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Modeling and Pricing Cybersecurity Risks 
in Fog Computing Based IoT Architectures 
 
 

Executive Summary  

Research on cybersecurity risk modeling and pricing is becoming a spotlight in actuarial science. This paper 

pertains to the analysis of the cybersecurity risk inherent in the fog computing technology, which has been 

intensively deployed in assorted Internet of Things (IoT) applications. To this end, a structural model is 

established in order to describe the risk propagation mechanism in a fog network. We propose an interval 

approximation method to quantify the compromise frequencies for the network’s elements, and under a 

smart home application, the compromise probabilities are computed explicitly. Applications of proposed 

models in the context of cyber insurance pricing are thoroughly explored. 
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Section 1: Introduction 

Cybersecurity has been a ubiquitous matter in the present digital society, garnering extensive media 

coverage over the recent years. According to Cybersecurity Ventures1 , financial damages due to cyber-

related incidents are predicted to comprise six trillion US dollar globally in 2021. Such a magnitude of loss is 

comparable to about 7% of the world’s GDP in 2019. Much effort has been made on the network 

infrastructures so as to enhance cybersecurity, vulnerabilities however cannot be fully eliminated in actual 

practice. To manage the residual cybersecurity risks, organizations including network service providers and 

users, are often advised to seek insurance solutions which secure a robust financial protection in case of 

cyber events (Böhme, 2005; Biener et al., 2015). In the wake of the market demand, an increasing number 

of insurance companies are driven to advance the cyber insurance products. Based on the latest figures 

published by the National Associate of Insurance Commissioners, the US alone has approximately 500 cyber 

insurance providers to date, with direct written premium amounted to two billion dollars (NAIC, 2019). 

Quantitative study of cybersecurity risk is important not only for insurance company to properly price the 

cyber-related products, but also for customers to understand their needs for insurance coverage. In the 

context of cybersecurity risk modeling, two overarching strands of research stand out in the actuarial domain. 

The first strand of literature study cybersecurity risks from the macro-level perspective, aiming to understand 

the statistical properties of cyber-related losses and the associated economic implications. To name a few 

examples, Eling and Loperfido (2017) analyzed the loss distributions of different types of data breaches and 

found that the log-transformed loss distributions are right-skewed. Wheatley et al. (2016); Eling and Wirfs 

(2019) modeled the cyber loss frequency and severity by resorting to the toolkits originated from Extreme 

Value Theory. Eling and Jung (2018); Peng et al. (2018) applied copula methods to study the dependencies 

among different types of cyber losses. McShane and Nguyen (2020) conducted an empirical examination to 

study investor reactions to cyber events over time. Sun et al. (2020) developed a frequency-severity model 

by focusing on malicious hacking data breaches at the individual enterprise level, and further studied the 

application of the proposed model for ratemaking and pricing. Fang et al. (2021) studied the enterprise-level 

data breach risk, where a mixed D-vine dependence structure was employed to accommodate the complex 

dependence exhibited by the enterprise-level breach incident time series. 

In the other strand of literature, cybersecurity risks are studied from the micro-level perspective, and focuses 

are placed on identifying the mechanisms that determine the extent of cybersecurity risks. To this end, 

structural models are frequently adopted to investigate the causal relationship between network 

characteristics and cyber losses. For instance, Fahrenwaldt et al. (2018); Xu et al. (2015); Xu and Hua (2019) 

deployed the susceptible-infectious-susceptible epidemic models over a deterministic network structure to 

study cyber losses. Jevtić and Lanchier (2020) proposed a class of dynamical percolation models for catering 

the cybersecurity risks within a tree-based network topology. Our paper falls into this strand of literature, 

which is more closely related to cyber insurance pricing. 

It is fair to state that all the existing micro-level cybersecurity risk models in the actuarial domain only 

consider a relatively simple centralized network structure which may not be sufficient for the practical needs 

in this current era of Internet of Things (IoT). Although there is no universal definition on IoT (see, Lynn et 

al., 2020, for a variety of descriptions from either the technical or socio-technical perspectives), it may be 

heuristically understood as a network infrastructure of interconnected devices (i.e., things) for processing 

information from the physical and the virtual world. As the proliferation and consumerization of IoT 

 

 

1 Cybersecurity Ventures is the world’s leading researcher and publisher for the global cyber economy, and it is widely accepted as a trusted 
source for cybersecurity facts, figures and statistics. 
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technology continue to evolve at a rampant pace, growing number of electronic devices are interconnected 

through multiple intricate networks, generating enormous data which need to be processed in real-time. In 

a traditional network system, the centralized cloud unit has a very high processing power and large memory 

storage so that low processing devices can run their respective computing in the cloud. Despite the broad 

utilization of cloud computing, due to the “long distance” between cloud-servers and end-users, a set of 

technical issues such as network congestion, high latency and cost, and scalability, etc., unfavorably arise. A 

new paradigm, namely fog computing, has been developed to circumvent the aforementioned technical 

limitations inherent in cloud computing (Puliafito et al., 2019). Specifically, fog computing is a decentralized 

computing infrastructure that extends the cloud service to the edge of the network, hence computational 

resources are closer to the position where the data is generated and used upon. Compared with the 

traditional cloud computing network, major advantages for adopting fog computing are the underlying 

superior user-experience and failure tolerance. Consequently, the fog computing has been widely deployed 

in a variety of domains which include smart home (Puliafito et al., 2019), health data management (Kraemer 

et al., 2017), intelligent transportation system (Darwish and Bakar, 2018), public services such as power grid, 

military defense and critical national infrastructure (Baccarelli et al., 2017). For the sake of illustration, a 

typical fog network is depicted in Figure 1, in which the multi-tenant (e.g., computers, laptops, smart devices, 

automated cars, traffic lights) and resource-sharing (e.g., the connected fog nodes) features are clear to 

recognize. 

Figure 1 

ILLUSTRATION OF A FOG NETWORK AND THE DIFFERENT TYPES OF END DEVICES 

 

 

Although fog computing is emerging as a scalable, reliable and cost effective solution for big data analytics 

in IoT applications, its multi-tenant and resource-sharing architectures induce an unprecedented degree of 

cybersecurity risks to both the IoT service providers and users (Khan et al., 2017). The Ponemon Institute2  

estimated that the percentage of organizations who reported data breaches due to the unsecured IoT 

devices/applications has climbed from 15 percent in 2017 to 26 percent in 2019. In reality, the actual 

percentage may be even much higher since most organizations are not aware of the insecure IoT 

devices/applications threats in their work environment. The figures underscore the acute needs for IoT risk 

management improvement in which cyber insurance, as a nature tool for risk transfer and mitigation, should 

play a pivotal role. 

 

 

2 Source: https://www.ponemon.org/ 

https://www.ponemon.org/
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Regardless of the increasing public concern about the security and privacy matters underlying IoT, 

quantitative methods for modeling the inherent cybersecurity risks seem to have gathered little attention 

thus far. Earlier studies related to fog networks are from the IT perspective, focusing on the construction and 

deployment of the technology in IoT. The only actuarially related work that we are aware of is Feng et al. 

(2018), where the risk management process of fog networks was formulated in a game theoretic framework. 

However, their work did not address the important issue of cybersecurity risk pricing. In this current paper, 

we follow a different route and aim to put forth a structural framework for modeling and pricing the 

cybersecurity risks in fog network from the micro-level perspective. 

In this paper, we propose a novel class of propagation models to study the cybersecurity risks in fog 

computing cased IoT architectures, which are significantly different from the quantitative frameworks used 

in the existing cyber-related works within the actuarial literature (e.g., Fahrenwaldt et al., 2018; Jevtić and 

Lanchier, 2020; Xu et al., 2015; Xu and Hua, 2019). The rest of the paper is organized as follows. Beginning 

with a non-technical discussion about a few unique characteristics of cybersecurity risks in fog networks in 

Section 2, we propose a quantitative framework for modeling the cybersecurity risks in Section 3. To 

exemplify the proposed network models, in Section 4, we place the emphasis on the study of cybersecurity 

risks in a smart home system which is arguably one of the most popular IoT applications these days. Actuarial 

pricing of the cybersecurity risks in fog networks is considered in Section 5 with numerical illustrations. 

Sections 6 and 7 some further discussions and conclusions of the paper. In order to facilitate the reading, 

Appendix B contains a summary of the notation system used throughout the paper, and Appendix A contains 

the technical details which are in addition to our practical contributions. 

Section 2: Characterizing the Cybersecurity Risks in Fog Networks 

The cybersecurity risks associated with fog networks comprise a set of salient characteristics which must be 

addressed carefully. Firstly, fog networks feature a high level of heterogeneity and interdependency. To be 

specific, a fog network can consist of ample heterogeneous nodes which perform different functions such as 

controlling, networking, computing, and storing. These fog nodes can communicate with each other through 

wireless or wired transmission so that the computing resources can be shared. The aforementioned multi-

tenant and resource-sharing natures of fog networks make the cybersecurity risk management very 

challenging. What is more, in the traditional centralized networks, patches and upgrades can be installed on 

the operating systems so as to limit the vulnerabilities existing in the network. However, the situation is quite 

different in fog networks due to the lightweight of operating systems and the relatively low computational 

capabilities of the IoT devices (Yu et al., 2015). The current security protocols of fog computing authenticate 

each edge device with the application before providing data or computation to perform. Hence, 

vulnerabilities hidden in the IoT devices form attractive entry points for attackers to penetrate into the 

network. 

Secondly, fog networks are vulnerable to outside attacks. Typically, outside attacks are launched through 

unauthenticated devices or directly by external attackers. For example, an unauthenticated edge device can 

attack other devices or fog nodes, and an attacker can launch DDoS attacks directly to the fog nodes. Worse 

still, common vulnerabilities often exist in fog networks since similar computing nodes and end devices are 

operated under the same security configuration or software. These common vulnerabilities trigger the build-

up of systemic cybersecurity risks. Namely, if a common vulnerability is identified and attacked by outsiders, 

then devastating damages may occur to the entire network. In cybersecurity risk pricing and management, 

it is critical to account for such high severity incidents. 

Thirdly, fog networks are also vulnerable to inside attacks. The inside attacks are caused by the compromised 

authenticated devices which are inside the trusted network of applications. Once penetrated into the 



  8 

 

Copyright © 2021 Society of Actuaries 

network, the attackers can advance toward the edge devices using the relations that exist among the 

vulnerabilities of different IoT devices. The compromised devices can attack fog nodes and other devices 

easily without being discovered as it has certain privileges in the network (Sohal et al., 2018). 

For illustration, an abstract fog network is displayed in Figure 2, where there is one compromised fog node 

and one compromised end node, and the consequent cybersecurity risks may be propagated via the network 

structure. Specifically, fog node 4 is compromised by outside attacks, which can propagate the risk to its fog 

neighbors 7 and 11 via inside attacks. It can also propagate the risk to its end nodes, i.e., type 3 nodes. 

Similarly, the second type 1 end node is also compromised, and it can propagate the risk to its fog nodes 1 

and 2. If fog node 2 is compromised, it can further compromise its neighbor fog nodes and end nodes, i.e., 

type 1 and type 2 end nodes. The formal modeling process is discussed in the following section. 

Figure 2 

ILLUSTRATION OF CYBERSECURITY RISKS FACED BY A FOG NETWORK IN THE IOT APPLICATION, WHERE 

THERE ARE 11 FOG NODES, AND 3 DISTINCT TYPES OF END NODES/DEVICES MARKED BY DIFFERENT 

COLORS. THE LABEL (𝑑, 𝑖𝑑) INDICATES THE 𝑖𝑑-TH TYPE 𝑑 END NODES, 𝑑, 𝑖𝑑  ∈  ℕ. THE COMPROMISED 

NODES AND THE SURROUNDING PROPAGATION PATHS ARE INDICATED IN RED COLOR. 

 

Section 3: Modeling the Cybersecurity Risks in Fog Networks 

Modeling the occurrence of cyber-attack and the process of infection propagation plays an important role in 

assessing the cybersecurity risk within a fog network. To this end, we aim at putting forth a class of structural 

models for modeling the compromise frequency among the nodes of a fog network. In particular, the 

proposed infection models accommodate all the indispensable characteristics outlined in Section 2. 

Let us begin with the notations for describing the inherent heterogeneous network components. For a fog 

network 𝐺, let 𝑛ℱ  be the number of fog nodes, 𝑛𝒯  be the number of end node types, and 𝑛𝑑
ℰ  be the number 

of end nodes that are of type 𝑑 ∈ {1, … , 𝑛𝒯}. Here and in the sequel, superscripts “ℱ”, “𝒯” and “ℰ” indicate 

that an object of interest is related to the fog nodes, types of end node and end nodes, respectively. To 

illuminate, in the hypothetical fog network presented in Figure 2, we have 

𝑛ℱ = 11, 𝑛𝒯 = 3, 𝑛1
ℰ = 𝑛2

ℰ = 3, 𝑛3
ℰ = 4. 
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To quantify the frequency of cybersecurity risks in fog networks, special emphasis is placed on the set of 

compromise status RV’s, 𝐶𝑖
ℱ ∈  {0,1} and 𝐶𝑑,𝑖𝑑

ℰ ∈ {0,1}, with value “𝑖” and “(𝑑, 𝑖𝑑)” indicate that the 𝑖-th fog 

node and the 𝑖𝑑 -th type 𝑑  end node is compromised, respectively, 𝑖 ∈ {1, … , 𝑛ℱ}, 𝑑 ∈ {1, … , 𝑛𝒯}, 𝑖𝑑 ∈

{1, … , 𝑛𝑑
ℰ}. For brevity, we shorthand the compromise RV’s by 

𝑪 = (𝑪ℱ , 𝑪1
ℰ , … , 𝑪

𝑛𝒯
ℰ ),     where 𝑪ℱ = (𝐶1

ℱ , … , 𝐶
𝑛ℱ
ℱ ), 𝐶𝑑

ℰ = (𝐶𝑑,1
ℰ , … , 𝐶

𝑑,𝑛𝑑
ℰ

ℰ ), 𝑑 ∈ {1, … , 𝑛𝒯}. 

The study of 𝑪 is further related to the frequency of outside and insider attacks which we are going to discuss 

next. 

Denote by 𝑂𝑖
ℱ ∈ {0,1} the outside attack status random variable (RV) of the 𝑖-th fog node, with 𝑂𝑖

ℱ = 1 

means that the node is compromised due to an outside attack, and zero otherwise, 𝑖 = 1,… , 𝑛ℱ. Throughout, 

the 𝑖𝑑 -th type 𝑑  end node is labeled by (𝑑, 𝑖𝑑) , 𝑑 ∈ {1, … , 𝑛𝒯}  and 𝑖𝑑 ∈ {1, … , 𝑛𝑑
ℰ} , for notational 

convenience. Then, 𝑂𝑑,𝑖𝑑
ℰ ∈ {0,1} denotes the outside attack status RV of the (𝑑, 𝑖𝑑)-th end node. To account 

for the presence of systemic cybersercurity risk, we assume that there exist two types of vulnerabilities which 

may be exploited by outside attackers. Outside attacks through a common vulnerability imperil all the nodes 

that are of the same type, potentially causing systemic failures within a cohort of network components. In 

contrast, an idiosyncratic vulnerability may only exist in a particular node, through which outside attacks will 

infect the node solely. Let 𝑉ℱ ∈ {0,1} and 𝑉𝑑
𝒯 ∈ {0,1} indicate respectively whether a common vulnerability 

arises among the fog nodes and type 𝑑 end nodes and is harnessed by an outsider to attack the network. 

Define  

ℙ(𝑉ℱ = 1) =: 𝜈ℱ ∈ [0,1],     and     ℙ(𝑉𝑑
𝒯 = 1) =: 𝜈𝑑

𝒯 ∈ [0,1],     𝑑 = 1, … , 𝑛𝒯 . 

Given that a common vulnerability is exploited by attackers, then with probabilities 

ℙ({𝑂𝑖
ℱ = 1, 𝑖 = 1,… , 𝑛ℱ}|𝑉ℱ = 1) =: 𝜋ℱ∗ ∈ [0,1] 

and 

ℙ({𝑂𝑑,𝑖𝑑
ℰ = 1, 𝑖 = 1,… , 𝑛𝑑

ℰ}|𝑉𝑑
𝒯 = 1) =: 𝜋𝑑

ℰ∗ ∈ [0,1],     for a fixed 𝑑 ∈ {1, … , 𝑛𝒯}, 

all the fog nodes and all the type 𝑑 end nodes will be compromised, respectively. In the probability notations 

above, the start sign “∗” in the superscripts aims to emphasize that the compromise is caused by common 

vulnerability. Otherwise, individual devices may be attacked due to their own idiosyncratic vulnerabilities, 

and we have 

ℙ(𝑂𝑖
ℱ = 1|𝑉ℱ = 0) =: 𝜋𝑖

ℱ ∈ [0,1],     𝑖 = 1, … , 𝑛ℱ , 

and 

ℙ(𝑂𝑑,𝑖𝑑
ℰ = 1|𝑉𝑑

𝒯 = 0) =: 𝜋𝑑,𝑖𝑑
ℰ ∈ [0,1],     𝑖𝑑 ∈ {1, … , 𝑛𝑑

ℰ}, 𝑑 ∈ {1, … , 𝑛𝒯}. 

Denote by 

𝑶ℱ = (𝑂1
ℱ , … , 𝑂

𝑛ℱ
ℱ ), 𝑶𝑑

ℰ = (𝑂𝑑,1
ℰ , … , 𝑂

𝑑,𝑛𝑑
ℰ

ℰ ) ,     𝑑 = 1,… , 𝑛𝒯 , 

the sets of outside attack RV’s. The following assumption is intuitive practically. 
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Assumption 3.1. As outside attacks are launched randomly, we assume 𝑶ℱ , 𝑶1
ℰ , … , 𝑶

𝑛𝒯
ℰ

 to be mutually 

independent. Nevertheless, the outside attack RV’s within the same node type are generally dependent 

because of the presence of common vulnerabilities. Specifically, given that 𝑉ℱ = 1  (resp., 𝑉𝑑
𝒯 = 1, 𝑑 ∈

{1, … , 𝑛𝒯} , the coordinates of 𝑂ℱ  (resp., 𝑂𝑑
ℰ , 𝑑 ∈ {1, … , 𝑛𝒯}  are assumed to be identical almost surely. 

Practically, this assumption means that once a common vulnerability is exploited, all the nodes that are of the 

same type either get infected simultaneously if the attack succeeds, or all remain healthy if the attack fails. 

When 𝑉ℱ = 0  (resp., 𝑉𝑑
𝒯 = 0, 𝑑 ∈ {1, … , 𝑛𝒯} , then the coordinates of 𝑂ℱ  (resp., 𝑂𝑑

ℰ , 𝑑 ∈ {1, … , 𝑛𝒯}  are 

assumed to be independent, since in this case, infections are caused by different attacks. 

We turn to consider the cybersecurity risks due to insider attacks which are launched by the existing 

compromised components through the connecting links. To this end, some additional notations for 

describing the possible paths of risk contagions are needed herein. For the 𝑖-th fog node, denote by 𝐼𝑖→𝑗
ℱ ∈

{0,1} and 𝐼𝑖→(𝑑,𝑘𝑑)
ℱ ∈ {0,1} the activation status of the link to the 𝑗-th fog node and the (𝑑, 𝑘𝑑)-th end node, 

respectively, with value “1” means active, “0” means inactive, and  

ℙ(𝐼𝑖→𝑗
ℱ = 1|𝐶𝑖

ℱ = 1) =: 𝑞𝑖→𝑗
ℱ ∈ [0,1],     ℙ(𝐼𝑖→(𝑑,𝑘𝑑)

ℱ = 1|𝐶𝑖
ℱ = 1) =: 𝑞𝑖→(𝑑,𝑘𝑑)

ℱ ∈ [0,1], 

for 𝑑 ∈ {1, … , 𝑛𝒯}, 𝑖 ≠ 𝑗 ∈ {1, … , 𝑛ℱ}, 𝑘𝑑 ∈ {1, … , 𝑛𝑑
ℰ}. If a link is active, then a compromised node can lunch 

an insider attack to a healthy node via the link. Concerning the end nodes, note that in the security 

configuration of IoT applications, it is a common practice to limit the direct communications between end 

nodes so as to control the cybersecurity risk propagation. Thereby, we should only consider the direct 

communication from end nodes to fog nodes, and let 𝐼(𝑑,𝑖𝑑)→𝑗
ℰ  represent the activation status of the link from 

the (𝑑, 𝑖𝑑)-th end node to the 𝑗-th fog node, with 

ℙ(𝐼(𝑑,𝑖𝑑)→𝑗
ℰ = 1|𝐶𝑑,𝑖𝑑

ℰ = 1) =: 𝑞(𝑑,𝑖𝑑)→𝑗
ℰ ∈ [0,1], 

for 𝑑 ∈ {1, … , 𝑛𝒯}, 𝑖𝑑 ∈ {1, … , 𝑛𝑑
ℰ}, 𝑗 ∈ {1, … , 𝑛ℱ}. For any two nodes between which there is no direct link, 

then the corresponding link status RV is equal to 0 with probability 1. To illustrate, consider the compromised 

fog node in the hypothetical network displayed in Figure 2, we have 

𝑞4→𝑗
ℱ = {

> 0,
= 0,

     
𝑗 = 7, 11
otherwise

,     𝑞4→(𝑑,𝑖𝑑)
ℱ = {

> 0,
= 0,

     
(𝑑, 𝑖𝑑) = (3,1), (3,2), (3,3), (3,4)
otherwise

. 

For the compromised end node in the same network, it does not have any direct link to another end node 

but may have active links to fog nodes with transmission probabilities 

𝑞(1.2)→𝑗
ℱ = {

> 0,
= 0,

     
𝑗 = 1, 2
otherwise

. 

Assumption 3.2. Denote the set of all outside attack RV’s by 𝑶 and the set of all link status RV’s associated 

with inside attacks by 𝑰. Mainly, for mathematical elegance, we assume the coordinates of 𝑰 to be mutually 

independent, meaning that a compromised node will attack its neighboring healthy nodes randomly and 

independently. Moreover, it is practical to assume that the outside attack RV’s, 𝑶, and inside attack RV’s, 𝑰 

are independent. 

With the outside and inside attack notations in place, we now set out to establish a system of state equations 

for describing the compromise statuses of network nodes: 
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𝐶𝑗
ℱ = 1 − (1 − 𝑂𝑗

ℱ)⏟      



∏ (

𝑛ℱ

𝑖=1,𝑖≠𝑗

1 − 𝐶𝑖
ℱ𝐼𝑖→𝑗
ℱ )

⏟            



∏ ⋅

𝑛𝒯

𝑑=1

∏(

𝑛𝑑
ℰ

𝑖𝑑=1

1 − 𝐶𝑑,𝑖𝑑
ℰ,[𝑗]
𝐼(𝑑,𝑖𝑑)→𝑗
ℰ )

⏟                  



,     for 𝑗 = 1,… , 𝑛ℱ , (1) 

where 

𝐶𝑑,𝑖𝑑
ℰ,[𝑗]

= 1 − (1 − 𝑂𝑑,𝑖𝑑
ℰ )⏟      



∏ (

𝑛ℱ

𝑖=1,𝑖≠𝑗

1 − 𝐶𝑖
ℱ𝐼𝑖→(𝑑,𝑖𝑑)
ℱ )

⏟              



 (2)
 

is state equation associated with the (𝑑, 𝑖𝑑)-th end node while assuming that the 𝑗-th fog node is originally 

healthy (equivalently, excluding the 𝑗-th fog node from the state equations), and 

𝐶𝑑,𝑗𝑑
ℰ = 1 − (1 − 𝑂𝑑,𝑗𝑑

ℰ )⏟      



∏(

𝑛ℱ

𝑖=1

1 − 𝐶𝑖
ℱ𝐼𝑖→(𝑑,𝑖𝑑)
ℱ )

⏟            



,     for 𝑑 = 1,… , 𝑛𝒯 , 𝑗𝑑 = 1,… , 𝑛𝑑
ℰ . (3) 

Table 1 summaries the descriptions for the components in state equations (1) - (3). For a concise summary 

of the notation system introduced in this subsection, we refer the reader to Appendix B.  

Table 1 

DESCRIPTIONS OF THE COMPONENTS IN THE STATE EQUATIONS. 

Number Description 

① Compromise due to outside attacks. 

② Compromise due to inside attacks from infected fog nodes. 

③ Compromise due to inside attacks from infected end nodes. 

 

Remark that state equations (1) - (3) not only endogenize the stochastic compromise statuses of all nodes, 

but also capture the intricate risk contagions across the network. The set of compromise RV’s are highly 

dependent. One origin of the dependence comes from the fact that the compromise RV specified in each 

state equation is interlinked with the compromise statuses of its neighboring nodes. Another origin is via the 

outside attack RV’s involved in Equations (1) - (3), which are correlated among the same type of nodes 

because of the common vulnerabilities (also see, the discussion in Assumption 3.1). Consequently, it is 

considerably challenging to evaluate the joint compromise probabilities underlying 𝑪. To the best of our 

knowledge, no explicit expression can be obtained for the distribution of 𝑪. Numerical simulation must be 

adopted so as to tackle the problem, which may be computationally intensive. In some applications such as 

preliminary analysis, sensitivity testing, risk communication and so forth, an easy-to-implement 

approximation of the compromise probabilities is more likely to be appreciated by practitioners, which will 

be considered in the succeeding subsection. 

3.1 INTERVAL APPROXIMATION OF COMPROMISE PROBABILITIES 

We propose an interval method for approximating compromise probabilities: 

𝒑ℱ = (𝑝1
ℱ , … , 𝑝

𝑛ℱ
ℱ )⊤,     with 𝑝𝑖

ℱ ≔ ℙ(𝐶𝑖
ℱ = 1), 𝑖 = 1,… , 𝑛ℱ , (4) 

and 
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𝒑𝑑
ℰ = (𝑝𝑑,1

ℰ , … , 𝑝
𝑑,𝑛𝑑

ℰ
ℰ )⊤,     with 𝑝𝑑,𝑖𝑑

ℰ ≔ ℙ(𝐶𝑑,𝑖𝑑
ℰ = 1), 𝑑 = 1,… , 𝑛𝒯 , 𝑖𝑑 = 1,… , 𝑛𝑑

ℰ . (5) 

Our main argument hinges on the notion of positive association in studying dependent RV’s. 

Definition 3.3. A random vector 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑛) ∈ ℝ
𝑛, 𝑛 ∈ ℕ, is said to be positively associated if  

Cov(𝑓(𝑿), 𝑔(𝑿)) ≥ 0 

holds for all real-valued functions 𝑓 , 𝑔  which are non-decreasing in each coordinate and such that the 

covariance exists. 

Recall that 𝑪, 𝑰 and 𝑶 denote the sets of all RV’s related to compromise statuses, inside attacks and outsider 

attacks, respectively. The next assertion shows that the aforementioned RV’s are indeed positively 

associated. The succeeding lemma is of auxiliary importance. 

Lemma 3.4 (Shaked,1982). Assume that Borel measurable functions 𝑓𝑖: ℝ
𝑛 → ℝ𝑚, 𝑖 =  1, … ,𝑚 and 𝑚, 𝑛 ∈

 ℕ, are either all non-decreasing or all non-increasing component-wise. If 𝑿 ∈ ℝ𝑛  is positively associated, then 

(𝑓1(𝑿), … , 𝑓𝑚(𝑿)) is also positively associated. 

Proposition 3.5. Under Assumptions 3.1 and 3.2, the compromise status, inside attack and outside attack RV’s 

in a fog network, namely (𝑪, 𝑰, 𝑶), are positively associated. 

Proof. See, Appendix A.  

Now, we are ready to spell out the interval approximation for compromise probability vectors 𝒑ℱ  and 

𝒑𝑑
ℰ , 𝑑 = 1,… , 𝑛𝒯 . To facilitate the presentation, let us denote the outside attack probabilities by  

𝜔𝑗
ℱ ≔ ℙ(𝑂𝑗

ℱ = 1) = ℙ(𝑉ℱ = 0)ℙ(𝑂𝑗
ℱ = 1|𝑉ℱ = 0) + ℙ(𝑉ℱ = 1)ℙ(𝑂𝑗

ℱ = 1|𝑉ℱ = 1) 

= 𝜋𝑗
ℱ + 𝜈ℱ(𝜋ℱ∗ − 𝜋𝑗

ℱ),     𝑗 = 1, … , 𝑛ℱ , 

and similarly 

𝜔𝑑,𝑗𝑑
ℰ ∶= ℙ(𝑂𝑑,𝑗𝑑

ℰ = 1) = 𝜋𝑑,𝑗𝑑
ℰ + 𝜈𝑑

𝒯(𝜋𝑑
ℰ∗ − 𝜋𝑑,𝑗𝑑

ℰ ), 𝑑 = 1,… , 𝑛𝒯 , 𝑗𝑑 = 1,… , 𝑛𝑑
ℰ . 

Let 𝒍ℱ = (𝑙1
ℱ , … , 𝑙

𝑛ℱ
ℱ )⊤ with elements 

𝑙𝑗
ℱ = max

(

  
 
𝜔𝑗
ℱ
⏟



, ⋁ 𝛽𝑖𝑞𝑖→𝑗
ℱ

𝑛ℱ

𝑖=1,𝑖≠𝑗⏟        



,⋁ ∙

𝑛𝒯

𝑑=1

⋁max(𝜔𝑑,𝑖𝑑
ℰ , ⋁ 𝛽𝑖𝑞𝑖→(𝑑,𝑖𝑑)

ℱ

𝑛ℱ

𝑖=1,𝑖≠𝑗

)𝑞(𝑑,𝑖𝑑)→𝑗
ℰ

𝑛𝑑
ℰ

𝑖𝑑=1⏟                              

 )

  
 
, (6) 

where 

𝛽𝑗 = max(𝜔𝑗
ℱ , ⋁ 𝜔𝑖

ℱ𝑞𝑖→𝑗
ℱ

𝑛ℱ

𝑖=1,𝑖≠𝑗

,⋁ ∙

𝑛𝒯

𝑑=1

⋁max(𝜔𝑑,𝑖𝑑
ℰ , ⋁ 𝜔𝑖

ℱ𝑞𝑖→(𝑑,𝑖𝑑)
ℱ

𝑛ℱ

𝑖=1,𝑖≠𝑗

)𝑞(𝑑,𝑖𝑑)→𝑗
ℰ

𝑛𝑑
ℰ

𝑖𝑑=1

) 

for 𝑗 = 1,… , 𝑛ℱ. Moreover, let 

𝒖ℱ = (𝑢1
ℱ , … , 𝑢

𝑛ℱ
ℱ )⊤ = (𝟏 − 𝑨)−1(1 − 𝜸), (7) 
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in which 𝜸 = (𝛾1, … , 𝛾𝑛ℱ)
⊤ with 

𝛾𝑗: = (1 − 𝜔𝑗
ℱ)∏⋅

𝑛𝒯

𝑑=1

∏⋅

𝑛𝑑
ℰ

𝑖𝑑=1

[1 − 𝑞(𝑑,𝑖𝑑)→𝑗
ℰ + 𝑞(𝑑,𝑖𝑑)→𝑗

ℰ (1 − 𝜔𝑑,𝑖𝑑
ℰ ) ∏ (1 − 𝑞𝑖→(𝑑,𝑖𝑑)

ℱ )

𝑛ℱ

𝑖=1,𝑖≠𝑗

], 

and 𝑨 is an 𝑛ℱ  by 𝑛ℱ  zero diagonal matrix having off-diagonal elements 𝑎𝑖𝑗 = 𝛾𝑖𝑞𝑗→𝑖
ℱ  for 𝑖 ≠ 𝑗 ∈ {1, … , 𝑛ℱ}. 

Lastly, for 𝑑 = 1,… , 𝑛𝒯 , 𝑗𝑑 = 1,… , 𝑛𝑑
ℰ , define 𝒍𝑑

ℰ = (𝑙𝑑,1
ℰ , … , 𝑙

𝑑,𝑛𝑑
ℰ

ℰ )⊤with elements 

𝑙𝑑,𝑗𝑑
ℰ = max

(

 
 
𝜔𝑑,𝑗𝑑
ℰ

⏟  



,⋁ 𝑙𝑖
ℱ𝑞𝑖→(𝑑,𝑗𝑑)

ℱ

𝑛ℱ

𝑖=1⏟        

 )

 
 
, (8) 

and 𝒖𝑑
ℰ = (𝑢𝑑,1

ℰ , … , 𝑢
𝑑,𝑛𝑑

ℰ
ℰ )⊤with elements 

𝑢𝑑,𝑗𝑑
ℰ = 1 − (1 − 𝜔𝑑,𝑗𝑑

ℰ )∏(1 − 𝑢𝑖
ℱ𝑞𝑖→(𝑑,𝑗𝑑)

ℱ )

𝑛ℱ

𝑖=1

, (9) 

where 𝑙𝑗
ℱ  and 𝑢𝑗

ℱ , 𝑗 = 1, … , 𝑛ℱ , are specified in Equations (6) and (7), respectively. 

Theorem 3.6. Consider a fog network described as per Section 3, and suppose that Assumptions 3.1 and 3.2 

hold. The corresponding compromise probability vectors satisfy the following inequalities 

𝒍ℱ ≤ 𝒑ℱ ≤ 𝒖ℱ  

and 

𝒍𝑑
ℰ ≤ 𝒑𝑑

ℰ ≤ 𝒖𝑑
ℰ ,     for 𝑑 = 1,… , 𝑛𝒯 . 

Proof. See, Appendix A.  

Here are some remarks about Theorem 3.6. Firstly, the expressions in Equations (6) to (9) only contain simple 

algebraic operators, thus the bounds can be evaluated conveniently. Secondly, the lower bounds of 

compromise probabilities are derived by applying the co-monotonic approximation (Dhaene et al., 2002a, b) 

on the risk factors that determines the compromised probabilities, while in contrast, the upper bounds are 

based on the independence approximation. Thirdly, the compromise probabilities’ lower bounds possess an 

intuitive interpretation. Namely, if a given node gets infected, then the infection must be caused by either 

an outside attack or an inside attack launched from another compromised node. Thereby, the compromise 

probabilities must be bounded below by the maximum of the infection probabilities due to one of these 

causes. We again refer to Table 1 for the description of components contained in Equations (6) and (8). 

The succeeding hypothetical, but not so unrealistic, example demonstrates the usefulness of the interval 

approximation in Theorem 3.6 in an illuminated manner. It is our intention to keep the example’s set-up 

simple for ease of exposition. 

Example 3.7. Consider a fog network as per Figure 3, in which there are four fog nodes and six end devices. 

Two of the end devices are of type 1 end nodes, and the others are of type 2 end nodes. Further, for 𝑖 ∈

 {1, … ,4}, 𝑖1 = {1,2}, 𝑖2 ∈ {1, … ,4}, assume the idiosyncratic and systemic outside attack probabilities to be 

𝜋𝑖
ℱ  =  0.01 and 𝜋ℱ∗  =  0.05, respectively. Regarding the end nodes, because the inherent cybersecurity 
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configuration is typically weaker, outside attacks are more likely to success and we set 𝜋1,𝑖1
ℰ  =  0.2 and 

𝜋1
ℰ∗  =  0.25 for the type 1 end nodes, and  𝜋2,𝑖1

ℰ  =  0.2 and 𝜋2
ℰ∗  =  0.3  for the type 2 end nodes. The inside 

attack probabilities, 𝑞𝑖→𝑗
ℱ , 𝑞𝑖→(𝑑,𝑖𝑑)

ℱ , 𝑞(𝑑,𝑖𝑑)→𝑗
ℰ  are assumed to be identical and equal to 𝑞 ∈ (0,1). Similarly, we 

set the common vulnerability likelihoods 𝜈ℱ = 𝜈1
𝒯 = 𝜈2

𝒯 = 𝜈 . Table 2 depicts the interval estimates of 

compromised probabilities against the true compromised probabilities based on numerical simulation. 

Figure 3 

GROUPED COLUMN CHART SAMPLE THE FOG NETWORK OF EXAMPLE 3.7. 

 

 

Table 2 

THE INTERVAL APPROXIMATIONS AND SIMULATION-BASED CALCULATIONS OF COMPROMISE 

PROBABILITIES FOR THE FOG NETWORK IN EXAMPLE 3.7. 

 

v = 0.5 v = 0.6 v = 0.7 

Lower Sim. Upper Lower Sim. Upper Lower Sim. Upper 

q=0.1 𝑝1
ℱ 0.030 0.079 0.094 0.034 0.089 0.100 0.038 0.093 0.106 

𝑝2
ℱ 0.030 0.124 0.173 0.034 0.138 0.180 0.038 0.144 0.188 

𝑝3
ℱ 0.030 0.117 0.169 0.034 0.136 0.177 0.038 0.139 0.185 

𝑝4
ℱ 0.030 0.041 0.056 0.034 0.051 0.061 0.038 0.057 0.066 

𝑝1,1
ℰ  0.225 0.229 0.232 0.230 0.240 0.238 0.235 0.235 0.243 

𝑝1,2
ℰ  0.225 0.231 0.232 0.230 0.233 0.238 0.235 0.235 0.243 

𝑝2,1
ℰ  0.250 0.256 0.275 0.260 0.272 0.286 0.270 0.273 0.297 

𝑝2,2
ℰ  0.250 0.257 0.275 0.260 0.269 0.286 0.270 0.278 0.297 

𝑝2,3
ℰ  0.250 0.256 0.275 0.260 0.270 0.286 0.270 0.271 0.297 

𝑝2,4
ℰ  0.250 0.260 0.275 0.260 0.272 0.286 0.270 0.274 0.297 

q=0.25 𝑝1
ℱ 0.056 0.190 0.295 0.058 0.195 0.303 0.059 0.201 0.311 

𝑝2
ℱ 0.063 0.268 0.511 0.065 0.275 0.520 0.068 0.277 0.528 

𝑝3
ℱ 0.063 0.265 0.502 0.065 0.269 0.510 0.068 0.262 0.519 

𝑝4
ℱ 0.030 0.120 0.223 0.034 0.130 0.230 0.038 0.126 0.238 

𝑝1,1
ℰ  0.225 0.247 0.282 0.230 0.256 0.288 0.235 0.258 0.294 

𝑝1,2
ℰ  0.225 0.251 0.282 0.230 0.259 0.288 0.235 0.250 0.294 

𝑝2,1
ℰ  0.250 0.299 0.428 0.260 0.306 0.438 0.270 0.307 0.449 

𝑝2,2
ℰ  0.250 0.298 0.428 0.260 0.309 0.438 0.270 0.307 0.449 

𝑝2,3
ℰ  0.250 0.299 0.428 0.260 0.309 0.438 0.270 0.302 0.449 

𝑝2,4
ℰ  0.250 0.298 0.428 0.260 0.307 0.438 0.270 0.300 0.449 
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v = 0.5 v = 0.6 v = 0.7 

Lower Sim. Upper Lower Sim. Upper Lower Sim. Upper 

q=0.4 𝑝1
ℱ 0.090 0.318 0.673 0.092 0.317 0.679 0.094 0.316 0.684 

𝑝2
ℱ 0.100 0.396 0.860 0.104 0.390 0.864 0.108 0.383 0.867 

𝑝3
ℱ 0.100 0.388 0.854 0.104 0.381 0.858 0.108 0.374 0.861 

𝑝4
ℱ 0.040 0.246 0.623 0.042 0.244 0.628 0.043 0.242 0.633 

𝑝1,1
ℰ  0.225 0.295 0.434 0.230 0.297 0.439 0.235 0.298 0.444 

𝑝1,2
ℰ  0.225 0.295 0.434 0.230 0.297 0.439 0.235 0.298 0.444 

𝑝2,1
ℰ  0.250 0.369 0.676 0.260 0.365 0.682 0.270 0.362 0.687 

𝑝2,2
ℰ  0.250 0.368 0.676 0.260 0.365 0.682 0.270 0.362 0.687 

𝑝2,3
ℰ  0.250 0.369 0.676 0.260 0.365 0.682 0.270 0.362 0.687 

𝑝2,4
ℰ  0.250 0.369 0.676 0.260 0.365 0.682 0.270 0.362 0.687 

 

Here are how the numerical results in Example 3.7 should be interpreted. Firstly, because the outside attack 

probabilities of end nodes are higher than that of fog nodes, the fog nodes have lower compromised 

probabilities than the end nodes. Due to a similar reasoning, the type one end nodes have lower 

compromised probabilities compared to the type two end nodes. Among the four fog nodes, it is natural to 

conjecture that 𝑝4
ℱ ≤
(1)

𝑝1
ℱ ≤
(2)

𝑝3
ℱ ≤
(3)

𝑝2
ℱ  where 

• “≤
(1)

” holds since there is no end node directly connected to fog node 4; 

• “≤
(2)

” holds since the number of end nodes directly connected to fog node 1 is smaller than that of 

fog nodes 2 and 3, of which the outside attack probabilities are also smaller (i.e., 𝜔1,𝑖1
ℰ < 𝜔2,𝑖2

ℰ ); 

• “≤
(3)

” holds since fog node 2 is closer to the type one end nodes compared with fog node 3. 

It is noteworthy that both the lower and upper bounds of the interval approximations are capable of 

reflecting the aforementioned orders. 

Secondly, we change the inside attack probabilities among 𝑞 ∈ {0.1, 0.25, 0.4}. As shown, with all else being 

equal, if the fog network has a high security configuration and so the internal risk propagation probabilities 

are low, then the compromise probabilities are also low. In this case, since the cybersecurity risk is mainly 

caused by outside attacks which are well captured by the lower and upper bound formulas, the proposed 

interval method provides a very good estimate of the true compromise probability. However, as the inside 

attack probabilities increase, the effect of network dependence becomes more significant. The true network 

dependence is hard to be captured by the independent or co-monotonic approximation, thus the 

performance of the interval method decays. 

Thirdly, vary the probabilities of common vulnerabilities among 𝑣 ∈ {0.5, 0.6, 0.7}, we observe that the final 

compromise probabilities may get lower or higher as 𝜈 increases. This is caused by the intricate interplay 

between the inside attacks and outside attacks in the determination of the compromise probabilities. 

Namely, the calculation of compromise probability can be viewed as an application of Bayes rule of two 

conditional compromise probabilities given whether or not a common vulnerability occurs. Depending on 

the order of the two conditional compromise probabilities, the increment of 𝜈 may pose different directions 

of impacts to the unconditional compromise probabilities. The proposed interval approximation may not be 

capable of reflecting the direction of change in the compromise probabilities due to varying 𝜈. However, the 

approximation intervals are still able to capture the true compromise probabilities. 
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Section 4: Cybersecurity Risks in Smart Home Fog Networks  

The infection models established in the previous section are rather abstract. In order to gain more insights 

into the proposed framework, the rest of this article is devoted to the application of the proposed infection 

models on a smart home system which corresponds to one of the most common fog computing based IoT 

architectures. 

Consider the cyber infrastructure of a smart home provider, consisting of 𝑛ℱ  individual users and 𝑛𝒯  types 

of household kits (i.e., end devices). Typically, each user’s smart home system is equipped with a hub or 

gateway (i.e., fog node), acting as a go-between for multiple smart devices and enabling automation. Further, 

the fog nodes among different users are interconnected through a control center maintained by the service 

provider. Figure 4 illustrates the network structure underling a smart home system. As shown, the hubs and 

household kits of the smart home system form a fog network, even though there is no direct communication 

between the fog nodes. Nevertheless, the compromise statuses of fog nodes may be still highly dependent 

due to the presences of common vulnerabilities as well as the mutual connections to the control center. 

Figure 4 

ILLUSTRATION OF A SMART HOME NETWORK WITH THE END DEVICES ARE GROUPED ACCORDING TO THE 

OWNERSHIP OF INDIVIDUAL USERS, AND DIFFERENT TYPES OF END DEVICES ARE DISPLAYED IN DIFFERENT 

COLORS. 

 

 

The theoretical groundwork laid down in Section 3 can be utilized to model the cybersecurity risks in a smart 

home network. In the sequel, we will follow the same notations used in Section 3, and furthermore in order 

to capture the cybersecurity risks associated with the additional control center, let us introduce the following 

notations: 

• the compromise status RV for the central control, 𝐶𝒞 ∈ {0,1}; 

• the outside attack RV, 𝑂𝒞 ∈ {0,1}, with probability ℙ(𝑂𝒞 = 1) = 𝜔𝒞; 

• the inside attack RV, 𝐼𝑖→
ℱ ∈ {0,1} , indicates the internal infection launched from the 𝑖 -th 

compromised fog node to the healthy central control, with  ℙ(𝐼𝑖→
ℱ = 1) = 𝑞𝑖→

ℱ , and 𝐼
→𝑖
𝒞 ∈ {0,1} 

indicates the internal infection launched from compromised central control to the 𝑖-th healthy fog 

node, with ℙ(𝐼
→𝑖
𝒞 = 1) = 𝑞

→𝑖
𝒞 . 
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In the study of smart home, it is more convenient for us group the end devices based on the ownership of 

individual users. As demonstrated in Figure 4, each smart home device is directly connected to a single fog 

node, so for a specific end device, inside attack can be only launched from/to the particular connected fog 

node. For ease of exposition, fix 𝑑 = 1,… , 𝑛𝒯 , 𝑖 = 1,… , 𝑛ℱ , we further introduce 

𝔻𝑑,𝑖 = { 𝑗𝑑 ∈ {1, … , 𝑛𝑑
ℰ}: 𝑞𝑖→(𝑑,𝑗𝑑)

ℱ > 0     or     𝑞(𝑑,𝑗𝑑)→𝑖
ℰ > 0} 

to the denote the set of type 𝑑 end devices possessed by the 𝑖-th smart home user, among which inside 

attacks may occur. 

The state equation underlying the compromise status RV of the central control can be specified as  

𝐶𝒞 = 1 − (1 − 𝑂𝒞)∏(1 − 𝐶𝑗
ℱ,[] × 𝐼𝑗→

ℱ )

𝑛ℱ

𝑗=1

, (10) 

Where 

𝐶𝑗
ℱ,[] = 1 − (1 − 𝑂𝑗

ℱ)∏ ⋅

𝑛𝒯

𝑑=1

∏ (

𝑖𝑑∈𝔻𝑑,𝑗

1 − 𝑂𝑑,𝑖𝑑
ℰ × 𝐼(𝑑,𝑖𝑑)→𝑗

ℰ ),     𝑗 = 1, … , 𝑛ℱ , (11) 

corresponds to the compromise status of the 𝑗 -th fog node when the central control is excluded, or 

equivalently, assumed to be originally healthy. Moreover, state equations (1) - (3) can be adapted to capture 

the fog network structure of the smart home system. Namely, for the 𝑗-th fog nodes, 𝑗 = 1,… , 𝑛ℱ, we have  

𝐶𝑗
ℱ = 1 − (1 − 𝑂𝑗

ℱ)(1 − 𝐶𝒞,[𝑗] × 𝐼
→𝑗
𝒞 )∏ ⋅

𝑛𝒯

𝑑=1

∏ (

𝑖𝑑∈𝔻𝑑,𝑗

1 − 𝑂𝑑,𝑖𝑑
ℰ × 𝐼(𝑑,𝑖𝑑)→𝑗

ℰ  

= 1 − (1 − 𝐶𝒞,[𝑗] × 𝐼
→𝑗
𝒞 )(1 − 𝐶𝑗

ℱ,[]), (12) 

where 

𝐶𝒞,[𝑗] = 1 − (1 − 𝑂𝒞) ∏ (1 − 𝐶𝑖
ℱ,[]

× 𝐼𝑖→
ℱ )

𝑛ℱ

𝑖=1,𝑖≠𝑗

, 

is the state equation associated with the central control but with the 𝑗-th fog node excluded from the system. 

The state equation for the (𝑑, 𝑗𝑑)-th end device belonging to the 𝑖-th user can be specified as 

𝐶𝑑,𝑗𝑑
ℰ = 1 − (1 − 𝑂𝑑,𝑗𝑑

ℰ )(1 − 𝐶𝑖
ℱ𝐼𝑖→(𝑑,𝑗𝑑)
ℱ ),      𝑗𝑑 ∈ 𝔻𝑑,𝑖  with 𝑑 = 1,… , 𝑛𝒯, 𝑖 = 1, … , 𝑛ℱ. (13) 

Thanks to the more specific network topology underlying the smart home platform, we manage to compute 

the compromised probabilities in explicit forms. At first, let us begin with a simpler situation in which the 

central control is highly secure, and thus the associated cybersecurity risk due to the control center can be 

excluded from the consideration. 

Proposition 4.1. Consider the smart home network as illustrated in Figure 4, and further, assume that the 

control center is highly secure with zero compromise probability, i.e., 𝑝𝒞: = ℙ(𝐶𝒞 = 1) = 0. For a given set 

of 𝑚  fog nodes, indexed by Ξ = (𝜉1, … , 𝜉𝑚) ⊆ {1, … , 𝑛
ℱ} , their joint compromise probabilities can be 

computed via 
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𝑝Ξ
ℱ ≔ ℙ(⋂𝐶𝑗

ℱ,[] = 1

𝑗∈Ξ

) = 1 −∑(−1)𝑘−1
𝑚

𝑘=1

∑ ℎ(Ξ𝑘)

Ξ𝑘⊆Ξ

, (14) 

where Ξ𝑘 ∈ ℕ
𝑘  denotes any 𝑘-dimensional subset of Ξ, 𝑘 = 1,… ,𝑚, and 

ℎ(Ξ𝑘) = [(1 − 𝜈
ℱ)∏(1 − 𝜋𝑗

ℱ)

𝑗∈Ξ𝑘

+ 𝜈ℱ(1 − 𝜋ℱ∗)]∏𝑔(𝑑, Ξ𝑘)

𝑛𝒯

𝑑=1

 

with 

𝑔(𝑑, Ξ𝑘) = (1 − 𝜈𝑑
𝒯)∏ ⋅

𝑗∈Ξ𝑘

∏ (1 − 𝜋𝑑,𝑖𝑑
ℰ 𝑞(𝑑,𝑖𝑑)→𝑗

ℰ )

𝑖𝑑∈𝔻𝑑,𝑗

+ 𝜈𝑑
𝒯 (1 − 𝜋𝑑

ℰ∗ + 𝜋𝑑
ℰ∗∏ ⋅

𝑗∈Ξ𝑘

∏ (

𝑖𝑑∈𝔻𝑑,𝑗

1 − 𝑞(𝑑,𝑖𝑑)→𝑗
ℰ ))(15) 

measures the frequency of inside attacks launched from the type 𝑑 end devices to the fog nodes within Ξ𝑘. 

Remark 4.2. Formula (14) is reminiscent of the inclusion-exclusion principle in combinatorics. Specifically, it is 

observed that, 

ℙ(⋂𝐶𝑗
ℱ,[]

= 1

𝑗∈Ξ

) = 1 − ℙ(⋃𝐶𝑗
ℱ,[]

𝑗∈Ξ

= 0) = 1 −∑(−1)𝑘−1
𝑚

𝑘=1

∑ ⋅

Ξ𝑘⊆Ξ

ℙ(⋂ 𝐶𝑗
ℱ,[]

𝑗∈Ξ𝑘

= 0) , 

where ℙ(⋂ 𝐶𝑗
ℱ,[]

𝑗∈Ξ𝑘
= 0) can be computed explicitly via ℎ(Ξ𝑘). Within the expression of ℎ(Ξ𝑘), the former 

component captures the external attacks while the latter caters the inside attacks launched from the 

connected end nodes. Since the control center is assumed to have zero compromise probability, inside attacks 

originated from the other fog nodes are impossible to occur. 

Next, we proceed to study quantify the cybersecurity risk of smart home platform without assuming zero 

compromise probability for the control center. The succeeding lemma is of auxiliary importance. 

Lemma 4.3. Consider the smart home network as illustrated in Figure 4, for a given set of m fog nodes, indexed 

by Ξ = (𝜉1, … , 𝜉𝑚) ⊆ {1, … , 𝑛
ℱ}, the following formula holds for the outside attack RV of the (𝑑, 𝑗𝑑)-th end 

node belonging to the 𝑖-th smart home user: 

𝑓(𝑗𝑑 , Ξ) = 𝔼 [𝑂𝑑,𝑗𝑑
ℰ ∏𝐶𝑗

ℱ,[]

𝑗∈Ξ

] = 𝜔𝑑,𝑗𝑑
ℰ −∑(−1)𝑘−1

𝑚

𝑘=1

∑ 𝑢(𝑗𝑑 , Ξ𝑘)

Ξ𝑘⊆Ξ

, (16) 

where 

𝑢(𝑗𝑑 , Ξ𝑘) = ℎ(Ξ𝑘) × 𝑔(𝑑, Ξ𝑘)
−1

× [(1 − 𝜈𝑑
𝒯)𝜋𝑑,𝑗𝑑

ℰ (1 − 𝑞(𝑑,𝑗𝑑)→𝑖
ℰ )∏ ⋅

𝑗∈Ξ𝑘

∏ (1 − 𝜋𝑑,𝑙𝑑
ℰ 𝑞(𝑑,𝑙𝑑)→𝑗

ℰ )

𝑙𝑑∈𝔻𝑑,𝑗,𝑙𝑑≠𝑗𝑑

+ 𝜈𝑑
𝒯𝜋𝑑

ℰ∗∏ ⋅

𝑗∈Ξ𝑘

∏ (1 − 𝑞(𝑑,𝑙𝑑)→𝑗
ℰ )

𝑙𝑑∈𝔻𝑑,𝑗

]. 
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Theorem 4.4. Consider the smart home network as illustrated in Figure 4, the comprise probability for the 

control center can be computed via 

𝑝𝒞: = ℙ(𝐶𝒞 = 1) = 1 − (1 − 𝜔𝒞) [1 −∑(−1)𝑘−1
𝑛ℱ

𝑘=1

∑ 𝑝𝛯𝑘
ℱ

Ξ𝑘⊆Ξ
ℱ

∏𝑞𝑖→
ℱ

𝑖∈Ξ𝑘

] , 

where Ξ𝑘  is any subset of Ξℱ = (1,… , 𝑛ℱ), and 𝑝𝛯𝑘
ℱ  is the joint compromise probability for the fog nodes in 

Ξ𝑘  which can be computed via (14), 𝑘 = 1,… , 𝑛ℱ. 

Moreover, the underlying fog network has compromise probability for the 𝑗-th fog nodes, 𝑖 = 1,… , 𝑛ℱ: 

𝑝𝑖
ℱ = 1 − (1 − 𝑝𝑖

ℱ)(1 − 𝑞
→𝑖
𝒞 ) − 𝑞

→𝑖
𝒞 (1 − 𝜔𝒞) [1 −∑(−1)𝑘−1

𝑛ℱ

𝑘=1

∑ 𝑝𝛯𝑘
ℱ

Ξ𝑘⊆Ξ
ℱ

∏ 𝑞𝑗→
ℱ

𝑗∈Ξ𝑘,𝑗≠𝑖

] , 

and the compromise probability for the 𝑗𝑑-th type d end node is given by, for 𝑑 = 1,… , 𝑛𝒯 , 𝑗𝑑 = 1,… , 𝑛𝑑
ℰ ,  

𝑝𝑑,𝑗𝑑
ℰ = 𝜔𝑑,𝑗𝑑

ℰ + 𝑝𝑖
ℱ𝑞𝑖→(𝑑,𝑗𝑑)

ℱ −𝜔𝑑,𝑗𝑑
ℰ 𝑞𝑖→(𝑑,𝑗𝑑)

ℱ + 𝑞𝑖→(𝑑,𝑗𝑑)
ℱ (1 − 𝑞

→𝑗
𝒞 ) × 𝑡1 + 𝑞𝑖→(𝑑,𝑗𝑑)

ℱ 𝑞
→𝑖
𝒞 (1 − 𝜔𝒞) × 𝑡2, 

where 

𝑡1 = 𝜔𝑑,𝑗𝑑
ℰ − 𝑓(𝑗𝑑, 𝑖), 

and 

𝑡2 = 𝜔𝑑,𝑗𝑑
ℰ −∑(−1)𝑘−1

𝑛ℱ

𝑘=1

∑ 𝑓(𝑗𝑑 , Ξ𝑘)

Ξ𝑘⊆Ξ
ℱ

∏ 𝑞𝑗→
ℱ

𝑗∈Ξ𝑘,𝑗≠𝑖

. 

Herein, the functions 𝑔 and 𝑓 are given in (15) and (16), respectively. 

We illustrate the accuracy and effectiveness of the explicit formulas in Theorem 4.4 via the following 

example. 

Example 4.5. For the sake of exposition, let’s consider a smaller smart home network with three users. 

However, we remark that results established in Theorem 4.4 can be applied to study smart home networks 

consisting of arbitrary number of users. Suppose that there are two types of smart home end devices which 

are illustrated in different colors in Figure 5. The outside attack probabilities associated with the fog nodes 

and end devices are summarized in Table 3. Based on the setting, we can conclude that the type 2 end devices 

are more vulnerable to outside attacks than the type 1 end devices in the sense that both the idiosyncratic 

and systemic attacks may occur more frequently. However, the smart hub is safer than the end devices against 

outside cyber-attacks. We also assume that the inside attack probabilities among end nodes and fog nodes 

are identical and equal to 0.25. 

Table 3 

OUTSIDE ATTACK PROBABILITIES OF EXAMPLE 4.5 

 Smart hub Type 1 home kits Type 2 home kits 

Idiosyncratic attack 0.1 0.2 0.3 

Systemic attack 0.05 0.1 0.2 

Common vulnerability 0.1 0.1 0.2 
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Typically, the control center would possess a higher level of security configuration, so we assume a lower 

outside attack probability 𝜔𝒞 = 0.01 and inside infection probabilities 𝑞𝑗→
ℱ = 𝑞

→𝑗
𝒞 = 0.05, 𝑗 = 1, 2, 3. 

Figure 5 

CYBERSECURITY RISKS FACED BY A SMART HOME PLATFORM. 

 
 

In our paper, the compromise probabilities can be computed using the explicit formulas in Theorem 4.4 or 

using MC simulations based on (1) – (3). Table 4 compares the performance of the precise calculation method 

proposed in this current section against the Monte Carlo simulation method for evaluating the compromise 

probabilities in the smart home infrastructure specified in Example 4.5. For each fixed sample size in the 

simulation study, the same experiment is repeated 1,000 times in order to construct the probability 

distribution of the empirical estimators for the compromise probabilities. The computation time of each 

simulation trial is reported at the end of Table 4. 

Here are how the numerical results should be interpreted. First, the compromised probabilities computed 

using Theorem 4.4 coincide with the means of the estimated compromise probabilities based on Monte Carlo 

simulation, and the minor discrepancies are caused by the simulation fluctuations. As the same size 𝑛 

increases, the standard deviations of the empirical estimators of comprise probabilities decay at a rate of 

approximately √𝑛, which complies with the large-sample theory of empirical means. Second, the explicit 

formulas proposed in Theorem 4.4 compute the compromise probabilities in much faster speeds than the 

simulation method. Third, the computed compromise probabilities make very intuitive sense. For instance, 

the control center has the lowest compromise probability among all the devices since its associated outside 

and insider infection probabilities are assumed to be lower. Among the three smart home users, the first 

user’s smart hub has the highest compromise probability because the user possesses more type 2 end 

devices which are more vulnerable to outside cyber-attacks compared with the type 1 end devices. In 

contrast, the third smart home user has the least number of end devices, so the compromise probability is 

lowest. Within the same type of end devices, say type 1, the (1,5)-th device has the lowest compromise 

probability because the third user has only two end devices and insider attacks are less likely to occur. End 

devices (1,2), (1,3) and (1,4) have the same compromise probability because they belong to the same smart 

home user, while the outside and insider attack probabilities are assumed to be the same across the same 

type of end devices. The (1,1)-th end device has the highest compromise probability among the type 1 end 

devices. This can be explained by the fact that the first smart home user owns more number of the type 2 

end devices which have higher cybersecurity risks, as mentioned earlier, and once infected, they may launch 
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inside attacks to the (1,1)-th device. A similar argument can be adopted to explain the order in the 

compromise probabilities for the type 2 end devices. 

Table 4 

COMPARISON BETWEEN THE MONTE CARLO SIMULATION ESTIMATES OF THE COMPROMISE 

PROBABILITIES AND THE PRECISE CALCULATION ACCORDING TO THEOREM 4.4 FOR THE SMART HOME 

PLATFORM SPECIFIED AS PER EXAMPLE 4.5. FOR EACH SAMPLE SIZE 𝑛 ∈ {1,000, 5,000, 25,000}, THE 

SIMULATION IS REPEATED 1,000 TIMES TO CALCULATE THE MEAN AND STANDARD DEVIATION (SD) OF 

THE COMPROMISE PROBABILITIES ESTIMATES. THE COMPUTATION SPEED REPORTED IN TERMS OF 

SECONDS, IS BASED ON A LAPTOP COMPUTER WITH THE 64 BIT WINDOWS 7 OPERATIONAL SYSTEM, AND 

A 3.3 GHZ CPU WITH 4 THREADS. 

 Simulation 
Explicit 

calculation 

 

n = 1,000 n = 5,000 n = 25,000 

 Mean SD Mean SD Mean SD 

𝑝𝐶  0.046 0.007 0.047 0.003 0.048 0.001 0.048 

𝑝1
ℱ 0.303 0.013 0.302 0.007 0.303 0.003 0.303 

𝑝2
ℱ 0.272 0.014 0.274 0.006 0.272 0.002 0.272 

𝑝3
ℱ 0.202 0.013 0.201 0.006 0.199 0.003 0.2 

𝑝1,1
ℰ  0.244 0.013 0.244 0.006 0.244 0.003 0.244 

𝑝1,2
ℰ  0.235 0.014 0.238 0.006 0.237 0.003 0.237 

𝑝1,3
ℰ  0.237 0.014 0.237 0.006 0.237 0.002 0.237 

𝑝1,4
ℰ  0.237 0.014 0.237 0.007 0.237 0.003 0.237 

𝑝1,5
ℰ  0.223 0.015 0.223 0.006 0.222 0.003 0.222 

𝑝2,1
ℰ  0.323 0.013 0.322 0.006 0.323 0.003 0.322 

𝑝2,2
ℰ  0.324 0.014 0.322 0.006 0.322 0.003 0.322 

𝑝2,3
ℰ  0.322 0.015 0.323 0.006 0.322 0.003 0.322 

𝑝2,4
ℰ  0.319 0.014 0.319 0.007 0.319 0.003 0.319 

𝑝2,5
ℰ  0.307 0.013 0.305 0.006 0.305 0.003 0.305 

Time (sec.) 2.26 6.62 45.97 0.69 

 

Section 5: Applications to Cybersecurity Insurance Pricing 

Our discussion thus far focuses on modeling the frequency of compromise events in a given fog network. 

Namely, during a unit time period (e.g., one month/quarter/year), the compromised RV’s, 𝑪 , indicates 

whether or not a specific node is compromised. 

In the context of insurance pricing, the aggregate financial losses caused by the compromised nodes are of 

central interest. To this end, we resort to the frequency-severity approach which has evolved as an industry 

standard in pricing insurance risk generally, and cybersecurity risks particularly (see, Jevtić and Lanchier, 

2020; Xu and Hua, 2019). To be specific, let 𝑋𝒞 > 0, 𝑋𝑖
ℱ > 0, and  𝑋𝑑,𝑖𝑑

ℰ > 0 be the financial losses caused by 

an infection of the control center, the 𝑖-th fog node, and the (𝑑, 𝑖𝑑)-th end node, respectively. It is assumed 

that these severity RV’s 𝑋𝒞, 𝑋𝑖
ℱ , and  𝑋𝑑,𝑖𝑑

ℰ  are mutually independent, and also independent of the 

compromise status RV’s 𝐶𝒞, 𝐶𝑖
ℱ, and  𝐶𝑑,𝑖𝑑

ℰ , 𝑖 = 1, … , 𝑛ℱ , 𝑖𝑑 = 1, . . , 𝑛𝑑
ℰ , 𝑑 = 1,… , 𝑛𝒯. The aggregate loss for 

the entire fog network of a smart home platform can be evaluated via  
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𝐿 = 𝐶𝒞𝑋𝒞 +∑𝐶𝑖
ℱ𝑋𝑖

ℱ

𝑛ℱ

𝑖=1

+∑ ⋅

𝑛𝒯

𝑑=1

∑ 𝐶𝑑,𝑖𝑑
ℰ 𝑋𝑑,𝑖𝑑

ℰ

𝑛𝑑
ℰ

𝑖𝑑=1

, (17) 

in which the three components cater the cybersecurity losses due to the compromises of control center, fog 

nodes and end nodes, respectively. It is noteworthy that although our discussion in this section is specialized 

for the smart home application, aggregate model (17) does not rely on any specific network topology, so in 

principle, it can be used to study any fog network. 

To price the cybersecurity insurance, prevalent actuarial pricing principles include 

Expectation principle: 𝜚1(𝐿) = (1 + 𝜃)𝔼[𝐿];                                             (18) 

Standard deviation principle: 𝜚2(𝐿) = 𝔼[𝐿] + 𝜃√Var(𝐿);                                   (19) 

Gini mean difference principle: 𝜚3(𝐿) = 𝔼[𝐿] + 𝜃GMD(𝐿).                                    (20) 

In the above pricing principles, 𝜃 > 0 is the loading parameter, and for a pair of independent copies of 𝐿, 

GMD(𝐿) = 𝔼[|𝐿1 − 𝐿2|] 

given that the expectation exists, denotes the Gini mean difference (GMD) which is known to be a robust 

alternative of the standard deviation as a statistics measure of variability (see more detailed discussion in, 

e.g., Yitzhaki et al., 2003; Furman et al., 2017, 2019). 

For the sake of illustration, in what follows, let us consider the insurance pricing for the smart home system 

considered in Example 4.5. Some additional assumptions related to the loss severity RV’s are needed. It is 

natural that the compromise of the control center is more likely to result in more severe financial losses than 

the individual fog nodes and end nodes, so we assume 

𝑋𝒞 ∼  Lomax(𝛼, 𝛽),     𝛼 ∈ ℝ+, 𝛽 ∈ ℝ+, 

follows the heavy-tailed Lomax distribution, and 

𝑋𝑖
ℱ ∼  LN(𝜇, 𝜎2),     𝜇 ∈ ℝ, 𝜎 ∈ ℝ+, 

follows the moderately heavy-tailed log normal distribution, and 

𝑋𝑑,𝑖𝑑
ℰ ∼  Exp(𝜆𝑑), 𝜆𝑑 ∈ ℝ+, 

follows the exponential distribution which has a light tail. 

In the evaluation of the expectation principle, it is straightforward to check that 

𝔼[𝐿] = 𝑝𝒞𝜇𝒞 +∑𝑝𝑖
ℱ𝜇𝑖

ℱ

𝑛ℱ

𝑖=1

+∑ ⋅

𝑛𝒯

𝑑=1

∑ 𝑝𝑑,𝑖𝑑
ℰ 𝜇𝑑,𝑖𝑑

ℰ

𝑛𝑑
ℰ

𝑖𝑑=1

, 

where 𝜇𝒞 = 𝔼[𝑋𝒞], 𝜇𝑖
ℱ = 𝔼[𝑋𝑖

ℱ], 𝜇𝑑,𝑖𝑑
ℰ = 𝔼[𝑋𝑑,𝑖𝑑

ℰ ], 𝑖 = 1, … , 𝑛ℱ , 𝑖𝑑 = 1,… , 𝑛𝑑
ℰ , 𝑑 = 1,… , 𝑛𝒯 , and the 

compromise probabilities 𝑝𝒞 , 𝑝𝑖
ℱ  and 𝑝𝑑,𝑖𝑑

ℰ  can be computed explicitly according to Theorem 4.4. However, 

in the evaluation of the standard deviation principle and the GMD principle, both the variance and GMD of 

the aggregate loss 𝐿 cannot (or otherwise, are very challenging to) be computed explicitly, so numerical 

computation via simulation is adopted. 
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In the succeeding numerical study, we choose the attack probabilities specified in Example 4.5 as the baseline 

parameters for the frequency model. The baseline parameters for the severity model are summarized in 

Table 5. This parameters setting indicates the followings. First, if a compromise occurs, then the control 

center has the highest average cybersecurity loss with the most heavy-tailed distribution. Second, the loss 

distributions for the fog nodes are assumed to be identical. Third, as specified earlier in the setup of Example 

4.5, the type 2 home kits are more vulnerable to cyber-attacks than the type 1 home kits because the 

associated cybersecurity losses are lower. 

Table 5 

THE BASELINE PARAMETERS FOR THE SEVERITY MODELS OF DIFFERENT NETWORK ELEMENTS WITH THE 

SUMMARY STATISTICS OF THE ASSOCIATED DISTRIBUTIONS. THE DECIMALS ARE DROPPED FOR 

BRIEFNESS. 

 Parameter Mean SD GMD 

Percentiles 

25% 50% 75% 

Control center (𝛼, 𝛽) = (5 × 104, 11) 5000 5528 5238 1325 3252 6716 

Smart hub (𝜇, 𝜎2) = (4.26, 0.832) 100 100 88 93 99 106 

Type 1 home kits λ1 = 0.1 10 10 10 3 7 14 

Type 2 home kits λ2 = 0.2 5 5 5 1 3 7 

 

Under the baseline parameters, Figure 6 displays the histograms of the shifted log transform of the 

cybersecurity loss for different components in the smart home network based on 105 times of simulation. 

As shown, the end devices have the most frequent cybersecurity losses because their security configurations 

are low and the associated compromise probabilities are high. The smart hubs / fog nodes have lower 

frequency of cybersecurity losses. The control center has the lowest rate of occurrence of cyber events, but 

once they occur, the financial loss can be very severe. As a consequence, the aggregate loss of the whole 

network also features a highly right skewed distribution, shedding light on the importance of having a fine 

risk management program in place for the cyber insurance provider to administer these tail losses. 

A sensitivity analysis is conducted so as to identify the key parameters driving the insurance prices. In each 

scenario of the analysis, we shock a set of similar parameters by 50% while keeping the other baseline 

parameters unchanged, and then the variations in the cyber insurance prices are assessed. Table 6 depicts 

the sensitivities of the cyber insurance prices according to different types of cyber-attacks. We find that 

among the three actuarial pricing principles, the standard deviation principle yields the highest premium yet 

the expectation principle yields the lowest. The order is intuitive because, as shown earlier in Figure 6, the 

aggregate cybersecurity loss of the smart home network is highly right skewed, while as statistics measures 

of variations, the standard deviation penalizes large deviation harsher than the GMD. The insurance prices 

become lower in the downside case of the sensitivity analysis, because the probabilities of inside and outside 

attacks are lower, corresponding to a safer network. Among different attack types, the inside attack 

parameters have the most substantial influences to the insurance prices, which is again intuitive. Namely, in 

an unsecured network with high inside attack successful rates, even a single outside attack can be 

propagated in network and infect many other devices. Compared between the idiosyncratic attacks and 

systemic attacks, the insurance prices are more sensitive to the idiosyncratic attacks. The reason is that in 

this example, we assume relatively low occurrence rates of common vulnerabilities, so idiosyncratic attacks 

play a more dominating role in the determination of the compromise probability. In another unreported 

analysis where the common vulnerabilities probabilities are assume to be high, then we observe that the 

aforementioned order is reversed. 
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Figure 6 

HISTOGRAMS OF THE SHIFTED LOG TRANSFORM (I.E., 𝑓(𝑙) = log(𝑙 + 1) , 𝑙 ≥ 0) OF THE FINANCIAL 

LOSSES DUE TO THE COMPROMISES OF CONTROL CENTER (TOP-LEFT), FOG NODES (TOP-RIGHT), AND END 

NODES (BOTTOM-LEFT), AS WELL AS THE AGGREGATE LOSS FOR THE ENTIRE NETWORK (BOTTOM-RIGHT). 

       

(a)                                                                                               (b) 

        

(c)                                                                                              (d) 

 

Finally, the insurance price sensitivities in accordance with the compromise likelihoods of different network 

elements are examined. Based on Table 7, we observe that the fog nodes have the most noticeable impacts 

on the insurance prices, with a 50% increase in the compromise probabilities rises the insurance prices by 

about 25%. This is probably because the fog nodes have relatively high compromise frequency while the 

consequent financial losses are also higher than that of the end nodes. The control center possesses a high 

level of network security configuration, so the associated compromise frequency is very low, and the 

insurance prices are less sensitive to the changes in its compromise probability. 

Collectively, our sensitivity analysis shows that the inside attack vulnerabilities and the economic losses due 

to compromised fog nodes are the key drivers in the smart home insurance premium calculation.  However, 

the readers must also note that this conclusion are drawn based on the network topology specified in this 

section.  The conclusion should not be directly generalized to all fog networks.  Nevertheless, the readers 

can adopt the framework proposed in this present paper to identify the most sensitive components in their 

pricing problems. 

Table 6 

SENSITIVITY ANALYSIS OF THE CYBER INSURANCE PRICES IN RESPONSE TO THE CHANGES IN THE 

COMPROMISE PROBABILITIES AMONG DIFFERENT TYPES OF CYBER ATTACKS. EACH SET OF PARAMETERS 
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ARE SHOCKED BY −50% IN THE DOWNSIDE CASE AND +50% IN THE UPSIDE CASE. THE PRICES 𝜚1, 𝜚2 AND 

𝜚3 ARE COMPUTED BASED ON THE PRICING PRINCIPLES SPECIFIED IN EQUATIONS (18) - (20) WITH 𝜃 =

0.1 THE PERCENTAGE OF CHANGE IN THE INSURANCE PRICE COMPARED WITH THE BASELINE PRICE IS 

REPORTED IN THE BRACKETS AFTER EACH SHOCKED PRICE. 

Shocked parameters Case 𝜚1 𝜚2 𝜚3 
 Baseline 355.388 479.845 378.589 

Idiosyncratic attacks Down 244.637(-31%) 370.289(-23%) 263.141(-30%) 

(𝜋𝑖
ℱor 𝜋(𝑑,𝑖𝑑)

ℰ ) Up 458.778(29%) 586.190(22%) 484.901(28%) 

Systemic attacks Down 346.962(-2%) 469.643(-2%) 369.654(-2%) 

(𝜋ℱ∗, 𝜋𝑑
ℰ∗) Up 387.636(9%) 527.621(10%) 412.887(9%) 

Common vulnerabilities Down 351.698(-1%) 472.729(-1%) 374.038(1%) 

( 𝑣ℱ , 𝜈𝑑
ℰ) Up 368.413 (4%) 503.146(5%) 392.713(4%) 

Inside attacks Down 202.418(-43%) 292.745(-39%) 215.057(-43%) 

(𝑞𝑗→∙
ℱ , 𝑞∙→𝑗

𝒞 , 𝑞𝑗→(𝑑,𝑖)
ℱ , 𝑞(𝑑,𝑖)→𝑗

ℰ ) Up 565.294(59%) 713.606(49%) 601.435(59%) 

 

Table 7 

SENSITIVITY ANALYSIS OF THE CYBER INSURANCE PRICES IN RESPONSE TO THE CHANGES IN THE 

COMPROMISE PROBABILITIES AMONG DIFFERENT TYPES OF NODES. THE SET-UP OF THE SENSITIVITY 

ANALYSIS IS SAME AS THAT OF TABLE 6. 

Shocked parameters Case 𝜚1 𝜚2 𝜚3 
 Baseline 355.388 479.845 378.589 

Control center Down 341.397(-4%) 460.020(-4%) 363.028(-4%) 

(𝜔𝒞) Up 369.010(4%) 492.982(3%) 393.138(4%) 

Fog nodes Down 310.522(-13%) 432.914(-10%) 331.293(-12%) 

(𝜋𝑖
ℱ , 𝜋ℱ∗, 𝑣ℱ)  Up 439.996(24%) 585.632(22%) 468.503(24%) 

Type 1 end nodes Down 317.642(-11%) 434.87(-9%) 339.120(-10%) 

(𝜋(1,𝑖1)
ℰ , 𝜋1

ℰ∗, 𝜈1
ℰ) Up 403.906(14%) 540.448(13%) 429.029(13%) 

Type 2 end nodes Down 317.737(-11%) 458.763(-9%) 339.587(-11%) 

(𝜋(2,𝑖2)
ℰ , 𝜋2

ℰ∗, 𝜈2
ℰ) Up 406.4879(14%) 537.1767(12%) 431.4025(14%) 

 

Section 6: Further discussion 

Admittedly, cyber insurance data available for academic research are very scarce.  The focus on the emerging 

concept of fog computing further limits the data availability. Due to the absence of available data, we are not 

able to conduct a back-testing to validate the accuracy of the modeling framework. In practice, parameters 

such as the outside and inside attack probabilities and the ones that characterize the loss distributions of 

compromise components, can be only chosen according to expert knowledge.  However, we do hope that 

our work can draw more attentions from the actuarial community to this interesting research area, so that 

more data may be generated and collected in the near future.  When fog network attack data and insurance 

loss data become available, actuaries can obtain more accurate estimation the model’s parameters based 

on the real life data.  The modeling framework and the pricing approach suggested in this current paper will 

remain useful.  
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Section 7: Conclusions 

In this paper, we proposed a class of mathematical models to describe the cybersecurity risk propagation 

mechanisms in a general fog network. We investigated the associations among a variety of risk contributors 

in the determination of a fog network’s cybersecurity risk. For a general fog network, we suggested an 

interval approximation method to assess the compromise probabilities of individual network elements. For 

the fog network underlying a smart home platform, we obtained a set of explicit formulas to calculation the 

compromise probabilities precisely. A quantitative framework based on actuarial pricing principles has been 

proposed to price the cyber insurance contract for the smart home applications. It was discovered that the 

impacts of heterogeneity and interdependency should never be overlooked in the fog networks. The inherent 

common vulnerabilities is also crucial in determining the risk and related pricing strategies. 

The study on the fog computing from the risk management and actuarial perspectives are still in its infancy. 

The main challenges are caused by its multi-tenant and resource-sharing architectures, which results in a 

considerably large attack surface. The current work makes a significant first step towards tackling the 

problem of modeling and pricing the cybersecurity risk in fog networks. Moving forward, we are interested 

in the following interesting yet challenging issues: i) Dynamic cyber risk. In our current study, the compromise 

probabilities are assumed to be static. In some practical instances, the dynamic probabilities may be desired. 

Therefore, a proper dynamic epidemic spreading model can be developed for this purpose; see, e.g., Xu and 

Hua (2019). ii) Cascading effects. The cascading failure can be incorporated into the modeling process, which 

refers to the failure of one or several nodes triggering the failure of other nodes. Note that although the 

cascading failure and cyber risk propagation are similar, the cascading failure mainly focuses on the physical 

layer, while the cyber risk propagation focuses on the communication/network layer. Since the cascading 

failure is not uncommon in the fog computing, it can be considered as the other risk factor. One may refer 

to Xing (2020) for a recent review on cascading failure in the IoT. iii) Cybersecurity risk aggregation. Since the 

fog computing is widely deployed for a variety of IoT applications, an insurance company can have several 

businesses lines, e.g., smart home, fog servers, and smart cars, constituting a cyber insurance portfolio. To 

realize the diversification benefit and properly understand the systemic risk inherent in the portfolio, the 

calculation of aggregate risk capital is of interest for the insurance company, which should be carefully 

investigated. 

 

 

 

 

 

 

 

 

http://soa.qualtrics.com/jfe/form/SV_512NQwtGlBkLRUW
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Appendix A: Technical proofs 

Proof of Proposition 3.5. We begin by proving that the outside attack RV’s are positively associated. Focus on 

fog nodes first and consider the RV Oℱ = (𝑂1
ℱ , … , 𝑂

𝑛ℱ
ℱ ), it is straightforward to check that 

ℙ(𝑂𝑖
ℱ > 𝑜𝑖|𝑂𝑗

ℱ = 𝑜𝑗 , 𝑗 = 1, … , 𝑖 − 1) = (1 − 𝜈
ℱ)ℙ(𝑂𝑖

ℱ > 𝑜𝑖|𝑉
ℱ = 0) 

+𝜈ℱℙ(𝑂𝑖
ℱ > 𝑜𝑖|𝑉

ℱ = 1, 𝑂𝑗
ℱ = 𝑜𝑗 , 𝑗 = 1, … , 𝑖 − 1) 

is nondecreasing in (𝑜1 , … , 𝑜𝑖−1) ∈ {0,1}
𝑖−1   for all 𝑜𝑖 ∈ ℝ，𝑖 = 2,… , 𝑛

ℱ . So the RV Oℱ  is conditionally 

increasing in sequence, which implies it is positively associated (see, Theorem 2.4 in Joe, 1997). Repeated 

applications of the aforementioned argument to O𝑑
ℰ，𝑑 = 1,… , 𝑛𝒯 , yield that each of them is positively 

associated. Because of Assumption 3.1, the RV Oℱ,O1
ℰ , … ,O𝑛𝒯

ℰ
 are mutually independent, so 𝑶 is positively 

associated. 

By Assumption 3.2, 𝑰  is independent hence positively associated. Moreover, 𝑰  and 𝑶  are independent. 

Thereby, RV (𝑰, 𝑶) is positively associated. 

Next, note that state equations (1) and (3) can be expressed as 

𝐶𝑖
ℱ = ℎ𝑖(𝑰, 𝑶)     and     𝐶𝑑,𝑖𝑑

ℰ = ℎ𝑑,𝑖𝑑(𝑰, 𝑶), 

respectively, for some coordinate-wise non-decreasing functions ℎ𝑖(∙)  and ℎ𝑑,𝑖𝑑(∙), 𝑖 = 1,… , 𝑛
ℱ , 𝑑 =

1,… , 𝑛𝒯 , 𝑖𝑑 = 1,… , 𝑛𝑑
ℰ . Evoking Lemma 3.4, we can conclude that (𝑪, 𝑰, 𝑶) is positively associated. This 

completes the proof.                                                                                                                                             

Proof of Theorem 3.6. At the beginning, note that the compromise probabilities associated with state 

equations (1) and (3) can be computed via, 

𝑝𝑗
ℱ = 1 − ℙ(𝑂𝑗

ℱ ≤ 0, ⋂ 𝐶𝑖
ℱ𝐼𝑖→𝑗
ℱ ≤ 0

𝑛ℱ

𝑖=1,𝑖≠𝑗

,⋂ ⋅

𝑛𝒯

𝑑=1

⋂𝐶𝑑,𝑖𝑑
ℰ,[𝑗]
𝐼(𝑑,𝑖𝑑)→𝑗
ℰ ≤ 0

𝑛𝑑
ℰ

𝑖𝑑=1

) ,     for 𝑗 = 1,… , 𝑛ℱ , (21) 

and 

𝑝𝑑,𝑗𝑑
ℰ = 1 − ℙ(𝑂𝑑,𝑗𝑑

ℰ ≤ 0, ⋂ 𝐶𝑖
ℱ𝐼𝑖→(𝑑,𝑗𝑑)
ℱ ≤ 0

𝑛ℱ

𝑖=1,𝑖≠𝑗

) ,     for 𝑑 = 1,… , 𝑛𝒯 , 𝑗𝑑 = 1,… , 𝑛𝑑
ℰ . (22) 

Thus the task in this proof boils down to identifying the lower and upper bounds for the cumulative 

distribution functions (CDF) of dependent binary RV’s in Equations (21) and (22). 

First, we consider the compromise RV’s 𝐶𝑑,𝑖𝑑
ℰ,[𝑗]

 defined in Equation (2). We have proved in Proposition 3.5 that 

(𝑪, 𝑰, 𝑶)  is positively associated. On the one hand, because positive association implies positive lower 

orthant dependence (Shaked, 1982), it holds that 

𝔼 [𝐶𝑑,𝑖𝑑
ℰ,[𝑗]
] = 1 − ℙ(𝑂𝑑,𝑖𝑑

ℰ ≤ 0, ⋂ 𝐶𝑖
ℱ𝐼𝑖→(𝑑,𝑖𝑑)
ℱ ≤ 0

𝑛ℱ

𝑖=1,𝑖≠𝑗

) 
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≤ 1 − ℙ(𝑂𝑑,𝑖𝑑
ℰ ≤ 0) ∏ ℙ(𝐶𝑖

ℱ𝐼𝑖→(𝑑,𝑖𝑑)
ℱ ≤ 0)

𝑛ℱ

𝑖=1,𝑖≠𝑗

 

= 1 − [1 − 𝜈𝑑
𝒯𝜋𝑑

ℰ∗ − (1 − 𝜈𝑑
𝒯)𝜋𝑑,𝑖𝑑

ℰ ] ∏ (1 − 𝑝𝑖
ℱ𝑞𝑖→(𝑑,𝑖𝑑)

ℱ )

𝑛ℱ

𝑖=1,𝑖≠𝑗

. 

On the other hand, by Fréchet inequalities (Fréchet, 1951), we readily obtain 

ℙ(𝑂𝑑,𝑖𝑑
ℰ ≤ 0, ⋂ 𝐶𝑖

ℱ𝐼𝑖→(𝑑,𝑖𝑑)
ℱ ≤ 0

𝑛ℱ

𝑖=1,𝑖≠𝑗

) ≤ min(ℙ(𝑂𝑑,𝑖𝑑
ℰ ≤ 0), ⋀ ℙ(𝐶𝑖

ℱ𝐼𝑖→(𝑑,𝑖𝑑)
ℱ ≤ 0)

𝑛ℱ

𝑖=1,𝑖≠𝑗

) 

= 1 −max(𝜈𝑑
𝒯𝜋𝑑

ℰ∗ + (1 − 𝜈𝑑
𝒯)𝜋𝑑,𝑖𝑑

ℰ , ⋁ 𝑝𝑖
ℱ𝑞𝑖→(𝑑,𝑖𝑑)

ℱ

𝑛ℱ

𝑖=1,𝑖≠𝑗

). 

So we get 

max(𝜔𝑑,𝑖𝑑
ℰ , ⋁ 𝑝𝑖

ℱ𝑞𝑖→(𝑑,𝑖𝑑)
ℱ

𝑛ℱ

𝑖=1,𝑖≠𝑗

) ≤ 𝔼 [𝐶𝑑,𝑖𝑑
ℰ,[𝑗]
] ≤ 1 − (1 − 𝜔𝑑,𝑖𝑑

ℰ ) ∏ (1 − 𝑝𝑖
ℱ𝑞𝑖→(𝑑,𝑖𝑑)

ℱ )

𝑛ℱ

𝑖=1,𝑖≠𝑗

. (23) 

Next, we turn to the compromise probabilities of fog nodes in Equation (21). Another application of the 

property of positive association yields 

𝑝𝑗
ℱ = 1 − ℙ(𝑂𝑗

ℱ ≤ 0, ⋂ 𝐶𝑖
ℱ𝐼𝑖→𝑗
ℱ ≤ 0

𝑛ℱ

𝑖=1,𝑖≠𝑗

,⋂ ⋅

𝑛𝒯

𝑑=1

⋂𝐶𝑑,𝑖𝑑
ℰ,[𝑗]
𝐼(𝑑,𝑖𝑑)→𝑗
ℰ ≤ 0

𝑛𝑑
ℰ

𝑖𝑑=1

) 

≤ 1 − ℙ(𝑂𝑗
ℱ ≤ 0) ∏ ℙ(𝐶𝑖

ℱ𝐼𝑖→𝑗
ℱ ≤ 0)

𝑛ℱ

𝑖=1,𝑖≠𝑗

∏⋅

𝑛𝒯

𝑑=1

∏ℙ(𝐶𝑑,𝑖𝑑
ℰ,[𝑗]
𝐼(𝑑,𝑖𝑑)→𝑗
ℰ ≤ 0)

𝑛𝑑
ℰ

𝑖𝑑=1

 

      = 1 − (1 − 𝜔𝑗
ℱ) ∏ (

𝑛ℱ

𝑖=1,𝑖≠𝑗

1 − 𝑝𝑖
ℱ𝑞𝑖→𝑗

ℱ )∏⋅

𝑛𝒯

𝑑=1

∏[1 − 𝔼 [𝐶𝑑,𝑖𝑑
ℰ,[𝑗]
] 𝑞(𝑑,𝑖𝑑)→𝑗

ℰ ] .

𝑛𝑑
ℰ

𝑖𝑑=1

(24) 

Evoke the upper bound derived in Equation (23), we get 

1 − 𝔼 [𝐶𝑑,𝑖𝑑
ℰ,[𝑗]
] 𝑞(𝑑,𝑖𝑑)→𝑗

ℰ ≥ 1 − 𝑞(𝑑,𝑖𝑑)→𝑗
ℰ + 𝑞(𝑑,𝑖𝑑)→𝑗

ℰ (1 − 𝜔𝑑,𝑖𝑑
ℰ ) ∏ (1 − 𝑝𝑖

ℱ𝑞𝑖→(𝑑,𝑖𝑑)
ℱ )

𝑛ℱ

𝑖=1,𝑖≠𝑗

 

                                 ≥ 1-𝑞(𝑑,𝑖𝑑)→𝑗
ℰ + 𝑞(𝑑,𝑖𝑑)→𝑗

ℰ (1 − 𝜔𝑑,𝑖𝑑
ℰ ) ∏ (1 − 𝑞𝑖→(𝑑,𝑖𝑑)

ℱ )

𝑛ℱ

𝑖=1,𝑖≠𝑗

. (25) 

Combining the inequalities derived in (24) and (25) leads to 

𝑝𝑗
ℱ ≤ 1 − 𝛾𝑗 ∏ (1 − 𝑝𝑖

ℱ𝑞𝑖→𝑗
ℱ )

𝑛ℱ

𝑖=1,𝑖≠𝑗

≤
(1)

1 − 𝛾𝑗 (1 − ∑ 𝑝𝑖
ℱ𝑞𝑖→𝑗

ℱ

𝑛ℱ

𝑖=1,𝑖≠𝑗

), 
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where inequality =
(1)

 holds by Weierstrass product inequality. Define an 𝑛ℱ  by 𝑛ℱ  zero diagonal matrix, 𝑨 

with off-diagonal elements 𝑎𝑖𝑗 = 𝛾𝑖𝑞𝑗→𝑖
ℱ

 for 𝑖 ≠ 𝑗 = 1,… , 𝑛ℱ . Then the upper bound of the compromise 

probabilities for fog nodes, 𝒖ℱ = (𝑢1
ℱ , … , 𝑢

𝑛ℱ
ℱ )⊤ , solves the matrix equation 𝒖ℱ = 1 − 𝜸 + 𝑨𝒖ℱ , or 

equivalently, 𝒖ℱ = (𝟏 − 𝑨)−1(1 − 𝜸), where 𝟏 denotes an identify matrix of appropriate dimension. 

Contrastingly, 

𝑝𝑗
ℱ = 1 − ℙ(𝑂𝑗

ℱ ≤ 0, ⋂ 𝐶𝑖
ℱ𝐼𝑖→𝑗
ℱ ≤ 0

𝑛ℱ

𝑖=1,𝑖≠𝑗

,⋂ ⋅

𝑛𝒯

𝑑=1

⋂𝐶𝑑,𝑖𝑑
ℰ,[𝑗]
𝐼(𝑑,𝑖𝑑)→𝑗
ℰ ≤ 0

𝑛𝑑
ℰ

𝑖𝑑=1

) 

≥
(1)

max(𝜔𝑗
ℱ , ⋁ 𝑝𝑖

ℱ𝑞𝑖→𝑗
ℱ

𝑛ℱ

𝑖=1,𝑖≠𝑗

,⋁ ⋅

𝑛𝒯

𝑑=1

⋁𝔼[𝐶𝑑,𝑖𝑑
ℰ,[𝑗]
] 𝑞(𝑑,𝑖𝑑)→𝑗

ℰ

𝑛𝑑
ℰ

𝑖𝑑=1

) 

≥
(2)

max (𝜔𝑗
ℱ , ⋁ 𝑝𝑖

ℱ𝑞𝑖→𝑗
ℱ

𝑛ℱ

𝑖=1,𝑖≠𝑗

,⋁ ⋅

𝑛𝒯

𝑑=1

⋁max(𝜔𝑑,𝑖𝑑
ℰ , 𝑝𝑖

ℱ𝑞𝑖→(𝑑,𝑖𝑑)
ℱ 𝑞(𝑑,𝑖𝑑)→𝑗

ℰ )

𝑛𝑑
ℰ

𝑖𝑑=1

) 

≥ max(𝜔𝑗
ℱ , ⋁ 𝛽𝑖𝑞𝑖→𝑗

ℱ

𝑛ℱ

𝑖=1,𝑖≠𝑗

,⋁ ⋅

𝑛𝒯

𝑑=1

⋁max(𝜔𝑑,𝑖𝑑
ℰ , ⋁ 𝛽𝑖𝑞𝑖→(𝑑,𝑖𝑑)

ℱ

𝑛ℱ

𝑖=1,𝑖≠𝑗

)𝑞(𝑑,𝑖𝑑)→𝑗
ℰ

𝑛𝑑
ℰ

𝑖𝑑=1

), 

where inequalities “=
(1)

” and “=
(2)

” hold because of Fréchet inequalities and the lower bound derived in 

Equation (23), and 

𝛽𝑗 = max(𝜔𝑗
ℱ , ⋁ 𝜔𝑖

ℱ𝑞𝑖→𝑗
ℱ

𝑛ℱ

𝑖=1,𝑖≠𝑗

,⋁ ⋅

𝑛𝒯

𝑑=1

⋁max(𝜔𝑑,𝑖𝑑
ℰ , ⋁ 𝜔𝑖

ℱ𝑞𝑖→(𝑑,𝑖𝑑)
ℱ

𝑛ℱ

𝑖=1,𝑖≠𝑗

)𝑞(𝑑,𝑖𝑑)→𝑗
ℰ

𝑛𝑑
ℰ

𝑖𝑑=1

) . 

We have now obtained the lower bounds for the compromise probabilities of fog nodes.  

Applying the same argument as in the derivation of inequalities (23) yields 

max(𝜔𝑑,𝑗𝑑
ℰ ,⋁𝑝𝑖

ℱ𝑞𝑖→(𝑑,𝑗𝑑)
ℱ

𝑛ℱ

𝑖=1

) ≤ 𝑝𝑑,𝑗𝑑
ℰ ≤1-(1 − 𝜔𝑑,𝑗𝑑

ℰ )∏(1 − 𝑝𝑖
ℱ𝑞𝑖→(𝑑,𝑗𝑑)

ℱ )

𝑛ℱ

𝑖=1

, 

for 𝑑 = 1,… , 𝑛𝒯  and 𝑗𝑑 = 1,… , 𝑛𝑑
ℰ . Finally, substitute the lower and upper bounds for 𝒑ℱ  into the 

inequalities above, the interval approximations for the end nodes’ compromise probabilities are readily 

obtained. 

Now the proof is finished.  

Proof of Proposition 4.1. Recall that for 𝒙 = (𝑥1, … , 𝑥𝑛) ∈ ℝ
𝑛  and 𝒩 = {1,… , 𝑛}, the following equation 

holds: 

∏(1 − 𝑥𝑖)

𝑛

𝑖=1

= 1 −∑(−1)𝑘−1
𝑛

𝑘=1

∑ ℎ(𝒩𝑘)

𝒩𝑘⊆𝒩

, (26) 
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where ℎ(𝒩𝑘) = ∏ 𝑥𝑖𝑖∈𝒩𝑘
 for 𝒩𝑘 ∈ ℕ

𝑘 is any 𝑑-dimensional subset of 𝒩. Together with Equation (11), we 

have 

𝑝Ξ
ℱ = 𝔼 [∏𝐶𝑗

ℱ,[]

𝑗∈Ξ

] = 𝔼 [∏ ⋅

𝑗∈Ξ

[1 − (1 − 𝑂𝑗
ℱ)∏ ⋅

𝑛𝒯

𝑑=1

∏ (

𝑖𝑑∈𝔻𝑑,𝑗

1 − 𝑂𝑑,𝑖𝑑
ℰ × 𝐼(𝑑,𝑖𝑑)→𝑗

ℰ )]] 

= 1 −∑(−1)𝑘−1
𝑚

𝑘=1

∑ ℎ(Ξ𝑘)

Ξ𝑘⊆Ξ

 

where 𝑚 = |Ξ| is the cardinality of Ξ, Ξ𝑘 ∈ ℕ
𝑘  denotes any 𝑘-dimensional subset of Ξ, and 

ℎ(Ξ𝑘) = 𝔼 [∏(1 − 𝑂𝑗
ℱ)

𝑗∈Ξ𝑘

×∏ ⋅

𝑛𝒯

𝑑=1

∏ (

𝑖𝑑∈𝔻𝑑,𝑗

1 − 𝑂𝑑,𝑖𝑑
ℰ × 𝐼(𝑑,𝑖𝑑)→𝑗

ℰ )] 

= 𝔼 [∏(1 − 𝑂𝑗
ℱ)

𝑗∈Ξ𝑘

] × 𝔼 [∏ ⋅

𝑗∈Ξ𝑘

∏ ⋅

𝑛𝒯

𝑑=1

∏ (

𝑖𝑑∈𝔻𝑑,𝑗

1 − 𝑂𝑑,𝑖𝑑
ℰ × 𝐼(𝑑,𝑖𝑑)→𝑗

ℰ )]. 

The expectations above can be further computed via 

𝔼 [∏(1 − 𝑂𝑗
ℱ)

𝑗∈Ξ𝑘

] = (1 − 𝜈ℱ)𝔼 [∏(1 − 𝑂𝑗
ℱ)

𝑗∈Ξ𝑘

|𝑉ℱ = 0] + 𝜈ℱ𝔼 [∏(1 − 𝑂𝑗
ℱ)

𝑗∈Ξ𝑘

|𝑉ℱ = 1] 

= (1 − 𝜈ℱ)∏(1 − 𝜋𝑗
ℱ)

𝑗∈Ξ𝑘

+ 𝜈ℱ(1 − 𝜋ℱ∗), 

as well as 

𝔼 [∏ ⋅

𝑗∈Ξ𝑘

∏ ⋅

𝑛𝒯

𝑑=1

∏ (

𝑖𝑑∈𝔻𝑑,𝑗

1 − 𝑂𝑑,𝑖𝑑
ℰ × 𝐼(𝑑,𝑖𝑑)→𝑗

ℰ )] 

=∏ ⋅

𝑛𝒯

𝑑=1

𝔼 [∏ ⋅

𝑗∈Ξ𝑘

∏ (

𝑖𝑑∈𝔻𝑑,𝑗

1 − 𝑂𝑑,𝑖𝑑
ℰ × 𝐼(𝑑,𝑖𝑑)→𝑗

ℰ )] 

=∏ ⋅

𝑛𝒯

𝑑=1

{(1 − 𝜈𝑑
𝒯)𝔼 [∏ ⋅

𝑗∈Ξ𝑘

∏ (

𝑖𝑑∈𝔻𝑑,𝑗

1 − 𝑂𝑑,𝑖𝑑
ℰ × 𝐼(𝑑,𝑖𝑑)→𝑗

ℰ )|𝑉𝑑
𝒯 = 0]

+ 𝜈𝑑
𝒯𝔼 [∏ ⋅

𝑗∈Ξ𝑘

∏ (

𝑖𝑑∈𝔻𝑑,𝑗

1 − 𝑂𝑑,𝑖𝑑
ℰ × 𝐼(𝑑,𝑖𝑑)→𝑗

ℰ )|𝑉𝑑
𝒯 = 1]} 

=∏ ⋅

𝑛𝒯

𝑑=1

[(1 − 𝜈𝑑
𝒯)∏ ⋅

𝑗∈Ξ𝑘

∏ (1 − 𝜋𝑑,𝑖𝑑
ℰ 𝑞(𝑑,𝑖𝑑)→𝑗

ℰ )

𝑖𝑑∈𝔻𝑑,𝑗

+ 𝜈𝑑
𝒯 (1 − 𝜋𝑑

ℰ∗ + 𝜋𝑑
ℰ∗∏ ⋅

𝑗∈Ξ𝑘

∏ (

𝑖𝑑∈𝔻𝑑,𝑗

1 − 𝑞(𝑑,𝑖𝑑)→𝑗
ℰ ))] 

=∏𝑔(𝑑, Ξ𝑘)

𝑛𝒯

𝑑=1

.                                                                                                                                                             (27) 

We have now obtained the desired result, and the proof is completed.  
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Proof of Lemma 4.3. The proof is somewhat similar to that of Proposition 4.1, so we skip certain details for 

brevity. It holds that 

𝑓(𝑗𝑑 , Ξ) = 𝔼 [𝑂𝑑,𝑗𝑑
ℰ ∏𝐶𝑗

ℱ,[]

𝑗∈Ξ

] = 𝔼 [𝑂𝑑,𝑗𝑑
ℰ ∏ ⋅

𝑗∈Ξ

[1 − (1 − 𝑂𝑗
ℱ)∏ ⋅

𝑛𝒯

𝑠=1

∏ (

𝑙𝑠∈𝔻𝑠,𝑗

1 − 𝑂𝑠,𝑙𝑠
ℰ × 𝐼(𝑠,𝑙𝑠)→𝑗

ℰ )]] 

= 𝜔𝑑,𝑗𝑑
ℰ −∑(−1)𝑘−1

𝑚

𝑘=1

∑ 𝑢(𝑗𝑑 , Ξ𝑘)

Ξ𝑘⊆Ξ

, 

where 

𝑢(𝑗𝑑 , Ξ𝑘) = 𝔼 [𝑂𝑑,𝑗𝑑
ℰ ∏ ⋅

𝑗∈Ξ𝑘

(1 − 𝑂𝑗
ℱ)∏ ⋅

𝑛𝒯

𝑠=1

∏ (

𝑙𝑠∈𝔻𝑠,𝑗

1 − 𝑂𝑠,𝑙𝑠
ℰ × 𝐼(𝑠,𝑙𝑠)→𝑗

ℰ )] 

= [(1 − 𝜈ℱ)∏ ⋅

𝑗∈Ξ𝑘

(1 − 𝜋𝑗
ℱ) + 𝜈ℱ(1 − 𝜋ℱ∗)] × 𝔼 [𝑂𝑑,𝑗𝑑

ℰ ∏ ⋅

𝑗∈Ξ𝑘

∏ ⋅

𝑛𝒯

𝑠=1

∏ (

𝑙𝑠∈𝔻𝑠,𝑗

1 − 𝑂𝑠,𝑙𝑠
ℰ × 𝐼(𝑠,𝑙𝑠)→𝑗

ℰ )]. 

The expectation above is computed via 

𝔼 [𝑂𝑑,𝑗𝑑
ℰ ∏ ⋅

𝑗∈Ξ𝑘

∏ ⋅

𝑛𝒯

𝑠=1

∏ (

𝑙𝑠∈𝔻𝑠,𝑗

1 − 𝑂𝑠,𝑙𝑠
ℰ 𝐼(𝑠,𝑙𝑠)→𝑗

ℰ )] 

= 𝔼 [𝑂𝑑,𝑗𝑑
ℰ ∏ ⋅

𝑗∈Ξ𝑘

∏ (

𝑙𝑑∈𝔻𝑑,𝑗

1 − 𝑂𝑙𝑑
ℰ 𝐼(𝑑,𝑙𝑑)→𝑗

ℰ )] ∏ ⋅

𝑛𝒯

𝑠=1,𝑠≠𝑑

𝔼 [∏ ⋅

𝑗∈Ξ𝑘

∏ (

𝑙𝑠∈𝔻𝑠,𝑗

1 − 𝑂𝑠,𝑙𝑠
ℰ 𝐼(𝑠,𝑙𝑠)→𝑗

ℰ )] 

= [(1 − 𝜈𝑑
𝒯)𝜋𝑑,𝑗𝑑

ℰ (1 − 𝑞(𝑑,𝑗𝑑)→𝑖
ℰ )∏ ⋅

𝑗∈Ξ𝑘

∏ (1 − 𝜋𝑑,𝑙𝑑
ℰ 𝑞(𝑑,𝑙𝑑)→𝑗

ℰ )

𝑙𝑑∈𝔻𝑑,𝑗,𝑙𝑑≠𝑗𝑑

+ 𝜈𝑑
𝒯𝜋𝑑

ℰ∗∏ ⋅

𝑗∈Ξ𝑘

∏ (1 − 𝑞(𝑑,𝑙𝑑)→𝑗
ℰ )

𝑙𝑑∈𝔻𝑑,𝑗

]

× ∏ 𝑔(𝑠, Ξ𝑘)

𝑛𝒯

𝑠=1,𝑠≠𝑑

. 

This yields the desired result, and the proof is completed.  

Proof of Theorem 4.4. From the state equation of the control center as per (10), we have 

𝑝𝒞 = 1 − 𝔼[(1 − 𝑂C)] × 𝔼 [∏(1 − 𝐶𝑖
ℱ,[] × 𝐼𝑖→

ℱ )

𝑛ℱ

𝑖=1

] 

= 1 − (1 − 𝜔C)[1 −∑(−1)𝑘−1
𝑛ℱ

𝑘=1

∑ 𝑝Ξ𝑘
ℱ

Ξ𝑘⊆Ξ
ℱ

∏𝑞𝑖→
ℱ

𝑖∈Ξ𝑘

] 

where the last equation holds because of the product formula in (26).  

Turing to the study of fog nodes, elaborate the state equation (12) as 

𝐶𝑖
ℱ = 1 − (1 − 𝐶𝑖

ℱ,[])(1 − 𝐼
→𝑖
𝒞 ) − (1 − 𝐶𝑖

ℱ,[])𝐼
→𝑖
𝒞 (1 − 𝑂𝒞) ∏ (1 − 𝐶𝑗

ℱ,[]𝐼𝑗→
ℱ )

𝑛ℱ

𝑗=1,𝑗≠𝑖

, (28) 
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and hence 

𝑝𝑖
ℱ = 𝔼[𝐶𝑖

ℱ] = 1 − (1 − 𝑝𝑖
ℱ)(1 − 𝑞

→𝑖
𝒞 ) − 𝑞

→𝑖
𝒞 (1 − 𝜔𝒞)𝔼 [(1 − 𝐶𝑖

ℱ,[]
) ∏ (1 − 𝐶𝑗

ℱ,[]
𝐼𝑗→
ℱ )

𝑛ℱ

𝑗=1,𝑗≠𝑖

] . 

To compute the expectation above, for 𝑗 = 1,… , 𝑛ℱ, define 

𝐼𝑗→
ℱ ≡ {

𝐼𝑗→
F ,

1,

if 𝑗 ≠ 𝑖;
if 𝑗 = 𝑖.

 

We have 

𝔼 [(1 − 𝐶𝑖
ℱ,[]) ∏ (1 − 𝐶𝑗

ℱ,[]𝐼𝑗→
ℱ )

𝑛ℱ

𝑗=1,𝑗≠𝑖

] = 𝔼 [∏(1 − 𝐶𝑗
ℱ,[]𝐼𝑗→

ℱ )

𝑛ℱ

𝑗=1

] 

= 1 −∑(−1)𝑘−1
ℱ

𝑘=1

∑ ⋅

Ξ𝑘⊆Ξ
ℱ

𝔼 [∏𝐶𝑗
ℱ,[]

𝑗∈Ξ𝑘

] 𝔼 [∏ 𝐼𝑗→
ℱ

𝑗∈Ξ𝑘

] 

= 1 −∑(−1)𝑘−1
𝑛ℱ

𝑘=1

∑ 𝑝Ξ𝑘
ℱ

Ξ𝑘⊆Ξ
ℱ

∏ 𝑞𝑗→
ℱ

𝑗∈Ξ𝑘,𝑗≠𝑖

. 

Finally, let us consider the compromise probability for the 𝑗𝑑-th end node that is of type 𝑑, 𝑑 = 1,… , 𝑛𝒯，

𝑗𝑑 = 1… , 𝑛𝑑
ℰ , and it has a direct connection to the 𝑖-th fog node, i.e., 𝑗𝑑 ∈ 𝔻𝑑,𝑖 . According to the state 

equation (13), we get 

𝑝𝑑,𝑗𝑑
ℰ = 𝔼[1 − (1 − 𝑂𝑑,𝑗𝑑

ℰ )(1 − 𝐶𝑖
ℱ𝐼𝑖→(𝑑,𝑗𝑑)
ℱ )] 

= 𝔼[𝑂𝑑,𝑗𝑑
ℰ + 𝐶𝑖

ℱ𝐼𝑖→(𝑑,𝑗𝑑)
ℱ − 𝑂𝑑,𝑗𝑑

ℰ 𝐶𝑖
ℱ𝐼𝑖→(𝑑,𝑗𝑑)
ℱ ] 

= 𝜔𝑑,𝑗𝑑
ℰ + 𝑝𝑖

ℱ𝑞𝑖→(𝑑,𝑗𝑑)
ℱ − 𝔼[𝑂𝑑,𝑗𝑑

ℰ 𝐶𝑖
ℱ𝐼𝑖→(𝑑,𝑗𝑑)
ℱ ]. 

Evoking the state equation for fog node in (28), the expectation above can be computed via 

𝔼[𝑂𝑑,𝑗𝑑
ℰ 𝐶𝑖

ℱ𝐼𝑖→𝑗𝑑
ℱ ] = 𝔼[𝑂𝑑,𝑗𝑑

ℰ 𝐼𝑖→(𝑑,𝑗𝑑)
ℱ ] − 𝔼 [𝑂𝑑,𝑗𝑑

ℰ 𝐼𝑖→(𝑑,𝑗𝑑)
ℱ (1 − 𝐶𝑖

ℱ,[])(1 − 𝐼
→𝑖
𝒞 )]

− 𝔼 [𝑂𝑑,𝑗𝑑
ℰ 𝐼𝑖→(𝑑,𝑗𝑑)

ℱ (1 − 𝐶𝑖
ℱ,[])𝐼

→𝑖
𝒞 (1 − 𝑂𝒞) ∏ (1 − 𝐶𝑗

ℱ,[]𝐼𝑗→
ℱ )

𝑛ℱ

𝑗=1,𝑗≠𝑖

]

= 𝜔𝑑,𝑗𝑑
ℰ 𝑞𝑖→(𝑑,𝑗𝑑)

ℱ − 𝑞𝑖→(𝑑,𝑗𝑑)
ℱ (1 − 𝑞

→𝑗
𝒞 ) × 𝑡1 − 𝑞𝑖→(𝑑,𝑗𝑑)

ℱ 𝑞
→𝑖
𝒞 (1 − 𝜔𝒞) × 𝑡2 

in which, by evoking Lemma 4.3, 

𝑡1 = 𝔼[𝑂𝑑,𝑗𝑑
ℰ (1 − 𝐶𝑖

ℱ,[]
)] = 𝔼[𝑂𝑑,𝑗𝑑

ℰ ] − 𝔼[𝑂𝑑,𝑗𝑑
ℰ 𝐶𝑖

ℱ,[]
] = 𝜔𝑑,𝑗𝑑

ℰ − 𝑓(𝑗𝑑 , 𝑖), 

and 

𝑡2 = 𝔼[𝑂𝑑,𝑗𝑑
ℰ (1 − 𝐶𝑖

ℱ,[]
) ∏ (1 − 𝐶𝑗

ℱ,[]
𝐼𝑗→
ℱ )

𝑛ℱ

𝑗=1,𝑗≠𝑖

]. 

We focus on the evaluation of 𝑡2 and obtain 
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𝑡2 = 𝔼 [𝑂𝑗𝑑
ℰ (1 − 𝐶𝑖

ℱ,[]) ∏ (1 − 𝐶𝑗
ℱ,[]𝐼𝑗→

ℱ )

𝑛ℱ

𝑗=1,𝑗≠𝑖

] 

= 𝔼 [𝑂𝑗𝑑
ℰ ∏(1 − 𝐶𝑗

ℱ,[]𝐼𝑗→
ℱ )

𝑛ℱ

𝑗=1

] 

= 𝔼

[
 
 
 
 

𝑂𝑗𝑑
ℰ [1 −∑(−1)𝑘−1

𝑛ℱ

𝑘=1

∑ ∙

Ξ𝑘⊆Ξ
ℱ

[∏ 𝐶𝑗
ℱ,[]

𝑗∈Ξ𝑘

] [∏ 𝐼𝑗→
ℱ

𝑗∈Ξ𝑘

]]

]
 
 
 
 

 

= 𝜔𝑗𝑑
ℰ −∑(−1)𝑘−1

𝑛ℱ

𝑘=1

∑ 𝑓(𝑗𝑑, Ξ𝑘)

Ξ𝑘⊆Ξ
ℱ

∏ 𝑞𝑗→
ℱ

𝑗∈Ξ𝑘,𝑗≠𝑖

, 

where 𝑓(𝑗𝑑 , Ξ𝑘) = 𝔼[𝑂𝑗𝑑
ℰ ∏ ⋅𝑗∈Ξ𝑘

𝐶𝑗
ℱ,[]

] which can be computed by evoking Lemma 4.3. 

 

Appendix B: Summary of the notation system  

We summarize the notation system used in this present article herein. 

Table 8 

SUMMARY OF THE NOTATION SYSTEM. 

Notation Description 

𝑛ℱ  Number of fog nodes 

𝑛𝒯  Number of types of end nodes 

𝑛𝑑
ℰ  Number of type 𝑑 end nodes 

𝐶𝒞 , 𝐶𝑖
ℱ , 𝐶𝑑,𝑖𝑑

ℰ  Compromise statuses of the control center, fog nodes and end nodes 

𝑝𝒞, 𝑝𝑖
ℱ , 𝑝𝑑,𝑖𝑑

ℰ  Compromise probabilities of the control center, fog nodes and end nodes 

𝐶𝒞,[𝑗] Compromise status of the control center with the 𝑗-fog node excluded 

𝐶𝑗
ℱ,[]

 Compromise status of the 𝑗-th fog node with control center excluded 

𝐶𝑑,𝑖𝑑
ℰ,[𝑗]

 Compromise status of the (𝑑, 𝑖𝑑)-th end node with the 𝑗-th fog node excluded 

𝑂𝒞, 𝑂𝑖
ℱ , 𝑂𝑑,𝑖𝑑

ℰ  Outside attack statuses of the control center, fog nodes and end nodes 

𝜔𝒞, 𝜔𝑖
ℱ , 𝜔𝑑,𝑖𝑑

ℰ  Outside compromise probabilities of the control center, fog nodes and end nodes 

𝐼
→𝑖
𝒞  Indicators of inside attack launched from the control center to the fog nodes 

𝑞
→𝑖
𝒞  Probabilities of inside attack launched from the control center to the fog nodes 

𝐼𝑖→
ℱ , 𝐼𝑖→𝑗

ℱ , 𝐼𝑖→(𝑑,𝑖𝑑)
ℱ  Indicators of inside attacks launched from the 𝑖-th fog node 

𝑞𝑖→
ℱ , 𝑞𝑖→𝑗

ℱ , 𝑞𝑖→(𝑑,𝑖𝑑)
ℱ  Probabilities of inside attacks launched from the 𝑖-th fog node 

𝐼(𝑑,𝑖𝑑)→𝑖
ℰ  Indicators of inside attacks launched from the (𝑑, 𝑖𝑑)-th end node to fog nodes 

𝑞(𝑑,𝑖𝑑)→𝑖
ℰ  Probabilities of inside attacks launched from the (𝑑, 𝑖𝑑)-th end node to fog nodes 

𝑉ℱ , 𝑉𝑑
ℰ  Indicators of common vulnerabilities among fog nodes and the type 𝑑 end nodes 

𝑣ℱ , 𝑣𝑑
ℰ  Probabilities of common vulnerability among fog nodes and the type 𝑑 end nodes 

𝜋𝑖
ℱ , 𝜋𝑑,𝑖𝑑

ℰ  Systemic outside attack probabilities among the fog nodes and type 𝑑 end nodes 

𝜋ℱ∗, 𝜋𝑑
ℰ∗ Idiosyncratic outside attack probabilities for the fog nodes and end nodes 
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