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Introduction

The Predictive Analytics and Futurism and Technology
Sections of the Society of Actuaries (SOA), along with
the Joint Risk Management Section of the SOA, the
Casualty Actuarial Society, and the Canadian Institute
of Actuaries, sponsored a call for essays on the theme
“Risks Posed by Predictive Models.”

Participants were asked to discuss the risks and
consequences arising from the use of predictive
models. For this contest, an essay was understood to
be a short nonfiction form of writing expressing the
often subjective opinion of the author.

The call for essays received eight submissions, and the
three sections would like to thank all the authors who
participated in the contest:

Ratemaking Reformed: The Future of Actuarial
Indications in the Wake of Predictive Analytics
Gyasi Dapaa

Predictiveness vs. Interpretability
Kimberly Steiner and Boyang Meng

Actuarial Fairness in the Era of Machine Learning
Marjorie A. Rosenberg

Unintended Consequences: The Risks Posed by
Predictive Analytics
Greg Fann and Kaitlyn Rachelle Fleigle

Risks of Using Predictive Models
John Hegstrom

Risks From Futurism and Ethics in Predictive Modeling
Cameron Rose

A Reality Check for Predictive Modeling
John Wallentine

Reflections on the Day the Models Died
Jim Weiss

Gyasi Dapaa submitted the best paper, titled
“Ratemaking Reformed: The Future of Actuarial
Indications in the Wake of Predictive Analytics,” and is
commended for its high quality. However, the paper
was not eligible to receive a monetary prize, as it
exceeded the length requirement.

Kimberly Steiner and Boyang Meng won the $1,000 cash
prize for the paper “Predictiveness vs. Interpretability.”
Marjorie A. Rosenberg won the $500 cash prize for the
paper “Actuarial Fairness in the Era of Machine Learning.”

This essay collection contains the three winning papers,
which express the opinions and thoughts of a number
of authors on the subject. Dapaa’s paper has been
abridged for inclusion in this collection.

The thoughts and insights shared herein are not
necessarily those of the Society of Actuaries, the
Casualty Actuarial Society, the Canadian Institute
of Actuaries or the corresponding employers of the
essayists.
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Ratemaking

Reformed

The Future of Actuarial
Indications in the Wake
of Predictive Analytics

The journey of achieving the actuarial aspiration of
equitable pricing through increased segmentation
has not been without twists and turns. It started
with one premium for all; moved to meager seg-
mentation with univariate analysis and later with
Bailey’s minimum bias (BMB) procedure; and finally
to generalized linear models (GLMs), which allow us
to segment along limitless dimensions. However,
despite the capacity of GLMs to determine both

the base rate and the policy risk relativity, they are
currently used to determine only the latter. This
article argues for a necessary cultural change that
will enable actuaries to advance pricing excellence
and also capitalize on the exploding reserves of data
available to them.

Introduction to Ratemaking

Insurance premium for a future year is a product

of three factors: current base rate, proposed rate
change and risk score relativity. The process of
determining insurance premiums is called ratemak-
ing. The base rate ensures that adequate premium is
collected on an aggregate basis to cover insurance
claims, claim adjustment expenses, underwriting
expenses and the targeted profit provision. The
proposed rate change ensures that all future dynam-
ics that will affect rate adequacy (such as changes

in business mix, changes in tort laws and inflation of
insurance commodities, just to mention a few) are
accordingly accounted for in future premiums. The
exercise of determining the needed rate changes

for a future year is called indications. The risk score
relativity factor ensures that premiums are actuarially
fair—that is, the higher the risk, the higher the premium.

Currently, actuaries obtain proposed rate changes
from indications and risk score relativity from GLMs. |
argue in this paper how the GLM already contemplates
all three factors and is the best machine for them.

Indications: Why It is What It is Today

The current indication process was produced for
expediency but not necessarily for excellence.

I'll explain. Before the advent of cheap data stor-
ages, and hence large databases of granular risk
information, actuaries had only aggregate historic
claims data to work with. Because the claims data
contained claims that were still open, they projected
them to their expected ultimate values using a
technical procedure called loss development. Also,
because insurance losses and expenses change with
time due to changes in business mix, technology,
insurance commodity prices and tort laws, actuaries
trended the historic losses to the future period in
which the rates will be implemented. These two
adjustments allowed actuaries to derive proposed
overall rates (i.e., base rate and proposed rate
change) but not the risk score relativity.

The inability to price at the policy level had been

the predicament of the actuary for a long time, until
perhaps memory became cheap enough, thanks to
Moore’s law, to allow insurance companies to store
dimensional data. However, when actuaries got hold
of granular risk data, they unfortunately had no sophis-
ticated methodology to derive risk relativity factors.
They therefore started with an approach whereby risk
relativities were univariately derived. The bane was that
the univariately derived risk relativities also contem-
plated their correlated effects with each other; hence,
their product amounted to double counting of effects
and biases in the risk estimatel!

Along came the Bailey minimum bias procedure in
the 1960s. BMB is a multivariate and more accurate
approach but suffers two disadvantages: It is com-
putationally restrictive, and it produces relativities
but not base rates. This therefore cemented the
ratemaking tradition of manufacturing base rates
and relativities in different shops.

Risks Embedded in Predictive Models



Ratemaking Reformed

In their search for more conducive methods, the
actuarial community chanced upon GLM, a statistical
methodology that has long been developed and
known in the academic world. The GLM has many
merits over BMB. It allows actuaries to derive rela-
tivities for countless numbers of variables. It affords
them the flexibility to model different distributions
of insurance losses. Given the varying distributional
forms of insurance risk metrics—severity, frequency
and purepremiums—this flexibility is not taken
lightly. It also allows actuaries to choose the func-
tional form (such as identity, log or power function)
of the relationship between the risk measure being
modeled and the relativity variables under consid-
eration; and above all, actuaries are able to assess
whether their estimated risk relativities are signal or
noise using a prolific number of model diagnostic
measures such as standard errors, chi-squared
statistics, archaic information criterion, F-statistics
and many others.

The GLM has one more edge that is far more
underutilized than the ones aforementioned: Aside
from forging risk relativities, it can also predict

the best (minimum mean squared error) loss cost
estimate for each insured unit for any exposure
period with a greater capacity for segmentation,
greater accuracy and lesser effort. This means that
the tradition of deriving an overall base rate and

the policy risk relativity score separately has to be
replaced with a fresher and more powerful culture
of directly predicting each policy’s loss costs with

a GLM. Inthe remainder of the paper, | argue how
GLMs accommodate each of the three main features
in traditional ratemaking (base rate, rate changes
and risk relativity) and propose a new framework for
actuarial indications.?

Actuarial Indications are Already
Contemplated in GLMs

OVERALL (BASE) RATES

The intercept term in a GLM measures the overall
rate level; it can be varied by any dimension the

actuary desires: region, state, industry or any
broader category. In fact, as with all GLM estimates,
it has desirable statistical properties. It is one of, if
not the most statistically efficient (lowest variance)
estimators of the base rate. As a maximum likelihood
estimate, it achieves the Cramer Rao lowest bound
on variance. It is fair to point out that, in traditional
ratemaking, it’s not typical to assess the variability
of the actuarial base rates, and all are thus banked
on the pricing actuary’s ability to instinctively
determine whether his or her estimate of base rate
is noise or signal, a test that even experts steeped
in statistics have often failed. (See page 113 of
Kahneman'’s revolutionary book, Thinking, Fast and
Slow.) However, GLMs force actuaries to know the
variability and statistical significance of all of their
estimated parameters, including the base rate (i.e,,
the intercept).

The other statistical benefit of a GLM estimate is that
itis consistent (i.e., approaches the true value with
enough data) at worst and unbiased at best. Unfor-
tunately, this cannot be said about the actuarial base
rate. In fact, because it is derived outside the GLM but
combined with risk relativities carved from GLMs, it’s
likely to pick up effects already contemplated in the
GLM, and hence is biased. Suppose a Texas automobile
book of business has a disproportionate number of
reckless drivers. In the current ratemaking culture,
reckless drivers in Texas will be double penalized, one
through the actuarially derived Texas base rate and the
other through the GLM risk relativity for reckless driving
possibly captured by motor vehicle records.

There is, however, a silver lining actuaries may tout
in an attempt to save the current system: For base
rates of smaller states, an actuary can use credibility
analysis to combine the unstable experience of

the smaller state with a more stable complement
(say, the countrywide base rate) to derive desirably
stable base rates. Although this is valid, there are
GLM variants, such as generalized linear mixed
models (GLMMs), that allow for the sort of credibility

1 Many other equally viable statistical methods such as classification trees, random forests and neural networks are available for
actuaries to use. However, we will continue to use GLM (because of its popularity) to loosely represent all such statistical methods.
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weighting done in an actuarial analysis. See Klinker
(2011) for an exposition of actuarial application of
GLMM and its similarities with Buhlmann credibility.
Therefore, there is no good reason, at least known
to me as of this writing, for actuaries to derive base
rates outside of GLMs.

PROPOSED RATE CHANGES

Current rates cease to be adequate in the future for
three main temporal changes: (1) general market
factors (technology, tort laws, prices, etc.), (2)
business mix and (3) the relationship between losses
and risk variables. Points 1 and 2 are easily accom-
modated in a GLM by including an econometric trend
term and risk attributes in a predictive model. The
coefficient of the trend term measures how premium
is expected to change with time, while those of the
risk attributes measure how premiums change with
differing risk characteristics. Point 3 is checked by
regular updates of the pricing models.

RISK RELATIVITY SCORE

Although actuaries get the risk relativities from a GLM
(and so are efficient estimates), how they use them in
pricing mitigates their statistical merits. | will describe
one such misuse. Most pricing actuaries would multiply
the relativities together to get a predicted risk estimate.
After this, they would—here comes the first unforced
spoiler—partition this product into a number of risk
groups. After that, they would map each risk group to
arisk score factor, and that becomes the policy factor
that gets multiplied by the base rate to get proposed
premium. Meanwhile, the predicted policy risk
estimate—say, purepremium—obtained directly from
the GLM has been proven to be the best estimate of
the policy’s risk exposure. And therefore, every tweak,
apart from consuming time, unnecessarily chips away
chunks and chunks of its statistical efficacy.

Other Considerations: Ratemaking for
Exceptionally Large Risks

Exceptionally large risks may need special attention
even if a GLM is available. This is because they are
normally so large and few that the GLM is not able
to adequately fit their heterogeneous risk features.
Actuaries can use specialized rating techniques such

as experience rating, schedule rating, composite
rating and retrospective rating to complement the
manual estimate obtained from the GLM.

THE FUTURE OF INDICATIONS

The GLM estimate should be the pinnacle of, but not a
mere input for, proposed policy premiums. Actuaries
should find few, if any, reasons to do any analysis
outside of it, such as a derivation of a base rate or

rate change. Itis, if appropriately parameterized and
estimated, actuaries’ most accurate (least bias and vari-
ance) measure of risk that can be carved from historical
data. It can also contemplate most of the technical
dynamics that are important in insurance pricing

and to actuaries, for that matter: credibility, trends,
interactions and experience rating, just to mention a
handful. The indications process should occur entirely
within a GLM framework, with minor episodes involving
merely a refitting of current models with new data, and
major ones being a new development of the latest and
greatest predictive models.

This proposed framework, of course, preserves
actuaries’ freedom to exercise their judgment to
select away from the GLM factors. However, they
must exercise this freedom cautiously so as not to
weaken the efficacy of the GLM predictions. Two
such legitimate justifications for actuarial deviation
from indicated GLM estimates are when there is

a business motivation or information not fully
reflected in the historical data being used for mod-
eling. For instance, there are cases when it has been
strategically decided by business leaders to invest
in or disinvest from a market segment; or we may
even want to combine the supply (loss cost) factors
obtained from GLMs with demand factors to drive

a pricing strategy that achieves a targeted financial
outcome—pricing optimization. For such economic
motivations, actuaries can pick model parameters
different from the GLMs. There can also be situations
in which actuaries can be privy to future information
that is correlated with insurance losses. For instance,
actuaries can know of the timing of a new technol-
ogy that mitigates risk or saves lives, or a new tort
that changes the cost of insurance. In this case, too,
actuaries can adjust the GLM parameters to reflect
their more informed future expectations.

Risks Embedded in Predictive Models
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The merits of this new ratemaking system are
manifold and consequential:

« Improves pricing precision. Pricing precision
is one of the most important tenets for any
insurance book of business. This is because of
the leveraged effect an otherwise small pricing
error has on insurance profits: A 1 percent pricing
undercharge can eat away as much as 10 percent
of profits when underwriting profit provision is
10 percent, and even higher proportions of it
under lower profit provisions. A second reason is
that pricing precision serves as a guard against
the vulnerability to adverse selection, which has
the ability to spiral an insurance company out
of business. Last, it can impede the growth of a
book of business, as systematic overcharges can
drive away otherwise profitable business.

« Savestime and resources. The current
ratemaking methodology involves obtaining
relativities from GLMs and base rates outside
the GLM framework. Our proposed methodology
obtains the base rate and the relativities from
the GLMs, and hence saves time and resources
without sacrificing accuracy. An actuary with an
endless list of responsibilities will appreciate
having more time to spend on other bodies of
work.

e No transition costs. There is no transition cost,
as GLMs are already familiar to actuaries and
regulators.

» Big-data friendly. We're in a defining revolu-
tionary moment in which insurance companies
are receiving unthinkable volumes of data
from their insured risks, thanks to advances
in telematics and the Internet of Things. With
this privilege comes the competitive pressure
of using every bit of this big data to help paint
a coherent picture about risks. All are up for
grabs, but the winner will no doubt be the one
who leverages the power of machines to process
this ceaseless data endowment to understand
and write risks profitably. Although GLMs can be
designed, fine-tuned and automated to handle
such humongous data assets, no human mind,
no matter how astute and sharp, can keep up
with the processing demands of big data. Hence,
transitioning from a framework that relies
heavily on human intervention to one that relies
minimally on it is proactive!

Bibliography

Anderson, Duncan, Sholom Feldblum, Claudine Modlin, Doris
Shirmacher, Ernesto Shirmacher, and Thandi Neeza. 2004. A Prac-
titioner’s Guide to Generalized Linear Models. CAS Discussion Paper
Program.

Bailey, Robert A., and Leroy J. Simone. 1960. Two Studies in Automo-
bile Insurance. Proceedings 47, part .

Klinker, Fred. 2011. Generalized Linear Mixed Models for Ratemaking:
A Means of Introducing Credibility into a Generalized Linear Model
Setting. CAS E-Forum, vol. 2. Arlington, Va.: Casualty Actuarial Society.

Kahneman, Daniel. 2011. Thinking, Fast and Slow. New York: Farrar,
Straus, and Giroux. 113.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models, 2nd
ed. London: Chapman and Hall.

Werner, Geoff, and Claudine Modlin. 2016. Basic Ratemaking. Arling-
ton, Va.: Casualty Actuarial Society.

Gyasi Dapaa is a senior manager at Ameriprise Financial (Auto & Home). He can be reached at gkd5r@virginia.edu.

Risks Embedded in Predictive Models



Predictiveness vs.
Interpretability

A common criterion for the selection of predictive
models is predictiveness: one model is considered
better than another if it gives more accurate predictions
of the outcomes of unknown events. Apart from making
intuitive sense, this criterion is attractive because there
are measures available (e.g., Gini coefficient, R"2) that
allow us to easily rank models by predictiveness. This
paper demonstrates that relying on predictiveness
alone can result in choosing a model that exhibits
behavior that may not be intuitive. It also demonstrates
that this unintuitive behavior may not be immediately
obvious.

In this paper, we compare two kinds of predictive
models, built using the same data, on the criteria of
predictiveness and interpretability, in the context of life
insurance mortality. The two types of models compared
are generalized linear models (GLMs) and gradient
boosting machines (GBMs). We demonstrate, using a
double lift chart on holdout data, that a GBM can give
better predictions than a GLM. We also demonstrate
that while GLMs are easy to interpret, GBMs can be
difficult to interpret, in the sense that profiles that

are similar can have very different, and sometimes
unintuitive, behaviors.

In conclusion, we emphasize that the desired attributes
of a predictive model must be taken into account when
determining what type to use, and we discuss some
implications for the wider use of machine learning
techniques in the insurance industry. We do not dispute
the importance of predictiveness. However, we do
argue that depending on the context, interpretability

is an important consideration, and that, in some
contexts, interpretability should not be sacrificed for
predictiveness.

This paper is organized into the following sections:

«  Predictive Models Considered: General remarks on
GLMs and GBMs

«  Data Used: Details of the data used for this study

«  Details of the Models: Details of the actual models’
fit

«  Predictiveness: A comparison of the predictiveness
of the models

« Interpretability: Discussion of the interpretability of
results

«  Conclusion: Discussion of these results and some
consequences in the context of life insurance, as
well as some possible directions for further study

Predictive Models Considered

This section includes a high-level description of
GLMs and GBMs. Further details can be found in the
predictive analytics literature.

The types of models we chose to compare in this
study were generalized linear models and gradient
boosting machines. GLMs have been widely used

in property and casualty insurance for decades for
pricing purposes and have been increasingly used
in recent years in life insurance for experience
studies. GBMs are a trendy machine learning
technique becoming more widely used in many
sectors. Models involving the use of GBMs are
frequent winners of predictive analytics contests
such as Kaggle (www.kaggle.com), which determines
winners solely based on the Gini coefficient (i.e., a
measure of predictiveness is the only consideration).

GENERALIZED LINEAR MODELS

GLMs are a generalization of ordinary least squares
regression. They are characterized by the selection of
an error structure, which comes from the exponential
family of distributions (this includes normal, Poisson,
Gamma and binomial distributions), and a link
function, the inverse of which relates the linear
predictor (the linear combination of features included
in the model) to the response or independent variable.
Common link functions are the identity, log and logit
functions. Features are selected using a combination
of statistics, heuristics and judgment. Each feature

Risks Embedded in Predictive Models
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Predictiveness vs. Interpretability

has a parameter associated with it, and model-fitted
values are calculated by summing parameters of the
appropriate features and applying the inverse of the
link function.

GRADIENT BOOSTING MACHINES

Gradient boosting involves fitting a model on a
randomly selected subset of the data, calculating the
ratio between some proportion of the predictions

of the previous model and the response on another
random subset, fitting another model of that ratio

and continuing the process unless some convergence
criterion is reached. The model is selected by
determining combinations of parameters such as

the proportion of data included in each sample, the
proportion of predictors available in each model and
the proportion of the previous model predictions

used at each step (the learning rate), as well as the
characteristics of the underlying model. The underlying
model is often a classification or regression tree. In this
case, the final model is a weighted sum of a (potentially
large) number of trees.

Data Used

This study used single life mortality experience data
provided by 23 companies for Willis Towers Watson’s
TOAMSA4. The data include $25 trillion face amount of
exposure over the four-year study period (calendar
years 2011-2015), representing over 123 million policy
years of exposure. More than 1.5 million death claims,
corresponding to $82 billion, are included in the data.
The data were split randomly into training and testing
data. Both models were trained on the same training
data and compared on the same testing data.

Details of the Models

GENERALIZED LINEAR MODEL

The GLM used a log link function and Poisson error
structure. Attained age, issue age and duration were
included as polynomials. The model included many
interactions, including between categorical variables
and polynomials (e.g., smoking status and duration or

attained age and gender) and between combinations
of polynomials (e.g., between duration and issue age).
Categorical variables were grouped as necessary.

GRADIENT BOOSTING MACHINE

The response GBM was assumed to be distributed
Poisson. Attained age, issue age and duration were
included as continuous variables. Different groupings
of categorical variables were experimented with.
Hyperparameters were optimized using a grid search
and cross-validation on a random split of the training
data with four levels.

Predictiveness

Double lift charts are commonly used to compare
predictiveness of two different models. A double lift
chart is created as follows:

For each observation in the testing data,
predictions according to each model are
calculated.

«  Theratio of predictions is calculated for each
observation, and the observations are ranked
according to this ratio from low to high and
segmented into a number of bands (we used 50) of
approximately equal exposure.

« Ineachband, each average model prediction
is calculated and divided by the observed (i.e.,
actual) mortality in that band.

Adouble lift chart is effectively an actual vs. expected
analysis by discrepancies between predictions in a pair
of models. Where the model predictions are different,
meaning where the ratio is high or low (i.e., in the
extreme left and right of the graph), the model that
gives better predictions is that for which the actual vs.
expected is closer to 1.

To compare the predictiveness of the GLM and GBM, we
used a double lift chart on the testing data as shown in
Figure 1.

Risks Embedded in Predictive Models
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Figure 1 Double Lift Rescaled
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According to the double lift chart, the GBM was clearly
more predictive than the GLM.

Interpretability

As stated earlier, for a GLM, predicted values are
determined by calculating a sum of parameters of the
appropriate features and applying the inverse of the
link function. In the case of a log link function, this

is equivalent to multiplying the exponentials of the
model parameters; that is, the model is multiplicative.
This allows us to have a complete and interpretable
understanding of the variables and combinations

of variables driving estimates of mortality and the
quantitative impact of each. It also allows us to make
statements like, “In segment x, mortality is y percent
higher than in segment z”

As previously stated, a GBM is a weighted sum of

(an often-large number of often tree-based) models.
Thereis no practical way to extract an interpretable
characterization of the model predictions. Techniques
(e.g., partial dependency plots) do exist that allow a

general understanding of drivers of the model, but
because of the nature of the model, it is possible for
predictions associated with sets of observations to
differ in unexpected ways. We illustrate this using
several examples. The examples were created by:

«  preparing profiles corresponding to different
combinations of policy characteristics, including
sex, smoking status, underwriting class, face
amount, product and issue age;

. foreach profile, creating observations
corresponding to different durations; and

«  calculating the GBM prediction on each
observation for each profile.

MORTALITY BY DURATION FOR SELECTED PROFILE

In this example, we used male, nonsmoker, residual
standard, face amount band $500,000-$600,000,
current assumption universal life with level risk amount
(ULNG). We compare the g, by duration for selected
issue ages (Figure 2).

Risks Embedded in Predictive Models
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Predictiveness vs. Interpretability

Figure 2 Q, for Selected Profile
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We note that the g, pattern for issue age 35 is number. While GLMs also struggle where credibility is
monotonic and might be considered reasonable forall  lacking, we can identify and understand exactly how
durations, whereas for higher issue ages the pattern they are lacking,

breaks down (mortality decreases in certain durations SMOKER RELATIVE TO NONSMOKER MORTALITY BY

compared to the prior duration) at higher attained ages  pyRATION FOR SELECTED PROFILE

that lack credibility. While this is not surprising, the In this example, we used male, residual standard, face
duration at which the pattern breaks down will vary amount band of $500,000-$600,000, male universal

by profile, and the only way to determine the point at life (level net amount at risk), ULNG. We compare the
which it breaks down is to evaluate the curve for all ratio of smoker to nonsmoker mortality by duration for
required profiles, of which there may be a very large selected issue ages (Figure 3).
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Figure 3 Smoker Relative to Nonsmoker for Selected Profile
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We note that even for combinations of issue age and
duration where exposure is high, the ratio between
smoker and nonsmoker gx can exhibit patterns,
including zigzags, for which there is no obvious
explanation. We also note that these patterns can be
different for all possible profiles. By way of contrast,
GLMs allow a complete understanding of patterns
describing relative levels of predictions (i.e., the
relationship between smokers and nonsmokers is
straightforward to determine with a GLM).

BEST PREFERRED RELATIVE TO RESIDUAL STANDARD
BY DURATION FOR SELECTED PROFILE

In this example, we used male, nonsmoker, face
amount band of $500,000-$600,000, male universal
life (level net amount at risk), ULNG. We compare the
ratio of best preferred to residual standard mortality
by duration for selected issue ages (Figure 4).
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Figure 4 Best Preferred Relative to Residual Standard for Selected Profile
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The patterns can contain unexpected “jumps” for
which there is no obvious explanation. As explained in
previous examples, detecting such behavior inherent in
the model requires significant analysis of model results.

Conclusions

We do not suggest that machine learning techniques
have no place in experience studies or other
applications in life insurance. We do want to emphasize
that the characteristics of the model (including
interpretability) are considerations that in some
contexts are as important as predictiveness. There are
serious consequences of not fully understanding the
relationships inherent in your assumptions:

«  Since virtually no data sets are homogeneous
through all durations and ages in life insurance,
you may end up with assumptions that are
inappropriate for your new business and it will be
difficult to evaluate this since relationships are not
immediately obvious.

«  Itwill be difficult to set charges such as cost of
insurance without knowing all of the patterns
inherent in the mortality assumption.

«  Modifying the assumption in places where little
credibility exists in the data will be difficult given
that relationships are not easily identified.

With that said, further areas of research that could help
limit these consequences include the following options:

«  Exploring ways to detect unintuitive behavior (such as
thatillustrated in the examples) in GBM predictions

«  Exploring ways to limit the GBM (or other machine
learning methods) so that results are more likely
to beintuitive (e.g., to guarantee that mortality
increases with duration)

«  Extracting value from the GBM in ways that can
resultin an improved GLM (e.g., finding more
sophisticated features that can be used to improve
the predictiveness of a GLM)
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Boyang Meng, ASA, is consultant and senior actuarial analyst at Willis Towers Watson. He can be reached at boyang.meng@

willistowerswatson.com.

Risks Embedded in Predictive Models


mailto:kim.steiner%40willistowerswatson.com?subject=
mailto:kim.steiner%40willistowerswatson.com?subject=
mailto:boyang.meng%40willistowerswatson.com?subject=
mailto:boyang.meng%40willistowerswatson.com?subject=

Actuarial Fairness
in the Era of
Machine Learning

While the field of machine learning is not new, the level
of interest in the tools by actuarial practitioners has
been gaining great speed over the past several years.
The Society of Actuaries (SOA) professional syllabus has
been modified to introduce the concepts of machine
learning in two new exams, Statistics for Risk Modeling
and Predictive Analytics.

The purpose of this essay is to step back and ask
ourselves the meaning of a fundamental tenet of
actuarial practice, i.e., the notion of actuarial fairness.
One can google the term and see thousands of links
that all point to the concept of pricing risks related

to the benefits. In fact, law has set precedence of
establishing unfair or fair discrimination of premiums
based on this concept.!

The Modelling, Analytics, and Insights from Data
working party of the Institute and Faculty of Actuaries
recently published a report highlighting areas of
actuarial practice that could benefit from machine
learning techniques.” These include topics ranging
from product design and customer behavior to
pricing, reserving, claims management, capital
modeling, surplus distribution, and asset and liability
management/hedging. Some of these functions are
based within an organization, while others impact
outside constituents, such as customers and regulators.

Those who advocate machine learning techniques
focus on the bias-variance trade-off> The idea is
fundamentally based on the notion of selection of a
model whose mean squared error (MSE) is lowest on

an independent data set (called test or validation on
the machine learning side and out-of-sample on the
statistics side). We learn in our first statistics course that
the MSE of an estimator is the sum of the variance plus
the square of the bias.

The bias of an estimator is defined as the expected
value (or large sample average) of an estimator minus
truth. We show in our statistics class that if an estimator
is unbiased, then the MSE equals the variance. Our
focus in some statistical applications is a search among
those estimators that are unbiased to find the one

with the smallest variance. In the machine learning
framework, we focus on minimizing the MSE without
constraining the bias to be zero.

In his article, Breiman discussed two cultures, the data
modeling culture (i.e., statisticians) and the algorithmic
modeling culture (i.e., machine learning), to analyze
data and make decisions.* The article was provocative
in contrasting statistics and machine learning. Both
cultures depend on functions with observed data
inputs to produce some sort of prediction. Those
advocating for machine learning emphasize the
accuracy of the prediction of the outcome. Statisticians
are also interested in prediction, but want also to be
able to interpret and quantify the impact of an input
variable on the outcome (called inference).

In the context of actuarial work in pricing, we define

the notion of actuarially fair from the perspective of an
unbiased estimator of the loss, called the equivalence
principle. Here being actuarially fair is the actuary’s
way of defining premiums from the perspective of a
customer. The premiums are calculated in a way that
treats one person the same as others with the same risk
profile, where the expected value of the premiums is
equal to the sum of their expected losses and expenses.

T Landes, Xavier. 2015. How Fair is Actuarial Fairness? Journal of Business Ethics 128, no. 3:519-533.
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Theresult is a neutral way of explaining fairness to the
public.

Along the same line of thinking, the notion of risk
adjustment in health care examines the expected value
of the claim. We adjust for the severity of an individual
by examining its average amount of loss.

The practice of unisex pricing relies on actuarial fair
principles.®

By removing the constraint of unbiasedness in a
machine learning world, how then do we define and
defend what is actuarially fair? From an outsider’s
perspective, if the bias of the premium calculation is
negative, then the customer is paying a premium, on
average, less than their true costs and expenses. The
public could accept this situation, as it is favorable to
them. Regulators could possibly be convinced if the MSE
is smaller and insurer solvency is not at risk. But if the
bias is positive and the customer is paying more than the
expected value, then how is this communicated to both
consumers and regulators? Then it can appear as if the

insurer is charging higher premiums to benefit itself and
unfairly penalize the consumer, as the premium charged
is higher than its true value.

It seems that the machine learning approach of
minimizing MSE without constraining the bias can be
advantageous to the insurer to properly manage its
total portfolio, so as to minimize the risk of expected
outcomes overall. The historical definition of actuarial
fairness changes with the use of machine learning
tools, along with other actuarial processes, like risk
adjustment, and the fundamental meaning of what the
premium represents. The premium would no longer be
actuarially fair as defined traditionally. The public and
regulatory messaging would also need to be altered to
reflect solvency and managing insurer risk in a new way.

With the increasing adoption of machine learning
techniques by the insurance industry, actuaries need a
broader perspective to examine the greater context of
what is the definition of actuarial fairness and its impact
on the law and ethics, in addition to the prediction
accuracy of machine learning methods.
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