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0.1 Structure of the presentation



3

1.1 VA Benefits over mutual funds

Benefit Variable
Annuities

Mutual 
Funds

Guarantee of the 
principal at Maturity Yes No

Guarantee of the 
principal at Death Yes No

Transfer to beneficiary 
without will Yes No

Lock in market gains 
using resets Yes No
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1.2 VA GMMB in relation to a put option

• Variable annuities are similar to derivatives.

• Variable annuities often have resets (e.g. GMMB is
similar to reset put).

• The main differences between variable annuities and
derivatives are:

o Premium paid periodically and can be proportional to 
account value;

o Payments are related to mortality;
o Maturity of variables annuities is longer than put option.
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1.3 VA account value projected over time



Hedging errors
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1.4 VA Lognormal pricing model for GMMB

• We let      be the price of a stock market index.

• We let       be the price of the variable annuity funds.

• We let                                    , where          is the fee charged to the 

variable annuity fund. 

• In the physical probability measure, we suppose that      follows a 
regime-switching Log Normal model with two regimes.

• We have                                                , where      is the state of the 
Markov chain and  
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1.5 Calculating VA hedging errors

• For sake of simplicity, we suppose a constant survival rate 
to lapse and mortality     . 

• For sake of simplicity, we also suppose that there are no 
resets.

• To calculate the hedging errors, we use the Black-Scholes 
framework. Thus, we obtain:
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1.6 Calculating VA hedging errors (cont’d)

Where:

is the risk free rate and      is the volatility.
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1.7 Calculating VA hedging errors (cont’d)

• In this presentation, we are only considering delta 
hedging.

• The delta is given by: 

• The position in the risk-free asset is given by:
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1.8 Calculating VA hedging errors (cont’d)

• The hedging portfolio is rebalanced at each time:

• Just before the rebalancing occurs, the value of the 
replicating portfolio is given by

• Just after the rebalancing occurs, the value of the replicating 
portfolio is given by
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1.9 Calculating VA hedging errors (cont’d)

• The hedging errors are given by:

• The discounted value of the hedging errors is given by:

where       is a constant force of interest.
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1.10 Calculating VA hedging errors (cont’d)

• The parameters that we consider are:

o Risk neutral:

o Actuarial: 

o Regime switching:

o Discount rate:

1,K = 0.02,r =

0.02δ =

0.157,σ =

( )
1

121 1 0.02 ,totw = − − 0.96θ =

1 0.0084,µ =

2 0.0080,µ = −

1 0.0330,σ =

2 0.0734,σ =

11 0.9767p =

21 0.0850,p =

0 1S =
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1.11 Mapping VA fund value path to 
hedging errors

At first sight, there is no clear connection between variable annuity fund 
paths and the hedging costs.
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1.12 Mapping VA fund value path to 
hedging errors (cont’d)

• It turns out that we can define some variables that are highly 
correlated with the hedging errors as will be shown.

• We define the following variables:

o (mean of log-returns);

o (standard

deviation of log-returns);
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1.13 Mapping VA fund value path to 
hedging errors (cont’d)

o (standard deviation of log-

returns);

o (skewness of log-returns);

o (kurtosis of log-returns);

o (cumsum range);
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1.14 Mapping VA fund value path to 
hedging errors (cont’d)

o

(SD Order 1);

o is the total discounted hedging errors for 
scenario      .
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1.15 Mapping VA fund value path to 
hedging errors (cont’d)

1 0.0652 0.6768 -0.009 0.1897 0.4479 0.7466

0.0652 1 -0.481 0.0034 -0.071 0.0336 0.3277

0.6768 -0.481 1 -0.006 0.2895 0.3743 0.5460

-0.009 0.0034 -0.006 1 0.0391 0.0006 -0.051

0.1897 -0.071 0.2895 0.0391 1 0.0486 0.2233

0.4479 0.0336 0.3743 0.0006 0.0486 1 0.4411

0.7466 0.3277 0.5460 -0.051 0.2233 0.4411 1

Correlation matrix GMMB 5 years

TotHE
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1.16 Mapping VA fund value path to 
hedging errors (cont’d)



20

1.17 Mapping VA fund value path to 
hedging errors (cont’d)
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1.18 Mapping VA fund value path to 
hedging errors (cont’d)
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1.19 Mapping VA fund value path to 
hedging errors (cont’d)

• We have seen that there are some variables that are 
highly correlated with hedging errors.

• These highly correlated variables do not use 
information about delta positions.

• These highly correlated variables can be used as input 
to a scenario reduction algorithm.
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1.20 VA valuation: Literature review

• Many methods were developped to reduce calculation
time in the actuarial literature:

o Representative contracts approach (see Gan (2013) et Gan & Li 
(2015, 2017) for example);

o Scenario reduction approach (see Longley-Cook (2003));
o Variance reduction approach (see Hsieh et al. (2018));
o Replicating portfolio approach (see Vadiveloo (2012)).

• To the best of our knowledge, scenario reduction has not 
been considered for dynamic hedging models for GMMB 
in the literature.
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1.21 VA valuation: Reserve and Capital

• In Canada, the reserve is approximately given by

• In Canada, the capital is approximately given by

( )0 80%Reserve = TotP CTE HE+

( ) ( )95% 80%Tot TotCapital CTE HE CTE HE= −
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2.1  General scenario reduction steps

In this presentation, we consider scenario reduction algorithms 
that can be described as follows:

• Step 1: Generate random process of interest (e. g. regime-
switching model for equity).

• Step 2: Use a dimension reduction algorithm to obtain a 
matrix       as follows:

where          is a bounded function (e. g. standard deviation) 
and     is the row      of matrix    .  

( ) ( )0 1, , ,, , ,
nj j j t j t j tD g S g S S S= = 
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jD jD
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2.2 General scenario reduction steps (cont’d)

• Step 3: Use an algorithm to identify the representative
scenarios which are pivots based on the matrix calculated
in Step 2 (e. g. Chueh’s (2002) scenario reduction algorithm,
etc.). The vector index of the chosen scenarios is defined as:

• Step 4: Determine a probability for each identified
pivots (e. g. Chueh’s scenario reduction algorithm,
etc.).

D

[ ]1 ,1 .LI I I L N= ≤ ≤

,1kp k L≤ ≤
,1

kIS k L≤ ≤
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2.3  General scenario reduction steps (cont’d)

• Step 5: Calculate the hedging errors using
the pivots identified in Step 4 (i. e.                        ). With the 
hedging errors and their associated probability
calculated in Step 4, estimate risk measures such as             
and                      .

• Standardization: Suppose we have a vector . 
Then, we can standardize this vector using the following
relationship:

, ,1
kI TotHE k L≤ ≤

,1
kIS k L≤ ≤

,1kp k L≤ ≤
( )TotVaR HEα

( )TotCTE HEα

( )1, , nx x x= 

( )( ) 1

1 11
min max min .j j j j jj n j nj n

x x x x x
−

≤ ≤ ≤ ≤≤ ≤
= − −
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2.4  Scenario reduction: Chueh’s algorithm 
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2.5  Three scenario reduction methods 

• In our algorithm, we consider the following distance matrix:

• We consider three versions of our general scenario reduction
algorithm (i. e. different Step 3):

o Pure simulations;
o Chueh scenario;
o Clara’s clustering algorithm. 

1 1 1

N N N

D
ψ β λ

ψ β λ
ψ β λ

 
  = =   
 
 

 

    
  .
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2.6  Scenario reduction: Naïve approach
• As a first approach, we might want to consider the variable 

annuity fund path value as input to the  scenario reduction
algorithm.

• For 10,000,000 simulated paths as True Value.
• For 10,000 simulated paths and 500 pivots, for a 5 year

GMMB, we obtain the following table: 
Approach CTE60% CTE80% CTE95%

True Value -0.001540 0.011710 0.038597

Total simulation -0.001410 0.011850 0.037505

Pure simulation -0.003112 0.008580 0.029640

Chueh M2 0.0215670 0.034330 0.053204

Clara -0.015520 -0.005420 0.015944



2.7  Scenario reduction: Naïve approach
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2.8 Scenario reduction: Pure simulation
Benchmark, 10,000 repetitions

Number
of Pivots VaR5% VaR10% VaR15% VaR50% VaR85% VaR90% VaR95%

250 0.00258 0.00216 0.00189 0.00123 0.00237 0.00298 0.00420

500 0.00183 0.00152 0.00133 0.00088 0.00171 0.00213 0.00300

1,000 0.00129 0.00108 0.00096 0.00061 0.00119 0.00149 0.00211

1,500 0.00107 0.00089 0.00078 0.00049 0.00098 0.00122 0.00173

2,000 0.00092 0.00076 0.00068 0.00043 0.00085 0.00107 0.00152

2,500 0.00083 0.00069 0.00059 0.00039 0.00077 0.00096 0.00135

5,000 0.00058 0.00049 0.00042 0.00028 0.00053 0.00067 0.00095

Mean absolute deviation



2.9 Scenario reduction: Pure simulation
Benchmark, 10,000 repetitions
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2.10 Scenario reduction: Pure simulation
benchmark, 10,000 repetitions

Mean absolute deviation
Number of 

pivots CTE60% CTE80% CTE95%

250 0.001930 0.002929 0.005962

500 0.001381 0.002098 0.004307

1,000 0.000965 0.001472 0.003001

1,500 0.000784 0.001197 0.002442

2,000 0.000685 0.001046 0.002144

2,500 0.000616 0.000941 0.001893

5,000 0.000430 0.000659 0.001343
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2.11 Scenario reduction: Pure simulation
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2.12  Scenario reduction: 10,000 simulated 
paths yield 500 pivots, repeated 10,000 
times

•Approach VaR5% VaR10% VaR15% VaR50% VaR85% VaR90% VaR95%

Pure 
Simulations 0.00182 0.00151 0.00133 0.00088 0.00171 0.00213 0.00302

Chueh M2 0.00313 0.00240 0.00201 0.00123 0.00154 0.00180 0.00230

Clara 0.00179 0.00134 0.00113 0.00071 0.00113 0.00139 0.00190

Mean absolute deviation

Approach VaR5% VaR10% VaR15% VaR50% VaR85% VaR90% VaR95%

Chueh M2 0.3325 0.3542 0.3713 0.3906 0.5371 0.5499 0.5885

Clara 0.5079 0.5404 0.5529 0.5682 0.6276 0.6391 0.6387

Proportion of time closer to true value than simulation



37

2.13 Scenario reduction: 10,000 simulated 
paths yield 500 pivots, repeated 10,000 
times

Mean absolute deviation

Proportion of time closer to true value than simulation

Approach CTE60% CTE80% CTE95%

Pure simulation 0.001381 0.002098 0.004307

Chueh M2 0.000920 0.001318 0.002445

Clara 0.000732 0.001104 0.002393

Approach CTE60% CTE80% CTE95%

Chueh M2 0.631900 0.645100 0.671900

Clara 0.693600 0.693500 0.679600
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2.14  Scenario reduction: 10,000 simulated 
paths yield 1000 pivots, repeated 10,000 
times

Approach VaR5% VaR10% VaR15% VaR50% VaR85% VaR90% VaR95%

Pure 
Simulations 0.00132 0.00109 0.00096 0.00061 0.00119 0.00150 0.00209

Chueh M2 0.00189 0.00146 0.00123 0.00075 0.00099 0.00116 0.00151

Clara 0.00127 0.00098 0.00083 0.00052 0.00084 0.00103 0.00136

Mean absolute deviation

Approach VaR5% VaR10% VaR15% VaR50% VaR85% VaR90% VaR95%

Chueh M2 0.3803 0.4165 0.4267 0.4276 0.5587 0.5751 0.6020

Clara 0.5132 0.5303 0.5501 0.5514 0.6132 0.6183 0.6251

Proportion of time closer to true value than simulation
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2.15  Scenario reduction: 10,000 simulated 
paths yield 1000 pivots, repeated 10,000 
times

Mean absolute deviation

Proportion of time closer to true value than simulation

Approach CTE60% CTE80% CTE95%

Pure simulation 0.000959 0.001465 0.003014

Chueh M2 0.000612 0.000880 0.001685

Clara 0.000546 0.000810 0.001726

Approach CTE60% CTE80% CTE95%

Chueh M2 0.6432 0.6586 0.6843

Clara 0.6748 0.6864 0.6741
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2.16 Scenario reduction: 15,000 simulated 
paths yield 500 pivots repeated 10,000 
times

Approach VaR5% VaR10% VaR15% VaR50% VaR85% VaR90% VaR95%

Pure 
Simulations 0.00187 0.00155 0.00135 0.00087 0.00169 0.00215 0.00301

Chueh M2 0.00341 0.00261 0.00216 0.00136 0.00160 0.00187 0.00239

Clara 0.00177 0.00132 0.00111 0.00070 0.00111 0.00133 0.00182

Mean absolute deviation

Approach VaR5% VaR10% VaR15% VaR50% VaR85% VaR90% VaR95%

Chueh M2 0.3104 0.3367 0.3564 0.3553 0.5177 0.5449 0.5733

Clara 0.5134 0.5511 0.5609 0.5698 0.6298 0.6444 0.6493

Proportion of time closer to true value than simulation
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2.17 Scenario reduction: 15,000 simulated 
paths yield 500 pivots repeated 10,000 
times

Mean absolute deviation

Proportion of time closer to true value than simulation

Approach CTE60% CTE80% CTE95%

Pure simulation 0.001365 0.002077 0.004257

Chueh M2 0.000941 0.001348 0.002574

Clara 0.000704 0.001054 0.002342

Approach CTE60% CTE80% CTE95%

Chueh M2 0.6204 0.6346 0.6687

Clara 0.6937 0.7006 0.6823
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2.18 Scenario reduction: 15,000 simulated 
paths yield 500 pivots repeated   
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2.19 Scenario reduction: Summary of the
results

• We have shown that it is possible to use a scenario reduction
algorithm to reduce calculation time for a dynamic hedging
model.

• The variability of the CTE95% with the scenario reduction
algorithm based on the Clara algorithm with 10,000 simulations 
and 500 pivots is approximately equal to 1,500-2,000 simulations  
(i. e. calculation time reduced by a factor of 3-4).

• The scenario reduction algorithm based on the Clara algorithm is
less variable than simulations for the VaR and CTE.

• The scenario reduction Chueh algorithm performs well in the 
right tail.
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3.1 Implementation in HPC CUDA and R: 
Introduction

• We implemented a GPU version of the Chueh scenario 
reduction algorithm.

• Some parts of Chueh scenario reduction algorithm can be
parallelized.

• The GPU version is significantly faster than the CPU version.

• The GPU implementation open opportunities for future 
research.
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3.2 Implementation in HPC CUDA and R: 
Introduction

A CPU consists of a few cores optimized for sequential serial
processing while a GPU has a massively parallel architecture
consisting of thousands of smaller, more efficient cores
designed for handling multiple tasks simultaneously.
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3.3  Implementation in CUDA and R: 
Introduction
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3.4  Implementation in CUDA and R: 
Introduction

• Use R GPU packages from CRAN.

• Access the GPU through CUDA libraries.

• Access the GPU through the CUDA-acceleraged programming languages, 
including C, C++ and Fortran with Open ACC commands and PGI compiler. 
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3.5  Implementation in CUDA and R: 
Results

Pivots Intel i7-78000X 
Nvidia Titan 

Xp IBM Power8 Nvidia P100

100 2794 81.45 4526.24 34.73

300 12320 215.92 15803.69 97.16

500 27597 349.85 29562.57 167.87

700 47305 492.07 46698.59 243.60

1000 87233 737.17 79435.62 369.27

†All times in [ms]
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3.6  Implementation in CUDA and R: 
Results
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4.1 Conclusion

• Scenario reduction algorithms can be applied to reduce
calculation time for dynamic hedging models for GMMB 
guarantees.

• The calculation time of the Chueh scenario reduction
algorithm can significantly be reduced using a GPU 
implementation.

We could extend our work by incorporating:

o other guarantees;
o stochastic lapses;
o stochastic interest rates;
o basis risk.
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