), specifies risk tolerance at a α
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given conditional expected excess loss. The condition here is typically the VaR loss amount. Hence, CVaR is 
always more conservative than VaR for the same specified percentile . Conditional value at risk 
possesses a property of risk measures known as coherence (Artzner, Delbaen, et al. 1999), implying 
compliance with a set of common-sense axioms. VaR, lacking this property, can lead to perverse 
consequences in some circumstances. From Appendix A, define15  

 

2

: exp ln
2

VaR VaR
k kU u zα

ω ω
 

= − + 
 

 . . . . . .. (3) 

Here zα is1 α−  percentile from a standard normal distribution, and VaR
kU  is the 1 α−  percentile under 

VaR approach. Since the insurance company will collect VaR
ku  in premium, we can think of the excess 

VaR VaR
k kU u−  as underwriting capital to premium ratio to obtain  

 

2

exp 1
2

VaR VaR
k kc u zα

ω ω
  

= − + −  
  

 . . . . . . (4) 

 

Suppose that we know the expected pre-tax cost of underwriting capital16, 17 
ky . The expected 

underwriting profit provision is defined as  

 

k k kr c y=  . . . . . . . . . (5)
 

 

Hence from (4), 

 

 
 

15 
VaR VaR
k kuφ = for the projected year. This is due to the definition of Bornhuetter Ferguson formula. The super script VaR is used to 

emphasize that the calculation of target loss ratio is under the VaR approach. 
16 Using pre-tax returns simplifies calculations. Secondly, because underwriting capital is defined to include only insurance risks, the cost of 

underwriting capital is technically due to insurance risk. Thirdly, since kr includes investment income offset, ky should be reduced to reflect 

this fact. To illustrate, suppose the investment income offset is 6% (as a % of written premium) then at a capital to premium ratio of 0.5, the 

offset as a % of underwriting capital equals 12%. If the total target underwriting ROE is 10%, then ky = 10%-12% = -2%.    
17 It is the return that investors desire for providing capital to the company to underwrite the line of business. One way to do this is to 
determine firm-wide cost of capital for a mono-line insurance company that writes the same line of business.  There is considerable literature 
available on determining pre-tax cost of capital for the insurance company as a whole (such as CAPM based models). We do not delve into this 
discussion in this paper.  

α



   42 

 

 Copyright © 2020 Society of Actuaries 

2

exp 1
2

VaR VaR
k k kr u y zα

ω ω
  

= − + −  
  

 . . . . . . (6) 

 

The components of the premium must add up to 1 (called totality constraint) and thus for an expense ratio

ke , 

 

1VaR VaR
k k ku e r= − −   . . . . . . . (7) 

 

Incorporating the totality constraint in (6) leads to 

  

2

2

(1 ) exp 1
2

1 exp
2

k k
VaR
k

k k

e y z
r

y y z

α

α

ω ω

ω ω

   − − + −  
   =

 
− + − + 

 

 . . . .  (8) 

 

From (5),  

   

2

2

(1 ) exp 1
2

1 exp
2

k
VaR
k

k k

e z
c

y y z

α

α

ω ω

ω ω

   − − + −  
   =

 
− + − + 

 

. . . . . . (9) 

 

This completes the VaR approach.        ■ 

 

B. 3 ESTIMATION OF TARGET LOSS RATIO ku USING CVAR APPROACH 

We can also determine the parameter ku  using CVaR approach. Given a non-negative amount kβ , 

 

( )CVaR CVaR
k k k k kc E U U uβ= > −  . . .. . . . (10) 
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Setting up the initial integrals and using lognomality of kU  in Appendix A, we find: 

 

0

( )

1 ( )

k
k

k

k

UCVaR CVaR
k k

U

xf x dx
c u

f x dx
β

β

∞

= −
−

∫
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2
2

0

2

ln ln
2( ) ( )

ln ln
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k

k k
k

k
k

CVaR
k k

CVaR CVaR
U k U k k

CVaR
k k

CVaR CVaR
U k k

u
xf x dx u xf x dx u u

u
xf x dx u u

β

β

β

ωβ ω

ω

ωβ

ω

∞
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− + − 

= − = − Φ 
  
 

 
− − 

= − Φ 
  
 

∫ ∫

∫

 

Also, 

2

0

ln ln
2( )k

k

CVaR
k k

U

u
f x dx

β

ωβ

ω

 
− + 

= Φ 
  
 

∫ . 

Thus, 

2

2

ln ln
2

ln ln
21

CVaR
k k

CVaR CVaR
k k

CVaR CVaR
k k

CVaR
k k

u
u u

c u
u

ωβ

ω

ωβ

ω

 
− − 

− Φ 
  
 = −

 
− + 

−Φ 
  
 

 . . .. (11) 

Let 

2

ln ln
2

CVaR
k k

k

u ωβ
α

ω

− +
=  . 

 

Using totality constraint (7),  
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( )
2

ln ln 1
2

CVaR
k k k

k

e r ωβ
α

ω

− − − +
=  . .  . . . (12) 

 

Then from (11) and (11), 

 

( ) ( )
( )1

CVaR
k kk

CVaR
k k

c
u

α α ω
α

Φ −Φ −
=

−Φ
 . . . . . . . (13) 

 

Using (5),  

 

( ) ( ){ }
( )1

CVaR CVaR
k k kk k k

CVaR CVaR
k k k

yr y c
u u

α α ω
α

Φ −Φ −
= =

−Φ
. 

 

Using the totality constraint 1CVaR CVaR
k k ku e r= − −  to remove CVaR

ku ,  

 

( ) ( ){ }
( ) ( ) ( ){ }
(1 )

1
k k k kCVaR

k
k k k k

y e
r

y
α α ω

α α α ω
− Φ −Φ −

=
−Φ + Φ −Φ −

 . . . . (14) 

 

Recall that kα  was defined previously in equation (12) and contains CVaR
kr .  Since the right-hand side of 

equation (14) also includes CVaR
kr , the two equations must be solved iteratively. We conclude this section 

with the equation for CVaR
kc ,    

 

( ) ( ){ }
( ) ( ) ( ){ }

(1 )
1

CVaR
k k kCVaR k

k
k k k k k

erc
y y

α α ω
α α α ω
− Φ −Φ −

= =
−Φ + Φ −Φ −

 . . .. (15) 
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The CVaR approach can be made necessarily more conservative than VaR if equation (3) is used to set kβ
,18   

 

2

exp ln
2

VaR VaR
k k kU u zα

ωβ ω
 

= = − + 
 

 . . . . . .

 (16) 

A numerical comparison of VaR and CVaR is provided below for 30%ke = , 15%ky = , 1 2.33z α− =  an 

expense ratio of 30%. 

Table 18 
COMPARISON OF VAR AND CVAR RESULTS 

  Value at Risk   Conditional Value at Risk   

Percentile 
Underwriting 
Capital Ratio 

Underwriting 
Profit 

PLR 
Underwriting 
Capital Ratio 

Underwriting 
Profit 

PLR 

95.00% 0.22 3.30% 66.70% 0.3 4.50% 65.50% 

95.50% 0.23 3.40% 66.60% 0.31 4.70% 65.30% 

96.00% 0.24 3.60% 66.40% 0.32 4.80% 65.20% 

96.50% 0.25 3.70% 66.30% 0.33 4.90% 65.10% 

97.00% 0.26 3.90% 66.10% 0.34 5.10% 64.90% 

97.50% 0.27 4.10% 65.90% 0.35 5.20% 64.80% 

98.00% 0.29 4.30% 65.70% 0.36 5.40% 64.60% 

98.50% 0.3 4.60% 65.40% 0.38 5.70% 64.30% 

99.00% 0.33 5.00% 65.00% 0.4 6.10% 63.90% 

       

 

 
 
18 We do not formally prove this assertion. 
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