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Executive Summary 

BACKGROUND 
Actuaries in the life and annuity space have a well-established bottoms-up approach to modeling cash 
flows and calculating actuarial reserves and related balances for financial reporting. 

Actuaries have traditionally modeled long-duration life and annuity products at the policy or cell level 
before aggregating. This reflects: 

• Policy cash flows and related items as needed (e.g., premiums, policy charges/fees, policy 
benefits, commissions, expenses, reserves, account value, and amount in-force). 

• Actuarial assumptions (e.g., mortality, morbidity, lapse, and partial withdrawal). 
• Economic assumptions (e.g., interest rates, equity returns, inflation). 

This approach can be very cumbersome and runtime intensive with large blocks of business (which may 
include hundreds of thousands or millions of policies). The most common runtime challenge faced by 
actuaries is when “inner-loop” stochastic calculations are performed to calculate reserves or other metrics 
such as fair value at selected time steps in an “outer-loop” projection scenario. The outer-loop scenario(s) 
could be (i) a single deterministic scenario, (ii) multiple deterministic scenarios, or (iii) a stochastic 
simulation. 

Actuaries refer to this situation as “nested stochastic.” Various research has been produced on nested 
stochastic applications and challenges, including by the SOA (Feng, et al., 2016). 

Common occurrences of nested stochastic include the following: 

1. Financial reporting: When a financial reporting valuation or projection is based on a metric 
requiring stochastic valuation such as fair value or Principles-Based Reserves (PBR) for Variable 
Annuities (VA). 

2. Pricing: Pricing life and annuity insurance products using distributable earnings (with required 
capital) generally requires projecting the total asset requirement over the life of the product. 
Depending on the jurisdiction, this total asset requirement may be based on stochastic 
calculations. Further, actuaries commonly use stochastic projections along which the total asset 
requirement needs to be calculated to price market-sensitive products. 

3. Financial planning and analysis: Life insurance companies forecast their balance sheet and income 
statement to understand the future anticipated financial performance of their business. This 
generally requires insurers to project reserves, capital, asset allocation, hedging, and other 
relevant actuarial balances, some of which will require a nested stochastic calculation. This 
process is generally manual and requires back and forth between finance and actuarial. 

4. Risk management: Additionally, many life insurers will perform extensive analysis to evaluate the 
solvency of the insurance company. This analysis requires the projection of the total asset 
requirement along with assets and hedge derivatives to evaluate the likelihood of insolvency. 

Further, while nested stochastic calculations are the most common computing challenge of insurance 
companies, there are other situations such as point-in-time stochastic models where the bottoms-up 
actuarial modeling can be onerous. 

The runtime challenge facing actuaries has been exacerbated by the development of increasingly complex 
insurance products and changes in reporting frameworks (such as IFRS17 (IFRS, 2023), LDTI (FASB, 2016), 
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PBR (AAA, 2016) and Solvency II (EIOPA, 2016), which are increasing the reliance on complex stochastic 
calculations. 

Actuaries can increase computing resources (e.g., cloud computing) to address these requirements. 
However, the cost can often be prohibitive, and it may be complex to fully utilize the computing resources 
available (actuaries need to employ sophisticated distribution strategies). 

This may leave actuaries to use approximative methodologies to help mitigate runtime limitations, 
including, for example, simplifying calculations or scenarios, using proxy models and clustering. While these 
techniques may improve runtime, it will generally come at the cost of reduced precision (sometimes 
significantly reduced). Further, there are many cases where actuaries cannot run a given use case without 
the use of approximations, which complicates or makes it impossible to quantify the impact of the 
reduction in precision. Lastly, these simplifications are sometimes not well understood and may be difficult 
to maintain within desired tolerances if they rely on core simplifying assumptions that may not be valid 
over time. 

Given these challenges, it is natural for actuaries to continue seeking to innovate their modeling 
approaches to overcome the runtime challenges with first principles, bottoms-up modeling for long-
duration life and annuity products. 

OBJECTIVES AND CONTENT 

Paper objectives 

The objective of this paper is to provide a practical guide with concrete case studies to help actuaries 
implement artificial intelligence and machine learning (AIML) to help accelerate the speed of analysis for 
life and annuity actuarial modeling. We do so by researching the existing literature regarding AIML and its 
applicability to stochastic modeling and exploring case studies. 

We do not position AIML models as a replacement to traditional actuarial models, but rather as a strategic 
capability that can dramatically reduce runtimes and computing costs associated with complex stochastic 
or nested stochastic applications. 

In particular, this paper aims to provide a balance of theoretical knowledge along with practical concrete 
case studies that tackle some of the most prominent nested stochastic runtime challenges. 

Content overview 

This paper provides the following: 

• Overview and fundamental knowledge of AIML with resources for actuaries looking to become 
more proficient in this field (see section 1. Predictive analytics, artificial intelligence, and machine 
learning overview). 

• Review of existing literature on this topic (see section 2. Literature review). 
• Overview of the applications of AIML in the actuarial modeling space (see section 3. Practical 

application of AIML for actuarial modeling). 
• Review of regulatory and other considerations when applying the AIML methodologies described 

in this paper (see section 4. Professional, fairness, and regulatory considerations). 
• Various case studies to provide practical examples for a wide range of actuarial applications 

representative of common nested stochastic runtime issues: 
o We explored a relatively more straightforward case study to provide a gentle 
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introduction to practical applications for the reader. This first case explores the 
application of AIML to proxy the Monte Carlo or risk-neutral valuation of exotic index 
crediting strategies, such as those that can be found on indexed products like Fixed 
Indexed Annuities (FIA), Registered Indexed Linked Annuities (RILA) and Indexed 
Universal Life (IUL). This more straightforward application allowed us to provide both the 
data generation and model calibration code for the user (see section 5. Case study 1 – 
Index crediting). 

o We then moved on to a more complex case study where we proxied the fair value of 
various typical variable annuity guarantees. This is a very common example of where 
actuaries face runtime challenges due to nested stochastic (see section 6. Case study 2 – 
Variable annuity fair value). 

Note that we will be using the term AIML in this paper to collectively refer to predictive analytics, machine 
learning (ML), and artificial intelligence (AI). We will avoid getting bogged down in technicalities between 
these areas. 

AI is generally defined as developing computers and programs that mimic human intelligence. ML is 
considered to be a subset of AI and explores algorithms that can learn insights from data or experience 
(Columbia, n.d.). In this paper, we adopt commonly accepted terms such as artificial intelligence, machine 
learning, and neural network. (Efron, et al., 1993). 

KEY TAKEAWAYS AND WORDS OF CAUTION 
This paper demonstrates through case studies that AIML can be a powerful tool for actuaries looking to 
address runtime challenges associated with complex stochastic and nested stochastic models for life and 
annuity products. 

The AIML techniques discussed in this paper can be put to use to help address the growing analytical 
demands to meet business needs and the increased complexity in actuarial calculations introduced through 
the recent accounting changes happening across the globe. 

However, we advise readers of this paper to apply critical thinking in applying the AIML techniques. 
Significant actuarial and analytical judgment is required to employ the appropriate controls and guardrails 
when using AIML for proxy modeling or other techniques that address runtime concerns. 

Actuaries using these AIML techniques may report results to management or make actuarial decisions 
based on the output of AIML models instead of the traditional actuarial models needed to be confident in 
the reliability of the AIML model. Actuaries need to understand the limit of these AIML models (e.g., 
understand the input range where the model will and will not perform) and need to periodically validate 
the AIML models to ensure that they remain reliable proxies to the original actuarial calculation. Subsection 
4.1 – ASOP Review goes into more detail about some of the limitations to consider.   



  9 

 

Copyright © 2023 Society of Actuaries Research Institute 

Section 1: Predictive Analytics, Artificial Intelligence, and Machine Learning 
Overview 
Before exploring specific methodologies and case studies to apply AIML to actuarial applications, we first 
provide an overview of the key principles of predictive analytics and data science. 

Depending on the reader’s experience in this field, this section can be taken either as a gentle introduction 
to predictive analytics and data science or as a quick refresher. 

Further, readers who are already proficient in artificial intelligence and machine learning may skip this 
section and move on to Section 3. 

However, we expect that most readers come from an actuarial background and are curious about the AIML 
capabilities introduced in this paper with limited to no prior AIML experience. Those readers will benefit 
from carefully reading through this section first to gain fundamental knowledge that will prove useful in 
approaching Section 3 and the case studies. 

Further, we recommend that actuaries looking to implement AIML capabilities for nested stochastic seek 
additional reference materials to build up their knowledge of the core principles of AIML and/or work with 
data scientists trained in this field. One example is the book Deal Learning (Goodfellow, et al, n.d.) by Ian 
Goodfellow, Yoshua Bengio, and Aaron Courville. 

Given the interest in this field, there are many resources available online – including a certificate from the 
SOA (SOA, 2023) – in the form of formal online classes, blogs, articles, academic papers, and others. Many 
of these resources also provide code and references to learn how to apply these concepts. 

Lastly, we also caution that the paradigm behind some principles underpinning AIML methodologies may 
differ for actuarial applications. We will cover these nuances in 3. Practical Application of AIML for Actuarial 
Modeling. 

1.1. HISTORY AND RECENT DEVELOPMENTS 
In this section, we provide an overview of key events that led to the development of the latest AIML 
capabilities. This background is useful to understand how AIML has evolved and the key events that 
eventually led to the breakthroughs, widespread adoption, and innovations powered by AIML that we see 
today. 

1.1.1 PRELIMINARY DEVELOPMENTS AND “AI WINTER” 
The invention and exploration of the possibilities of AIML dates as far back as the 1940s and 1950s by 
researchers like Alan Turing and Marvin Minsky. 

The breakthrough of the first artificial neural network using perceptrons sparked waves of excitement and 
research interest in AI as a formal discipline. For instance, the U.S. Defense Advanced Research Projects 
Agency (DARPA) supported much of the early development of machine intelligence and those projects 
subsequently transpired to the broader communities. 

A Perceptron is an algorithm for supervised learning of binary classifiers. This algorithm enables neurons to 
learn and processes elements in the training set one at a time. 

However, the lack of computational power (hardware) and high-quality data at the time, limited the 
applicability of early-day AI and led to many high-profile initiatives being abandoned after failure to deliver 
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results. 

The interest and funding died down in the late 1970s and brought the onset of what is commonly referred 
to as the “AI Winter” where little attention was paid to AIML. 

1.1.2 RECENT DEVELOPMENTS 
The reasons for the early limitations or failings of AIML were circumvented by recent advances in 
computing power, as well as the significant growth in the volume and quality of data available as a whole. 
Computing power and the volume and quality of data have grown exponentially since the 1940s and 1950s. 

Two decades ago, computers may have had about ten gigabytes of memory. Today, it’s not uncommon for 
big data technology companies to take in over half a billion terabytes of data daily. Big data today contains 
greater variety, arriving in increasing volumes and with more velocity. These are known as the “three Vs” – 
variety, volume, and velocity. 

Three more Vs of data have emerged over the past few years, value, veracity, and variability. First, big data 
has become capital; a large part of the value the world’s leading tech companies offer comes from their 
data. They are constantly analyzing and producing new products using big data. Secondly, the degree to 
which big data can be trusted has increased a lot. Lastly, how the data can be used and formatted has 
developed dramatically as well. Expertly curated data, parallel computing, and smaller and faster chips are 
among a few of the contributors that turned the unviable algorithms of the past into the commercially 
achievable AI applications of today. These applications are an integral part of today’s social fabric. With the 
explosion of research breakthroughs enabled by technology backbones, intelligent systems such as 
autonomous driving, natural language processing, and generative design systems are no longer dreams of 
the distant past, but commonplace utilities facilitating aspects of everyday lives. 

Below are some notable developments in AIML applications in recent years: 

• 2011 Digital Assistants, Apple launches Siri 
• 2015 Driverless Cars: Tesla announces Autopilot and Waymo takes to the streets 
• 2017 Facebook Face AI: Facebook rolls out facial recognition to help with tagging 
• 2018 Just walk out: Amazon releases Just Walk Out tech to streamline retail 
• 2021 Delivery bots: Amazon begins testing delivery robot “Scout” in select cities 
• 2023 Generative AI: OpenAI ChatGPT, Google Bard showcases generative Natural Language 

Processing AI agents 

In the actuarial space, there are also advancements ranging from ML-driven assumption settings to 
adopting deep learning for nested stochastic approximations. These are revolutionizing the traditional 
actuarial processes with ever-increasing efficiencies and insights.   

1.1.3 LOOKING FORWARD 
AI advancement will be accelerated with a continuation in the overall improvement of hardware.  The 
launch of specialized AI chips, such as Tensor Processing Unit (TPU) and Neural Processing Unit (NPU) 
customized for machine learning tasks, are new developments that hold much excitement.  

In the meantime, increasingly large models are being developed for real world applications, with a seismic 
shift towards more fair, explainable and ethical AI.  The SOA has multiple publications (Smith, et al., 2022) 
that go in depth on those topics and the growing concerns around privacy and fairness. Government, 
regulators, and professionals are also paying more attention to this topic. Section 4 of the paper provides a 
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scan of the latest developments.  

Furthermore, the increased research continues to expand the use cases and accessibility to broader 
audiences and expanded use cases, such as healthcare, education, and entertainment. AI will gradually 
become more commonplace in our daily lives, including in the finance and actuarial industries.  

1.2 FUNDAMENTALS OF AIML 
This section provides fundamental technical knowledge of AIML. 

First, while there are multiple definitions of AI, this field can be 
considered as the overarching domain exploring the simulation of 
intelligence by machines. To achieve this, multiple components may be 
used, including natural language processing, text-to-speech, vision 
capabilities, robotics and decision-making. 

Machine learning can be seen as a subcomponent that enables many of 
the AI components listed above. Machine learning would cover the 
range of models and techniques used to calibrate these models to the 
data or situation at hand. Learning methods include supervised 
learning, unsupervised learning and reinforcement learning (more on 
that below). 

Deep learning is a subset of machine learning and is focused on the various types of neural networks (a 
type of machine learning model that is particularly promising). 

Categories of traditional predictive analytics techniques have achieved various progress in the past for 
runtime reduction. The summary of those techniques is provided under the literature review section of this 
paper. This paper will focus on the latest development, machine learning and, in particular, deep learning 
(Raden, et al., 2019) that drove the major AI advancement for solving highly complex tasks in this paper. 
Those are the fields that will enable us to cut down on stochastic model runtime with minimal loss of 
precision or accuracy. 

It is also worth mentioning predictive analytics, which bears similarity in techniques and models to machine 
learning, especially for some supervised learning applications. The main distinction with predictive analytics 
is its focus – which is on predicting future outcomes from experience. 

As mentioned previously, we will use the term AIML in this paper for simplicity to avoid clouding the paper 
in distinguishing among AI, ML, and predictive analytics. We will use these techniques holistically to solve 
nested stochastic runtime challenges. 

1.2.1 KEY DEFINITIONS 
While definitions vary in the field of data science, the following are used for this paper: 

1. Dataset: a collection of data used for the development and training of the model(s). This is further 
split into: 

a. Training set: Data used to train or calibrate the AIML model. 
b. Validation set: Data retained to control the AIML model against overfitting. 
c. Testing set: Data that is used to evaluate the performance of the model. This data is held 

back throughout the development of the AIML model. 
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2. AIML algorithm: AIML algorithm is the underlying model form regardless of calibration. For 
instance, AIML algorithms explored in this paper include algorithms such as neural networks, 
random forests, etc. 

3. AIML model: AIML model is a model that has been calibrated for a given purpose.  
4. Parameters: In AIML, a model is defined or represented by the model parameters, such as its 

weights and biases for each node.  
5. Hyperparameters: Hyperparameters are parameters whose values control the learning process 

and determine the values of model parameters that a learning algorithm ends up learning. The 
prefix ‘hyper’ suggests that they are ‘top-level’ parameters that control the learning process and 
the model parameters that result from it. 

6. Training: Hyperparameters are set before training begins and the learning algorithm uses them to 
learn the parameters. Behind the training scene, parameters are continuously being updated and 
the final ones at the end of the training constitute a model. 

1.2.2 AIML LEARNING APPROACHES 
Depending on the use case, fundamentally different approaches can be used to calibrate the AIML model. 
These approaches include supervised learning, unsupervised learning, and reinforcement learning. 

The approach that should be used will generally depend on the task at hand and how the problem is 
framed for the machine to learn. 

Supervised learning 

With supervised learning, the AIML model is trained on labeled data to predict unseen future outcomes, 
detecting the underlying patterns and relationships between input with respect to output labels. The 
model is trained by minimizing errors of the predictions against the target output over the training data, 
enabling it to yield accurate results for classification and regression problems.  

The purpose of regression models is to predict a numerical value given a set of input features. In a 
supervised learning setting, the machine learning model is provided with a set of input features and 
calibrated to predict the associated numerical output features. 

The purpose of classification models is to predict a category given a set of input features (e.g., prediction is 
an image, a cat or a dog, a yes or no, etc.). In a supervised learning setting, the machine learning model is 
provided a set of input features and calibrated to predict the associated categorical output feature. 

Unsupervised learning 

With unsupervised learning, the AIML model uses unlabeled data to extract patterns and relationships 
inherent in the data. The algorithms, in absence of external labels, can learn about the data and capture 
unexpected findings. Clustering and network associations are examples of unsupervised learning.  

Unsupervised models work on their own to discover patterns and information from the data provided. 
Distance-based clustering, such as nearest neighbor, follows a centroid model where clusters are defined 
by proximity to the mean vector. Density-based clustering, such as DBSCAN, defines clusters by connected 
dense region in the data space. These are often used in anomaly detection, lexical ambiguity, and 
recommender systems.  

Dimensionality reductions transform the data from a high-dimensional space project into a low-
dimensional space. This is commonly used in combination with other machine learning models to improve 
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the model. High-dimensional data can be computationally intractable and resource intensive. Principal 
component analysis is most prevalently used.   

Reinforcement learning 

Reinforcement learning is very different from supervised and unsupervised learning in the sense that it 
does not rely on historical data. Instead, reinforcement learning is established based on a system 
framework where an agent acts in an environment based on observations and receives the corresponding 
rewards to optimize strategy to accomplish a task.   

1.2.3 NEURAL NETWORKS 
An artificial neuron is a digital construct that seeks to simulate the behavior of a biological neuron in the 
brain. Artificial neurons are typically used to make up an artificial neural network that are modeled after 
human brain activities. Depending on the network structure, it can be used to solve a variety of tasks.  For 
example, the temporal sequence can be captured through Recurrent Neural Networks (RNN) and vision 
tasks can be solved through convolution neural networks (CNN).  

In the nested stochastic use case, an artificial neural network outperforms other traditional approaches 
through its capacity to capture high dimensional, non-linear, complex state space. These are achieved 
through the design and specialization of a network structure.  

A simplified illustration of how it can be applied with actuarial inputs and use case is below; this presents a 
general practical construct for actuarial use cases.  
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Figure 1 
ILLUSTRATION OF NEURAL NETWORK 

 

 

The four major components associated with the illustrations are:  

1. Feature scaling: Neural networks require all input values to be within a similar range. Therefore, 
the first step is to scale the original features. A common approach is the MinMaxScaler where the 
features are scaled linearly between the minimum and maximum values. 

2. Weight previous layers: Process information from the previous layer by applying the calibrated 
weights and adjusting with a calibrated bias for each neuron. 

3. Apply the activation function: to the output of step 2. The output of the activation function will be 
used as an output to the next layer.  

4. Weight final layer: Apply weights to the output of the final layer (D). This weighted output is used 
as the final output of the neural network. The network can produce one or more outputs. 

1.3 KEY PHASES OF BUILDING AIML MODELS  

1.3.1 BUSINESS PROBLEM DEFINITION  
The first phase for successful machine learning model development is business understanding and 
planning. A clear business requirement is the key to project success. This phase generally involves business 
subject matter experts, actuaries, and data scientists who work closely together. They analyze existing data 
and find patterns and identify data requirements needed to solve a problem. 
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1.3.2 DATA DISCOVERY, ACQUISITION AND GENERATION 
Once the problem statement and data requirements are established, data acquisition or generation can 
begin. Data acquisition can involve generating data through running existing actuarial models, sourcing 
data through admin systems, and gathering alternative data from publicly available or proprietary data. In 
certain cases, live streaming of data from real-time inference is needed. This phase is critical in the success 
of a machine learning project, and the quantity and quality of the data collected available for training the 
model will directly contribute to the accuracy of the results. 

1.3.3 DATA TRANSFORMATION  
Data in their raw form is not very informative to a machine learning algorithm. The collected or generated 
data cannot be directly fed into the training process for the model. The data preparation and wrangling 
phase includes key steps such as imputation for missing values, removing duplicated data, and correcting 
for invalid or noisy data. Data-preprocessing, data transformations and feature engineering for exploratory 
data analysis (EDA) are crucial exercises during this step. 

The purpose of EDA is to analyze the datasets to summarize their main characteristics. The initial investigations 
on data with the support of summary statistic and graphical representations can help discover patterns, detect 
outliers, spot anomalies, and check assumptions. An integral step of doing EDA is data visualization where data 
in the form of tables or graphs and various charts can be created. Data transformation typically also includes 
normalizing data, scaling features, and selecting key features. It is a comparative analysis where the data are 
compared in visual forms to understand the relationships among variables. 

1.3.4 MODEL SELECTION  
Model selection involves choosing the type of model or algorithm to be used based on the use case. From 
the range of machine learning models available, such as supervised, unsupervised, classification, 
regression, clustering, and reinforcement learning, the model architecture that is fit for purpose will be 
selected. In a simple statistic example for numeric prediction, linear regression, random forest, and 
decision trees could be used. For classification problems, logistic regression, K nearest neighborhood, and 
Naïve bayes could be used.  

1.3.5 MODEL TRAINING 
In the model development lifecycle, the model training part is where actuaries attempt to fit the best 
combination of parameters, weights, and biases to the model to minimize a loss function over the 
prediction range. The goals of the model building and training are establishing the best mathematical 
representation of the relationship between data features and a target label in supervised learning or 
among the features themselves in unsupervised. Since how to optimize the machine learning algorithms 
needs to be specified, loss functions are a crucial component of model training. Different models would 
require optimizing the model with different loss functions. Common loss functions are cross-entropy, hinge 
loss, mean square error or quadratic loss, etc.  The values generated by the loss functions will be used to 
measure how good the model is in terms of predicting the expected outcome.  

1.3.6 OVERFITTING 
Overfitting refers to a model that displays the training data too well. When a model fits more data than it 
needs, it starts catching the noise and inaccurate values in the dataset. This means that the noise or 
random fluctuations in the training data are picked up and learned as concepts by the model. As these 
concepts do not apply to new, broader data, it decreases the efficiency and accuracy of the model. It is a 
very common problem in machine learning and data science practice.  
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To avoid overfitting, the model training could be stopped at an earlier stage. However, early stopping can 
also lead to the model not being able to learn enough from the training data. In that case, the resulting 
model would not be accurately capturing the pattern and trends of the dataset; this is known as 
underfitting.  

Ideally, the model selected is at the sweet spot between underfitting and overfitting. The performance of a 
machine learning algorithm over time should be monitored as it is learning the training data. Both the skill 
on the training data and the skill on a validation dataset held back from the training process could be 
plotted. Over time, as the algorithm learns, the number of errors for the model on the training data goes 
down and so do the number of errors on the test dataset. As the number of errors for the unseen test 
dataset start to rise again, the model’s ability to generalize decreases. Therefore, the sweet spot is usually 
the point just before the number of errors on the test dataset start to increase where the model has good 
skill on both the training and unseen test datasets. 

1.3.7 TRAIN TEST SPLIT 
The train-test split process is used to estimate the performance of machine learning algorithms when they 
are used to make predictions on data not used to train the model. It is a fast and easy procedure to 
perform, the results of which could be used to compare the performance of machine learning algorithms 
for the predictive modeling problem.   

The procedure involves taking a dataset and dividing it into two subsets. The first subset is called the 
training dataset, used to train and fit the model. The other subset is called the validation dataset, and not used 
in training. It is instead used in the model for predictions and compared to the expected values. The objective is 
to estimate the performance of the machine learning model on data not used in training the model. 

The train-test split procedure is appropriate when there is a sufficiently large dataset available. This 
requires that the original dataset is also a suitable representation of the problem domain. That means 
there are enough records to cover all common cases and most uncommon cases in the population. In 
addition to dataset size, another reason to use the train-test split evaluation procedure is computational 
efficiency. Some models are very costly to train, and repeated evaluation used in other procedures is 
unmanageable. 

The procedure has one main configuration parameter, which is the size of the train and test datasets. This 
is expressed as a percentage between 0 and 1 for either the train or test datasets. The optimal split 
percentage depends on the project’s objectives. Some common split percentages include 80%, 67% and 
50% for the train set (e.g., 80% data for training and 20% data for testing). 

1.3.8 MODEL TESTING 
In this step, how well the trained model performs on the test dataset is assessed. The inference of the 
trained model is measured against selected metrics depending on the use cases. The output of this step is 
the prediction accuracy. For example, for a conventional binary classification model, accuracy and recall 
scores are used to assess the model’s performance. Two different outcomes can be classified to evaluate 
false positives and true positives to truly understand the model performance. This step can be an iterative 
process until one model’s results satisfies the requirement. Otherwise, increasing the size of the training 
dataset and repeating the previous steps can help to get a more comprehensive model. Similar to the 
regression models, appropriate metrics will be used for regression model predictions to evaluate the 
corresponding models, such as MAE, MSE, RMSE, etc. It is key that the model performs well on the model 
testing before preceding to the next phase.  
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1.3.9 LEARNING CURVE 
A learning curve is a plot for monitoring model learning performance over experience or time. Learning 
curves are a widely used diagnostic tool in machine learning for algorithms that learn from a training 
dataset incrementally. The model can be evaluated on the training dataset against the validation dataset.  
After each update during training, the measured performance can be plotted to show learning curves. 
Reviewing learning curves of models can be used to diagnose problems such as an underfitting or 
overfitting model, as well as whether the training and validation datasets are suitably representative. 

Generally, a learning curve is a plot that shows time or experience on the x-axis and learning or 
improvement on the y-axis. The metric used to evaluate learning could be minimizing loss or error. The 
better scores (smaller numbers) indicate more learning and a value of 0.0 indicates that the training 
dataset was learned perfectly, and no mistakes were made. 

The shape and dynamics of a learning curve can be used to diagnose the behavior of a model and suggest 
configuration changes that may be made to improve learning and model performance. 

A good fit is the goal of the learning algorithm and exists between an overfit and underfit model. A good fit 
is identified by a training and validation loss that decreases to a point of stability with a minimal gap 
between the two final loss values. The loss of the model will almost always be lower on the training dataset 
than the validation dataset. This means that some gap between the training and validation loss learning 
curves are expected. This gap is referred to as the “generalization gap.” 

A plot of learning curves shows a good fit if the plot of training loss decreases to a point of stability and the 
plot of validation loss decreases to a point of stability and has a small gap with the training loss. Continued 
training of a good fit will likely lead to an overfit. 

1.3.10 HYPERPARAMETER TUNING  
Optimal accuracy can be achieved through hyperparameter tuning, changing the feature set, or adding 
more features. Experiments can be performed across various permutations of algorithms, datasets, 
features and tuning parameters as well to achieve a high accuracy model. This experimentation and 
iteration process can be costly and very time consuming. After n number of iterations when the process 
results in a desired accuracy with a set of combinations, the model can be finalized as well trained and 
deployed into production. 

1.3.11 AUTO ML  
Traditionally, the hyperparameter tuning model combinations are created manually, and run one by one to 
compare the accuracy of the results. With the onset of tools like Auto ML and Auto AI, this step of model 
selection can be accelerated by having machines programmatically test common models and deliver an 
analysis of which models perform the best, eventually speeding up the model development process 
dramatically. 
 
With Auto ML, the data, features, algorithms, and other settings are selected to be tested. At the backend, 
the tool will automatically train the model on various algorithms with varied data and features and, at last, 
list the accuracy of all the combinations it used. From there, the precision of various runs can be compared 
to choose the highest accuracy of value combinations produced by the Auto ML.  
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1.4 MODEL DEVELOPMENT CYCLE AND MANAGEMENT 
The production and operation of an AIML model after its initial development needs to be taken into 
consideration. Machine learning operations (ML Ops) are a set of principles and practices to standardize 
and streamline machine learning lifecycle management. It is an integration between the development and 
operational processes, where teams collaborate to build, automate, test, and monitor the end-to-end 
machine learning pipelines. The origin of ML Ops is no different from software development operation (Dev 
Ops) principles, with the added process of a retraining of machine learning models.  

1.4.1 ML OPS OVERVIEW  
Below is a generic ML Ops workflow that is the result of many design cycle iterations. It brings together 
model build, deploy, and monitor in a streamlined development framework. It is used to efficiently deliver 
the developed model into production and maintain the entire machine learning model development 
lifecycle.  

The ML Ops pipeline is the top layer, and the entire architectural diagram can be leveraged for proofs of 
concept or implementation. It can also be executed for many types of ML solutions in any industry since it 
is highly modular and adaptable.  

Figure 2 
MLOPS ILLUSTRATIVE END TO END ARCHITECTURE

 

 
In addition, the essential elements of the ML Ops process are also mentioned under the ML Ops layer:  
 

• Data: data required to build the model,  
• Code: the programs and algorithms used to train and test the model,  
• Artifacts: trained and tested models warehousing, 
• Middleware: software, tool, and platform for model deployment, 
• Infrastructure: cloud computing infrastructure, some popular services, tools, and platforms (e.g., 

AWS Sagemaker, Azure ML, Databricks, Google Cloud AI), as well as other associated auxiliary 
elements.  
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A single ML Ops process where it extends to enterprise-level Model Ops can only be successfully 
established when all elements operate together.  

1.4.2 MODEL BUILD 
The most fundamental and important part of the ML Ops pipeline is the model build or model 
development. A model will go through data ingestion, model training, model testing, model packaging, and 
model registering operations in this cycle. Then, the best performing model will be registered and kept in 
the model registry for version control and management. 

1.4.3 MODEL PACKAGING AND REGISTERING 
After testing the performance in the previous step, the trained model can be deployed to the UAT or Prod 
environment by packaging and serializing the files. It can also build a containerized docker image to wrap 
up the model. The serialized or containerized models from the previous stage will be registered and saved 
in the model registry at this stage. It is important to maintain model version control. In general, some 
auxiliary Python packages and tools can be utilized to achieve this, with four key components:  
 

• Tracking: record and query experiments, code, data, configuration, and results. 
• Projects: package data science code in a format to reproduce runs on any platform. 
• Models: deploy ML models in diverse serving environments. 

1.4.4 MODEL DEPLOY 
Model deployment is the process of incorporating a machine learning model into an already-existing 
production environment to make useful business decisions based on data. The deployment module makes 
it possible to put the models that were created and trained in the previous module into operation. In the 
model deploy module, the model performance, functionalities, and behavior can be tested in the 
production-like (UAT or QA) environment. This will validate and ensure the model’s scalability and 
resiliency of the model in production. 
 
To summarize this process, there are two main components. First, application testing and production 
release. Second, the deployment pipeline is enabled by streamlined continuous integration and continuous 
deployment (CI/CD) pipelines connecting the development and production environments.  

1.4.5 APPLICATION TESTING 
Every model being deployed to the production environment needs to conduct an appropriate amount of 
essential testing, including unit, system, and traffic testing. They can ensure the model is resilient and 
performs well. Therefore, in this phase, actuaries and DevOps engineers should test the robustness and 
performance of the trained model in UAT. Models for testing are deployed in this testing environment as 
APIs or streaming services to deployment targets, such as Kubernetes services, container instances, or edge 
devices, depending on need and use case.   

1.4.6 PRODUCTION RELEASE  
Previously tested and approved models can be deployed in the production environment with a variety of 
options. This allows the business units and product users to interface with the models and generate 
business or operational values. Then, the product is released and deployed to the production environment 
enabled by the CI/CD pipelines.   
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1.4.7 MODEL MONITOR 
Model monitoring is an operational stage in the machine learning lifecycle after model deployment. It 
comprises detecting changes in the deployed models, such as model degradation, model drift, data 
integrity, feature drift, etc.  

Model monitoring works in sync with the deploy module to ensure that the deployed models are 
acceptable in operation and performance. Typically, a comprehensive model monitor consists of three 
main components, including model performance monitoring, model/data in-depth analysis, and model 
governance. These are all important tools to help us gain a rational and comprehensive understanding of 
the data and models in a production environment. 

Metrics are defined to measure and interpret the parameters that are used for model performance. The 
models in the lifecycle can be monitored based on some key metrics. For example, feature importance 
value can be used to explain which features have a more significant impact on the output. Changes in the 
feature importance over time can indicate model instabilities. In addition, Shapley (SHAP) value is a useful 
metric to evaluate the explainability of the model. A positive SHAP value means a positive impact on 
prediction, leading the model to predict one. A negative SHAP value means a negative impact, leading the 
model to predict zero.  

Metrics like feature importance value and SHAP value are used to monitor a model’s life cycle and execute 
reassurance solutions, so the machine learning application can be governed using alerts and action-based 
quality assurance and control. This ensures a robust monitoring mechanism for the production system. 

1.4.8 MODEL ANALYZING 
For optimal performance and governance in connection to a business decision, it is crucial to monitor all 
models in the production environment under one central dashboard. Properly monitoring and evaluating 
all the models’ performances in real time can be done by leveraging some model explainability techniques 
and cloud app servers, such as AWS CloudWatch, Azure Monitor, etc. These techniques and tools can be 
used to assess and evaluate important aspects of the model in fairness, bias, transparency, drift, and error 
analysis. The target variable, which is the statistical characteristic or metric to monitor or forecast, may 
vary in some unexpected ways over time. This is called model drift.  

For instance, in the scenario when an ML recommender system has been deployed to suggest appropriate 
goods for different consumers, it’s very difficult for the model itself to “guess” what items the customers 
are looking for on a given day. Those unpredictable patterns are not visible in the historical data. As the 
data was used to train the model, it may cause changes in result user behavior. To guarantee that deployed 
models deliver the highest and most pertinent business value, it is crucial to consider some unanticipated 
things or events. When model drift is noticed, one of the following should be done: 

1. The model owner or quality assurance expert needs to be alerted.  
2. The model needs to be switched or updated.  
3. Retraining the pipeline should be triggered to retrain and update the model as per the latest data 

or needs.  

1.4.9 MODEL GOVERNANCE  
In addition, the deployed ML models should be governed to ensure the best performance aligns with 
business goals through monitoring and analyzed similarly to the example above. It is very necessary to set 
up a specific set of alerts and actions to govern the MLOps system for all models. Without proper 
governance, firms may put themselves in some dangerous situations, especially financial and e-commercial 
companies. With lower accuracy and higher bias prediction where they are below the pre-defined 
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threshold, the model owner or a quality assurance expert should receive an alert and be notified about this 
issue. Then, any decisions and actions can be executed by experts in a timely manner.  

Model governance is an important component in compliance with local and global laws and regulations. 
Models can only be deployed to production if they meet legal preconditions as needed. For compliance, 
model interpretability and transparency are critical, and this comparably applies to technology companies. 
Many deep learning models have poor interpretability because of the large model size and too many 
training parameters resulting in a vague model’s interpretability. This often causes certain doubts and 
worries to users and regulators. Hence, model auditing and reporting should be conducted as well in order 
to provide end-to-end traceability and explainability for production models. This way, the ML system is 
well-governed to serve the business needs.  

1.4.10 MODEL RETRAINING 
Retraining a model is done to make sure that the deployed model consistently produces the best results. It 
is crucial to identify what makes an output the most accurate for your business use case and how to assess 
this accuracy for a successful retraining process. When a configured model monitoring procedure sends an 
alert of a problem in performance and degradation, an automatic retraining procedure can be used. 

As previously indicated, the primary reason for carrying out an automatic retraining procedure is 
performance deterioration. With the most recent data, model performance is always anticipated to be the 
best, but the cost increases with the frequency of retraining. By doing an offline experiment, the leading 
time for data drift and conceptual drift impact on the model performance below a baseline threshold can 
be determined. Any modification in data, model, or code should be followed by model retraining as part of 
the continuous integration (CI) process. As a best practice, monitoring for retraining models via 
dashboards, alerts, and reports should be a shared team effort, involving machine learning engineers, data 
scientists, actuaries, and business stakeholders.  
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Section 2: Literature Review 
This section reviews a collection of academic papers that have explored various approaches to gain 
modeling efficiencies using AIML. We have provided a high-level summary along with key takeaways in an 
effort to help readers quickly grasp the key concepts explored in these papers. We also provided 
references to each paper should the readers want to get more detail. 

We also made mention of past work performed by the Society of Actuaries or other actuarial organizations 
that are related to this topic. This section builds upon the general overview of AIML, including the history 
and recent developments, fundamentals of AIML, key phases to build an AIML model and model 
development cycle, and model management provided in section 1. Predictive analytics, artificial 
intelligence, and machine learning overview. 

We first summarize previous research performed by the SOA and other actuarial organizations that are 
related to this paper in subsection 2.1 Relevant Research From The SOA and Other Actuarial Organizations. 
Then, we go over academic papers that applied AIML in various forms to address nested stochastic 
modeling challenges in subsection 2.2 Academic Papers Exploring AIML For Actuarial Modeling. 

We provided the following information for each paper: 

• Reference and link to the original paper 
• Overview and objective 
• Approach 
• Key takeaways 

Lastly, this section is not meant to be exhaustive, and readers will find additional academic and research 
papers that will prove useful in developing AIML models to address modeling runtime concerns. We also 
included papers that we felt may be useful to the reader even if those papers are not focused on 
addressing model runtime concerns (for instance, we included papers that provide an overview of actuarial 
applications of AIML and papers that provide an introduction to AIML for actuaries). 

2.1 RELEVANT RESEARCH FROM THE SOA AND OTHER ACTUARIAL ORGANIZATIONS 

2.1.1 A TOUR OF AI TECHNOLOGIES IN TIME SERIES PREDICTION 

Author: Victoria Zhang  

Issue year: 2019 

Accessing the paper 

This paper can be accessed through the link below: 

A Tour of AI Technologies in Time Series Prediction (Zhang, 2019) 

  

https://www.soa.org/4a21e0/globalassets/assets/files/resources/research-report/2019/tour-ai-technologies.pdf
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Paper overview and objective 

This paper reviews multiple machine learning (ML) and deep learning (DL) models and explain how those 
models work and their possible applications in the actuarial field. 

This paper also demonstrates how AIML can be used for time series prediction. It explores the models that 
are best suited for time series problems, including machine learning, deep learning, and recurrent neural 
network models. 

Lastly, the paper also provided insights into the advantages and challenges actuaries are facing with AI 
technology, and how actuaries could adjust to this thriving technology.  

Approach and analysis 

The paper first introduces six supervised learning classifiers to the reader: 

• Naïve Bayes Classifier 
• K-Nearest Neighbor (KNN) 
• Support Vector Machine (SVM) 
• Decision Trees 
• Random Forests 
• Gradient Boosted Trees (GBT).  

 
This paper tested the six models to classify whether the NASDAQ index trend was going up or down or 
would stay stationary based on the last T data points. After training all of the six classifier models with the 
same data, the model applied the trained models to the reserved 30% testing data, which had never been 
seen by those models to evaluate the classification accuracy. The end results showed three of the models 
were effective with an accuracy score higher than 50%. The chart below shows the classification accuracy 
score among the six classifiers.  

Figure 3 
CLASSIFICATION ACCURACY SCORE BY SIX ML CLASSIFIERS 

  

Then, this paper explored deep learning models, introduced Deep Neural Networks (DNN) and discussed its 
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use in time series prediction. Two types of DNNs, Multi-Layer Perceptron (MLP) and Convolutional Neutral 
Networks (CNN), were compared using the case study of predicting bitcoin prices. The result was that CNN 
was the preferred model in the time series analysis because the testing results between the two models 
were both excellent and CNN only required half of the parameters from MLP.  

The paper also explored using recurrent neural networks (RNN) for time series predictions, and its 
vanishing and exploding gradient issue. Furthermore, it introduced the long short-term memory (LSTM) 
model, which is an RNN variant and can mitigate the vanishing and exploding gradient issues. Two case 
studies were analyzed. The first one was to design an LSTM network using the stock price and current 
NASDAQ index value to predict the future index value and compare it against the traditional forecasting 
methods. The LSTM can uncover correlations that are typically not seen with traditional forecasting 
techniques and is better at modeling non-linear relationships and long-term forecasting where the 
traditional method is better at forecasting short-term and univariate problems. The other case study was to 
use LSTM to detect anomalies in time series data. The idea was to train an LSTM model to predict future 
data and, when there is a vast difference between the prediction and the incoming data, then there might 
be an outlier.  

Key takeaways 

This report provided a high-level overview of AI and how it could be applied to actuarial work. One of the 
goals was to inspire actuaries to think about how actuaries could bring AI into their daily work. The second 
goal of this report was to provide some concrete examples of solving different time-series related 
problems, to provide some clear starting point for time-series related problems.  

At the end, the paper talked about the main challenges and obstacles in adapting AI technologies that 
come from censorship and privacy concerns, regulatory concerns, and significant initial investment and 
ongoing costs.  

2.1.2 EMERGING DATA ANALYTICS TECHNIQUES WITH ACTUARIAL APPLICATIONS 

Authors: Marie-Claire Koissi, Herschel Day, Vicki Whitledge 

Issue year: 2019 

Accessing the paper 

This paper can be accessed through the link below: 

Emerging Data Analytics Techniques with Actuarial Applications (Koissi, et al., 2019) 

Paper overview and objective 

The main aim of this research was to survey emerging data analytics techniques and discuss their evolution 
and growing use in the actuarial profession, including both life and non-life insurance. 

  

https://www.soa.org/globalassets/assets/files/resources/research-report/2019/emerging-analytics-techniques-applications.pdf
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Approach and analysis 

The survey results are organized in the paper as follows: 

1. Summarized the data analytics process, summarized the data sources, and discussed methods for 
data visualization.  

2. Brief overview of data analytic techniques used in supervised learning (regression and generalized 
linear models, Trees, Neural Networks, and Predictive modeling), unsupervised techniques 
(Principal component analysis, Cluster Analysis, Generic Algorithms, and Neural Networks), 
Markov Chain Monte Carlo Simulation and Bayesian Analysis. 

3. Overview of enhanced data analytic technologies and actuarial application. The actuarial 
applications discussed include machine learning technologies for mortality rate forecasting in life 
insurance, health care claims modeling in health insurance, reserves in life/non-life, and insurance 
fraud and other areas discussion for life/non-life.  In addition, the paper introduced some actuarial 
packages in R and Python. 

4. Case studies using open-source technologies (R, SAS and Python) for actuarial computational 
work. 

Key takeaways 

This paper found that advanced data visualization techniques and their use is expanding among actuaries, 
and then gave a brief overview of several data analytic techniques. In addition, this paper found that 
enhanced data analytic technologies are rising and their use is spreading in all areas of actuarial science. 
Open-source data analytic software can help actuarial practitioners and researchers efficiently take 
advantage of these new opportunities. 

2.1.3 LITERATURE REVIEW: ARTIFICIAL INTELLIGENCE AND ITS USE IN ACTUARIAL WORK 

Authors: Nicholas Yeo, Raymond Lai, Min Jyeh Ooi, Jie Yin Liew  

Issue year: 2019  

Accessing the paper 

This paper can be accessed through the link below: 

Literature Review: Artificial Intelligence and Its Use in Actuarial Work (Yeo, et al., 2019) 

This paper highlighted the AIML technologies that will interact with the actuarial profession to provide a 
frame of reference for actuaries to use in actuarial work. First, the paper gave a brief introduction to AI, 
and described the history of AI. Then, the paper talked about the literature review of how AI can be used in 
different lines of actuarial work, including motor insurance pricing, loss reserving, mortality modeling, 
underwriting, and fraud and claims. At the end, the paper summarized the conclusions regarding the 
impact of AI on actuarial work and discussed the benefits, drawbacks, and challenges of implementing AI in 
actuarial work.  

https://www.soa.org/globalassets/assets/files/resources/research-report/2019/ai-actuarial-work.pdf
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2.1.4 CLOUD COMPUTING AND MACHINE LEARNING USES IN THE ACTUARIAL PROFESSION 

Authors: Van Beach, Alexandre Boumezoued, Josh Dobiac, Jonathan B. Glowacki, Joe Long, 
Antoine Ly, Makho Mashoba, Zohair Motiwalla, David South, Benjamin Buttin 

Issue year: 2019  

Accessing the paper 

This paper can be accessed through the link below: 

Cloud Computing and Machine Learning Uses in the Actuarial Profession (Beach, et al., 2019) 

Cloud computing is growing in importance for actuarial models, especially given its ability to provide on-
demand computing resources. 

This paper introduced the cloud service models and their impact on the actuarial profession, discussed the 
use of the cloud in terms of financial modeling and actuarial processes analytics, and discussed the use of 
the cloud in terms of the increased ability to collect more data (and more granular forms of data) to 
perform advanced analytics.  

At the end, this paper provided an outlook for the potential ways expanded use of cloud technology 
combined with machine learning/AI could impact the actuarial profession as the technology evolves. It 
discussed the potential impact on various actuarial functions, including pricing, valuation and reserving, 
enterprise risk management, and experience study and assumption development.  

Below are the future opportunities that actuaries can potentially apply the cloud-based technology to: 

1. Streamline processes and data, allowing actuaries to spend more time analyzing and 
communicating results, 

2. Develop and implement granular, risk-based pricing tools, 
3. Assist with the development of algorithms to target specific potential policyholders, and 
4. Optimize pricing to maximize the risk / reward trade-off of products 

2.1.5 CONSIDERATIONS FOR PREDICTIVE MODELING IN INSURANCE APPLICATIONS 

Authors: Eileen Burns, Gene Dan, Anders Larson, Bob Meyer, Zohair Motiwalla, Guy Yollin 

Issue year: 2019   

Accessing the paper 

This paper can be accessed through the link below: 

Considerations for Predictive Modeling in Insurance Applications (Burns, et al., 2019) 

This paper is a research report that includes a review of existing literature and current industry practice, 
and a comprehensive set of considerations for predictive modeling in insurance applications. 

This paper identified the components of an advanced predictive modeling function that, based on our 
experience, a company must address to have the best chance of gaining buy-in from stakeholders. The 

https://www.soa.org/globalassets/assets/files/resources/research-report/2019/cloud-computing.pdf
https://www.soa.org/49bcd8/globalassets/assets/files/resources/research-report/2019/considerations-predictive-modeling.pdf
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question of defining leading practices in each area was approached from a few angles, including 
completing a literature review, conducting a survey of SOA members to assess what was currently being 
used for each component, and compiling two case studies with a single life insurer to document examples 
of predictive modeling in development and in production within a familiar context. The case study 
approach was used to showcase how one company made many of the decisions required to adopt 
predictive modeling and to highlight successes and struggles along the way. 

At last, the paper summarized their guidance as a compilation of concerns practitioners should address, 
with suggestions offered for how one might make the necessary decisions in a given application. 

2.1.6 NESTED STOCHASTIC MODELING FOR INSURANCE COMPANIES 

Authors: Runhuan Feng, Zhenyu Cui, Peng Li 

Issue year: 2016   

Accessing the paper 

This paper can be accessed through the link below: 

Nested Stochastic Modeling for Insurance Companies (Feng, et al., 2016) 

Paper overview and objective 

In recent years, the insurance industry has been moving toward more detailed and sophisticated financial 
reporting standards and practices, and the computational burden and technical difficulty has been rising 
with the increasing use of nested stochastic modeling. The purpose of this paper was to provide a resource 
to help financial reporting actuaries better understand a variety of nested stochastic techniques available, 
both in the industry and academic literature. In addition, the paper performed a comparative analysis of 
the accuracy and efficiency for the techniques selected.  

Approach and analysis 

The techniques selected in this paper were tested using two case studies.  

Case I: Risk-neutral valuation of guaranteed minimum accumulation benefit 

This case was designed to capture only the essential structure of a nested simulation. All the closed-form 
solutions can be obtained and used as benchmarks against other techniques. The focus was on the 
accuracy and validity of all techniques.  

Case II: AG-43 CTE calculation for guaranteed lifetime withdrawal benefit 
This case was intended to resemble an actual financial reporting model, and the most necessary elements 
of a financial reporting model on a single cell were included. Since case II had a more significant increase of 
structural complexity compared to case I, it was more to provide a realistic contrast on the modeling 
efficiency of various techniques.   

https://www.soa.org/globalassets/assets/files/static-pages/research/nested-stochastic-modeling-report.pdf
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Below is the summary of the comparison of the eight techniques analyzed: 

Figure 4 
COMPARISON OF EIGHT NESTED STOCHASTIC TECHNIQUES  

 

Key takeaways 

The main conclusions from this paper’s analysis: 

1. Analytical and numerical PDE methods (Method H) are, in general, the most efficient and accurate 
approaches given a small computation budget. 

2. Least-Squares Monte Carlo methods (Method F) are significant improvements of the crude Monte 
Carlo methods (Method B). 

3. The method of preprocessed inner-loops (Method E) is easiest to implement. Similar to the LSMC 
(Method F), it can be quite efficient in low-dimension problems but appears much less so in high 
dimensions. 

For future work directions, all mathematical formulation and methods in this report can be further 
extended to work with models of multiple equity indices and combined benefits, although their 
comparative advantages may be different in higher dimensions. Another direction would be to include 
stochastic interest rate and stochastic volatility models in the analysis. 

  

Method Brief description Pros Cons
A. Closed-form solutions Valuations are largely based on closed-form 

formulas that produce exact values or 
approximation

Very accurate and efficient;
Provides benchmarks approximation against 
which all other techniques can be tested.

Limited to certain stochastic models;
Requires expertise to develop solutions.

B. Crude Monte Carlo Straightforward simulations based on 
product design and projection of cash flows

Easy to implement;
Requires minimal analysis.

Can be extremely time and resource 
consuming.

C. Optimal budget allocation Static allocation of resources between two 
levels of simulations according to certain 
criteria

Easy to implement formula-based allocation;
No more modeling beyond crude MC.

Existing allocation strategies depend on 
specific risk measures;
Can be difficult to generalize.

D. Sequential allocation Dynamic allocation of resources Dynamically allocate budget;
Ideal use of resources.

Can be slow due to conditional statements in 
computational algorithms.

E. Preprocessed inner loops Preprocess inner loop results under 
representative scenarios and infer results 
under desired scenarios from those under 
similar representative scenarios.

Easy to understand and implement;
Modest accuracy in low dimensions.

Difficult to determine boundary points to 
cover all points for interpolations;
Difficult to select grid points in high 
dimensions. 

F. Least-Squares Monte Carlo (LSMC) Approximate inner-loop items by curve 
fitting, typically with polynomial 
approximations

Modest accuracy with small number of inner-
loops;
Can be used for extrapolation.

Little guidance on basis functions;
Difficult to select cross-terms in high 
dimensions.

G. Least-Squares Monte Carlo with 
basis selection

Replace inner-loop items by exponential sum 
approximations with automatic bases 
selection. 

Can be more efficient than F due to automatic 
selection of basis functions.

More analysis involved;
Limited literature on high dimensions.

H. Numerical partial differential 
equation (PDE) methods

Replace inner-loop items by employing 
numerical PDE algorithms

Can be highly accurate and efficient;
Possible reduction of dimensions to improve 
efficiency.

Requires expertise for stochastic analysis; 
Special algorithms for high-dimension PDEs.
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2.2 ACADEMIC PAPERS EXPLORING AIML FOR ACTUARIAL MODELING 

2.2.1 EFFICIENT DYNAMIC HEDGING FOR LARGE VARIABLE ANNUITY PORTFOLIOS WITH MULTIPLE 
UNDERLYING ASSETS 

Authors: X. Sheldon Lin, Shuai Yang 

Issue year: 2020   

Accessing the paper 

This paper can be accessed through the link below: 

Efficient Dynamic Hedging for Large Variable Annuity Portfolios with Multiple Underlying Assets (Lin, et al., 
2020) 

Paper overview and objective 

In an attempt to reduce computational time in calculating VA liabilities, this paper studied and analyzed the 
best way to efficiently calculate the total VA liability and partial dollar Deltas for large VA portfolios with 
multiple underlying assets. The proposed algorithm, including the nested simulation, used small sets of 
selected representative policies and representative outer-loops. 

In traditional VA hedging, most insurers perform in-house hedging with a two-step process. This involves a 
set number of outer-loop scenarios for economic scenarios on asset returns, then projecting the total VA 
liability in those shocked scenarios. Thus, the computational time is proportionally scaled based on the 
number of policies, number of outer-loops, and number of inner-loop scenarios, etc. As a result, reducing 
the simulation runtime is identified as a critical issue to insurance companies when managing large VA 
portfolios. 

Approach and analysis 

Due to limitations, such as hardware, software, and computer memory, full nested simulation still cannot 
be executed in practice. To extend from other research on this topic, this paper further discussed the 
below directions: 

1. Studying the selection of a set of representative outer-loop scenarios for policies invested in 
multiple underlying assets, 

2. Designing an algorithm to estimate the total VA liability distribution and other portfolio quantities 
such as partial dollar Deltas, and 

3. Extending the algorithm to a multi-period setting and performing P&L projections of a dynamic 
Delta hedging strategy. 

 
This paper demonstrates the importance of dynamic hedging for VA portfolios and illustrates the proposed 
method using P&L projections. 
 
The algorithm proposed in this paper is an extension of the algorithm by Lin & Yang (2020). It analyzes the 
selection of representative policies using the model-assisted population sampling approach and scenarios 
clustering with multiple assets. Then, the spline regression model is used to estimate the VA liabilities of 
the representative policies from the sampling. 
 
This paper model-assisted the population sampling framework to select a set of representative policies to 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3550106
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estimate the total VA liability. To each predictive VA liability for a policy of an outer-loop scenario, this 
paper employed a linear model with a policy’s attributes. This model is expressed below as: 
 

𝐿𝐿𝑝𝑝(𝑠𝑠) = 𝑏𝑏′𝑥𝑥𝑝𝑝,0 + 𝑒𝑒𝑝𝑝(𝑠𝑠) 
 
This paper utilized the Cube algorithm by Deville & Tille (2004) to select a balance sample. This algorithm 
contains two phases: a flight phase and a landing phase, supposing N to be the population size and each 
population unit of r dimensions. This paper uses the attribute vector, 𝑥𝑥𝑝𝑝,0.  
 
The flight phase iteratively translates inclusion probabilities to a vector of at least (N-r) zero or ones. The 
balance condition can be formed in a matrix where it implies that all balanced samples form a subspace of 
ℝ𝑁𝑁 with dimension N – r. Thus, in each iteration of the flight phase, the inclusion probability vector is 
positioned randomly inside the kernel space of A until it reaches a point that is close to a vertex of N 
dimensional hypercube. The detailed steps in each iteration of the flight phase can be found in the paper. 
In the landing phase, each non-integer element resulting from the flight phase is adjusted to either zero or 
one by linear programming. The resulting vector with only zeros and ones gives a nearly balanced sample.  

Key takeaways 

The results are presented in the figures below, where each figure corresponds to a generic real world 
economic scenario over the 24-week period. The top and bottom three subfigures in each figure 
correspond to the settings of 2,000 and 4,000 representative policies, respectively. The subfigures in each 
row, from the left to the right, display 50 curves of the estimated partial dollar Delta with respect to the 
S&P 500 index, the S&P 600 index, and the estimated total VA liability. The red dashed curves are the mean 
trajectories of the 50 estimated curves shifted upward and downward by 5%.  

The results show that the estimated total liability curves from different simulation runs are almost parallel 
to each other;  most of the estimated liability curves fall inside the 5% band of the mean curve, implying 
the algorithm is robust in estimating the total liability under both settings; and the estimated partial dollar 
Delta’s curves are relatively more volatile, but the estimated partial dollar Delta’s curves of each scenario 
show the same overall trend throughout the time period, and they, in general, go against the total liability 
movements.  
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Figure 5 
RESULTS: ESTIMATES OF DIFFERENT QUANTITIES FROM DIFFERENT RUNS (SCENARIO 1) 

 

Figure 6 
RESULTS: ESTIMATES OF DIFFERENT QUANTITIES FROM DIFFERENT RUNS (SCENARIO 2) 
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2.2.2 EFFICIENT NESTED SIMULATION FOR CONDITIONAL TAIL EXPECTATION OF VARIABLE 
ANNUITIES 

Authors: Ou Dang, Mingbin Feng, Mary R. Hardy 

Issue year: 2019   

Accessing the paper 

This paper can be accessed through the link below: 

Efficient Nested Simulation for Conditional Tail Expectation of Variable Annuities (Dang, et al., 2019) 

Paper overview and objective 

To reduce the substantial computational burden associated with nested Monte Carlo simulations in 
Variable Annuities risk modeling, this paper proposed an Importance-Allocated Nested Simulation (IANS) 
method, using a two-stage process. The first stage is to identify the tail scenarios most likely to contribute 
to the CTE risk measure. There is a high level of flexibility in the choice of proxy models.  The second stage 
allocates the entire inner simulation computational budget to the scenarios identified in the first stage.   

Approach and analysis 

The paper discussed the dynamic hedging for common types of VA riders, and describes the process of a 
standard nested simulation, presented the new approach they proposed, and performed numerical 
experiments to illustrate the performance of the proposed model. Below is the outline of the IANS model. 

Algorithm: Importance-Allocated Nested Simulation of losses for a Delta-hedged VA contract with a single 
payout date T (T denotes the final expiration date of the guarantee).  
input: – Underlying real-world and risk-neutral asset models with parameters. 

– VA contract, term T, and fully specified dynamic hedging program.  
– The risk measure and level, e.g., CTEα: 

output: CTEα for the losses of Delta hedging the VA contract of interest. 
Initialization: Simulating J outer scenarios, each is a T-period simulated stock price sample path under the 
real-world measure. 
Stage I: Identification of proxy tail scenarios 
(I.1) Select a proxy financial derivative and associated asset model that provides tractable, analytic hedge 
costs for which the payoff is expected to be well correlated to the VA guarantee costs. 
(I.2) Calibrate the proxy asset model to the underlying risk-neutral asset model in inner-level simulations.  
(I.3) Implement two-level nested simulation, but with the analytic hedge calculations for the proxy 
derivative and asset model replacing the inner simulation step. 
(I.4) Identify (1-ζ) J proxy tail scenarios with the largest simulated loss in step (I.3) for some 
ζ is the proxy confidence level. 
Stage II: Nested simulation with concentrated computation budget 
(II.1) Allocate remaining computational budget to the (1-ζ) J proxy tail scenarios. 
(II.2) Implement the inner simulation step of the two-level nested simulation model with the original risk-
neutral asset model and VA payoff, but only for the (1-ζ) J outer scenarios identified in step (I.4). 
(II.3) Identify the (1-α) J largest liability values based on the inner simulations. 
(II.4) Compute CTEα as the output. 
  

https://www.math.uwaterloo.ca/%7Embfeng/papers/2020_IANSNAAJ.pdf
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Key takeaways 

This paper illustrated a simulation procedure for estimating the CTE of liabilities of a VA dynamic hedging 
strategy. The IANS method proposed takes advantage of the special structure of the CTE by first identifying 
a small set of potential tail scenarios from the first tier of simulation based on a proxy for liabilities 
calculated from a closed-form solution, then focus the simulation budget on only those scenarios. The 
paper conducted extensive numerical experiments on Guaranteed Minimum Maturity Benefit (GMMB) and 
Guaranteed Minimum Accumulation Benefit (GMAB) contracts. The numerical results showed that the 
proposed IANS method can be up to 30 times more efficient than a standard Monte Carlo experiment, 
measured by the relative mean squared errors, under the same computational budget. 

This paper used GMMB and GMAB features as an example to perform the analysis. If we would like to 
consider using the method in this paper for our research, we need to decide what proxy asset to use for 
the VA block with Guaranteed Minimum Death Benefits (GMDB) and Guaranteed Minimum Withdrawal 
Benefits (GMWB) as needed in step 1.1 above, and the proxy confidence level. For the proxy tail scenario 
selection, those scenarios do not need to accurately assess the liability values. The proxy step is to 
ascertain a ranking of the liabilities by outer scenarios, so as long as the ranking of losses between the 
proxies and original models are highly related, the proxy is good enough. For the confidence level ζ, the 
method means the proxy tail scenarios are the (1- ζ) J outer scenarios with the largest simulated liabilities 
based on the proxy calculation. We use these to identify the largest (1-α) J simulated liabilities based on the 
inner simulations assuming that, with high confidence, the (1-α) J true tail scenarios are a subset of 
the    (1- ζ) J proxy tail scenarios. There is a tradeoff for ζ selection between a high likelihood of including 
the true tail scenarios and a high concentration of simulation budget in stage II. In this paper, they used a 
safety margin (α - ζ) of 5%. 

The IANS method also inspires efficient experiment designs in other financial and actuarial applications 
where the CTE is estimated by Monte Carlo simulation. For future work, one direction is to consider a more 
rigorous and systematic approach in selecting n, the threshold for tail scenarios to be considered for nested 
simulations. Another direction is to improve the efficiency of nested simulation of other products such as 
Guaranteed Minimum Income Benefits (GMIB) and GMWB. 

2.2.3 EFFICIENT SIMULATION DESIGNS FOR VALUATION OF LARGE VARIABLE ANNUITY PORTFOLIOS 

Authors: Ben Mingbin Feng, Zhenni Tan, Jiayi Zheng 

Issue year: 2020  

Accessing the paper 

This paper can be accessed through the link below: 

Efficient Simulation Designs for Valuation of Large Variable Annuity Portfolios (Feng, et al., 2020) 

Paper overview and objective 

The valuation of large variable annuity portfolios is an important enterprise risk management task, but is 
computationally challenging due to the need for simulation. To increase modeling accuracy, this paper 
identified three major components in an efficient valuation framework and proposed optimal experimental 
designs and provides analytical insights for each component. Below is the three-component Valuation 
Framework for Large VA Portfolios: 

https://www.math.uwaterloo.ca/%7Embfeng/papers/2020_VAPort.pdf
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Figure 7 
THREE-COMPONENT VALUATION FRAMEWORK FOR LARGE VA PORTFOLIOS 

 

Approach and analysis 

This paper provided innovative and efficient experimental designs for all three components of the valuation 
framework in the chart above and proposed a new method for valuation of large VA portfolios. The three 
components of the general framework are analyzed: 

1. Proposed the SRSC (simple random sampling and clustering) compressor that selects 
representative contracts in a given large VA portfolio in two steps. The first step is to draw a 
random sample of size n from the given VA contracts. Then, apply a chosen clustering algorithm to 
the selected random sample. 

2. Proposed the two-stage simulation budget allocation that optimally allocates a given computation 
budget among the representative VA contracts output by the compressor. 

3. For the predictor, this paper proposed a simple benchmark metamodel, called the cluster size 
multiple (CSM) metamodel, which requires minimal computational requirements but has 
reasonable accuracy. The CSM metamodel may be too simplistic for practical applications but can 
serve as a worst-case benchmark for the development of new predictors within the three-
component valuation framework. 

Then, the paper presented some test results to demonstrate the efficiency of the proposed three-
component valuation framework. The paper illustrated the efficiency of the compressor, simulator, and 
predictor in isolation, as well as in combination. The accuracy and speed of our proposals are compared to 
those in other state-of-the-art methodologies. 

Key takeaways 

Below are the key conclusions of the paper: 

1. The SRSC compressor identifies a small set of representative contracts and has a provable 
performance guarantee. 

2. The two-stage simulation budget allocation is shown to have satisfactory performance. 
3. The CSM metamodel may be too simplistic for practical applications but can serve as a worst-case 

benchmark for the development of new predictors within the three-component valuation 
framework. 

 
For future work, one direction is to further explore the synergies among different components when 
designing efficient experiments. Another direction is to address the simulator to target on minimizing the 
variance for estimating the original portfolio value, not the representative portfolio value by formulating 
and solving a new budget allocation problem. 
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2.2.4 FAST AND EFFICIENT NESTED SIMULATION FOR LARGE VARIABLE ANNUITY PORTFOLIOS: A 
SURROGATE MODELING APPROACH 

Authors: X. Sheldon Lin, Shuai Yang 

Issue year: 2019   

Accessing the paper 

This paper can be accessed through the link below: 

Fast and Efficient Nested Simulation for Large Variable Annuity Portfolios: A Surrogate Modeling Approach 
(Lin, et al., 2019) 

Paper overview and objective 

For both regulatory and hedging purposes, the variable annuity portfolio managers are often required to 
compute the predictive distribution of the total VA liability in a timely basis. The heterogeneity and path-
dependency of the VA guarantees cause the traditional nested-simulation to be extremely time-consuming 
to run. To address this important issue, this paper proposed a surrogate model-assisted nested-simulation 
algorithm, which incorporates several statistical tools such that the proposed algorithm can closely 
approximate the predictive total liability distribution at a significantly reduced computing time by running 
fewer numbers of inner-loops, outer-loops and policies as shown in the figure below. The method is called 
fast nested simulation. 

This paper denoted the valuation time and the future time point by t=0 and t=1, respectively, and 
separated the valuation of the liability of a VA block into the steps below and proposed a way to reduce the 
model runtime for each step: 

1. The first step is to project each policy’s account value from t=0 to t=1 using many outer-loops 
where each outer-loop represents a scenario.  

2. The second step, the inner-loops are simulated at each outer-loop to calculate the fair value of the 
VA liability by averaging the present values of the insurer’s cash flows. 

3. The third step is to sum up the liabilities from all policies in the VA portfolio to get the total liability 
of the entire portfolio. 

 

  

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3342701
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Figure 8 
ILLUSTRATION OF THE PROPOSED NESTED SIMULATION 

 

Approach and analysis 

First, this paper introduced a spline regression approach to approximate the relationship between a 
policy’s account value and its liability. This is to reduce the model running time for step 2 above. Below are 
the detailed steps: 

1. Obtain the simulated liabilities and the predicted account values in the selected scenarios of policy 
j, L0 and AV; 

2. Fit a spline regression using AV and L0; and 
3. Obtain the fitted value L from the fitted spline model to represent the liability of policy j. 

Secondly, the paper proposed a clustering method to select a set of outer-loops, which are called 
representative outer-loops, so that the predicted liabilities are simulated only at some selected account 
values. This is to reduce the model running time for step 1 above. Below are the detailed steps: 

1. Define the real-world asset returns R = {R1, ..., RM }; 
2. Decide the number of representative outer-loops m; and 
3. Run k-means algorithm with k = m with R, to find the cluster centers, and find the m scenarios that 

are closest to the center. Those are the final m asset returns to use. 

Thirdly, the paper reviewed the model-assisted finite population estimation framework, which is used to 
reduce the number of policies. A balanced sampling algorithm from the population sampling framework is 
used for selecting a set of representative policies. This is to reduce the model running time for step 3 
above. The cube sampling method is used. The algorithm has two phases: flight phase and landing phase. 
Assume a population with N units and each unit is equipped with r attributes. The flight phase translates 
the given inclusion probabilities to a vector of at least (N −r) zeros or ones. The landing phase then converts 
the non-zero/one units to either zero or one, giving an approximately balanced random sample. 

Key takeaways 
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To test the proposed methods, this paper constructed a synthetic portfolio with 100,000 VA policies that 
realistically reflected a real VA portfolio. The predictive distribution of its total liability was computed using 
both the full simulation algorithm and the proposed simulation algorithm to compare the result of the 
proposed model and a full nested-simulation model. The overall distribution was well approximated with 
the relative error being 0.26% for the mean and 0.20% for the standard deviation. However, the runtime 
was reduced from six days using 60 CPU to 37 minutes using 4 CPU. 

The proposed method also works well for other nonhomogeneous insurance portfolios and different 
scenario generators since the proposed framework does not assume any specific model for the dynamics of 
the underlying asset. 

For future work direction, a multi-dimensional clustering technique might be considered to:  

1. develop an efficient algorithm that does multiperiod prediction, 

2. investigate situations where multiple underlying assets are involved application, 

3. consider applying the proposed framework to calculate other quantities for large VA portfolios 
such as Greeks, and 

4. apply the proposed algorithm to the valuation of other insurance portfolios such as universal life 
insurance (UL), variable universal life insurance (VUL) portfolios. 

2.2.5 NESTED SIMULATION IN PORTFOLIO RISK MEASUREMENT 

Authors: Michael B. Gordy, Sandeep Juneja  

Issue year: 2008  

Accessing the paper 

This paper can be accessed through the link below: 

Nested Simulation in Portfolio Risk Measurement (Gordy, et al., 2008) 

Paper overview and objective 

To reduce the computational burden of nested simulation, this paper showed that a relatively small 
number of trials in the inner step can yield accurate estimates and analyzed how a fixed computational 
budget may be allocated to the inner and outer steps to minimize the mean square error of the resultant 
estimator. Then, the paper introduced a jackknife procedure for bias reduction and a dynamic allocation 
scheme for improved efficiency.  

Approach and analysis 

First, the paper set out a general modeling framework for a portfolio of financial instruments.  

Secondly, the paper introduced the nested simulation methodology and defined the parameters that 
would be tested. In the outer step, histories were drawn up to horizon H. For each trial in the outer step, 
there is an inner-step simulation. Let L be the number of trials in the outer step. In each of these trials, 1. 
Draw a single path Xt for t = (0, H] under the physical measure, 2. Evaluate the accrued value at H of the 
interim cash flows, 3. Evaluate the price of each position at H: Closed-form price for instrument 0; 

https://www.federalreserve.gov/pubs/feds/2008/200821/200821pap.pdf
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simulation with Nk “inner-step” trials for remaining positions k = 1, . . . , K. These paths are simulated under 
the risk-neutral measure, and 4. Discount back to time 0 to get the loss. 

The paper then discussed the estimation of large loss probabilities, value at risk and expected shortfall. In 
addition, the paper relaxed the restriction that Nk is equal across k using the estimation of large loss 
probabilities and analyzed the optimal allocation of computational resources between the two stages that 
minimized the mean square error of the resultant estimator and arrived at the conclusion that higher 
computational resources should be allocated to a position with higher contribution to bias and lower 
computational effort. Furthermore, the paper derived that, as the portfolio size increases, the optimal 
number of inner-loops needed to become smaller using formulas.  

Thirdly, the paper provided numerical illustrations of the main results. Distributions for loss Y and pricing 
error Z are specified to ensure that the bias and variance of the simulation estimators are in closed form. 
The example allowed the paper to compare the asymptotically optimal (N∗, L∗) to the exact optimal 
solution under a finite computational budget. This paper used simulation to perform similar exercises on 
the somewhat more realistic example of a portfolio of equity options. All the conclusions were robust. 

Lastly, the paper proposed some refinements to further improve the computational performance of nested 
simulation: 1. apply simple jackknife methods to the setting to the estimation of large loss probabilities for 
bias reduction; and 2. apply dynamic allocation of workload in the inner-loop step to further reduce the 
computational effort in the inner step while increasing the bias by a negligible controlled amount or even 
decreasing the bias. 

Key takeaways 

This paper showed that nested simulation of loss distributions poses a much less formidable computational 
obstacle than it might initially appear. The paper also showed that large errors in pricing at the model 
horizon can be tolerated as long as the errors are zero mean and mainly idiosyncratic. In the aggregate, 
such errors have a modest impact on our estimated loss distribution. More formally, this paper quantified 
that impact in terms of bias and variance of the resulting estimator, and allocated the workload in the 
simulation algorithm to minimize the mean square error. Simple extensions of the basic nested algorithm 
can eliminate much of the bias at a modest cost. 

The method proposed in this paper can be applied to other problems in finance, such as pricing options on 
complex derivatives, the rating of CDOs and other structured debt instruments when model parameters 
are subject to uncertainty.  
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2.2.6 EFFICIENT RISK ESTIMATION VIA NESTED SEQUENTIAL SIMULATION 

Authors: Mark Broadie, Yiping Du, Ciamac C. Moallemi 

Issue year: 2010  

Accessing the paper 

This paper can be accessed through the link below: 

Efficient Risk Estimation via Nested Sequential Simulation (Broadie, et al., 2010) 

Paper overview and objective 

This paper divided the risk measurement into two stages, scenario generation and portfolio revaluation. To 
reduce the computational burden of the nested simulation model, this paper proposed a new algorithm 
that sequentially allocates computational effort in the inner simulation based on marginal changes in the 
risk estimator in each scenario. This paper sought to exploit the fact that accurate portfolio revaluation is 
not equally important across all scenarios. Nested simulation can be made much more efficient by 
allocating computational effort non-uniformly across scenarios. Both the theoretical results and numerical 
results were shown to support the efficiency of the algorithm.  

Approach and analysis 

This paper considered the most basic risk measure, the probability that the future portfolio value falls 
below a pre-specified threshold, a large loss. First, the paper defined the problem and introduced the 
notations in the nested simulation, then reviewed the results for uniform inner-stage sampling. The 
uniform estimator is a function of two parameters: the number of scenarios n, and the number of inner-
stage samples for each scenario m. The best choices for the parameters m and n are to minimize the mean 
squared error of the estimate, subject to the constraint of a limited budget of computational resources.  
 
Next, the paper proposed a non-uniform nested simulation algorithm. The algorithm proceeds by allocating 
the inner-stage samples for portfolio revaluation in a sequential fashion. At each time step, it myopically 
selects the scenario where one additional inner-stage sample will have the greatest marginal impact on the 
estimated loss probability. Furthermore, the paper provided analysis that demonstrated, for the same 
overall number of samples, the non-uniform estimator proposed reduces bias by an order of magnitude. 
The paper also provided analysis that demonstrated the lower asymptotic MSE of the approach. Since non-
uniform sampling provides a lower bias for the same number of inner-stage samples, some of this 
computational savings can be used for outer scenarios to lower variance.  
 
Numerical results were also illustrated to show the benefits of the non-uniform nested estimation. Two 
examples were chosen for the numerical analysis. One is the Gaussian cash flow, where both the outer-
stage scenarios and inner samples are generated from normal distribution; the other is a put option, where 
the portfolio consists of a single put option on an underlying asset whose price follows a geometric 
Brownian motion process. The examples were used to compare the uniform estimator and non-uniform 
threshold and sequential estimators on the basis of bias, with MSE achieved by various uniform and non-
uniform estimators, given a fixed computational budget of k inner-stage samples. The comparison showed 
that MSE was reduced by factors ranging from four to over 100. 
  

https://moallemi.com/ciamac/papers/seqrisk-2010.pdf
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Key takeaways 

This paper proposed using a non-uniform nested sequential simulation procedure, which allocates more 
resources where the effort on the risk estimation is the greatest, allowing more effort to be devoted to the 
generation of outer scenarios. The algorithm produced a risk estimator that converged to the true value at 
a faster rate.  
 
For future research, the sequential estimation procedure proposed in this paper can be combined with 
previous research on variance reduction for the outer-stage scenario generation to achieve further 
computational savings. The proposed approach can be applied to other risk measures as well. 

2.2.7 RISK ESTIMATION VIA REGRESSION 

Authors: Mark Broadie, Yiping Du, Ciamac C. Moallemi 

Issue year: 2015  

Accessing the paper 

This paper can be accessed through the link below: 

Risk Estimation via Regression (Broadie, et al., 2015) 

Paper overview and objective 

To reduce the computational challenges in financial risk measurements, this paper introduced a regression-
based nested Monte Carlo simulation method for the estimation of financial risk. An outer simulation level 
is used to generate financial risk factors and an inner simulation level is used to price securities and 
compute portfolio losses given risk factor outcomes. The paper used theoretical analysis and numerical 
results to demonstrate that the proposed regression method can save computational effort compared with 
other methods.   

Approach and analysis 

First, this paper proposed a global spatial method based on regression that combines information from 
different outer-stage scenarios to better approximate the portfolio loss function. The MSE of the regression 
method converges at the rate k−1 until reaching an asymptotic bias level, which depends on the size of the 
regression error.  

Next, theoretical analysis was provided to highlight and quantify the effect of model error. 

Thirdly, the paper demonstrated that the proposed regression method was practically implementable by 
providing numerical results that illustrate the computational savings on a range of examples and compared 
the performance of the regression method with other methods. 

Finally, the paper proposed a weighted variation of the regression method that offered improved 
asymptotic bias. The paper described and analyzed a weighted regression algorithm for risk estimation. The 
paper established that the asymptotic bias of this algorithm was determined by the choice of weight 
function, described an idealized “optimal” choice of weight function, along with a practically 
implementable variation, and provided numerical results that demonstrated an improvement consistent 
with theory. 

https://moallemi.com/ciamac/papers/regression-risk-2011.pdf
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Key takeaways 

This paper proposed a new risk estimation method based on Monte Carlo simulation and regression. The 
optimal choice was k outer-stage scenario and inner-stage samples. Theoretical results show that the mean 
squared error diminished at a rate close to k−1 until a non-diminishing bias level was reached. The proposed 
regression method outperformed standard nested simulation and the delta-gamma method with a small 
number of samples and a quadratic basis. In addition, before hitting the bias level, the proposed method 
recovered the standard k−1 convergence rate of non-nested unbiased simulation estimators. Finally, the 
global regression method can be combined with other local methods and further improved using standard 
simulation variance reduction techniques.  

2.2.8 A COMPARATIVE STUDY OF RISK MEASURES FOR GUARANTEED MINIMUM MATURITY BENEFITS 
BY A PDE METHOD 

Author: Runhuan Feng 

Issue year: 2014   

Accessing the paper 

This paper can be accessed through the link below: 

A Comparative Study of Risk Measures for Guaranteed Minimum Maturity Benefits by a PDE Method (Feng, 
2014) 

Paper overview and objective 

This paper distinguished and compared two types of calculations, and used guaranteed minimum maturity 
benefits to investigate alternative numerical methods to reduce the computational burden but still achieve 
high accuracy and efficiency. This paper proposed a technique for assessing the overall risk of equity-linking 
products and provided a new approach to testing and estimating the sampling errors of simulations. Even 
though this paper focused on guaranteed minimum maturity benefit, the partial differential equation (PDE) 
method proposed can be extended for more general product designs.  

Approach and analysis 

First, the paper introduced two models. The first one was the individual model, the Black-Scholes model, to 
investigate the insurance liability of the GMMB on a standalone contract basis. The second was the average 
model for current market practice, and only the average contract of a typical size is considered in the 
reserve calculation for a variable annuities block.   

Then, the paper applied PDE to the computation of risk measures for the two models through theorical 
analysis. Since using high dimensional PDEs are much harder than low dimensional PDEs, this paper was 
more interested in a dimension reduction technique. The resulting PDEs from both models were in a form 
that could be easily handled in most commercially available software packages.  

Finally, the paper performed numerical analysis to compare the PDE method against other analytical 
methods for the individual model. The analysis confirmed that the PDE method was an accurate 
alternative. For the average model, the advantage of the PDE method is its flexibility. The PDE method was 
compared with Monte Carlo simulation, and the results showed that the PDE method required at most 
one-fifth of the computational time with accuracy up to four decimal places.  

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2432640
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Key takeaways 

For future research opportunities, the paper compared the application of the proposed method on the two 
models for stochastic mortality. First, the stochastic mortality models cannot be used in an average liability 
model. Secondly, the comparison confirmed that the individual model was an appealing alternative of risk 
modeling for guaranteed products, as it is more adaptable for complex mortality structures. The topic can 
be extended to an aggregate liability model with stochastic mortality rates in future research.  

2.2.9 VALUATION OF LARGE VARIABLE ANNUITY PORTFOLIOS UNDER NESTED SIMULATION: A 
FUNCTIONAL DATA APPROACH 

Authors: Guojun Gan, X. Sheldon Lin 

Issue year: 2015  

Accessing the paper 

This paper can be accessed through the link below: 

Valuation of large variable annuity portfolios under nested simulation: A functional data approach (Gan, et 
al., 2015) 

Paper overview and objective 

Insurance companies currently use nested simulation for VA portfolio guarantee valuation, but efficient 
valuation under nested simulation for a large VA portfolio has been a real challenge. The computation is 
highly intensive and often prohibitive. This paper proposed a novel approach to speed up the nested 
simulation by reducing the number of VA contracts that go through the nested simulation. This approach 
combined a clustering technique with a functional data analysis technique to solve the computation burden 
issue. The paper used a highly non-homogeneous synthetic VA portfolio of 100,000 contracts and 
estimated the dollar Delta of the portfolio at each time step of the outer-loop scenarios under the nested 
simulation over 25 years. The results showed that the proposed approach had high accuracy and efficiency.  

Approach and analysis 

First, the paper gave a brief introduction to the nested simulation of VA contracts and several existing 
approaches that address computational issues arising from the valuation of large VA portfolios, and why 
some of them are not solving the problems very well. 

Secondly, the paper gave a brief description of functional data analysis and the universal kriging method for 
functional data (UKFD). Then, the paper applied the universal kriging method to the VA Delta calculation 
under the nested simulation and performed the numerical tests. This paper used a clustering technique, k-
prototypes algorithm, to select a small set of representative VA contracts from a large VA portfolio and 
calculated quantities of interest of the representative contracts under nested simulation, then applied the 
universal kriging to calculate those quantities of interest for the remaining VA contracts in the portfolio. 
The paper illustrated how to use the universal kriging to accurately estimate the dollar Deltas of any 
contract in the VA portfolio using the representative VA contracts. Next, to evaluate the effectiveness of 
the proposed method, the paper generated 100,000 synthetic VA contracts with GMDB and GMWB riders 
and used the proposed method to calculate the dollar Deltas at each time step in the real-world scenarios. 
The paper performed three test cases with a different number of representative contracts. All the test 
results showed that the method was able to effectively approximate the annual dollar Deltas along the 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2358231
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outer-loop real world scenarios. The result showed that a very small subset, such as 1%, of VA contracts in 
a VA portfolio might be used as representative contracts to achieve fairly satisfactory accuracy. When the 
number of representative contracts increases, the absolute differences between the annual dollar Deltas 
estimated by the UKFD method and those calculated by the simulation model decreased.  

Key takeaways 

This paper proposed a method based on functional data analysis to estimate the annual dollar Deltas along 
outer-loop scenarios under the nested simulation framework. It used the k-prototypes algorithm to select 
representative VA contracts from a large VA portfolio and the universal kriging for functional data to 
estimate the Delta along outer-loop scenarios for all contracts in the VA portfolio. Since the time-
consuming nested simulation is only applied to a small number of representatives and the UKFD method is 
fast, the proposed method can reduce the computation time significantly. The proposed method can also 
be applied to estimate other quantities of interest, such as dollar Pho, cash flows and risk measures.  

All the components of the proposed method can be changed or modified for future research. One direction 
could be to explore other methods for selecting representative VA contracts. Another direction could be to 
test the proposed method under a realistic nested simulation model.  
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Section 3: Practical Application of AIML for Actuarial Modeling 
With section 1 serving either as a primer or a refresher depending on the reader’s prior experience with 
AIML and section 2 providing a good overview of recent relevant research to this paper, we are now ready 
to start exploring practical applications of AIML for actuarial modeling with a focus on nested stochastic. 

This section assumes that the reader is now familiar with the AIML concepts introduced in section 1 and 
builds upon this knowledge to explore how AIML can be inserted into actuarial modeling methodologies to 
reduce challenges with running models. However, we do not assume that the reader understands the 
concepts covered in section 2. Literature reviews, especially the academic papers found in this section, will 
cover similar concepts but in a simpler fashion for practitioners looking to get started. 

We have structured the section as follows: 
• We first provide a high-level overview of how AIML can be used to address runtime challenges and 

resulting applications in subsection 3.1 AIML Actuarial Modeling Applications. 
• We then explore the end-to-end approach that readers can follow when developing such AIML 

models for actuarial modeling applications in subsection 3.2 Approach overview. We will build 
upon this approach for the case studies that follow later in this paper. 

Lastly, as we mentioned at the beginning of section 1, certain aspects of the methodology used for AIML 
proxy models may differ from the typical methodology to develop machine learning. We will make specific 
mentions when this is the case. 

3.1 AIML ACTUARIAL MODELING APPLICATIONS 
In this section, we explore methodologies such as clustering in 3.1.1 Clustering, the use of proxy models in 
3.1.2 Proxy models, algorithms to identify subsets of representative scenarios to run in 3.1.3 Scenario 
selection and hybrid methodologies in 3.1.4 Hybrids. 

3.1.1 CLUSTERING 

Overview 

Clustering, within the life and annuity actuarial modeling field, is a technique used to reduce the overall 
number of model points by grouping similar points together, assuming they would produce similar results. 
This is also often referred to as compression or in-force compression. 

There is a wide range of industry practices used by actuaries and other fields that use clustering. Clustering 
reduces computation complexities by finding representative points of homogenous attributes. When 
applying it into actuarial modeling, subject matter expertise for making appropriate assumptions of what 
constitutes similarity on certain attributes, and the desired resulting number of clusters, are key 
considerations to balance the runtime improvement versus result precision.  

A traditional methodology we have seen actuaries use to cluster is to create groupings of policies based on 
similar in-force characteristics, such as grouping by a combination of attributes like attained age, policy 
year, account value, etc. 

AIML can be used to approach clustering more efficiently by letting the algorithm optimize the groupings to 
provide the most adequate coverage across the block. This includes grouping policies based on the target 
output. Unsupervised machine learning techniques, such as Density Based Spatial Clustering, account for 
the data points within constraint from the cluster center. A cluster center would be the dense region with 
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the most similarities, while a lower density region indicates differences in attributes. Another method could 
be hierarchical based, where clusters are formed using a tree type structure based on the hierarchy. The 
hierarch of the tree can be structured either bottom-up, which is referred to as the agglomerative method, 
or bottom-down, which is referred to as the divisive method.  

Users may frame the problem such that the algorithm groups policies not only based on similar 
characteristics such as attained age, policy age and face amount, but also based on present values, reserves 
or even cash flows. 

Clustering can greatly reduce the runtime as it can compress a large in-force file or a granular set of new 
business cells into a relatively small set of clustered records. Each clustered record is typically assigned a 
weight and, when weighted together, the aggregate result across the clustered records provides a close 
approximation for the result that would have come from the entire in-force records or the entire new 
business cells. 

When may actuaries find this approach useful? 

Clustering is most efficient with applications that have a large number of model points (in-force policies or 
new business records) to process. Clustering can be very efficient for large blocks of business. An example 
is using a simple and common algorithm such as K-means to partition all model points into k clusters, 
where each observation belongs to the cluster with the nearest mean serving as a representative model 
point of the group of policies. Choosing K can be directly related to the reduction of the computation 
budget desired.  

For actuarial models that are deployed in a Cloud-based environment that support distributed or parallel 
computing, clustering can also help efficiently process those large blocks to the cloud, especially when 
distribution by scenario strategies would be efficient if there were fewer model points. 

Word of caution 

Actuaries using clustering techniques, whether based on AIML or not, need to be careful to use the 
clustered records when it is appropriate to do so. For instance, a clustered in-force designed to provide a 
good approximation for statutory reserves may not perform adequately for GAAP projections. It is the 
responsibility of the actuary to make sure the clustering process is well tested and that controls are in place 
so that it is used for the right purposes.  

Paper case studies 

We do not explore clustering as a technique in the case studies offered in this paper.  Additional 
consideration of what these can be applied to actuaries, and how they can be used for the purpose of 
principle-based approaches to reserves and capital are very well discussed by practice notes (Beeson, et al., 
2010) published by the American Academy of Actuaries Modeling Efficiency Working Group, including 
aspects of validating the clustered results.  
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3.1.2 PROXY MODELS 

Overview 

As discussed previously, AIML can be used as high-fidelity proxy models to replicate actuarial calculations. 
This can be used strategically by actuaries to replicate certain calculations that are onerous, such as nested 
stochastic. 

The diagram below illustrates this process: 

Figure 9 
ILLUSTRATION OF AIML USE IN ACTUARIAL MODELING (CZERNICKI, 2020) 

 

In the current state, actuaries can use a full nested stochastic approach where the fair value and Greek 
calculation is based on stochastic risk-neutral valuation where the model branches off at the pivot points 
along the projection to calculate these measures for each policy. 

While the rest of the actuarial process runs efficiently, the nested stochastic calculation proves to be a 
bottleneck and slows down the overall process, resulting in long model runtime. 

In machine learning development, actuaries can use the component that is responsible for the poor 
runtime and produce a database of sample input-output combinations. This is done by running the 
actuarial calculations through multiple combination of inputs that provide reasonable coverage of the cases 
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the model may run into. Actuaries may then use this database to calibrate a regression AIML model, such 
as XG Boost or neural networks, to replicate the output given the inputs. 

In an AI-enabled actuarial model, the calculation of fair value and Greeks can then be replaced with the 
AIML model, eliminating the runtime bottleneck. 

When may actuaries find this approach useful? 

Proxy models are particularly useful when a runtime intensive calculation needs to be run frequently. 
Intensive calculations often involve, but are not limited to, nested stochastic calculations. 

Actuaries commonly run into this challenge when projecting reserves and capital in a pricing or forecasting 
setting. 

Common examples include: 

1. Projection of hedge income that requires the projection of fair value or Greeks (e.g., variable 
annuities)  

2. Projection of US Statutory reserves and capital (e.g., UL principle-based reserves)  

3. Projection of US GAAP reserves 

4. Projection of certain IFRS17 reserves and Solvency II requirements 

5. Projection of Bermuda reserves 

Word of caution 

Actuaries using this approach need to be careful to understand how closely the model proxies the first-
principles actuarial calculations. In particular, actuaries need to take into consideration the range of inputs 
that were used to train the model and make sure to not use the model outside of those bounds. 

Failure to control appropriately for the usage of the AIML model could result in a potentially wide 
inaccurate proxy. This could cause serious issues for the actuary depending on the nature of the 
application. 

Recalibration and continuing performance monitoring with the appropriate model risk governance would 
be applicable for proxy models as well. Reader can refer to section 1 for details on the Machine Learning 
Life cycle and operation of these applications. Scenarios which could cause fundamental dynamics, such as 
policyholder behavior in the block of business, or market environment to significantly deviate from the 
dynamics when the model was first established. These are often tell-tale signs that recalibration of the 
proxy model is needed.  

Paper case studies 

This application will be explored in the first and second case studies and will be a focus area of the paper. 
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3.1.3 SCENARIO SELECTION 

Overview 

Many actuarial applications require running a large number of stochastic scenarios as part of a fair value, 
reserve/capital calculation, profitability/risk analysis or other applications. 

AIML can be used to attribute relative importance to the underlying scenarios and identify a subset that 
can be used as a proxy for the full set. In 2.2.2, the literature review of the paper, Efficient Nested 
Simulation for Conditional Tail Expectation of Variable Annuities, discussed the importance of the allocation 
of computation budget to inner-loop scenarios that are most likely to result in tail reserves, which is a good 
example of utilizing scenario selection. 

Note that AIML is one of many techniques that can be used to perform scenario selection. Many actuaries 
may be currently using scenario selection techniques that do not involve AIML. 

When may actuaries find this approach useful? 

Actuaries may find this approach particularly useful for aggregate tail-based measures such as US life PBR 
stochastic reserves and VM-21 reserves where clustering alone would not resolve the runtime concerns, or 
may not be an option, and where the overall calculation is too runtime intensive to produce sufficient data 
to train a proxy model for the end result of the calculation. 

Word of caution 

Similar considerations apply here as to the proxy models where the AIML algorithm that recommends the 
most important scenarios may not perform well outside of the coverage used for training the model. 

3.1.4 HYBRIDS 
Actuaries could consider combining the methodologies above. While we will not explore this in this paper, 
this technique can be effective in solving the runtime challenge incrementally. 

We can explore a hypothetical situation to showcase how this might be applied for in-force and new 
business variable annuity capital forecasting: 

• First, start by developing a clustering model to consolidate the in-force and new business model 
points into a smaller compressed set of model points. This is developed by compressing the 
policies based on the present value of cash flows over scenarios from the American Academy of 
Actuaries. This will help reduce the runtime with a limited loss of precision. 

• Second, develop an AIML model to recommend the tail scenario selection. This is developed based 
on the clustered in-force and over a large number of examples. 

• Third, the combined compressed model points with the tail-scenario selection are used to 
produce many examples of capital results over various projected economic environments. The 
resulting data is used to develop a direct proxy. This was achievable given the combination of the 
first and second models reduced the runtime enough to produce a sizable database to train the 
direct proxy model. 

• Now, the final proxy model can be used directly to proxy the capital.  
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3.2 APPROACH OVERVIEW 
We will use a seven-step methodology to develop the AIML models in this paper: 

1. Problem statement, planning and business case: Defining the objectives of the AIML model and 
establishing clear requirements and success criteria to evaluate the AIML model. The actuary 
should get a clear understanding of key considerations such as, but not necessarily limited to, the 
applications that will eventually use the AIML model, the range of economic environments that 
the model will be used on, the expectations for the precision of the proxy and how frequently the 
proxy is expected to be recalibrated. 

2. Environment preparation: In this step, the actuary would prepare the AIML modeling environment 
and use common packages to develop machine learning and other packages that provide useful 
functionality. 

3. Data generation: In this step, the actuary would prepare the actuarial model to create the training 
data needed to develop the AIML model. The actuary first has to evaluate the methodology used 
to generate the data such that the AIML model can be trained to meet the objectives that were 
established in the first step. Key considerations include how to vary the economic environment 
and policyholder information effectively. Note that well-sampled training data is one of the most 
important elements to develop an effective AIML model. 

4. Feature engineering and selection: Develop additional inputs for the AIML model derived from the 
original Monte Carlo valuation inputs. Perform data exploration and feature importance analysis 
based on data generation with added feature engineering to identify which features should be 
used as inputs to the AIML model. 

5. Model testing and selection: Test performance of various AIML models. Test and control for 
overfitting. Select the top model based on performance and judgment. 

6. Hyperparameter tuning: Test alternative hyperparameters for the selected model to refine 
performance. When needed, hyperparameter tuning can improve the performance of a given 
model. 

7. Actuarial evaluation: Evaluate the performance of the model from an actuarial perspective. This 
includes applying the model in its final use case and comparing it against the first-principles 
calculations. It is also recommended to test boundary cases to see how the model performs in tail 
or more extreme events that are in scope for its eventual use.  

The development of the model will generally be done in an iterative fashion where the actuary may have to 
go back to previous steps depending on the learnings achieved as the actuary progresses through the 
seven steps above. 

3.2.1 PROBLEM STATEMENT, BUSINESS CASE AND PLANNING 
We recommend that actuaries first start by determining the root cause of the poor actuarial model runtime 
and evaluate if AIML might be the right solution to address the issue. 

Actuaries should think about whether clustering (3.1.1 Clustering), a proxy model (3.1.2 Proxy models), 
scenario selection (3.1.3 Scenario selection) or a combination or hybrid model (3.1.4 Hybrids) would be 
most adequate to solve the runtime issue. 
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Actuaries should perform a cost-benefit analysis to determine whether the proposed approach would 
provide value to confirm if there is a business case. 

When evaluating the cost, actuaries should consider: 

1. Resource time needed to research, develop and implement the solution 

2. Increased complexity on processes 

3. Time and cost to generate sample data (if applicable) 

4. Opportunity cost 

When evaluating the benefits, actuaries should not only evaluate the runtime saved, but also the intrinsic 
value of being able to generate faster analysis. 

Actuaries will also gain a better sense of the post development costs as they progress through the 
development of the AIML model and the business case should be refined and validated prior to 
implementation. 

In planning the work, actuaries should consider: 

1. Any coordination with other groups (e.g., data science) 

2. How to communicate the results effectively with the ultimate model users 

3. Activities, timeline and dependencies 

3.2.2 ENVIRONMENT PREPARATION 
While the AIML model could be developed on an individual’s laptop, actuaries should consider using the 
cloud for more efficient collaboration and processing power. 

Many companies have a cloud environment for AIML model development and actuaries may be able to 
leverage this for development of their own models. 

Python and R are the most commonly used open-source software for machine learning development and 
both offer extensive open-source libraries with functionality to develop machine learning models. 

3.2.3 DATA GENERATION 
Many AIML applications detailed in this paper will require some form of data generation. By data 
generation, we refer to the activity of running actuarial models to produce sample outputs. 

For instance, precise AIML proxy models require a large number of sample input-output combinations 
generated from the actuarial model. 

In our experience, it is critical to apply actuarial judgment in designing the process to generate the data to 
train and test the AIML model. 

In particular, most applications will require varying a combination of economic environments and coverage 
of the characteristics of the liabilities. This concept will be explored in detail in each of the case studies in 
this paper. 
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3.2.4 FEATURE ENGINEERING AND SELECTION 
As opposed to actuarial models where all detailed information on the policyholder, yield curve, and other 
elements are needed to initiate a calculation, AIML models do not necessarily need all the fundamental 
inputs to perform in its intended design. This was explored in 1.3.3 Data transformation with details on 
feature engineering and selection.  

Further, the performance of AIML models may be significantly enhanced through the process of feature 
engineering. This process consists of deriving alternative potential inputs from the other information that is 
available in a way that provides greater predictive power to the models. 

For instance, engineered features that have a close relationship to the target variable may help improve 
the model performance significantly. 

Actuarial judgment or intuition can again be critical in the engineering of features as actuaries may have a 
sense of how to combine the original inputs into metrics that are more closely tied to the target variable. 
Again, this is something will be explored with concrete examples in the case studies. 

3.2.5 MODEL TESTING AND SELECTION 
Model testing and selection for these applications follow the same principles as in section 1. 

The major difference for proxy models is that they are designed to achieve very high R2 metrics (generally 
above 99.5%), which would generally be attributed to overfitting in traditional data science applications.  

3.2.6 HYPERPARAMETER TUNING 
Hyperparameter tuning can help further improve the performance of the model. However, in our 
experience, this is generally a final step to make minor additional refinements. 

The previous steps, in particular data generation, feature selection and engineering and model selection, 
are more critical. 

Section 1 provides more information on hyperparameter tuning. 

3.2.7 ACTUARIAL EVALUATION 
Evaluating the performance of the model from an actuarial perspective is critical. A model may perform 
well on the original hold-out data, but may not perform well when applied in an actual application. 

Actuaries should test the model in real-life setting before formally implementing the model and using it in 
production settings. 

For instance, if an AIML model proxy was designed to replicate a reserve or other stochastic calculation 
along a projection, actuaries should compare projection results with the AIML proxy against first-principles 
calculations. Actuaries can then analyze how the proxy fares against the true results in various types of 
economic environments and other situations. 
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Section 4: Professional, Fairness and Regulatory Considerations 
Besides the technical aspects of AIML, including its applications for nested stochastic modeling introduced 
so far in this paper, there are a few other aspects that are important for practitioners to consider. 

In particular, as a nascent field, data scientists are not a defined profession with a structured authority that 
could articulate standards of practice, codes of conduct and CPD requirements. 

One key area that regulators and professionals alike are focusing on is the concept of fairness where there 
are extensive efforts and discussions on detecting and controlling for undue bias in AIML models, especially 
when those models influence or dictate decisions affecting individuals. 

While this paper’s primary objective is to explore the technical aspects of AIML to solve life and annuity 
nested stochastic modeling challenges, we dedicate this section to: 

1. Explore professional considerations through the Actuarial Standards of Practice (ASOPs) – see 
subsection 4.1 ASOP Review. 

2. Provide an overview of the discussions on bias and fairness and its applicability to the AIML 
models in this paper – see subsection 4.2 Bias and Fairness. 

3. Review recent public developments in regulations that may affect the applications discussed in 
this paper – see subsection 4.3 – Regulatory developments. 

4.1. ASOP REVIEW 
The Actuarial Standards of Practice, commonly abbreviated as ASOPs, are defined and maintained by the 
Actuarial Standard Board (ASB). As defined by the ASB: 

“The Actuarial Standards Board (ASB) sets standards for appropriate actuarial practice in 
the United States through the development and promulgation of Actuarial Standards of 
Practice (ASOPs). These ASOPs describe the procedures an actuary should follow when 
performing actuarial services and identify what the actuary should disclose when 
communicating the results of those services.” 

Actuaries who are looking to apply the concepts in this paper should extend the applicability of the ASOPs 
to these new concepts. In this section, we provide commentary on which ASOPs we found to be relevant 
this paper. 

All ASOPs are provided on the ASB website. 

Appendix C: ASOP review provides commentary on the applicability of certain ASOPs that may be relevant 
to actuaries looking to apply AIML for stochastic modeling.  

4.2. BIAS AND FAIRNESS 
As mentioned at the onset of this section, fairness is an important topic when it comes to AIML. Without 
the proper controls, AIML models can easily introduce undue bias that can be unfair resulting in unethical 
treatment of individuals for certain applications. Examples include credit or lending decisions based on 
AIML, AI chatbot, voice or facial recognition systems, and search and advertising placement using 
recommender algorithms.  
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Now, bias and fairness are less of a concern when it comes to the proxy modeling applications detailed in 
this paper. This is due to the intended purpose of the AIML proxy models to replicate the results of an 
actuarial model. However, actuaries using AIML in any capacity should always keep in mind the important 
discussions happening globally on the bias and fairness of actuarial models. 

In particular, actuaries should be careful that the error introduced by the AIML proxy model is not in itself 
biased and introducing unfair consequences to individuals (e.g., bias or error in a pricing application 
affecting the price of insurance). 

Regulators, such as the National Association of Insurance Commissioners (NAIC), are working towards 
providing guiding principles for AI adopters that address questions surrounding the use of big data, 
modeling, and artificial intelligence. The Financial Stability Board (FSB) published similar guidance, where 
they stress the important of assessing ethical uses of AI and machine learning with an understanding of 
their risks, including adherence to relevant protocols on data privacy, conduct risks, and cybersecurity. 
Adequate testing and ‘training’ of tools with unbiased data and feedback mechanisms are important to 
ensure machine learning applications do what they are intended to do.  

On the ethical and societal aspects, the European Commission has published extensive Ethics Guidelines for 
Trustworthy AI. The guidelines put forward a set of seven key requirements that AI systems should meet to 
be deemed trustworthy. A specific assessment list aims to help verify the application of each of the key 
requirements. The SOA published a report on the “Ethical Use of AI for Actuaries,” that covers AI, the social 
context, and the five pillars of ethical AI: responsibility, transparency, predictability, auditability, and 
incorruptibility.  

4.3. REGULATORY DEVELOPMENTS 
As innovation and adoption in AIML continues to evolve, so do regulations. At the time this paper was 
written, regulators in the US had been focusing on addressing the most common applications of AIML in 
the insurance industry, which included underwriting and claims. The laws and regulations relating to the 
use of artificial intelligence and machine learning (AIML) vary by country and region. Here are some 
examples of global regulatory developments:   

1. European Union: In April 2021, the EU released a set of regulations called the "Artificial 
Intelligence Act," which outlines rules for the use of AI systems. These rules apply to both public 
and private entities and cover four categories of AI systems: unacceptable risk, high risk, limited 
risk, and minimal risk. 

2. Canada: In 2018, Canada released a set of guidelines called the "Ethical AI Framework," which 
provides guidance for the development and deployment of AI systems. The guidelines emphasize 
transparency, accountability, and respect for human rights and privacy. 

3. United Kingdom: In 2021, the UK released a set of guidelines called the "AI Code," which provides 
guidance for the development and deployment of AI systems. The code emphasizes transparency, 
accountability, and the ethical use of data. 

For the United States: Currently, there is no federal law that specifically regulates the use of AIML. 
However, there are several laws that govern data privacy, cybersecurity, and discrimination that may apply 
to AIML systems. Additionally, several states, including California and New York, have passed their own 
laws relating to AI and data privacy. At the time this paper was written, there were several legislative 
actions that would apply to the result of pricing work. Several bills have been either introduced or passed in 
states that are particularly focused on ensuring the avoidance of proxy discrimination in the sales and 
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pricing of insurance. The details of these are beyond the scope of this paper but should be kept in the mind 
of practitioners. There are also existing actuarial standards boards that have provided guidance on how 
predictive models should be tested and reviewed in ASOP 56. Actuarial, accounting, and regulatory 
guidance contain general principles requiring the actuary to certify the appropriateness of the models 
used.  As such, actuaries should remain vigilant in following the spirit of the regulations, ensuring that the 
predictive models used are fit for purpose, reflective of the true risks facing the insurance company, 
contain risk margins for conservatism appropriate for the purpose, and use professional judgment in their 
training, deployment, and use.  
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Section 5: Case Study 1 – Index Crediting 

5.1. INTRODUCTION 
In this section, we explore the use of AIML to proxy the market value of non-traditional derivatives in the 
context of indexed-based products (e.g., FIA, RILA and IUL). The market value of these options is used to set 
the crediting parameters such that the cost of the option can be funded by the return on the supporting 
assets and provide an acceptable interest margin for the insurer. 

Calculating the market value of non-traditional options often requires Monte Carlo or fair valuation (we will 
use the term Monte Carlo valuation in this section). 

This use case was selected because it serves as a practical and gentle introduction to applying the AIML and 
actuarial concepts we have covered in the prior sections. 

Background and product feature overview 

Sales of indexed products, such as fixed indexed annuities, indexed universal life and registered indexed-
linked annuities, have increased over the last few years and now represent a significant portion of the sales 
within the life and annuity insurance industry (Windsor, 2022). 

Indexed products generally credit interest rates at regular intervals based on the performance of the 
underlying index over the index crediting period. 

Typical index crediting strategies 

Indexed products that are currently sold in the market generally use simple or vanilla strategies based on 
one or a combination of: 

• Cap: Interest crediting is based on equity performance up to a pre-defined maximum rate (e.g., 
full participation in a given equity index up to X% and subject to a floor of 0% preventing losses). 

• Participation: Interest crediting based on a proportion of the equity performance (e.g., partial 
participation of Y% into the equity index, with no cap, and subject to a floor of 0% preventing 
losses). 

• Spread: Interest crediting based on equity performance above a spread (e.g., full participation in 
the equity index for any growth above Z%). 

The most common strategies are based on point-to-point equity performance (e.g., equity performance 
over a one-year term) but strategies can also be based on average monthly returns, high equity point 
during the term and many other structures. 

These indexed strategies can generally be replicated by combining European equity options (Hull, 2021) 
(vanilla point-to-point derivatives) and actuaries would typically use Black-Scholes (Black, et al., 1973) or 
other closed-form formulas to calculate the market value of the index crediting strategy based on the 
equity options that replicate the strategy. They may also employ these formulas to calculate the Greeks 
depending on the nature of the index crediting hedging strategy. 

Calculating the market value and other related metrics (e.g., Delta, Gamma, Rho) are important for risk 
management applications, such as hedging, and for financial reporting purposes, such as producing 
valuation results or forecasting Statutory and GAAP balance sheet in the United States. 
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Below we illustrate the crediting process for an annual point-to-point cap strategy based on the S&P 500 
index where the cap rate is set at 4% for this crediting term. Note that the cap rate (or other applicable 
crediting parameter) is generally set at the discretion of the insurance company, subject to contractually 
guaranteed floors, and is generally driven by the performance of the insurance company’s underlying 
portfolio and market value of replicating options for the strategy. 

The insurance company sets the cap rate at the beginning of the crediting term and the cap rate is 
hereafter locked in until the end of the crediting term. 

The figure below captures the interest credited to the policyholder at the end of the year based on the 
performance of the S&P index. 

Figure 10 
PAYOFF FOR S&P500 ANNUAL POINT-TO-POINT STRATEGY 

 

Non-traditional index crediting strategies 

While most FIA, IUL and RILA products currently offered by life and annuity insurers are based on point-to-
point with a cap, participation and/or spread, some insurers are starting to offer unique or exotic index 
crediting strategies to differentiate their products from the industry. 

This differentiation generally comes in the following forms: 
1. Use of proprietary indices: While many products will be based on common indices, such as the 

S&P500, NASDAQ and EAFE, some insurers are starting to offer new indices to manage volatility or 
make the indexed product more attractive. 

2. Exotic crediting terms: Typical index crediting strategies are generally based on a combination of 
European options. Non-traditional crediting strategies may instead use exotic options such as 
Asian or lookback options. 

Although the use of proprietary indices and unique crediting terms are the most common forms of 
differentiation, other means of differentiation may exist or surface in the future. 

Valuation challenge for non-traditional index crediting strategies 

The payoff of typical European index crediting strategies, such as the one provided in figure 10 above, can 
be replicated by purchasing an at-the-money European call option and selling an out-of-the-money call 
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option with a strike price that is set above the current index level based on the cap rate (4% in the example 
above). 

In this case, the market or fair value of this index crediting strategy would be calculated as the market value 
of the underlying index options that can replicate the strategy (the net market value of the two options 
detailed above). This calculation can be performed using Black-Scholes and would not require a stochastic 
or Monte Carlo valuation. The same goes for the calculation of Greeks. 

However, Black-Scholes does not apply to non-traditional index crediting strategies. 

As opposed to typical index crediting strategies, there might not exist a precise or accurate closed form 
solution to evaluate the market value and the industry must often resort to Monte Carlo valuation. 
However, this practice is often prohibitive due to runtime concerns, especially for actuarial applications 
that require revaluating the market value of the strategies throughout actuarial projections or actuarial 
valuations (nested stochastic). 

Monte Carlo valuation of index crediting strategies can even result in three layers of stochastic where: 

1. First layer: The actuaries are performing stochastic real-world outer stochastic projections (first 
layer). 

2. Second layer: The balance sheet of the company is projected along those outer projections and 
financial reporting standards dictate the use of stochastic valuation (e.g., VM-21). In addition, the 
Monte Carlo valuation methodology is required in this layer for the index crediting strategy. 

3. Third layer: The inner-loop calculations of the balance sheet component (e.g., VM-21) require 
projection of the cash flow components, which require the projection and valuation of the index 
crediting strategy (Monte Carlo). 

In the example above, the computing requirements for such products can compound and get out of hand 
very quickly. 

Note that various closed form formulas (either exact or approximative) have been developed by 
researchers for various non-European options and can be applied to non-traditional index crediting 
strategies. We encourage actuaries to consider those formulas before evaluating the use of Monte Carlo 
valuation or the AIML proxy modeling methodology discussed in this paper. 
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5.2. PRODUCT AND ACTUARIAL METHODOLOGY SPECIFICATIONS 

Product features 

In this section, we explore a non-traditional index crediting strategy based on a volatility control index 
targeting a constant 12% volatility with crediting terms defined as a three-year lookback strategy subject to 
a floor and cap. 

The interest credited to the account at the end of the three-year crediting term is calculated as follows: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼𝑒𝑒𝑠𝑠𝐼𝐼 𝐶𝐶𝐼𝐼𝑒𝑒𝐶𝐶𝐶𝐶𝐼𝐼𝑒𝑒𝐶𝐶 =  �𝑀𝑀𝐶𝐶𝐼𝐼 �
𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀
𝑆𝑆0

− 1, 𝑐𝑐𝑐𝑐𝑐𝑐��
0+

 

Where 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀  is the maximum level the volatility control index reached at the closing of any calendar month-
end throughout the three-year index crediting period, 𝑆𝑆0 is the index level at the time of reset and 𝑐𝑐𝑐𝑐𝑐𝑐 is 
the cap rate offered by the insurance company at the time of reset. 

The key difference with this strategy relative to typical index strategies is the introduction of a volatility 
control index instead of a standard equity index and the lookback option. However, the lookback option is 
the product feature that prevents us from using Black-Scholes and requires the use of Monte Carlo 
valuation. 

Valuation methodology 

This case study uses Monte Carlo simulation to calculate the market value of the option. The Monte Carlo 
simulation used in this case study is based on stochastic equity paths following a log-normal model and 
fixed (deterministic) interest rates. 

The equity index process under the log-normal model is calculated using the following diffusion process: 

𝐶𝐶𝑆𝑆𝑡𝑡 = 𝐼𝐼 ∙ 𝑆𝑆𝑡𝑡  𝐶𝐶𝐼𝐼 +  √𝑣𝑣 ∙ 𝑆𝑆𝑡𝑡  𝐶𝐶𝑊𝑊𝑡𝑡 

Where 𝑆𝑆𝑡𝑡 is the current index level, 𝐼𝐼 is the current risk-free interest rate (fixed deterministic interest rate), 
𝑣𝑣 is the index volatility (fixed at 12% based on the underlying volatility control index described in product 
terms) and 𝑊𝑊𝑡𝑡 is the geometric Brownian process. 

The market value is calculated as the average present value of the interest credited or payoff of the 
strategy across all simulated scenarios. 
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5.3. AIML MODEL DEVELOPMENT 

Overview and problem statement 

This section details the methodology used to calibrate and test an AIML proxy model for Monte Carlo 
valuation of the non-traditional option detailed in subsection 5.2. 

The following table summarizes the steps used for this case study and associated references from the sub-
sections below. 

Table 1 
STEPS AND REFERENCES FOR THE CASE STUDY 

# Step Paper Section Description 

1 Overview and problem 
statement 

This section Perform the valuation of the non-traditional option 
detailed in subsection 5.2 

2 Preparation 5.3.1 Preparation Prepare the environment, load external packages 
and define the various functions that will support 
the steps below. 

3 Data generation 5.3.2 Data Generation Define methodology to generate sample results to 
train and test the AIML model by varying the Monte 
Carlo valuation inputs. 

4 Feature engineering and 
feature selection 

5.3.3. Feature engineering 
and feature selection 

Develop additional inputs for the AIML model 
derived from the original Monte Carlo valuation 
inputs.  

Perform data exploration and feature importance 
analysis based on data generation with added 
feature engineering to identify which features 
should be used as inputs to the AIML model. 

5 Model testing and 
selection 

5.3.4. Model testing and 
selection 

Test performance of various AIML models. Test and 
control for overfitting. Select the top model based 
on performance and judgment.  

6 Hyperparameter tuning N/A 
Given the simplicity of this 
use case, hyperparameter 
tuning was not performed for 
this initial case study. 

Test alternative hyperparameters for the selected 
model to refine performance. When needed, 
hyperparameter tuning can improve the 
performance of a given model. 

7 Actuarial evaluation 5.3.5. Actuarial evaluation Evaluate the performance of the model from an 
actuarial perspective. 

 

The methodology to develop such AIML models generally requires iterating among the steps outlined 
above. In this section, we focus on the final methodology and analysis that was developed by the 
researchers. 
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5.3.1. PREPARATION 
The first step consists in preparing the environment by loading any external packages, defining the user 
functions and user inputs. 

Python was used to generate the training and testing data, develop the AIML model, and produce the 
analysis provided in this section. We used the following Python packages: 

• NumPy: Adds support for large, multi-dimensional arrays and matrices, along with a large 
collection of high-level mathematical functions to operate on these arrays. 

• Pandas: Used for data transformation and analysis. 

• Matplotlib, Sweetviz and Seaborn: Used to produce various visualizations. 

• Scikit-learn (sklearn) and Keras: Both of these packages provide a library of machine learning 
models. 

5.3.2. DATA GENERATION 
The data generation process for this use case was performed by randomizing the features driving change in 
the market value of the exotic index crediting strategy. Each random combination constitutes an 
observation for training the AIML model. 
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The following table summarizes the inputs to the Monte Carlo valuation and provides details on how each 
input was randomized. The data generation joined random combinations of possible input values at reset 
and possible input values throughout the crediting term. 

Table 2 
INPUTS TO THE MONTE CARLO VALUATION 

Input Description Low Bound High Bound 

Initial index 
level 

Index level at issue or last reset of 
the index crediting strategy. 

This variable is fixed at 1,000 and all 
variables below are normalized 
based on an initial index level of 
1,000.  

Fixed at 1,000 
 

Current index 
level 

Index level as of the date of the 
Monte Carlo valuation. 

At issue or reset 
Fixed at 1,000 
Between resets 
8,000x(1-0.2xT) 
T is the time since last reset 

At issue or reset 
Fixed at 1,000 
Between resets 
12,000x(1+0.2xT) 
T is the time since last reset 

Maximum 
index level 

Maximum index level reached at 
month-end since the last reset of 
the index crediting strategy 

At issue or reset 
Fixed at 1,000 
Between resets 
1,000 
Set to 1000 as the maximum 
index level cannot be lower 
than the index level at any 
time since the reset 

At issue or reset 
Fixed at 1,000 
Between resets 
1.2x Current index level 

Time to 
maturity 

Remaining time (in years) until the 
index crediting strategy matures and 
the resulting interest is credited to 
the account. 

At issue or reset 
Fixed at 3 
Between resets 
1/12 

At issue or reset 
Fixed at 3 
Between resets 
3-1/12 

Cap rate Maximum interest that can be 
credited to the account (see 
subsections 5.1 and 5.2 for further 
details on the cap rate) 

10% 30% 

Risk-free rate Current risk-free interest rate used 
in Monte Carlo valuation 

0.01% 10% 

Volatility Volatility used in Monte Carlo 
valuation. The volatility is fixed at 
12% given the underlying is a 
control volatility index that manages 
volatility to 12%. 

Fixed at 12% 

 

Note that unless stated otherwise, all randomized input were generated independently of one other. A 
total of 26,000 observations were generated with 30% of those being at reset and 70% in-between resets. 

The number of observations generated was informed by monitoring incremental model performance as 
models were calibrated with increasingly more data. The 30/70 split was chosen to gain greater accuracy at 
reset to limit the proxy error on setting the cap rate given that the cap rate is locked for the duration of the 
crediting period. 
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There is inherent variance in the calculated market value of the index crediting strategy as Monte Carlo 
valuation is based on simulated random paths. In theory, a fully accurate result (no variance) would be 
achieved with an infinite number of random paths (central limit theorem (Gnedenko, 1954)). However, in 
practice, the number of random paths that can be generated is limited by the computing resources 
available, timeline to produce the results, and potential cost considerations (e.g., if running on the cloud, if 
more powerful hardware is needed, etc.)  

Variance reduction techniques (Pedersen, et al., 2016) can be used to reduce the variance for a given 
number of random paths used and can be a useful strategy to reduce errors in the samples generated to 
train and validate the AIML model. 

In this case, antithetic variates (Botev, et al., 2017) are used. This technique reduces the variance by 
producing an opposite of each path used. For instance, if N paths are used (N is even) where the random 
numbers are based on uniform distributions: 

• The first half of the paths generated (1 to N/2) are generated randomly based on the uniform 
distribution. The first half of the paths will be 𝑢𝑢1,𝑢𝑢2,𝑢𝑢3, … ,𝑢𝑢𝑁𝑁/2 where 𝑢𝑢𝑖𝑖~ 𝑈𝑈(0,1). 

• The second half of the paths (N/2+1 to N) are derived directly from the first half. The second half 
of the paths will be 𝑢𝑢𝑁𝑁/2+1,𝑢𝑢𝑁𝑁/2+2,𝑢𝑢𝑁𝑁/2+3, … ,𝑢𝑢𝑁𝑁 where 𝑢𝑢𝑁𝑁/2+𝑖𝑖 = 1 − 𝑢𝑢𝑖𝑖. 

Then, bootstrapping (Efron, et al., 1954) was used to quantify the errors for various sample sizes (N). This 
test was done over four sample cases where Monte Carlo valuation of the exotic index strategy was 
performed. 

Table 3 
SUMMARY OF THE FOUR SAMPLE CASES 

Sample # Time to 
Maturity 

Initial 
Index 

Current 
Index 

Max Index 
to Date 

3-year Cap Risk-free 
Rate 

1 3 years 
New business 

1,000 1,000 1,000 30% 5% 

2 1.5 years 
In-force 

1,000 1,100 1,150 20% 8% 

3 1.5 years 
In-force 

1,000 1,050 1,050 20% 3% 

4 2.0 years 
In-force 

1,000 850 1,000 30% 3% 
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The variance for each of the four above test cases is illustrated below. The variance is measured through 
the 5% to 95% confidence interval for increasing number of Monte Carlo simulations. 

Figure 11 
MONTE CARLO VARIANCE 

 

The dark dots provide the confidence interval with antithetic, and the light dots provide the same 
confidence interval without antithetic. The grey line was calculated using 10,000 scenarios and used to 
approximate fully converged results. The scenario samples were randomly selected from a set of 10,000 
based on the bootstrapping technique (subset selection of the 10,000 with replacement). 

The authors opted to use 10,000 scenarios for the training data and 10,000 scenarios for the testing data. 
Unless computing resources allow running a sufficient number of inner-loop scenarios to reach high 
convergence, the number of scenarios used for training should balance the processing time to complete 
the generation of training data and the precision of each individual observation. 

This can generally be achieved through trial and error with the objective of optimizing the model fit for 
given computing resources or budget allocated to data generation. Testing data, on the other hand, should 
seek to minimize the errors such that any difference between the AIML model results and the testing data 
is mostly attributable to the performance, or lack thereof, of the AIML model. 

In our experience, users should avoid using training data with little convergence in the samples generated 
as this may introduce challenges or concerns with overfitting to individual sample error. 

Experimentation with training data volume 

We evaluated the relative performance of the model with both 5,000 and 25,000 data points for the 
training set. Under both iterations, the overall performance over the testing data (measured by R2 and 
MAE) were similar. However, as expected, the model exhibited stronger performance under the actuarial 
tests when trained on the set of 25,000 data points. Below is a summary of the performance of the final 
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model trained on both sets of training data. 

Table 4 
PERFORMANCE SUMMARY 

Model  
No. of 

Training 
Scen 

Scen 
RunTime 

R2  MSE  MAE  RMSE  

Neural 
Network - 
Feat. Set 3 

25K 20 hours 99.993%  0  0.00047  0.00064  

Neural 
Network - 
Feat. Set 3 

5K 4 hours 99.967% 0 0.00096 0.00135 

 

The data generation time for 5,000 data points took four hours, while the 25,000 took 20 hours on a single 
core on our test machine. The runtime costs to generate the data and train the models for both sets is 
negligible, especially compared to the other case studies explored in this paper. 

However, we did notice a difference in performance in our actuarial testing. We noted that the models 
trained on the set of 5,000 data points lacked precision over the variables that had the most minor impact 
on the fair value (e.g., interest rates). This was expected as the model will naturally pick up on the most 
impactful variables and will have to be tuned over a larger dataset before picking up the more nuanced 
aspect of the Monte Carlo valuation. 

It is the responsibility of the modeler to evaluate the circumstance of the application to determine if the 
additional cost of the data generation is worth the increased performance, especially when considering the 
ongoing costs if the model will have to be recalibrated periodically. 

5.3.3. FEATURE ENGINEERING AND FEATURE SELECTION 
Feature engineering can be used to improve the model performance for a given volume of training data. 
With feature engineering, we can derive additional potential features or input fields for the AIML model 
that provide greater predictive power than the original data fields. 

In our proxy modeling use cases, feature engineering is useful as it is generally used to reduce the data 
generation requirements and, therefore, decrease the upfront runtime investment needed from actuaries. 
While we could have skipped this step and achieved similar results through additional data generation, this 
would come at greater upfront runtime costs and, therefore, reduce the net value gained from the proxy 
model. 

Various additional features were derived from the Monte Carlo inputs provided in the data generation step 
above. We have primarily used actuarial judgment in designing various potential features derived from the 
Monte Carlo valuation inputs. 
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The table below summarizes the full set of potential features, which combines the inputs and additional 
features engineered. 

Table 5 
SUMMARY OF POTENTIAL FEATURES 

Variable Source and Description Candidate? Selected? 

Initial index 
level 

Monte Carlo input 
Index level at issue or last reset of the index crediting 
strategy. 

This variable is fixed at 1,000 and index variables below 
are normalized based on an initial index level of 1,000.  

No 
Variable is 

fixed 

No 

Current index 
level (ratio) 

Monte Carlo input 
Index level as of the date of the Monte Carlo valuation. 
Expressed as the ratio of the initial index level. 

Yes Yes 

Maximum 
index level 
(ratio) 

Monte Carlo input 
Maximum index level reached at month-end since the last 
reset of the index crediting strategy. 
Expressed as the ratio of the initial index level. 

Yes Yes 

Time to 
maturity 

Monte Carlo input 
Remaining time (in years) until the index crediting 
strategy matures and the resulting interest is credited to 
the account. 

Yes Yes 

Cap rate Monte Carlo input 
Maximum interest that can be credited to the account 
(see subsections 5.1 and 5.2 for further details on the cap 
rate) 

Yes Yes 

Risk-free rate Monte Carlo input 
Current risk-free interest rate used in Monte Carlo 
valuation 

Yes Yes 

Volatility Monte Carlo input 
Volatility used in Monte Carlo valuation. The volatility is 
fixed at 12% given the underlying is a control volatility 
index that manages volatility to 12%. 

No 
Variable is 

fixed 

No 
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Variable Source and Description Candidate? Selected? 
Maximum 
index level to 
current (ratio) 

Engineered feature 
Maximum index level reached at month-end since the last 
reset of the index crediting strategy over the current 
index level. 

Yes Yes 

Black-Scholes 
valuation (call 
spread) 

Engineered feature 
Rough approximation of the Monte Carlo valuation with a 
Black-Scholes call spread (buy call at initial index and short 
a call at initial index * 1 + cap rate). We used the following 
information for each of the inputs to the Black-Scholes 
function: 

1. Stock Price: Maximum index to date 

2. Strike Price:  

a. Initial Index for long call 

b. Initial Index * (1+ Cap rate) for short call 

3. Tenor: Remaining Time to Maturity (in years) 

4. Interest Rate: Current Interest Rate associated 
with policy 

5. Volatility: Fixed Volatility of 12% 

6. Cap rate: Same cap rate as the lookback cap 
strategy 

Yes Yes 

Black-Scholes 
valuation (at 
the money 
call) 

Engineered feature 
Rough approximation of the Monte Carlo valuation with 
Black-Scholes. We used the following information for each 
of the inputs to the Black-Scholes function: 

1. Stock Price: Maximum index to date 

2. Strike Price: Initial Index 

3. Tenor: Remaining Time to Maturity (in years) 

4. Interest Rate: Current Interest Rate associated 
with policy 

5. Volatility: Fixed Volatility of 12% 

 

Yes Yes 

Reset 
indicator 

Engineered feature 
Binary Variable (0 or 1) to indicate whether policy is at 
reset date 

Yes Yes 

Discount 
Factor 

Engineered feature 
Calculated as: 

(1 + 𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼𝑒𝑒𝑠𝑠𝐼𝐼 𝑅𝑅𝑐𝑐𝐼𝐼𝑒𝑒)−𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡 𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝑖𝑖𝑡𝑡𝑀𝑀/12 
 

Yes Yes 

 

We have not included inputs or features that do not vary as those would not provide any predictive power 
to the AIML model. This is the case for volatility. The volatility input was held constant as the underlying 
index is assumed to be managed at a fixed volatility. 
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As mentioned previously in the report, feature engineering is a subjective exercise that requires 
professional judgment and intuition. The objective is to select a combination of features that help AIML 
models make accurate prediction of the outputs. This includes features with high predictive power for the 
target output. The features selected should also have limited correlation. 

In order to support our decision-making process, we trained an XGboost (Yuan, 2023). The feature at 
“Reset” is not included because it has a feature importance of Zero in the XGboost algorithm. 

Figure 12 
F SCORE CHART FOR FEATURES 

 

Table 6 
SUMMARY OF OPTIONS TESTED FOR FEATURE SETS 

Variable Feature Set 1 Feature Set 2 Feature Set 3 

Initial index level No No No 
Current index level (ratio) Yes Yes Yes 
Maximum index level (ratio) No Yes Yes 
Time to maturity Yes Yes Yes 
Cap rate Yes Yes Yes 
Risk-free rate Yes Yes Yes 
Volatility No No No 
Maximum index level to current 
(ratio) 

Yes No Yes 

Black-Scholes valuation Yes No Yes 
Black-Scholes valuation (at the 
money call) 

No No Yes 

Reset indicator No No Yes 
Discount Factor Yes No Yes 
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Output definition 

The output of the AIML model will be the Monte Carlo valuation of the exotic index strategy based on $1 of 
account value. We did not test alternative or transformed outputs for this case study. 

5.3.4. MODEL TESTING AND SELECTION 
With the features identified, we have calibrated three commonly used models: 

1. Multivariate regression 

2. XGBoost 

3. Neural Network 

See section 1. Predictive analytics, artificial intelligence, and machine learning overview for further 
information on the background of these models. All models detailed below leveraged these features. 

We analyze the performance of these models below. Further actuarial testing is provided in 5.3.5. Actuarial 
evaluation. 

Multivariate regression 

We first tested a multivariate regression model using feature set 1 from table 6 above. Our rationale for 
using this model was the simpler nature of this predictive model relative to other common models such as 
XGBoost and Neural Networks. Generally, the simplest model that can achieve the desired results is 
preferable, especially for models that are easier to explain. 

This model achieved an R2 of 85.80% and a mean absolute error (MAE) of .01964.  
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The graph below illustrates the actual against predicted across the test cases. 

Figure 13 
ILLUSTRATION OF ACTUAL AGAINST PREDICTED VALUES 
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The following graph illustrates the distribution of the predictions made against the actual prediction of the 
output. 

Figure 14 
DISTRIBUTION OF THE PREDICTIONS AGAINST ACTUAL PREDICTION OF THE OUTPUT 

 

Unfortunately, the multivariate regression model did not meet our proxy modeling needs. 

XGBoost 

We then tested the performance of XGBoost, with feature set 1 from table 6 above. This model is often a 
prime candidate for proxy actuarial models. Again, we used the feature list established in the previous step 
and the same training and test data. 

XGBoost produced a much better proxy model than the multivariate regression. 

This model achieved an R2 of 99.84% and a mean absolute error of 0.0018, offering a much more 
performant proxy model relative to the multivariate linear regression. 
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The graph below illustrates the actual against predicted across the test cases. 

Figure 15 
ACTUAL TO PREDICTED GRAPH 
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The following graph illustrates the distribution of the predictions made against the actual prediction of the 
output. 

Figure 16 
DISTRIBUTION OF THE PREDICTIONS AGAINST THE ACTUAL PREDICTION 

 

The XGBoost model appears to be providing adequate performance as a proxy for the index crediting 
application. However, we decided to continue testing additional models to see if we could further refine 
the performance of the model. 

Neural network 

The final model we tested was a neural network (NN). The model chosen was a three-layer Dense NN. The 
first layer is an input layer with 50 nodes, with one hidden layer of 100 nodes and an output layer of one 
node. The NN was optimized by calculating weights that minimize the mean squared error between the 
observed and estimated lookback price. For training, the data was split into 100 batches and each batch 
was passed through the nodes 100 times. 

We tested the performance with all three feature sets from table 6 above as described in 5.3.4 Model 
Testing and Selection. Below is a summary of results of the neural network with each feature set and the 
other two models tested. 
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Table 7 
RESULTS OF THE NEURAL NETWORK 

Model Feature Set R2 MSE MAE RMSE 

Neural Network Feature Set 1 99.992% 0 0.00047 0.00065 

Neural Network Feature Set 2 99.988% 0 0.00062 0.00082 

Neural Network Feature Set 3 99.993% 0 0.00047 0.00064 

Multiple Least-Squares Regression (MLS) Feature Set 1 85.793% 0.0007 0.01964 0.02633 

XG-Boost Feature Set 1 99.841% 0.0000 0.00182 0.00297 

 

The results of the NN trained on each feature set were similar. The feature set that yields optimized error 
metrics depends on the kernel and number seed. Feature set 3 was selected for the final NN because it 
made the most sense from an actuarial perspective. It includes features, such as the Black-Scholes 
Valuations, which was relevant to the lookback option we were pricing.  

The NN was the best performing model of the three tested. The R2 was close between the NN and XG-
boost but the NN had fewer errors, which was reflected by the MAE. 
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The improved predictive power is most noticeable on this actual to predicted graph. The predicted and 
actual values have the tightest fit around the line y=x. 

Figure 17 
ACTUAL TO PREDICTED GRAPH 
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The following graph illustrates the distribution of the predicted lookback and the actual lookback option 
value. The distribution of predicted and actual values has the closest alignment for the NN. This is shown in 
the graph below.  

Figure 18 
DISTRIBUTION OF THE PREDICTED AND THE ACTUAL 

 

The following was used to train this neural network: 

1    early_stop = EarlyStopping(monitor = 'val_mae', patience=20,verbose = 1) 
2 
3    def baseline_model(): 
4     # create model 
5     model = Sequential() 
6     model.add(Dense(50, input_dim=9, kernel_initializer='normal', activation='relu')) 
7     model.add(Dense(100, kernel_initializer='normal', activation='relu')) 
8     model.add(Dense(1, kernel_initializer='normal')) 
9 
10   # Compile model 
11    model.compile(loss='mean_squared_error', optimizer='adam') 
12    return model 
13 
14   # evaluate model 
15   dens_network_50 = KerasRegressor(model=baseline_model, epochs=N_EPOCHS, 16   
batch_size=N_BATCH_SIZE, verbose=1) 
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The lines of code above perform the following: 

• Line 1: Defines the early stopping parameters. Early stopping monitors the progression of the 
optimization metric and stops the model training once the metric has plateaued. 

• Lines 3 to 8: Defines the structure of the model. In this case, we defined a Dense feedforward 
neural network with three layers. 

• Lines 11 to 12: Compiles the model and specifies to use the mean squared error as the loss and 
uses the adam optimizer. 

• Line 15: Trains the model using the function KerasRegressor from the package Keras (Keras, n.d.). 
It specifies the model structure to train, how many epochs to train on and the batch size. 

5.3.5. ACTUARIAL EVALUATION 
With the neural network selected as our model of choice based on our review of the model performance in 
5.3.4 Model Testing and Selection, we continue to test the model performance but now from an actuarial 
perspective. 

Our goal with the tests performed in this section was to better understand the performance of the model 
when running what-ifs analysis or when exploring relationships. 

We compared the performance of the model by varying individual input elements of the Monte Carlo 
valuation. This allowed us to test whether the AIML model captured individual relationships between the 
input and the output of the calculation. 

We analyzed whether the relationships between the market value and the following were maintained with 
the AIML model relative to the first principles calculations: 

• Current index level 
• Maximum index level 
• Time to maturity 
• Cap rate 
• Risk-free rate 

Each analysis below is based on the following baseline input values: 

Input variable Baseline value 

Current index level 1100 

Maximum index level 1.0 multiplied by the current index level 

Time to maturity 24 months 

Cap rate .2 

Risk-free rate .03 
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Current index level 

For this test, we ranged the values of the current index from $720 to $1,320. The Neural Network 
performed very strongly under this test.  

Figure 19 
ACTUAL TO PREDICTED GRAPH – CURRENT INDEX LEVEL 

 

Maximum index level 

For this test, we varied the maximum index level from 1 to 1.1 times the current index level of $1,100 to 
see how the NN would perform under a variety of past realized high watermarks. The predictive model did 
a good job capturing the overall shape of the distribution.  

Figure 20 
ACTUAL TO PREDICTED GRAPH – MAXIMUM INDEX LEVEL 

 

The model had a fair performance under this test, with the predicted values a little higher than the actual 
values.  
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Time to maturity 

Lookback options with remaining times to maturity were simulated from a range of one month to three 
years. The NN performed well overall but seemed to have higher inaccuracies for very short tenors.  

Figure 21 
ACTUAL TO PREDICTED GRAPH – TIME TO MATURITY 

 

Cap rate 

For this test we simulated lookback options with cap rates ranging from 10% to 30%. The NN had a very 
strong performance here.  

Figure 22 
ACTUAL TO PREDICTED GRAPH – CAP RATE 

 

Interest rate 

For this test, we ranged the values of the interest rate from .01% to 10%. The model seemed to 
overestimate the value of the option in a higher interest rate environment. The model generally followed 



  79 

 

Copyright © 2023 Society of Actuaries Research Institute 

the pattern of the actual option values. This was a situation where the decision to include additional 
training scenarios was impactful. When we trained on 5K scenarios, the NN did not capture the pattern as 
well.  

Figure 23 
ACTUAL TO PREDICTED GRAPH – INTEREST RATE 

 

5.4. BUSINESS CASE 
This case study established that AIML can provide a highly reliable proxy for the Monte Carlo valuation of 
exotic index crediting strategies. However, it is also important to validate that there is a strong business 
case for developing such a model. 

Below, we provide a few realistic situations where the AIML model could be used in a real-life setting. We 
use those examples to illustrate the potential return in runtime and cloud cost savings actuaries could gain 
from using the AIML model developed in this case study. 

We note that each use case situation is unique and our goal with the discussion in this section is to provide 
actuaries not only a sense of the potential savings for different circumstances, but also examples so 
actuaries can apply this methodology to evaluate if the upfront data generation cost is worth the 
downstream runtime savings from the AIML model. 

Further, we do not attempt to quantify the value of the time investment of the actuary and data scientists. 
We also stopped short of calculating technology costs such as the runtime costs and any cloud setup fees. 
However, all those should be factored into the costs associated in developing such a model, and the 
relative costs of implementing production environments and performing any additional quality controls. 

Lastly, actuaries should also consider the additional value gained from being able to run more analysis as a 
result of the implementation of the AIML model. With the increased actuarial model throughput, it is 
natural for actuaries and senior management to increase the amount and complexity of the analysis 
performed. Actuaries can also consider additional intangible value to be able to run quick analysis for 
management, especially in times of crisis where companies may need to quickly run various stress test 
analysis. 
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Key assumptions 

The quantification in the following pages assumes the following: 

• Running a Monte Carlo simulation of 1,000 scenarios takes 0.1 core-hours on average. This 
corresponds to the number of scenarios we assume actuaries are running in their actual 
applications. This assumes that actuaries are accepting intrinsic error in the Monte Carlo valuation 
due to lack of convergence. 

• Running a Monte Carlo simulation of 2,500 scenarios takes 0.25 core-hours on average. This 
corresponds to the number of scenarios used to generate the training data. 

• Running a Monte Carlo simulation of 10,000 scenarios takes 1 core-hours on average. This 
corresponds to the number of scenarios used to generate the testing data. 

We have summarized those general settings in the following tables.  

Cost and Runtime Input Value Description 
Core-hour per nested stochastic 
     (1k scenarios) 0.1 Number of core hours required to complete the nested 

stochastic (actual application) 
Core-hour per nested stochastic 
     (2.5k scenarios) 0.25 Number of core hours required to complete the nested 

stochastic (training) 
Core-hour per nested stochastic 
     (10k scenarios) 1 Number of core hours required to complete the nested 

stochastic (testing) 
 

Additionally, we summarized the training and testing data generation needs (same as what was used in 
subsection 5.3. AIML Model Development). 

Example 1: Pricing application 

In this first example, we explored a case where a company uses the AIML model as part of an actuarial 
pricing model. The pricing model runs 100 cells over 250 pricing scenarios and a 30-year projection 
horizon. Further, the pricing model is run once a month. 

General Inputs Value Description 

Model points 1 

We assume that all policies share the same 
characteristics for the Monte Carlo valuation and, 
therefore, a single calculation takes place for all model 
points 

Runs per year 24 Number of times the pricing process is run in a year 
(twice a month) 

Outer-loop scenarios 250 Number of outer-loop scenarios to be run 

Inner-loop scenarios 0 Not applicable 

Inner per outer 0 Not applicable 

Nested stochastic per outer 360 Assumes monthly for 30 years 

Nested stochastic per inner 0 Not applicable 

 

Calculate Outer Nested Stochastic Value Description 

Outer nested stochastic 2,160,000 Total number of nested stochastic calculations for this 
example 
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Cost Breakdown Value Description 
Data generation – Core hour 6,250 Core hours to generate the training data 

Data generation – Core hour 5,000 Core hours to generate the testing data 

Annual Non-AIML Core hours 216,000 Annual core hours to run the application with Monte 
Carlo valuation methodology 

Return on investment 1820% Ratio of the costs over a given year 

 

Again, this analysis is limited to the runtime improvement. 

Example 2: Reserve forecasting run 

In this second example, we explored a case where actuaries needed to perform quarterly balance sheet 
and income statement forecasts for an in-force block of FIA with the exotic index crediting strategy as part 
of the company’s financial planning and analysis (FP&A) and risk management applications. 

With this application, five pre-determined deterministic scenarios are produced every quarter. The entire 
in-force population is run, but the Monte Carlo valuation is shared between cohorts (36 cohorts given the 
three-year lookback feature). 

General Inputs Value Description 

Model points 36 

We assume that all policies share the same 
characteristics for the Monte Carlo valuation and, 
therefore, a single calculation takes place for all model 
points 

Runs per year 4 Quarterly run 

Outer-loop scenarios 5 Number of outer-loop scenarios to be run 

Inner-loop scenarios 1000 Number of scenarios ran to calculate VM-21 

Inner per outer 10 Reserve is calculated 10 times along the outer-loop 

Nested stochastic per outer 360 Assumes monthly for 30 years 

Nested stochastic per inner 360 Assumes monthly for 30 years 

 

Calculate Outer Nested Stochastic Value Description 
Outer nested stochastic 259,200 Total number of outer nested stochastic calculations for 

this example 
 

Calculate Inner Nested Stochastic Value Description 
Inner nested stochastic 648,000,000 Total number of inner nested stochastic calculations for 

this example 
 

Cost Breakdown Value Description 
Data generation - Core hour 6,250 Core hours to generate the training data 

Data generation - Core hour 5,000 Core hours to generate the testing data 

Annual Non-AIML Runtime Cost 64,825,920 Annual core hours to run the application with Monte 
Carlo valuation methodology 

Return on investment 576130% Ratio of the costs over a given year 
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5.5. CONCLUSIONS 
This case study demonstrated how the model development methodology detailed in this paper can be 
applied to develop high-fidelity AIML models to proxy the Monte Carlo valuation complex exotic index 
crediting strategies (to calculate the market value, option budget or Greeks). 

These models can be useful to actuaries when no appropriate closed-form formulas or approximations are 
available. 

This specific application is generally less complex given the limited set of inputs involved in this calculation, 
making it easier for actuaries to develop such AIML models. This application generally requires less data 
and does not require as extensive feature engineering or hyperparameter tuning to achieve the desired 
results. 

This is why we selected this use case to warm up readers before tackling the next case study. 
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Section 6: Case Study 2 - Variable Annuity Fair Value 

6.1. INTRODUCTION 
In this section, we explore the use of AIML to produce proxy models for estimating the fair value of variable 
annuity guarantees, also commonly known as variable annuity riders, or Guaranteed Minimum Benefits 
(GMxBs). 

Variable annuities are perhaps one of the most common, if not the most common, product to run into 
nested stochastic runtime challenges and is, therefore, natural for us to explore nested stochastic runtime 
issues with this product in both this case study and the next. 

GMxB riders have allowed insurers to differentiate variable annuity products from other investment or 
retirement vehicles offered by banks and fund managers. Sales of variable annuities have been steadily 
decreasing over the last two decades as a result of the market environment, lower risk appetite and rise of 
alternative annuity products, such as FIA and Registered Indexed Linked Annuities (RILA), where both offer 
market participation to the policyholder with downside protection but generate less market exposure for 
the insurer. This is due to the market participation being provided through index crediting mechanisms as 
detailed in the first case study. These index crediting mechanisms can generally be completely offset by the 
insurer when purchasing replicating derivatives. 

While the sales volume of variable annuities has decreased over the past few years, this product still 
remains a prominent offering within the roster of products offered by insurance companies. Further, 
insurers still need to manage the sizable blocks of variable annuities they have accumulated over the last 
few decades. This requires proper actuarial valuation and projection capabilities to assess and manage the 
risk of the block. 

Note that the techniques and concepts covered in this case study are not limited to variable annuities. 
These concepts can be easily adapted or extended to other products with similar nested stochastic 
challenges, such as Market Risk Benefits (MRB) for other products, and such as FIAs or other reserve 
calculations that may be onerous.  

6.1.1 BACKGROUND AND PRODUCT FEATURE OVERVIEW 

GMxB background 

Variable annuities are separate account products where policyholders can invest in a range of funds that 
combine exposure to various asset classes such as equities, bonds, mortgages, real estate, cash and other 
cash equivalents. 

GMxBs are additional riders that can be attached to variable annuities. These riders provide additional 
valuable guarantees to policyholders to help protect against market downturns. These guarantees can take 
various forms. Generally, the benefits provided by these GMxBs are based on a guaranteed amount or 
benefit base. We will generally use the term benefit base throughout the rest of this paper. 

Below is a very high-level overview of these guarantees: 

1. Guaranteed Minimum Death Benefit (GMDB): This type of rider provides a death benefit 
guarantee. The guarantee provides for the greater of the account value and the benefit base upon 
passing of the policyholder. 
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2. Guaranteed Minimum Accumulation Benefit (GMAB): This type of rider provides account value 
downside projections through a guaranteed accumulation benefit. This benefit will adjust the 
account value at the end of the guaranteed term to the benefit base if the account value is below 
the benefit base at that time. In many product designs, the guaranteed accumulation benefit will 
expire after the guaranteed term. 

3. Guaranteed Minimum Income Benefit (GMIB): This type of rider provides income protection 
through a guaranteed minimum annuitization option, based on guaranteed annuitization rates 
that can be applied to the guaranteed amount. If and when the policyholder decides to annuitize, 
he will get the greater annuity payout between applying current annuitization factors to the 
account balance, or the guaranteed annuitization rates applied to the benefit base. Generally, 
GMIB products will couple with other living benefits, such as withdrawal benefit features, until 
annuitization. 

4. Guaranteed Minimum Withdrawal Benefit (GMWB) or Guaranteed Lifetime Withdrawal Benefit 
(GLWB): This type of rider also provides for income projection but through guaranteed 
withdrawals rather than a guaranteed annuitization option. The rider allows policyholders to take 
scheduled withdrawals at a contractually set rate based on the benefit base and age of the start of 
the withdrawals. The withdrawals can generally continue as long as the benefit base is active and 
even if the account value is depleted. As such, the goal of this rider is to provide protection against 
running out of funds from the account value once the policyholder has started withdrawals. 

The benefit base may be the original premium, or a balance accruing at a given rate, ratcheting up 
periodically at the current account value, or subject to other designs. 

The product concept of variable annuity allows insurers to vary product designs significantly; therefore, 
actuaries will see many unique product designs in the market. 

Fair value of variable annuity GMxBs 

The core principle of fair valuation is to leverage observable prices from the market to calibrate a model 
and then apply the calibrated model to derive the price of similar market instruments that do not have an 
observable price. 

Given fair value is well documented in the literature, including in SOA papers, we will refrain from providing 
a detailed walkthrough of this concept and refer readers that may be new to fair value to other papers such 
as “How Fair Value Measurement Changes Risk Management Behavior in the Insurance Industry” from the 
SOA (Rosner, 2013)1. 

In this section, our objective is to develop an AIML model that can proxy the fair value of two GMxB 
products to a high degree of fidelity using a similar methodology to what we covered in the first case study. 

Runtime challenge for variable annuity fair value 

The calculation of fair value is cumbersome to actuaries as it typically requires running a large number of 
stochastic scenarios to reach appropriate convergence or precision in the fair value result. 

 

 

1 https://www.soa.org/resources/research-reports/2013/research-how-fair-value/ 
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Actuaries typically rely on scenario reduction techniques, such as scenario selection and unique scenarios 
per policy, to overcome this challenge. 

However, these techniques alone are generally not sufficient to circumvent the runtime challenges when 
actuaries need to calculate fair value in a nested stochastic or projection context. This is due to the 
compounding amount of calculations that need to be executed to perform such projections. 

To provide an example, let’s consider a case where an actuary needs to perform projections of the VA book 
of business of its company, which includes projection of the hedge income under a delta hedge projection. 

Let’s assume the following parameters: 

• Policies: 500,000 
• Projection scenarios: 10 
• Projection length: 30 years 
• Hedge methodology: Delta (shock up and down) 
• Hedge frequency: Monthly 
• Risk-neutral scenarios: 500 
• Risk-neutral projection length: 30 years with monthly timesteps 

This would mean that the actuary would have to perform 3.6 billion (500,000 x 10 x 30 x 2 x 12) fair value 
calculations with each calculation requiring running 500 scenarios over 30 years or 1.8E12 individual 30-year 
projections. We will get further into actual runtime and costs below, but we can see how the projection of 
variable annuity fair value can quickly get out of hand. 

6.2 PRODUCT AND ACTUARIAL METHODOLOGY SPECIFICATIONS 

Product features 

We will focus our analysis in this section on two VA products. Appendix A provides a summary of the 
product specifications. 

Both products share the same base product features such as the separate account funds available for 
investments, fees and surrender charge schedules: 

• The underlying funds include a fixed allocation to equity (60% to the S&P 500) and bonds (40% to 
a US Long-Term Corporate Bond index). 

• The fees include an annual M&E charge of 1.3% of the account balance (charged daily), an annual 
per policy charge of $100 and a fund management charge of 100bps. 

• The surrender charge schedule is based on a period of seven years and grades from 7% to 1% 
during that period. 

The two products only differ in the GMxBs offered with the product: 

• The first product is offered with an enhanced GMDB. 

• The second product is offered with a GLWB with a return of premium (ROP) death benefit. 

The product with enhanced GMDB comes with a rider fee that varies by issue age bracket and gender, 
ranging from 0.62% to 2.10% annually. The product with GLWB comes with a constant rider fee of 1.25% 
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annually. The rider fees are applied to the benefit base. 

The guaranteed withdrawal rates for the GLWB rider vary between 3.30% and 5.60% annually, increasing 
with the age at the time of first withdrawal. 

More information on the two GMxB products is provided in Appendices A2 and A3. 

For simplicity, these products are assumed only on one life (no joint lives). 

Valuation methodology 

The fair value in this section will be derived according to standard actuarial practices, with the key 
components being the following: 

• Product features will be reflected as-is, as in most standard actuarial projections. Product features 
were already detailed above and further detail can be found in Appendix A: Variable annuity 
product specifications. 

• Risk-neutral stochastic scenarios will be used to develop interest rates and equity paths. The risk-
neutral economic scenarios will be calibrated to the current market (current yield curve and 
volatility). The generator behind these scenarios is the key element that drives the market 
consistency of the fair valuation from its calibration. The risk-neutral scenarios are detailed further 
down in this section. 

• Best-estimate actuarial assumptions will be used to project the cash flows of the variable annuity 
product, including the claims and fees arising from the GMxB guarantee. The actuarial 
assumptions are detailed further down in this section. 

Risk-neutral stochastic scenarios 

The risk-neutral scenario generator is based on the extended Cox Ingersoll Ross model (referred to as CIR++ 
model) for the short rate and Heston for equities (the Heston model is equivalent to the log-normal model 
with stochastic volatility that follows a mean-reverting process similar to CIR). 

The risk-neutral generator was designed to project the following elements at monthly timesteps: 

• Short rate 
• Yield curve (derived from the short rate) 
• Single equity returns 
• Bond fund 
• Money market 

While various other risk-neutral generators could have been used for this case study, and there is a wide 
range of industry practices, we felt that the proposed risk-neutral generator was representative of the key 
characteristics actuaries typically look for in a risk-neutral generator for the valuation of the fair value for 
variable annuities. 

Short rate and yield curve 

The short rate was based on the CIR++ model calibrated to the yield curve at the time of valuation (or 
revaluation at the future pivots). The model followed this form: 

The functional form of the CIR++ model is as follows: 
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𝐼𝐼𝑡𝑡 = 𝑥𝑥𝑡𝑡 + 𝜑𝜑𝑡𝑡 

Where 𝐼𝐼𝑡𝑡 is the instantaneous short rate at time 𝐼𝐼, 𝑥𝑥𝑡𝑡 is the original short rate produced from the CIR 
process and 𝜑𝜑𝑡𝑡 is the shift factor that calibrates the CIR++ model to market observable prices. 

The stochastic process for 𝑥𝑥(𝐼𝐼) follows the standard CIR process: 

𝐶𝐶𝑥𝑥𝑡𝑡 = 𝑐𝑐 ∙ (𝑏𝑏 − 𝑥𝑥𝑡𝑡) 𝐶𝐶𝐼𝐼 + 𝜎𝜎 ∙ �𝑥𝑥𝑡𝑡  𝐶𝐶𝑊𝑊𝑡𝑡
𝑀𝑀  

The calibration of the shift factors 𝜑𝜑𝑡𝑡 were performed against the US treasury curve. For simplicity, no 
other market instruments were used for the calibration process. 

The CIR parameters used are as follows: 

Parameter Value 

Mean-reversion speed (a) 15% 

Mean-reversion level (b) 3% 

Volatility (σ) 12.5% 

 

The implied yield curve is also produced from the CIR++ model. 

Equity 

The Heston model was used to model the equity process. The Heston model is defined by the following 
stochastic process: 

𝐶𝐶𝑆𝑆𝑡𝑡 = 𝐼𝐼𝑡𝑡 ∙ 𝑆𝑆𝑡𝑡  𝐶𝐶𝐼𝐼 + �𝑣𝑣𝑡𝑡 ∙ 𝑆𝑆𝑡𝑡  𝐶𝐶𝑊𝑊𝑡𝑡
𝑆𝑆 

Where 𝑆𝑆𝑡𝑡 is the index level as of time 𝐼𝐼 and 𝑣𝑣𝑡𝑡 is the instantaneous variance. Further, the instantaneous 
variance itself follows a stochastic process defined as follows: 

𝐶𝐶𝑣𝑣𝑡𝑡 = 𝜅𝜅 ∙ (𝜃𝜃2 − 𝑣𝑣𝑡𝑡) 𝐶𝐶𝐼𝐼 + 𝜀𝜀 ∙ �𝑣𝑣𝑡𝑡  𝐶𝐶𝑊𝑊𝑡𝑡
𝑣𝑣 

Where 𝜅𝜅 is the mean-reversion speed, 𝜃𝜃 is the mean-reversion level and 𝜀𝜀 is the volatility of the stochastic 
volatility (𝑣𝑣𝑡𝑡). 

Parameter US Equity Market 

Mean-reversion speed (𝜅𝜅) 190% 

Mean-reversion level (𝜃𝜃) 20%% 

Volatility of volatility (𝜀𝜀) 35% 
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Bond fund 

Bond fund returns are proxied assuming constant rebalancing between the following bond maturities: 

Term (years) Allocation 
1 1% 
2 3% 
3 5% 
4 10% 
5 20% 
6 20% 
7 16% 
8 10% 
9 10% 

10 5% 
 

Money market 

The money market is assumed to earn the risk-free rate. 

Correlations 

The dependency between the underlying random variables is captured through the following correlation 
matrix: 

 𝐼𝐼𝑡𝑡 𝑆𝑆 𝑣𝑣 

𝐼𝐼𝑡𝑡 (short rate) 100% 10% 0% 
𝑆𝑆 10% 100% 0% 
𝑣𝑣 0% 0% 100% 

 

Best-estimate actuarial assumptions 

The 2015 VBT mortality table was used for the mortality assumption, a simple dynamic function was used 
for lapse, and stochastic withdrawal paths were used as actuarial assumptions. 

Readers can refer to Appendix B: Variable Annuity Actuarial Assumptions for detailed information on the 
best-estimate assumptions. 

6.3 AIML MODEL DEVELOPMENT 

Overview and Problem Statement 

This section details the methodology used to calibrate and test AIML models to proxy the fair value for the 
two VA products (the VA with GMDB and the VA with GMWB) as described in subsection 6.2 Product and 
Actuarial Methodology Specifications. 

We will use methodology consistent with the principles laid out in section 3. Practical Application of AIML 
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for Actuarial Modeling. Further, the rest of this section is structured similarly to how we structured the first 
case study from section 5 Case study 1 – Index crediting as we used consistent methodology throughout 
this paper to develop the case studies. 

The following table summarizes the steps used for this case study and associated references from the sub-
sections below. 

Table 8 
SUMMARY OF STEPS AND REFERENCES FOR THE CASE STUDY 

# Step Paper Section Description 

1 Problem statement This section Calculate the fair value for the two VA products 
2 Preparation 6.3.1. Preparation Prepare the environment, load external packages 

and define the various functions that will support 
the steps below. 

3 Data generation 6.3.2. Data generation Define methodology to generate sample results to 
train and test the AIML models for the VA FV case 
study. 

Note that, as opposed to the first case study on index 
crediting, the VA FV case study and the VA capital 
case studies rely on an external actuarial software to 
generate the training and testing data and, 
therefore, the code or functionality to perform the 
data generation will not be made available to users 
of this report for these two case studies. 

4 Feature engineering and 
selection 

6.3.3. Feature 
engineering, feature 
selection and output 
definition 

Develop additional inputs for the AIML model 
derived from the original VA FV valuation inputs.  

Perform data exploration and feature importance 
analysis based on data generation with added 
feature engineering to identify which features 
should be used as inputs to the AIML model. 

5 Model testing and 
selection  

6.3.4. Model testing and 
selection 

Test performance of various AIML models. Test and 
control for overfitting. Select the top model based 
on performance and judgment.  

6 Hyperparameter tuning 6.3.5 Hyperparameter 
tuning 

Test alternative hyperparameters for the selected 
model to refine performance. When needed, 
hyperparameter tuning can improve the 
performance of a given model. 

7 Actuarial evaluation 6.3.6. Actuarial evaluation Evaluate the performance of the model from an 
actuarial perspective. 
This includes performing actuarial forecasts and 
comparing the projected fair value using the 
actuarial model and using the AIML model. This 
analysis can help us understand the performance 
from an actuarial point of view. 

 

The methodology to develop such AIML models generally requires iterating between the steps outlined 
above. In this section, we focus on the final methodology and analysis that was developed by the 
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researchers. 

Only one Python notebook was developed for this case study (as opposed to two notebooks for the first 
case study on index crediting, again due to only providing the code for the machine learning development 
in this case study). 

The notebook, along with the data provided in this paper, includes all the code needed to replicate the 
results provided in this section. The notebook contains the typical code structure to train and test AIML 
proxy actuarial models. This notebook starts by importing the data that we generated from our actuarial 
model and then provides the code to execute the steps outlined in the table above. 

While we do not provide the code to produce the data generation since we used a vendor software, 
readers can find the full product specifications in Appendix A: Variable annuity product specifications and 
Appendix B: Variable annuity assumptions.  

The remainder of 6.3 walks the reader through each step highlighted above. 

6.3.1. PREPARATION 
The first step consists of preparing the environment by loading any external packages, and defining the 
user functions and user inputs. Preparation for the notebook for the second case study is similar to the 
preparation for the AIML model development notebook from the first case study (second notebook). 

Instructions are provided in Appendix A (see A1: Installing Python) to setup an environment to run and use 
Python to replicate the results from this case study. 

The environment will require the use of Python packages. A full list of packages used in this report with 
references is also provided in Appendix A (see A2: Python Packages). The most notable packages for this 
case study include: 

• NumPy: Adds support for large, multi-dimensional arrays and matrices, along with a large 
collection of high-level mathematical functions to operate on these arrays. 

• Pandas: Used for data transformation and analysis. 

• Matplotlib, Sweetviz and seaborn: Used to produce various visualizations. 

• Scikit-learn (sklearn) and Keras: Both of these packages provide a library of machine learning 
models. 

6.3.2. DATA GENERATION 

Overview and general methodology 

Given the nature of the case study, increased complexity, and limitations of the actuarial model, we 
decided to diverge from the methodology used for data generation from what was used in the first case 
study. 

For this case study, we instead opted to leverage actuarial projection methodology to support the data 
generation process. We used economic scenarios to forecast the liabilities over a period of 30 years and 
then performed fair value calculations along those paths in order to generate the data for this case study.
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The steps used in this case study are outlined in the following table: 

Table 9 
SUMMARY OF STEPS 

# Step Description 

1 Economic scenario 
generator selection 

A real-world economic scenario generator (ESG) was used to generate the economic scenarios. 
While other methodologies could have been used, an ESG was selected to generate the economic 
environments for training the AIML model as ESGs are already designed to generate a wide range 
of realistic yield curves and equity paths. 

The uniform methodology used in the previous case study would have had the challenge of 
generating realistic yield curves. 

Using a real-world economic scenario generator is reasonable because, otherwise, actuaries 
would have to define an entirely new process to sample realistic yield curves and paths for 
equities and other market components. Given the level of sophistication of today’s ESGs in 
achieving reasonable projections of economic environments, it made sense to use it for our use 
case. 

We have decided to use the joint real-world ESG from the American Academy of Actuaries and 
the Society of Actuaries – also known as the Academy Interest Rate Generator (AIRG) (SOA, 2022).  
The rationale for using this ESG is its widespread use among actuaries in the United States and 
avoiding the need to define an additional ESG in this paper, which would add unnecessary 
additional complexity for the reader. 

2 Scenario selection However, an important characteristic of real-world economic scenario generators is that the 
distribution of the projected market components is probability-weighted. 

Given that the objective of our AIML proxy model is to provide a reasonable approximation of the 
fair value of our GMxBs across the entire distribution for the production use case, we should 
adapt the output from the AAA generator such that the distribution is more akin to a uniform 
distribution. 

Otherwise, we may oversample observations around the apex of the distribution and under 
sample in the tails, resulting in uneven performance of the model, with notably poor performance 
around the tails where the data is sparse. 

To avoid this situation, we opted to develop a scenario selection technique where we selected a 
set of representative scenarios from a larger set generated from the AAA generator such that we 
had a more level distribution across interest rates and accumulation factors for combined equity, 
bond and money market. 

Additional information for the scenario selection process is provided further down in this section 
in Scenario selection process. 

3 New business cell 
selection 

In order to help manage runtime, only a subset of the new business records was run over each 
individual scenario selected. 

The subset used was randomized independently for each scenario. 
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# Step Description 

4 Generation For each scenario and business cell selection combination, perform an actuarial projection of each 
new business cell. 

Along that projection, produce reserves for the pivot points identified. For this use case, we used 
at issue, every year for the first five years and then every five years from there on out until year 
30. 

Similar to the first case study, we used a staggered inner-loop scenario count with 2,500 inner 
risk-neutral scenarios for training data and 10,000 inner risk-neutral scenarios for testing. Again, 
this was used to achieve as little error as possible on the testing data while accepting a little bit 
more error on the training data to achieve sufficient data volume for developing a model. 

Additional analysis on scenario convergence for both the VA GMDB and VA GMWB is provided 
further down below in Variance reduction techniques and testing for convergence. 

 

We have consolidated the documentation of the VA FV inputs with the feature engineering. See 6.3.3. Feature 
engineering, feature selection and output definition. 

Scenario selection process 

Efficient data generation is one of the key aspects to making the cost benefit for training machine learning models 
viable. The goal is to improve the performance of the AIML model for a given amount of data generation budget and 
provide data to the model where it can “learn” the most. For this case study, we designed and implemented a 
scenario selection algorithm to reduce the number of model-point cross scenarios needed for data generation. This 
was achieved by selecting a uniform coverage of scenarios for each training set of data generated, such that the 
range of predefined scenarios was covered by the least number of points.   

One thousand stochastic AAA scenarios were generated for each of 50 starting yield curves for a total of 50,000 
stochastic scenarios. The 50 starting curves are selected from monthly historical curves from year 1953 to 2021 with 
subject matter expertise to cover a range of level, slope, curvature and characteristics.  The scenarios are generated 
using calibrated parameters from real world ESG published by the American Academy of Actuaries (AAA, n.d.). The 
starting yields are set to capture historical range of interest rate environments. This generated universe, therefore, 
casts a coverage of a range of market environments.  

We then applied the clustering algorithm to select representative scenarios from the set of 50,000 based on k-
nearest neighbor clustering along two dimensions that would have impacts to VA fair value:   

• Equity growth rate  
• Interest rates: representative points of selected 10-year term rates projected as of year 10 

Fifty thousand points were used to form 5,000 clusters using k-nearest neighbor (KNN), which were the number of 
desired representative scenarios. Scenarios that were closest in Euclidean distance to the centroids of the formed 
clustered were selected as the subset. The 10-year point was chosen as a representative point for the average 
duration of the population. The resulting selected scenarios provided a wide coverage of the market environment 
while reducing the data generation cost budget to not need to generate data on similar environments repeatedly.   

Variance reduction techniques and testing for convergence 

Similar to the first case study, the antithetic variate variance reduction technique was used to reduce the error in 
the samples (i.e., fair value for each new business cell) generated to train and validate the AIML model. See Variance 
reduction techniques and testing for convergence in subsection 3.2 Data generation for details.  
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Then, we used bootstrapping (Efron, et al., 2012) to quantify the error for different numbers of inner-loop risk-
neutral scenarios (N). This test was done over five sample policies where we generated the fair value (average of the 
PV of claims minus fees across the risk-neutral scenarios) of the rider across 10,000 scenarios. 

Table 10 
LIST OF POLICY INFORMATION 

Policy # Rider Type Issue Age Withdrawal 
Start 

Gender Revaluation 
(Pivot) Year 

Moneyness at 
Pivot (Benefit 

Base / AV) 
1 Enhanced 

GMDB 
40 N/A Male 5 109% 

2 Enhanced 
GMDB 

55 N/A Female 10 197% 

3 Enhanced 
GMDB 

70 N/A Male 5 119% 

4 GLWB with ROP 40 After pivot Female 10 115% 
5 GLWB with ROP 65 After pivot Female 0 100% 

 

  



  94 

 

Copyright © 2023 Society of Actuaries Research Institute 

The variance for each of the five above test cases is illustrated below. The variance is measured through the 5% to 
95% confidence intervals for an increasing number of risk-neutral scenarios. 

Figure 24 
FAIR VALUE VARIANCE  

 

 

The grey line was calculated using 10,000 scenarios and used to approximate fully converged results. The scenario 
samples were randomly selected from a set of 10,000 based on bootstrapping technique (subset selection of the 
10,000 with replacement). 

We opted to use 2,500 scenarios for the training data and 10,000 scenarios for the testing data. This decision was 
made based on professional intuition. Readers should consider testing various convergence levels to identify an 
efficient balance between convergence and runtime. 
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6.3.3 FEATURE ENGINEERING, FEATURE SELECTION AND OUTPUT DEFINITION 

Feature engineering and feature selection 

As introduced previously in this paper, feature engineering can be used to improve the model performance for a 
given volume of training data. With feature engineering, additional potential features or input fields for the AIML 
model that provide greater predictive power than the original data fields can be derived. 

This is important for approaching more complex applications, especially as it becomes more difficult or costly to 
generate data due to runtime limitations. This is the case as we move from the index crediting to the VA FV case 
study. 

In our proxy modeling use cases, feature engineering is useful as it is generally used to reduce the data generation 
requirements and, therefore, decrease the upfront runtime investment needed from actuaries. 

The table below summarizes the full set of potential features, which combines the inputs and additional features 
engineered. Various additional features were derived from the original inputs to the VA FV calculations and 
summarized in the table below. 

Table 11 
SUMMARY OF POTENTIAL FEATURES 

Variable Source and Description Candidate? 

Economic scenario Economic scenario generator 
Scenario ID from the subset of the AAA scenarios as selected by the scenario 
selection process defined above. 

No 
Information only 

Issue age Information 
Age of the new business record at issue. 

Yes 

Issue date Information 
Date of policy issue (same for all records given this is a new business / pricing 
application). 

No 
Information only 

Account value Fair value input 
Total amount accumulated in the account value for this variable annuity 
policy at the time of the fair value calculation. 

Yes 

Attained age Fair value input 
Attained age of the policyholder at the time of the fair value calculation. 

Yes 

Life expectancy Engineered feature 
Expected remaining life expectancy of the policyholder based on the 
mortality assumption at the time of the fair value calculation. 

Yes 

Lives remaining Information 
How many partial lives are remaining on the policy based on decrements to 
date in the projection. All other applicable variables will be adjusted to 1 full 
life at the valuation point. 

No 
 

Projection year (fractional) Fair value input 
How many years the fair value valuation point is in the projection at the time 
of the fair value calculation. While not necessarily a direct input to the fair 
value calculation, this information may be a key predictor. 

Yes 

Policy year Information 
Current age of the policy in years at the time of the fair value calculation. 
Same value as the projection year given we are in an actuarial pricing context 

No 
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Variable Source and Description Candidate? 

so this one would be excluded. 
Time until shock year Engineered feature 

Transformation of policy year. Captures the time remaining until the shock 
lapse year (floored at 0) at the time of the fair value calculation. 

Yes 

Time in shock year Engineered feature 
Transformation of policy year. Captures the fractional year that passed since 
the start of the shock lapse year at the time of the fair value calculation. 

Yes 

Time since end of shock year Engineered feature 
Transformation of policy year. Captures the fractional years since the end of 
the shock lapse year at the time of the fair value calculation. 

Yes 

Attained age Fair value input 
Current age of the policyholder at the time of the fair value calculation. 

Yes 

Benefit base (GMDB) Fair value input 
Current benefit base amount for the GMDB guarantee at the time of the fair 
value calculation (all benefit base features that follow are also at the time of 
the fair value calculation). 

Yes 

Benefit base (GMDB) – ROP Fair value input 
Current return of premium portion of the benefit base amount for the GMDB 
guarantee. 

Yes 

Benefit base (GMDB) – Rollup Fair value input 
Current rollup portion of the benefit base amount for the GMDB guarantee. 

Yes 

Benefit base (GMDB) – Ratchet Fair value input 
Current ratchet portion of the benefit base amount for the GMDB guarantee. 

Yes 

GLWB rider status Fair value input 
Current status of the GLWB rider (accumulation or withdrawal). 

Yes 

Benefit base (GLWB) – Rollup Fair value input 
Current rollup portion of the benefit base amount for the GLWB guarantee. 

Yes 

Benefit base (GLWB) – Ratchet Fair value input 
Current ratchet portion of the benefit base amount for the GLWB guarantee. 

Yes 

Benefit base (GLWB) – Death 
value 

Fair value input 
Current death benefit under the GLWB guarantee. 

Yes 

Benefit base (GLWB) – 
withdrawal start year in policy 
year 

Fair value input 
Policy year when GMWB withdrawal begins. 

Yes 

Benefit base (GMDB) – per 
account value 

Feature engineering 
Ratio of this benefit base component over the account value. 

Yes 

Benefit base (GMDB) – ROP 
per account value 

Feature engineering 
Ratio of this benefit base component over the account value. 

Yes 

Benefit base (GMDB) – Rollup 
per account value 

Feature engineering 
Ratio of this benefit base component over the account value. 

Yes 

Benefit base (GMDB) – Ratchet 
per account value 

Feature engineering 
Ratio of this benefit base component over the account value. 

Yes 

Benefit base (GLWB) – Rollup 
per account value 

Feature engineering 
Ratio of this benefit base component over the account value. 

Yes 

Benefit base (GLWB) – Ratchet 
per account value 

Feature engineering 
Ratio of this benefit base component over the account value. 

Yes 
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Variable Source and Description Candidate? 

Benefit base (GLWB) – Death 
value per account value 

Feature engineering 
Ratio of this benefit base component over the account value. 

Yes 

Interest – 3 months Fair value inputs 
Modeled point on the risk-free yield curve. 

Yes 

Interest – 6 months Fair value inputs 
Modeled point on the risk-free yield curve. 
Feature engineering 
Price of a zero-coupon bond at the specified duration based on the risk-free 
yield curve. 

Yes 
Interest – 1 year Yes 
Interest – 2 years Yes 
Interest – 3 years Yes 
Interest – 5 years Yes 
Interest – 7 years Yes 
Interest – 10 years Yes 
Interest – 20 years Yes 
Interest – 30 years Yes 
Zero-coupon bond – 3 months Yes 
Zero-coupon bond – 6 months Feature engineering 

Price of a zero-coupon bond at the specified duration based on the risk-free 
yield curve. 
TBD 

Yes 
Zero-coupon bond – 1 year Yes 
Zero-coupon bond – 2 years Yes 
Zero-coupon bond – 3 years Yes 
Zero-coupon bond – 5 years Yes 
Zero-coupon bond – 7 years Yes 
Zero-coupon bond – 10 years Yes 
Zero-coupon bond – 20 years Yes 
Zero-coupon bond – 30 years Yes 
Implied volatility – at the 
money, 3-year term 

Yes 

Black-Scholes put option – 1-
year term 

Feature engineering 
Price of an at-the-money put option issued as of the time of the fair value 
calculation and of the specified duration. 

Yes 

Black-Scholes put option – 3-
year term 

Feature engineering 
Price of an at-the-money put option issued as of the time of the fair value 
calculation and of the specified duration. 

Yes 

Black-Scholes put option – 5-
year term 

Yes 

Black-Scholes put option – 7-
year term 

Yes 

Black-Scholes put option – 10-
year term 

Yes 

Rider type indicator Input 
Indicates whether the record is a GMDB or a GLWB. This has been converted 
to a binary for the AIML model (0 for GMDB and 1 for GLWB) 

Yes 

Gender Input 
Indicates the gender of the policyholder (0 for Male and 1 for Female) 

Yes 
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As mentioned previously in the report, feature engineering is a subjective exercise that requires professional 
judgment and intuition. The objective is to select a combination of features that help AIML models make accurate 
predictions of the outputs. This includes features with high predictive power for the target output. The features 
selected should also have limited correlation. 

To support our decision-making process, we trained an XGboost. Here is the ranking summary table for all 
candidates noted above. 

Figure 25 
RANKING SUMMARY TABLE 

 

As the illustration shows, many of the features showed insignificant predictive power to target and support our 
professional judgment and intuition. We further performed analysis on three difference feature sets based on: 

1. Feature importance score above 25bps. 

2. Most common VA actuarial model inputs. 

3. Subjective feature set based on our judgment. 

Below is the feature set summary table: 

Table 12 
SUMMARY OF FEATURE SET 

Variable Option 1 Option 2 Option 3 

Account value Yes Yes Yes 

Attained age Yes Yes Yes 

Benefit base (GLWB) - Death 
value 

No Yes Yes 
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Variable Option 1 Option 2 Option 3 

Benefit base (GLWB) - Death 
value per account value 

Yes Yes Yes 

Benefit base (GLWB) - Ratchet Yes Yes Yes 

Benefit base (GLWB) - Ratchet 
per account value 

Yes Yes Yes 

Benefit base (GLWB) - Rollup Yes Yes Yes 

Benefit base (GLWB) - Rollup 
per account value 

Yes Yes Yes 

Benefit base (GLWB) - 
withdrawal start year in 
policy year 

Yes Yes Yes 

Benefit base (GMDB) Yes Yes Yes 

Benefit base (GMDB) - per 
account value 

Yes Yes Yes 

Benefit base (GMDB) - 
Ratchet per account value 

Yes Yes Yes 

Benefit base (GMDB) - Rollup 
per account value 

Yes Yes Yes 

Benefit base (GMDB) - ROP 
per account value 

Yes Yes Yes 

Black-Scholes put option - 10-
year term 

No No Yes 

Gender No Yes Yes 

GLWB rider status Yes Yes Yes 

Implied volatility - at the 
money 3-year term 

No Yes Yes 

Interest - 1 year No Yes No 

Interest - 10 years Yes Yes No 

Table 13 
SUMMARY OF INTEREST RATE AND BOND RETURN 

Variable Option 1 Option 2 Option 3 

Interest - 2 years Yes Yes No 

Interest - 20 years Yes Yes No 

Interest - 3 months No Yes No 

Interest - 3 years Yes Yes No 

Interest - 30 years No Yes No 

Interest - 5 years Yes Yes No 

Interest - 6 months No Yes No 

Interest - 7 years Yes Yes No 

Issue age Yes No Yes 
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Variable Option 1 Option 2 Option 3 

Lives remaining Yes No Yes 

Projection year (fractional) Yes Yes Yes 

Rider type indicator No Yes No 

Zero-coupon bond - 10 years Yes No Yes 

Zero-coupon bond - 20 years Yes No Yes 

Zero-coupon bond - 3 months No No Yes 

Zero-coupon bond - 3 years Yes No Yes 

Zero-coupon bond - 30 years Yes No Yes 

Zero-coupon bond - 5 years Yes No Yes 

Zero-coupon bond - 7 years Yes No Yes 

 

Output definition 

The table below summarizes the various outputs that were considered for this use case. 

Table 14 
SUMMARY OF OUTPUTS 

Variable Source and Description Candidate? Selected? 

Present value 
of claims 

Fair value output 
Average of the PV of claims across the risk-neutral 
scenarios for a given valuation. 

Yes No 

Present value 
of fees 

Fair value output 
Average of the PV of fees across the risk-neutral scenarios 
for a given valuation. 

Yes No 

Net present 
value 

Fair value output 
Average of the PV of claims minus fees across the risk-
neutral scenarios for a given valuation. 

Yes No 

Present value 
of claims – 
scaled 

Fair value output 
Present value of claims divided by the maximum of the 
account balance, GMDB and GMWB benefit base, as 
applicable. 

Yes No 

Present value 
of fees – 
scaled 

Engineered output 
Present value of fees divided by the maximum of the 
account balance, GMDB and GMWB benefit base, as 
applicable. 

Yes No 

Net present 
value – scaled 

Engineered output 
Net present value divided by the maximum of the account 
balance, GMDB and GMWB benefit base, as applicable. 

Yes Yes 

 

The net present value – scaled as selected as the model output for the following reasons: 
1. Training models separately for the claims and fees portions of fair value would require two models. 

Further, each model would contribute error to the net calculation. 
2. Training the model for the net present value after scaling for the account value and benefit base 
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transforms the output to remove the direct impact of the size of the policy on the net present value. 

Therefore, the engineered output “net present value – scaled” was selected for this case study. 

6.3.4 MODEL TESTING AND SELECTION 
With the features identified, we calibrated three commonly used models: 

1. Multivariate regression 

2. XGBoost 

3. Neural Network 

See section 1. Predictive analytics, artificial intelligence, and machine learning overview for further information or 
background on these models. All models detailed below leveraged the features. We analyze the performance of 
these models below. Further actuarial testing is provided in 6.3.6. Actuarial evaluation. 

All illustrations provided below can be produced with the Python code provided in Appendix A. 

Multivariate regression 

Similar to case study 1, we began by testing a multivariate regression model using feature set 1. This model achieved 
a R2 of 66.45% and a mean absolute error (MAE) of .04380.  

The graph below illustrates the actual against predicted across the test cases: 

Figure 26 
ACTUAL TO PREDICTED GRAPH FOR MULTIVARIATE REGRESSION 
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XGBoost 

We then tested the performance of XGBoost with feature set 1. This model is often a prime candidate for proxy 
actuarial models. Again, we used the feature list established in the previous step and the same training and test 
data. 

XGBoost produced a much better proxy model than the multivariate regression. 

This model achieved a R2 of 98.84% and a mean absolute error of 0.00014, offering a much more performant proxy 
model relative to the multivariate linear regression. 

The graph below illustrates the actual against predicted across the test cases: 

Figure 27 
ACTUAL TO PREDICTED GRAPH FOR XGBOOST 
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The following graph illustrates the distribution of the predictions made against the actual prediction of the output: 

Figure 28 
THE DISTRIBUTION OF THE PREDICTIONS OUTPUT VS ACTUAL OUTPUT  

 

The XGBoost model appears to be providing adequate performance as a proxy for the index crediting application. 
However, we decided to continue testing additional models to see if we could further refine the performance of the 
model. 

Neural network 

The final model we tested was a neural network (NN). The model chosen was a three-layer Dense NN. The first layer 
is an input layer with 100 nodes, with one hidden layer of 200 nodes and an output layer of one node. The NN was 
optimized by calculating weights that minimize the mean squared error between the observed and estimated 
lookback price. For training, the data was split into 100 batches and each batch was passed through the nodes 100 
times. 

We tested the performance with all three feature sets as described in 6.3.4 Model Testing and Selection. Below is a 
summary of the results of the neural network with each feature set and the other two models tested. 

Table 15 
SUMMARY OF THE RESULTS 

Model Feature Set R2 MSE MAE RMSE 

Neural Network Feature Set 1 99.116% 0.00011 0.00714 0.01033 

Neural Network Feature Set 2 99.010% 0.00012 0.00762 0.01093 

Neural Network Feature Set 3 99.357% 0.00008 0.00592 0.00881 

Multiple Least-Squares Regression (MLS) Feature Set 1 66.454% N/A 0.04380 N/A 

XG-Boost Feature Set 1 98.842% 0.00014 0.00795 0.01183 
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The results of the NN trained on each feature set are similar. The feature set that yields optimized error metrics 
depends on the kernel and number seed. Feature set 3 was selected for the final NN because it made the most 
sense from an actuarial perspective. It includes features, such as the Black-Scholes Valuations, relevant to the 
lookback option we were pricing.  

The NN was the best performing model of the three tested. The R2 were close between the NN and XG-boost, but 
the NN had fewer errors, which is reflected by the MAE. 

The improved predictive power is most noticeable on this actual to predicted graph The predicted and actual values 
have the tightest fit around the line y=x. 

The graph below illustrates the actual against predicted across the test cases: 

Figure 29 
ACTUAL TO PREDICTED GRAPH FOR NEURAL NETWORK 
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The following graph illustrates the distribution of the predictions made against the actual prediction of the output: 

Figure 30 
DISTRIBUTION OF THE PREDICTIONS AGAINST THE ACTUAL 

 

6.3.5 HYPERPARAMETER TUNING 
The model selection above clearly shows the advantage of using the neural network model for VA fair value 
problems. As mentioned in subsection 1.3, there are a wide range of fine adjustments that will impact the 
performance of the model and predictions. Therefore, the Variable Annuities Fair Value problem outlined above 
resulted in three hidden layers of ResNet model with 256 nodes on each layer. The resulting model structure and 
parameters are in the summary table below. 

Table 16 
PARAMETER SUMMARY 

Parameter Tunings Parameters 

Model type ResNet 
Number of hidden layers 3 
Residuals layer Gaussian Noise 
Activation Relu 
Loss function MSE 
Learning rate 0.0003 
Batch size 1000 
Epochs 2000 
Neurons 256 
Validation split 0.3 
Callback - early stop monitor RMSE 
Callback - early stop min delta 0.001 
Callback - early stop patience 25 
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Using feature set 3 and the tuned model parameters above, we compared the performance with a different 
combination of the model types, and it resulted in a model with better performance or fit against the test data. This 
model achieved a R2 of 99.49%, MSE of 0.00006, MAE of 0.0511, and RMSE of 0.00784.  

The graph below illustrates the actual against predicted across the test cases: 

Figure 31 
ACTUAL TO PREDICTED GRAPH 
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The following graph illustrates the distribution of the predictions made against the actual prediction of the output: 

Figure 32 
DISTRIBUTION OF THE PREDICTION AGAINST THE ACTUAL 

 

6.3.6 ACTUARIAL EVALUATION 
To evaluate the performance of the model, we generated five independent stochastic scenarios using the AAA 
generator. We projected pricing cells over each scenario using 1000 unique risk-neutral scenarios for each pricing 
cell.  

Key findings 

Across a variety of variable annuity fair value time series progression patterns, we observed that the predicted fair 
values tracked the actual results well. Please note that the fair value shown here is the difference between claims 
and fees, the net impact. 

The accuracy of the results was compared across 30 years of fair value projections. Each time point was predicted 
using the trained Neural Network against the actual results produced by the actuarial model.  
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Figure 33 
SCENARIO 1 
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Figure 34 
SCENARIO 2 
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Figure 35 
SCENARIO 3 
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Figure 36 
SCENARIO 4 
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Figure 37 
SCENARIO 5 
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6.4 CONCLUSIONS 
This case study demonstrated how the model development methodology detailed in this paper can be applied to 
develop high-fidelity AIML models to proxy the Monte Carlo valuation variable annuity fair values. 

These models can be useful to actuaries for hedging and fair value reserve FP&A, with significant runtime savings 
once the AIML is trained. Throughout this case study, we demonstrated the importance of feature engineering and 
architecture of the structure of neural network, both of which achieved and improved the desired results with the 
same amount of training costs. With the right balance of curated training data generation, data science techniques, 
and model experiments, the case study can provide a high return on investment. 
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Appendix A: Variable Annuity Product Specifications 

Two variable annuity (VA) products are modeled for this exercise: 

• VA with enhanced guaranteed minimum death benefit (GMDB): Provides for a minimum benefit upon 
death. The minimum death benefit is defined by the benefit base, whereas the beneficiary will receive the 
greater of the account balance and the benefit base upon death. 

• VA with guaranteed lifetime withdrawal benefit (GLWB) and return of premium (ROP) death benefit: 
Provides for longevity protection through lifetime income. The lifetime income is calculated based on the 
benefit base and annual guaranteed withdrawal rates. This feature also provides a basic ROP death benefit 
guarantee. This document will simply refer to this product as a GLWB. 

A1: BASE PRODUCT FEATURES 
The table below summarizes the base product features: 

Product Feature Specifications Commentary 

Expense charges Per policy – annual total ($): $100 

M&E Charge: 1.3% annually (charged daily) 

 

Expense charges are deducted from 
the account balance over time. 

Guaranteed minimum 
annuitization feature2 

N/A This feature is typically priced far 
out of money and does not 
generate claims. For simplicity, this 
feature was ignored for this 
exercise. 

Surrender charges 7-year schedule: 

• 1st Policy Year: 7% 
• 2nd Policy Year: 6% 
• 3rd Policy Year: 5% 
• 4th Policy Year: 4% 
• 5th Policy Year: 3% 
• 6th Policy Year: 2% 
• 7th Policy Year: 1% 

No charges on surrender starting at the 8th 
policy year. 

Surrender charges calculated on fund value 
– free partial withdrawal amount. 

Surrender charge schedule 
representative of the industry  

 

 

2 This benefit is universal to all variable annuity contracts. The policyholder can purchase an income annuity with guaranteed interest rate and mortality 
parameters. 
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Product Feature Specifications Commentary 

Annual free partial 
withdrawals 

10% free partial withdrawal per year based 
on policy year start account value. 

Common product feature 

Commissions 

 

10% upfront commission with 25bps trail 
commission after the surrender charge 
period. 

 

 

In addition, the following fund will be available for the policyholder: 

Fund Specifications 

60/40 balanced fund Fund expense ratio: 100bps (charged daily) 

Equity indices (60%): S&P 500 

Bond funds (40%): US Long-Term Corporate Bond index 

A2: GUARANTEED MINIMUM DEATH BENEFIT 
The GMDB benefit upon death is calculated as follows for the GMDB only product: 

𝐺𝐺𝑀𝑀𝐺𝐺𝐺𝐺 𝐺𝐺𝑒𝑒𝐼𝐼𝑒𝑒𝐵𝐵𝐶𝐶𝐼𝐼 =  (𝐺𝐺𝑒𝑒𝐼𝐼𝑒𝑒𝐵𝐵𝐶𝐶𝐼𝐼 𝐺𝐺𝑐𝑐𝑠𝑠𝑒𝑒 − 𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑢𝑢𝐼𝐼𝐼𝐼 𝑉𝑉𝑐𝑐𝑉𝑉𝑢𝑢𝑒𝑒)0+ 

For VA with GMDB only, the benefit base is equal to a maximum of: 
1. Initial premium 
2. Annual ratchet (up to age 75 or 20 years into the contract, whichever comes first) 
3. Rollup at 3% (up to age 75 or 20 years into the contract, whichever comes first) 

The benefit base is reduced dollar for dollar by net withdrawals below the free partial withdrawal amount. Excess 
withdrawals above the free partial withdrawal amount typically reduce the benefit base proportionally. For 
simplicity, we are not modeling excess withdrawals for VA with GMDB only. 
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The fees are structured as follows: 

Issue Age Male Female 

40 and under 0.65% 0.62% 

41 to 45 0.85% 0.82% 

46 to 48 0.95% 0.92% 

49 to 52 1.10% 1.06% 

53 to 55 1.40% 1.36% 

56 to 58 1.50% 1.46% 

59 to 62 1.70% 1.65% 

63 to 67 1.95% 1.89% 

68 to 72 2.00% 1.94% 

73 and over 2.10% 2.03% 

A3: GUARANTEED LIFETIME WITHDRAWAL BENEFIT 
The GLWB guaranteed income is calculated as follows: 

𝐺𝐺𝑢𝑢𝑐𝑐𝐼𝐼𝑐𝑐𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝐶𝐶 𝐼𝐼𝐼𝐼𝑐𝑐𝐴𝐴𝐼𝐼𝑒𝑒 =  (𝐺𝐺𝑒𝑒𝐼𝐼𝑒𝑒𝐵𝐵𝐶𝐶𝐼𝐼 𝐺𝐺𝑐𝑐𝑠𝑠𝑒𝑒 𝑥𝑥 𝐺𝐺𝑢𝑢𝑐𝑐𝐼𝐼𝑐𝑐𝐼𝐼𝐼𝐼𝑒𝑒𝑒𝑒𝐶𝐶 𝑊𝑊𝐶𝐶𝐼𝐼ℎ𝐶𝐶𝐼𝐼𝑐𝑐𝑑𝑑𝑐𝑐𝑉𝑉 𝑅𝑅𝑐𝑐𝐼𝐼𝑒𝑒)0+ 

The benefit base is defined as the greater of: 
1. Initial premium 
2. Annual ratchet (up to age 75, 20 years into the contract, or first lifetime withdrawal, whichever comes first) 
3. Rollup at 3% (up to age 75, 20 years into the contract, or first lifetime withdrawal, whichever comes first) 

The fee is structured as follows: 
1. 1.25% (applied to benefit base quarterly where each quarter (1/4) of the fee is deducted from the account 

value) 

The ROP death benefit base is reduced dollar for dollar by net withdrawals. 
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The guaranteed withdrawal rates vary between 3.30% and 5.60% annually, increasing with the age at the time of the 
first lifetime withdrawal: 

Age at First Withdrawal Male Female 

44 and under 0.00% 0.00% 

45 to 59 3.30% 3.30% 

60 to 64 3.80% 3.80% 

65 to 69 4.50% 4.50% 

70 to 74 4.60% 4.60% 

75 to 80 4.80% 4.80% 

81 to 84 5.20% 5.20% 

85 and over 5.60% 5.60% 

  

Required minimum distributions (RMD) were ignored for simplicity. 
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Appendix B: Variable Annuity Actuarial Assumptions 

The following actuarial assumptions were used for this exercise: 

• Appendix B1: Premiums 
• Appendix B2: Mortality 
• Appendix B3: Lapse 
• Appendix B4: Partial withdrawal behavior 
• Appendix B5: Maintenance expenses 
• Appendix B6: Reinvestment strategy 

Other actuarial assumptions such as company expense were not needed for the exercise. 

B1: PREMIUMS 
We assumed that the policies were based on a single premium of $125,000 at issue. No other premiums were paid. 

B2: MORTALITY 
The 2012 IAR table was used to model mortality rates. The 2012 IAR table includes both base mortality and 
mortality improvement rates. 

The 2012 IAR table (SOA, 2012) is an industry table commonly used as a basis for annuity products. It is common for 
companies to apply additional adjustments to this base table to accurately model company-specific mortality 
experiences; we will ignore such adjustments for the ease of use and understanding.  

The guaranteed minimum death benefit rider described in A2: Guaranteed minimum death benefit was further 
adjusted by a multiplier of 125%. This adjustment reflects the expectation that enhanced death benefit riders would 
generally experience higher mortality than a living benefit rider such as the one described in A3: Guaranteed 
lifetime withdrawal benefit. 

B3: LAPSE 
Dynamic lapse rates for GLWB and GMDB contracts are calculated based on the in-the-moneyness (ITM) of the 
contract value, where the ITM is defined as a ratio between the guaranteed value and the contract account value. 
For GMDBs, the guaranteed value is the minimum guaranteed death benefit. For GLWBs, the guaranteed value is 
the total guaranteed withdrawal base.  
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We used the following assumptions consistent with the full surrender actuarial assumptions from VM-21: 

ITM In Surrender Charge Period 
(first 7 policy years) 

Shock Lapse 
(policy year 8) 

After Surrender Charge Period (policy 
years 9 and over) 

Under 50% 4.0% 25.0% 15.0% 
50-75% 3.0% 18.0% 10.0% 
75-100% 2.5% 12.0% 7.0% 
100-125% 2.5% 8.0% 4.5% 
125-150% 2.5% 6.0% 3.0% 
150-175% 2.5% 5.0% 2.5% 
175-200% 2.5% 4.5% 2.0% 
Over 200% 2.5% 4.0% 2.0% 

 

The initial ITM ratio of the contract was further modified by adjustment factors depending on the contract type. The 
adjustment factors are defined as follows:  

• For GMDB contracts, the ITM is 90% of the ratio between the guaranteed value and the contract account 
value. 

• For all GLWBs, the ITM is calculated as 75% of the ratio between the guaranteed value and the contract 
account value.  

For example, a VA contract with a GMDB rider entering the last year of the surrender charge period has an account 
value of $100,000 and a minimum guaranteed death benefit of $90,000. The ITM is then equal to: 

𝐼𝐼𝐼𝐼𝑀𝑀 =  90% ∗ �
90,000

100,000
� =  81% 

Based on the standard table, the VA’s full surrender / lapse rate for the current policy year is 2.5%. 

B4: PARTIAL WITHDRAWAL BEHAVIOR 
Partial withdrawal assumptions control how much policyholders withdraw from their account each year. This differs 
from the lapse assumption above, which indicates the probability that the policyholder closes their contract in 
return for the cash surrender value. Note that a withdrawal of the full account balance would generally be 
equivalent to a lapse. 

The proposed partial withdrawal actuarial assumption generally follows the guidance of VM-21’s standard scenario 
prescribed assumption. Overall, VM-21 standard scenario assumptions are aggressive (tend to result in lower CTEs) 
because they are intended to serve as a reserve floor. We used these assumptions for simplicity reasons. 

For VAs with GMDB rider only, a partial withdrawal assumption is not a significant driver of risk. For those contracts, 
we used a partial withdrawal rate of 2% of account value per year. 

For VAs with GLWB rider, partial withdrawal behavior is an important assumption for GLWB reserve calculation. The 
assumption has two parts: 

• Time to first withdrawal (withdrawal cohorts) 
• Rate of withdrawal (and efficiency of withdrawal) 

We used VM-21’s standard scenario prescribed methodology to build initial withdrawal cohorts, each representing a 
different time to first withdrawal. The details of this calculation are included in the attachment below and the 



  121 

 

Copyright © 2023 Society of Actuaries Research Institute 

following simplifying assumptions are made (NAIC, 2023): 

• Policy is non-tax qualified, Male 
• Use annuity factor as a proxy for guaranteed actuarial present value (GAPV) 
• Rounded to nearest 5% 
• No immediate withdrawals for issue ages less than 65 

 

The valuation model splits the policy into different withdrawal cohorts such that the total account value and benefit 
base are preserved. Actuarial calculations were done for each cohort separately and aggregated at the end. The 
table below specifies the weights of each withdrawal cohort by issue age.  

GLWB 
Issue Age 

Years to First Withdrawal 
Never 0 5 10 15 20 25 30 

40 0.20  0.20 0.30 0.05 0.10 0.10 0.05 
45 0.20  0.15 0.30 0.15 0.10 0.05 0.05 
50 0.20  0.15 0.40 0.15 0.05 0.05  
55 0.20  0.30 0.35 0.10 0.05   
60 0.20  0.45 0.25 0.05 0.05   
65 0.20 0.30 0.25 0.20 0.05    
70 0.20 0.20 0.40 0.15 0.05    

 

For example, a VA with GLWB issued to a policyholder, aged 65, will have the following withdrawal cohort 
assumptions: 

• 20% of the cohort will never take a withdrawal 
• 30% of the cohort will start taking withdrawals immediately 
• 25% of the cohort will start taking withdrawals in year 5 
• 20% of the cohort will start taking withdrawals in year 10 
• 5% of the cohort will start taking withdrawals in year 15 

Once a policy starts taking withdrawals, we assume 100% withdrawal efficiency meaning the policyholder will 
continue taking withdraws indefinitely at the guaranteed withdrawal rates specified in A3: Guaranteed lifetime 
withdrawal benefit.  

B5: MAINTENANCE EXPENSES 
The internal maintenance expenses assumption consists of: 

• Per policy expense of $125 as of December 31st, 2020. The expense is assumed to increase by 2% each year 
thereafter. 

• Twelve basis points of the projected account value for each year in the projection. 

B6: REINVESTMENT STRATEGY 
The reinvestment strategy is modeled as a rolling portfolio yield where the portfolio yield (P) at any month M is 
calculated as follows: 

𝑃𝑃𝑀𝑀 = 𝑃𝑃𝑀𝑀−1 ∙ (1 −𝑊𝑊)1 12� + 𝑁𝑁𝑀𝑀𝑅𝑅𝑀𝑀 ∙ �1 − (1 −𝑊𝑊)1 12� � 
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where 𝑊𝑊 is the annual portfolio turnover rate and 𝑁𝑁𝑀𝑀𝑅𝑅𝑀𝑀 is the new money rate this month. The new money rate is 
calculated by weighting the 10-point US Treasury curve based on the weights below and a spread of 2%: 

 

3 Month 6 Month 1 Year 2 Year 3 Year 5 Year 7 Year 10 Year 20 Year 30 Year 

5.00% 5.00% 7.50% 7.50% 7.50% 10.00% 35.00% 10.00% 7.50% 5.00% 
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Appendix C: ASOP Review 

ASOP 56 – Modeling 

Actuarial models are the fundamental components of machine learning solutions. As such, actuaries should ensure 
models used in the solutions suffice the standard to the extent of the actuary’s responsibilities with respect to 
designing, developing, selecting, modifying, using, reviewing, or evaluating them.  

ASOP 56 is directly applicable to the development, training, and validation of any models used for actuarial purposes 
and this would extend to the AIML models discussed in this paper. 

Excerpt from ASOP 56: 

This standard applies to actuaries in any practice area when performing actuarial services with respect to designing, 
developing, selecting, modifying, or using all types of models. For example, an actuary using a model developed by 
others in which the actuary is responsible for the model output is subject to this standard. 

Modeling actuaries should be intimately familiar with the requirements and guidance contained in it.  The ASOP 
contains specific provisions related to predictive models and predictive modeling techniques, which proxy models 
are, such as withholding a subset of data generated from the calibration process to use for later testing. 

The ASOP provides useful guidance for all models, most of which are directly applicable to AIML models, in 
particular, the following subsections in section 3. Analysis of Issues and Recommended Practices apply to this 
paper’s use cases: 

Section Name Commentary 

3.1 Model Meeting the Intended 
Purpose 

See breakdown below 

3.1.1 Designing, Developing, or 
Modifying the Model 

• Actuaries should use their professional judgment to 
confirm that the capability of the model is consistent with 
the intended purpose. 

• Actuaries using AIML proxy models should confirm that 
the model used and as calibrated is consistent with the 
ultimate purpose or context in which the model will be 
used. 

3.1.2 Selecting, Reviewing or 
Evaluating the Model 

• As-is from ASOP: “When selecting, reviewing, or 
evaluating the model, the actuary should confirm that, in 
the actuary’s professional judgment, the model 
reasonably meets the intended purpose.” 

• Similar comment as above for AIML proxy models. 

3.1.3 Using the Model • Actuaries should make reasonable efforts to confirm that 
the use of the model is consistent with its intended 
purpose. 

• The AIML proxy models are calibrated to perform over a 
specific range in a specific context. It is important that 
actuaries make a reasonable effort to confirm that the 
AIML model is used in the appropriate context. 
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Section Name Commentary 

• Actuaries who are not familiar with the model run the risk 
of using the AIML model outside of its intended purposes 
if the right controls are not in place. 

3.1.4 Model Structure • Actuaries should assess whether the structure of the 
model (including judgments reflected in the model) is 
appropriate for the intended purpose. 

• Notable items for AIML proxy models include: 

o Approximate design of the AIML proxy model within 
the end-to-end architecture of the process. 

o Appropriate form of the model – in particular, using a 
model that provides the precision needed with the 
minimum level of complexity. 

o Level of detail or aggregation level of the proxy (e.g., 
seriatim or aggregated) 

o Representing options – including not only features 
that have predictive power, but also features that 
represents the inputs that would reasonably be 
changed or shocked by the actuary. 

3.1.5 Data • As-is from ASOP: The actuary should use, or confirm use 
of, data appropriate for the model’s intended purpose and 
should refer, as applicable, to ASOP No. 23, Data Quality, 
when selecting, reviewing, or evaluating data used in the 
model, either directly or as the basis for deriving, 
estimating, or testing assumptions used in the model. 

• Actuaries should pay attention to the data used to train 
and test the proxy model. In particular, the performance 
of the AIML proxy model is heavily dependent on the 
quality of the data generated. This includes the 
appropriate range and distribution of the samples 
generated. 

• Actuaries should also check that the data provided to the 
model when generating the proxy after calibration is 
adequate. 

3.1.6 Assumptions Used as Input • This section is less applicable as the proxy models 
detailed in this paper will generally be free of actuarial 
assumptions. However, some exceptions may arise. 

• Actuarial assumptions are applicable to the source model 
used to generate the training and testing data. 

3.2 Understanding the Model • When expressing opinions or communicating results of 
the model, actuaries should understand the important 
aspects of the model, known weaknesses or limitations 
and limitations in data. 

• This is applicable to AIML models as these proxy models 
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Section Name Commentary 

will generally (some exceptions when it offsets lack of 
convergence), by nature, introduce additional error in the 
model output relative to the first principles calculation. 

• Actuaries should also be aware of the calibration range 
limitations and be able to communicate the uncertainty 
in the output if such a situation is ever needed from the 
actuary. 

3.3 Reliance on Data or Other 
Information Supplied by 
Others 

• AIML proxy models are reliant on the data provided by 
the actuarial model. 

3.4 Reliance on Models 
Developed by Others 

• Fully applicable with no unique considerations for AIML 
proxy models – refer to ASOP. When actuaries are relying 
on models developed by others, the actuary should make 
practical efforts to comply with other applicable sections 
of this standard. 

3.5 Reliance on Experts • Fully applicable with no unique considerations for AIML 
proxy models – refer to ASOP. Actuaries may rely on 
experts for these models as well. 

3.6 Evaluation and Mitigation of 
Model Risk 

• As-is from ASOP: The actuary should evaluate model risk 
and, if appropriate, take reasonable steps to mitigate 
model risk. 

• Per the ASOP, the type and degree of model risk depends 
on the intended purpose; nature and complexity of the 
model; operating environment and governance and 
controls related to the model; whether there have been 
changes to the model or its operating environment; and 
the balance between the cost of mitigation efforts and 
the reduction in potential model risk. 

• Actuaries should realize that the introduction of AIML 
proxy models, as with any other proxy model, introduces 
additional model risk. The additional model risk is due to 
the need to monitor the model performance and the risk 
that the proxy model is not well understood by ultimate 
users and used outside of the intended purpose, resulting 
in actuaries relying on inaccurate proxies. 

• The AIML proxy models discussed in this paper are 
complex in nature and can be difficult to interpret, which 
adds to the overall model risk. 

• AIML proxy models require establishing an appropriate 
control and governance structure to reduce the risk that 
the model is used outside of its intended purpose. 

3.6.1 Model Testing • Combined commentary on 3.6.1 and 3.6.2 as they are 
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Section Name Commentary 

3.6.2 Model Output Validation closely related for AIML proxy models. 

• The actuary should perform appropriate testing and 
output validation to get comfortable with the 
performance of the AIML proxy model. 

• This testing should include detailed out of sample 
validation against the actuarial model. The out of sample 
testing should cover the range of intended uses of the 
model, as well as running sample use cases with full 
comparisons to the original first principles calculations 
from the actuarial model. 

3.6.3 Review by Another 
Professional 

• Fully applicable with no unique considerations for AIML 
proxy models. 

3.6.4 Reasonable Governance and 
Controls 

• As discussed in the points above, the actuary should 
establish strong governance and control for the AIML 
model to mitigate the risk of using the AIML model 
outside of the pre-defined range. 

• This commentary applies to 3.6.4 and 3.6.5. 

3.6.5 Mitigating Misuse and 
Misinterpretation 

3.7 Documentation • Fully applicable with no unique considerations for AIML 
proxy models. 

 

ASOP 21 – Responding to Auditors or Examiners 

To the extent that machine learning models become a component of the valuation or financial reporting processes, 
the financial planning process that results in public projections, or becomes a material part of significant financial or 
operational trade decisions, actuaries are required to be prepared to share with auditors the information necessary 
for them to conduct their audit or examination.  The actuary should be prepared to provide evidence and 
demonstrate that they followed the guidance given in ASOP 56. This may include providing the data used to 
calibrate the models, the assumptions used and judgment applied, the methods used, the models used, the controls 
around the models, processes, and procedures, and the reasoning to support the results and conclusions.  Since 
these models are often used to replace portions of other models, the actuary should be prepared to share the 
testing performed, including the results, approaches and methods, scope of testing, and raw data with the auditor 
or examiner. 

Additionally, the actuary should be prepared to discuss with the auditor or examiner any change in circumstances 
that, in the judgment of the actuary, affect the use of the machine learning models or the value or accuracy of the 
output in the process being examined. 

ASOP 22 – Statements of Actuarial Opinion Based on Asset Adequacy Analysis 

Machine learning proxy models could offer great value to insurance companies in performing the calculation 
intensive elements of AAT, particularly in helping project out future portfolio trades and management actions.  Since 
these projections are done, by nature, over time, the actuary should perform appropriate testing to be confident in 
the robustness of the model over time and, as the book of business ages and changes, to opine on the 
reasonableness of the results.  Following ASOP 21, they should also be prepared to disclose to the auditor the 
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validation and testing done to ensure the robustness of the model, any assumptions or approximations used with 
the output in the AAT process, and the controls to ensure the completeness and accuracy of the output calculations. 

ASOP 23 – Data Quality  

Data quality is a key area of focus for the actuary as they look to incorporate machine learning models.  Since these 
models are one step away from the actuarial models, tracing the calculations is more difficult.  As such, it is 
incumbent upon the actuary to ensure the quality of the data used in the actuarial models when calibrating the 
proxy model, as well as the quality of the output data being consumed by the proxy model during the calibration 
process.  We would argue “wholly hypothetical dataset” exception doesn’t really apply as the actuary may be 
required to develop data outside of the scope existing within in-force policies to ensure the robustness of the model 
for future use.  The actuary will need to opine on whether the data used to calibrate the model is appropriate and 
fit, robust enough, and any restrictions in the data that would create limitations on the use of the proxy model.  The 
actuary should be prepared to disclose any reviews of the data performed in ensuring the above. 

ASOP 24 – Compliance with NAIC Life Illustrations Model Regulation 

To the extent that proxy models are used as inputs into life illustrations, or used to produce life illustrations, the 
actuary needs to be prepared to show that the outputs meet all of the requirements under the NAIC Life model 
regulation, or an specific actuarial guidelines related to life illustrations.  As such, the actuary should take steps to 
ensure that the datasets used to calibrate and train the model or the outputs from the model incorporate all of the 
constraints placed on the output by the model regulation (e.g., illustrated scale cannot be more favorable than 
current payable scale, interest crediting for indices are limited by AG49).  The actuary should understand how the 
underlying models used to train the proxy model respond to significant changes in market conditions, policyholder 
demographics, and other dimensions the proxy model is trained on to understand any limitations on the use of the 
proxy model for this purpose.   

ASOP 41 – Actuarial Communications 

The actuary is responsible for all assumptions and methods used in actuarial communications.  Because proxy 
models can sometimes be trained for specific purposes, the actuary should discuss any limitations on the analysis 
presented or constraints on its use.  To the extent that proxy models built by others were relied upon for the 
analysis of actuarial communications, the actuary must state their reliance upon other qualified individuals, disclose 
if they were not able to perform sufficient analysis to endorse the robustness or accuracy of the proxy models used, 
or if the output, assumptions, or methods used conflict with their professional judgment on what is reasonable and 
appropriate. 

ASOPs 46 and 47 – Risk Evaluations for Enterprise Risk Management and Risk Treatment for Enterprise 
Risk Management 

Proxy models can be of great value in reducing the runtime of enterprise risk and economic capital models.  When 
proxy models are incorporated into the process, the actuary needs to consider all of the normal review elements for 
models used in an enterprise risk context (reproducibility, adaptability to new risks, useability, reliability, limitations, 
etc.) for both the proxy model and the models used to train the proxy model.  The actuary also needs to review the 
appropriateness and robustness of the approach, design, data used, methodologies and simplifications used in the 
training of the proxy model.  The actuary needs to fully understand those limitations as they start to use that 
information for other purposes, including hedging, ALM, or other risk mitigating activities. 
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ASOP 52 – PBR for Life 

Principles-based reserving contains a number of modeling elements meant to accurately reflect how the policy and 
assets backing the policy will perform throughout the policy lifecycle. Proxy models can serve as a valuable tool 
replacing those elements to significantly shorten runtimes required to accurately model the business.  The actuary 
needs to validate the robustness and accuracy of the proxy models for the purpose intended.  In addition to the 
procedures performed above, ASOP 52 recommends the actuary perform dynamic validation of the model by 
comparing cash flows produced by the model to actual historical data, evaluating consistency of the results with 
other systems producing similar calculations, and evaluating the reasonableness of the results, including the ability 
to explain why the results are changing.   

ASOP 54 – Pricing of Life Insurance and Annuity Products 

Proxy models can reduce the calculation intensity of pricing models, thereby potentially enabling analysis to be 
performed more granularly and for a longer time period than other approaches.  ASOP 54 requires the actuary to 
validate that the calculations from the model are consistent without outside calculations, that they reasonably 
reflect the real financial impact of the product and associated management actions over the life of the policy, and 
that the models, assumptions, methodologies, and data used are fit for purpose. 

ASOP 55 – Capital Adequacy Assessment 

ASOP 55 is meant to be an extension of ASOPs 46 and 47 specific to modeling capital adequacy in response to 
regulatory requirements around ORSAs.  Proxy models would provide similar benefits and require similar 
considerations to those discussed in ASOPs 46 and 47.  Because the cost of running the models (in time and 
computing costs) are lower with proxy models, the actuaries can produce more analysis.  The actuary needs to 
ensure that they understand all of the limitations inherent in the training of the proxy models, including 
assumptions and methodologies used in the underlying actuarial models and the approach and design of the 
calibration, to ensure that they can rely on the models for the purposes intended, and that they are still appropriate 
to model the more extreme scenarios used in ORSAs.  For example, during the financial crisis, liquidity in options 
markets dried up and bid/ask spreads significantly widened, resulting in disconnects in option valuation and the 
inability to trade assets, some situations that may not have been contemplated or incorporated into the training of 
the underlying proxy models, and which may require judgment and adjustments to the results for them to be relied 
upon.   
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