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Abstract

The study of mortality is an ever-active field of research and new methods or combi-
nations of methods are constantly being developed. In the actuarial domain, the study
of phenomena disrupting mortality and leading to excess mortality, as in the case of
COVID-19, is of great interest. It is therefore relevant to dwelve on the investigation of
the extent to which an epidemiological model can be integrated into an actuarial approach
in the context of mortality. The aim of this project is to establish a method for the study
of excess mortality due to an epidemic and to quantify these effects in the context of the
insurance world and to anticipate certain possible financial instabilities. We consider a
case study caused by the SARS-CoV-2, in Belgium, during the year 2020. We propose
an approach that develops an epidemiological model simulating excess mortality and
incorporates this model into a classical approach to pricing life insurance products.
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1 Introduction
The recent SARS-CoV health crisis shows clear evidence that we are not immune to pandemics
and its economic effects, despite medical advances and robust health systems. Indeed, Institute
and Faculty of Actuaries (2015) indicate that the 1918 Spanish Flu, responsible for the death
of more than 50 million people (CDC, 2021), had a cost of around £13 billion to insurance
companies. Pandemics are also becoming more likely (Saunders-Hastings and Krewski, 2016;
Institute and Faculty of Actuaries, 2015), see e.g. the H2N2 flu in 1957-1958, the H3N2 1968
flu, H1N1 2009-2010 flu (WHO, 2021a) or more recently the Ebola epidemic between 2014-2016
(WHO, 2021b).

The increasing frequency and severity call for indepth actuarial analysis of mortality and
its effect on pricing and reserving. In particular, pandemics have an heterogenous effect on
populations. Indeed, certain socio-economic groups are more susceptible than others to get
sick and die, making basic life tables unsuitable for pricing and risk management. It becomes
natural to consider a model that incorporates epidemiological insights and dependence (Feng
and Garrido, 2011).1

The study of mortality is an ever-active field of research and new methods or combinations
of methods are constantly being developed. In the actuarial domain, the study of phenomena
disrupting mortality and leading to excess mortality, as in the case of COVID-19, is of great
interest. Investigating the extent to which an epidemiological model can be integrated into
an actuarial approach in the context of mortality is hence relevant. This paper proposes an
approach that develops an epidemiological model simulating excess mortality and incorporates
this model into a classical approach to pricing life insurance products. The aim of this project
is to establish a method for the study of excess mortality due to an epidemic and to quantify
these effects in the context of the insurance world and to anticipate certain possible financial
instabilities.

In this paper, we consider the epidemic caused by the SARS-CoV-2, in Belgium, during
the year 2020. For that, we use the daily COVID mortality data from national health data
responsible Sciensano (2021). After capturing the COVID-19 specific mortality using an
extended version of Franco (2021), we study the overall mortality, using data from the Human
Mortality Database (2021) and the Cairns, Blake and Dowd model (Cairns et al., 2006). We
focus on old ages in our study as these were those who were most affected by the pandemics
from a mortality viewpoint.

Combining these two models allows us to perform an actuarial study on two life insurance
products: whole life insurance and lifetime immediate annuities. We study these products in
two settings: an old contract underwritten in 2000, and a recent contract underwritten in
2019, a year before the pandemic. We calculate their expected value and variance. We observe
that the variance increases more importantly for recent contracts, despite the insured being
younger. For older contracts, with older insured, the variance is reduced. We hypothesize that
this could be due to a different distribution of mortalities in the COVID vs no COVID scenario.
Indeed, the uncertainty would be greater for younger individuals who will still remain for a
long period in the contract. However, for older individuals, the presence of COVID renders
the event of death more “certain”.

The remainder of this paper is structured as follows. Section 2 presents a review of the
literature related to epidemiological models and aggregate mortality models. Section 3 presents

1The yearly seasonal flu does not fall within the scope of our study, being a recurrent sickness. Our aim is
to model a one-off pandemic caused by a new virus as distinguished by the CDC.
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the SIRD epidemiological and Cairns et al. (2006) model used for modeling mortality whereas
section 4 provides a numerical estimation and illustration of the effect of COVID-19 in the
valuation of insurance products. Section 5 concludes.

2 Literature review
In this section we will discuss various strands of literature related to mortality, in particular
cause-of-death, epidemilogical and aggregate mortality models.

Since we are interested in COVID-19 specific mortality, a possible way of studying this
phenomenon is by using cause-of-death mortality models. Insights about cause-of-death
mortality and its long-term trend can be obtained, informing us about the contributors to
aggregate mortality. A crucial choice has to be made with regards to the potential relationship
between these causes as these models should also provide insights about aggregate mortality.
The challenge is that this dependence is not observable. Indeed, upon death, it is impossible
to know what would have been the potential cause-of-death had the individual stayed alive.
Hence, a natural choice is to assume independence (see Rogers and Gard (1991); Wilmoth
(1996); Tabeau et al. (1999) and recently Boumezoued et al. (2018) and Lyu et al. (2021)
for France and The Netherlands respectively). A clear advantage of this approach is that
aggregate mortality is simply obtained by adding the mortality per cause-of-death.

However, recent research on cause-of-death mortality incorporates dependence as these
would yield better long-term forecasts of the aggregate mortality. Examples of this are Arnold
and Sherris (2013) and Arnold and Sherris (2015) who use Vector Error Correlation Models;
Zheng and Klein (1995); Li and Lu (2019) and Zittersteyn and Alonso-García (2021) who
use copula theory and Li et al. (2019) who utilizes clustering methods to group different
causes of death. In all cases, dependence between cause-specific death is considered and better
cause-removal and aggregate mortality results are obtained. Despite their richness, these
models are unable to capture the particular nature of infectious diseases in the context of a
pandemic since transmission and mortality has a different behavior than natural causes of
death.

To study COVID-19, we need to move beyond classical actuarial techniques and delve into
compartmental models in epidemiology. Various models have been considered for COVID-19,
going from SIR (Susceptible- Infectious-Recovered) (Abou-Ismail, 2020; Huang et al., 2020;
Calafiore et al., 2020) to SUQC (Susceptible-Unquarantined-Quarantined-Confirmed) (Abou-
Ismail, 2020). These models simplify the mathematical modeling of infectious diseases as they
divide the population in different compartments, each of them with a different label such as
S, I or R depending on whether they are Susceptible, Infectious or Recovered respectively.
Individuals can move between compartments and the order of the labels generally represents the
transitions between compartments. For instance, SIS means susceptible-infectious-susceptible.2
These models originated at the beginning of the 20th century in the works of Kermack and
McKendrick (1927) and Kermack and McKendrick (1932) and rely on Ordinary Differential
Equations (ODE).

The susceptible-infectious-recovered (SIR) model is the basic building block of compart-
mental models (Hethcote, 2000; Tang et al., 2020). It has been widely used in the context of
COVID-19, see e.g. Abou-Ismail (2020); Huang et al. (2020) and Tang et al. (2020). Calafiore
et al. (2020), studying the case of Italy, extended this model to include the initial number of

2The SIS model is commonly used to model the common cold or the flu as infection does not provide
long-term immunity.
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susceptible individuals and relative factor between positive cases and real number of infected
individuals as a model parameter. Another possible extension is to consider susceptible-
exposed-infectious-recovered (SEIR) models. By including the compartment “exposed” we are
able to include the incubation period of the sickness (Abou-Ismail, 2020; Tang et al., 2020).
Both SIR and SEIR models disregard births and death, implicitely assuming that births and
deaths have a negligeable impact in the models. More complex models can overcome this
(Hethcote, 2000).

We are interested in analysing excess mortality, as well as the impact of the pandemic in
the life table. Ultimately, the goal is to assess the effect of COVID-19 in pricing and reserving.
Hence, there is a need to move beyond the SIR model to add at least a compartment related
to Death. Fernández-Villaverde and Jones (2022) estimated the SIRD model for various
countries, states and cities in the context of COVID-19. Our model will be based on the
SIRD compartmental design with the addition of age-stratification as suggested by Balabdaoui
and Mohr (2020). Note that more complex models could include quarantine and lockdown
dynamics, such as the case of SUQC models described above (Abou-Ismail, 2020). However,
we abstract from SEIR or SUQC models as our data is unable to sustain a model with the
exposed (E), unquarantined (U) and quarantined (Q) compartments. Furthermore, SUQC
models have been mostly used in China (Zhao and Chen, 2020), with strict quarantine rules,
which vastly differ from those use in most Western countries. Besides, these models are of less
interest within an insurance context as there are no cash-flow payments in case of exposure or
quarantine.

Ultimately, after studying the COVID-19 mortality dynamics we are interested in incor-
porating it into a classical life table, using insights from single-population mortality models.
The goal is to assess the effect of COVID-19 in products sold to individuals over 50 years old,
as the effect of COVID-19 was the highest for this age segment. We hence choose to model
aggregate mortality with a Cairns, Blake and Dowd (CBD) (Cairns et al., 2006) model which
is fitted to the Belgian historical mortality using data from the Human Mortality Database
(2021). We use this model as it is considered suitable for modelling higher ages and has a
simple structure with few parameters. Indeed, empirical analysis show that the changes in
mortality rate are imperfectly correlated, supporting the use of the CBD model.

3 Methodology
In this section we develop the theoretical framework for the epidemiological model, the
aggregate mortality and their integration. The products and indeces studied to assess the
effect of COVID-19 are also presented.

3.1 SIRD model

We study the age-stratified susceptible-infectious-recovered-death (SIRD) model as proposed
by Balabdaoui and Mohr (2020). Given the differing mortality and recovery rate of infected
individuals among different age groups, we incorporate age-stratification with the following
age categories:

• Category 1 : Individuals aged 0–24

• Category 2 : Individuals aged 25–44

• Category 3 : Individuals aged 45–64
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• Category 4 : Individuals aged 65–74

• Category 5 : Individuals aged 75–84

• Category 6 : Individuals aged 85+

Graphically, the SIRD model is depicted in Figure 1.

Figure 1: SIRD model

Source: the authors.

Integrating the age-component into the SIRD model, and denoting the age-group by “i”,
we obtain the following EDO system (1) (with i = 1, .., 6):

dSi(t)
dt

= −Si(t)
∑
j

Ci,jλi
Ij(t)
Nj

,

dIi(t)
dt

= Si(t)
∑
j

Ci,jλi
Ij(t)
Nj
− γiIi(t)− µiIi(t),

dRi(t)
dt

= γiIi(t),

dDi(t)
dt

= µiIi(t).

(1)

The rate λi represents the transmission rate of the infection for group i, whereas µi and
γi represent the mortality and recovery rate of group i respectively. Clearly the system (1)
indicates that you leave the susceptible compartment if infected, you enter the infectious state
by infection and leave either when you recover or die. You enter the recovery state with
intensity γi and do not leave this compartment.3 Similarly, you enter the dead absorbant
compartment with intensity µi. The total population in group i is given by

Ni = Si(t) + Ii(t) +Ri(t) +Di(t) ∀i.

The matrix C represents social contacts between the different age categories. It is important to
note that we study the epidemic in a short period, making transitions between age-categories
redundant. The initial conditions of the EDO system (1) are given by:

Si(0) > 0, Ii(0) > 0, Ri(0) ≥ 0, Di(0) ≥ 0
Si(0) + Ii(0) +Ri(0) +Di(0) = Ni

(2)

3The recovered state is absorbent. This is a reasonable hypothesis in 2020, year on which the model is
parametrized. COVID infection was assumed to provide long-term immunity. Models that allow for recovery
could address this but are outside the scope of this study due to data limitations.
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Alternatively, we can represent the EDO system (1) for all age-groups in matrix form as
follows:

dS

dt
= −diag

(
C [NInvI]ST

)
λ,

dI

dt
= −diag

(
C [NInvI]ST

)
λ− γI − µI,

dR

dt
= γI,

dD

dt
= µI,

(3)

where
− ST = [S1, ..., S6]
− IT = [I1, ..., I6]
−RT = [R1, ..., R6]
−DT = [D1, ..., D6]

− C =

C1,1 · · · C1,6
... . . . ...

C6,1 · · · C6,6



−NInv =


1/N1 0 · · · 0

0 . . . ...
... . . . 0
0 · · · 0 1/Nn



− λT = [λ1, ..., λ6]

− γ =


γ1 0 · · · 0

0 . . . ...
... . . . 0
0 · · · 0 γ6



− µ =


µ1 0 · · · 0

0 . . . ...
... . . . 0
0 · · · 0 µ6

 .

The reproduction rate R0, used to analyse the impulse of the pandemic, can be calculated
as the maximum eigenvalue from the “next-generation” matrix (Franco, 2021), resulting in
(4):

R0 = maxeigh
[

λ

γ + µ
· Ci,j

]
i,j

(4)

Model identification The SIRD model defined by the EDO system (1) is solved using
multistep methods as described in Hindmarsh (1983). Numerical multistep methods start with
an initial point and start moving forward. These methods use past points and their derivatives
in order to gain in efficiency (Hindmarsh, 1983).4 Applying this method to (1) we obtain the
number of people in each compartment, including the main compartment of interest Di(t)
which represents the number of deaths. It does so for every time-step t which is equal to 1 day
in our case.

The number of deaths according to the solution of the ODE system Di(t=2020) allows us to
find the empirical mortality rate per age category using maximum likelihood arguments (5):

m̂i(t=2020) = Di(t=2020)
ÊTRi(t=2020)

(5)

4This is in contrast with one-period methodologies such as the Euler method which solely refers to a previous
point and its derivative to determine the actual value, or the Runge-Kutta method which use a few intermediate
points but reject all previous to obtain the higher order value.
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where mi(t=2020), Di(t=2020) and ETRi(t=2020) are the central mortality rate, number of
deaths and exposure to risk for year t = 2020 and age category i = 1, ..., 6 respectively. The
exposure to risk for age-category i is estimated using ETRx(t) for the global population as
follows:

ETRi(t=2020) =
iN∑
x=i1

ETRx(t). (6)

where i1 and iN correspond to the first and last age belonging to age-category i.

3.2 Cairns-Blake-Dowd model

We use Cairns et al. (2006) to model global mortality and its long-term trend for old-ages
as these age categories have been most afected by COVID-19. The model is presented as a
logistic regression (7):

logitqxt = κ
(1)
t + (x− x)κ(2)

t (7)

where

• κ
(1)
t (intercept): represents the global mortality trend and is generally a decreasing

parameter since it improves over time.

• κ
(2)
t (slope): represents the mortality improvements and has typically a positive slope,

indicating that improvements have been greater at the first part of the age period
considered.

We assume that the force of mortality is constant within each square of the Lexis diagram:

µx+η1(t+ η2) = µx(t) for 0 < η1, η2 < 1. (8)

This allows to obtain the equivalence between the force of mortality µx(t) and the central
mortality rate mx(t). We work within a Poisson framework with Dx(t) ∼ Poi(ETRx(t)µx(t))
for µx(t) given by (9):

µx(t) = − ln (1− qx(t)) = ln
(
1 + exp

(
κ

(1)
t + κ

(2)
t (x− x̄)

))
. (9)

This yields to the following log-likelihood:

ln (L(κ)) =
xm∑
x=x1

tn∑
t=t1
{D − dxt lnµx(t)− ETRx(t)µx(t)}+ constant (10)

where µx(t) should be replaced by (9). The model will be solved using the R package StMoMo
(Villegas et al., 2018).5 Goodness of fit is assessed through Pearson residuals, which should
ideally have no trend. These are calculated as

rxt =
ln q̂x(t)

p̂x(t) − κ
(1)
t + κ̂

(2)
t (x− x)√(

(xm − x1)(tn − t1)
∑xm
x=x1

∑tn
t=t1(ε̂x(t))2

)−1
. (11)

5This package relies on generalized linear models and uses the package gnm to solve for numerous stochastic
mortality models that can be expressed within a GLM framework. The algorithm follows two steps. Firstly,
nonlinear parameters are updated, then the linear parameters are. Secondly, all parameters are updated jointly
until convergence is attained.
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Finally, projection is performed whereby the two stochastic processes κ(1)
t and κ(2)

t are modeled
through a bivariate random work with drift:κ

(1)
t = κ

(1)
t−1 + d1 + ξ

(1)
t

κ
(2)
t = κ

(2)
t−1 + d2 + ξ

(2)
t

(12)

where d1 and d2 correspond to the drift, and ξ(1,2)
t are independent bivariate and normally

distributed parameters with zero mean and variance-covariance matrix
[
σ2

1 σ2
12

σ2
21 σ2

2

]
. We rely

on closure of tables techniques to project to the ultimate age ω. We use the simple logistic
regression of Thatcher (1999):

µx(s) = φs,1 exp(φs,2.x)
1 + φs,1 exp(φs,2.x) (13)

This model is calibrated as a linear logistic regression (14) for a carefully chosen age range
x̃ = x1, ..., xend:

logit(µx(s)) = ln(φs,1) + φs,2x. (14)

with logit(y) = ln y
1−y . Having φs,1 and φs,2, mortality for higher ages can be projected beyond

xend using (13).

3.3 Final model

Having the COVID-19 related deaths stemming from the epidemiological model and the general
mortality model, we need to merge the results. We rely on cause-of-death mortality models
techniques to aggregate general deaths to COVID-19 deaths. We will assess the impact of our
modeling through the study of the cohort life expectancy under the expression (8) given by:

ex(t) = E[Tx(t)]

= 1− exp(−µx(t))
µx(t) +

∑
k≥1

exp

− k−1∑
j=0

µx+j(t+ j)

 1− exp(−µx+k(t+ k))
µx+k(t+ k)

(15)

where x and t indicate the age and year of study respectively. Comparing mortality rates that
include or exclude COVID-19 mortality allows us to assess the impact of a part of the excess
mortality due to the pandemic. Indeed, social isolation and health care system saturation has
had an adverse impact on both COVID-19 and other patient’s ability to receive quality and
timely care. The total excess mortality is hence at this stage unknown.

3.4 Actuarial application

We assess the effect of COVID for two insurance products (whole life insurance and a monthly
life annuity) and two scenarios: a contract underwritten in 2019, a year before the pandemic
started, and 2000. For the sake of completeness, we provide the standard actuarial expressions
for these products.
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3.4.1 Whole life insurance

The Net Present Value (NPV) for a whole insurance paying C in case of death is given by

NPV = C ·An, (16)

where An is calculated using the recurrence relationship

An = vqn + vpnAn+1,

Aω−1 = v,
(17)

with

v = 1
1 + i

,

qn(t) = 1− pn(t),
pn(t) = e−µn(t).

(18)

The variance is given by
Variance = C2 · (2An −A2

n), (19)
with

2An = v2qn + v2pn
2An+1,

2Aω−1 = v2.
(20)

3.4.2 Life annuity

The NPV of a life annuity paying P per month is given by

NPV = 12 · P · a(12)
n , (21)

where a(12)
n can be expressed in terms of A(12)

n as follows:

a(12)
n = 1− u(12)A

(12)
n

i(12) , (22)

with
i(12) = ((eδ)1/12 − 1) · 12,
u(12) = 1 + i(12).

We obtain the monthly whole life insurance equivalent A(12)
n using An by approximating:

A(12)
n ≈ i

i(12)An. (23)

yielding

NPV ≈ 12P
1− u(12) i

i(12)An

i(12) . (24)

The variance is given in an analogous manner as

Variance = (12P )2
2A

(12)
n − (A(12)

n )2

(1− v(12))2 , (25)

where
2A(12)

n ≈ i

i(12)
2An. (26)
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Figure 2: Raw Belgian COVID-19 death data from Sciensano (2021) (01/03/2020-31/12/2020)

(a) Daily COVID-19 deaths

(b) Accumulated COVID-19 deaths
Source: the authors.

4 Numerical implementation

This section describes the database from Sciensano (2021) in detail and presents the epidemio-
logical and global mortality model. The actuarial application and its analysis follows.

4.1 Database

Our model uses demographic and epidemiological data for the case of Belgium. The COVID-19
related data is given by the Epistat online platform from Sciensano (2021). Scienscano is the
Belgian health institute and is responsible for following-up the epidemiological evolution of
COVID-19. The database provides segmentation of deaths per age and sex.

Figure 2a and 2b depicts daily and cumulated COVID-19 deaths respectively. The two
main waves appear clearly in the figures. Furthermore, the particular virulence to old ages is
clear as most deaths belong to the 75-84 and 85+ age categories. We use Human Mortality
Database (2021)6 database for the global mortality. Our study is reduced to the year 2020.

6Human Mortality Database was created to provide detailed data about population and mortality to
researchers, students, journalists, political analysist and individuals interested by the history of human longevity.
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4.2 Epidemiological model

4.2.1 Parameters

To simulate the model, we need to identify the following parameters:

• the initial conditions: N , Ii(0), Di(0);

• the social-contact matrix C;

• the COVID-19 related parameters: λ, γ, µ and R0.

Some parameters are based on assumptions as they represent demographics or the biological
and medical nature of the problem and are given by scientific articles. Others will be found by
optimisation.

We use Root Mean Square Error (RMSE) to assess the goodness of our model. In particular
we compare raw with estimated daily deaths :

RMSE =

√∑T
t=1

∑6
i=1(daily_Di(t)− daily_Di_real(t))2

6 · T , (27)

with

• t = 1 corresponds to March 1st 2020 and T corresponds to either T = 244 to October
31st 2020 for the preliminary model7 and T = 306 to December 31st 2020 for the model
with delay and final model,

• daily_Di(t) is the daily number of deaths predicted by the model for day t and age-group
i given by daily_Di(t) = Di(t)−Di(t− 1)

• daily_Di_real(t) is the real number of datily deaths for time t and age-group i.

We assess our models graphically by comparing realised deaths, cumulated deaths as well
as death surges with modeled ones. We study three models:

1. Preliminary model: this model relies on γi values that coincide between the two waves
and R0 values that are drawn from the literature. The parameters are based on the
study of Franco (2021) who studies the pandemic until 31 october 2020,

2. Model with delay: this model relies on γi values that coincide between the two waves but
uses R0 that are estimated for our database,

3. Final model: this model relies on γi values that differ betwee two waves and uses
estimated R0 that are finetuned to the differences observed between the two waves.

The model with delay and final model rely on data for the whole pandemic period from
01-03-2020 until 31-12-2020. In what follows, we present the parameters that are used in our
model and specify where needed whether these parameters are relevant for all models or not.

• N : the belgian population as of January 1st 2020 per age category is given by Table 1:
7The last weeks of the year are excluded in the preliminary model as the parameters are based on the study

from Franco (2021) who studied the period until 31 October 2020.
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Table 1: Ni per age category

0-24 25-44 45-64 65-74 75-84 85+
Ni 3 237 498 2 968 631 3 082 034 1 170 399 698 940 335 139

Source: Statbel (2021).

• Ii(0): 19 total cases were reported March 1st 2020 according to Sciensano (2021). The
age-decomposition of the initial infections are presented in Table 2:

Table 2: Number of COVID-19 infected individuals on 01/03/2020

0-24 25-44 45-64 65-74 75-84 85+
Ii(0) 5 2 10 1 1 0

Source: Sciensano (2021).

• Di(0): No deaths were reported until March 2nd 2020 (Sciensano, 2021).

• Ci,j : the social contact matrix is based on the Socrates tool from Willem et al. (2020).

• R0: we use a time-dependent8 R0 from Franco (2021) as given in Table 3 for the
preliminary model. For the model with delay and final model is calculated R0 based on
equation (4).

Table 3: R0 values per period (format DD/MM) in 2020 and their confidence intervals ([ ])

01/03 - 13/03 14/03 - 18/03 19/03 - 03/05 04/05 - 07/06
R0 4.13 [3.89 ; 4.39] 2.24 [2.13;2.35] 0.65 [0.61 ; 0.72] 0.79 [0.75 ; 0.83]

08/06 - 30/06 01/07 - 28/07 29/07 - 31/08 01/09 - 31/10
R0 0.99 [0.91 ; 1.07] 1.40 [1.29 ; 1.53] 0.75 [0.63 ; 0.88] 1.73 [1.62 ; 1.85]

Source: Franco (2021).

• λ: λ is determined using R0 according to the following equation:

λi = R0

maxeig( Ci,j

γi+µi
)

avec i = 1, ..., 6. (28)

• γ: it is a time-dependent parameter depending on the epidemiological stage. We use the
values from Franco (2021):

8It is time-dependent as lockdown and quarantine rules have changed according to the evolution of the
pandemic.
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Table 4: γ values per age-category

0-24 25-44 45-64 65-74 75-84 85+
γi 4.5294−1 5.0786−1 5.7858−1 8.01−1 9.0512−1 17.76−1

Source: Franco (2021).

• µ: we use the age and period dependent mortality rates from Franco (2021) as depicted
in Table 59

Table 5: µ values per age category (in %)

March-April 0-24 25-44 45-64 65-74 75+
µi 0.0 0.02 0.21 1.85 9.25

April-July 0-24 25-44 45-64 65-74 75+
µi 0.0 0.01 0.19 1.72 7.84

July- 0-24 25-44 45-64 65-74 75+
µi 0.0 0.01 0.08 0.86 1.89

Source: Franco (2021).

4.2.2 Preliminary model

As discussed in Section 3.1, we solve the EDO system (1) using a multi-step methodology. We
use the R package deSolve for this. The model is used for the period between March 1st
2020 and October 31st 2020 for the reasons explained earlier in Section 4.2.1. Using the R0
values from Table 3 from Franco (2021), an adjusted initial number of infected individuals
I0=6 for the 25-44 age category, we obtain an RMSE of 402.3329.

Figure 3 depicts the difference between the simulated and actual daily deaths. Two obvious
trends appear: death is over-estimated in this model and there is a clear delay in the pandemic
peaks. It becomes obvious that relying in pre-specified R0 values is not providing satisfactory
results, hence the need to calculate it ourselves.

9Mortality rates for Belgium were studied in various studies (Levin et al., 2020; Molenberghs et al., 2020).
The meta-study from Levin et al. (2020) finds the relationship log10(IFR) = −3.27 + 0.0524 · age. However,
these results are not wave-dependent.
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Figure 3: Daily observed vs simulated COVID-19 related deaths according to the preliminary
model (01/03/2020-31/10/2020)

Source: the authors.

4.2.3 R0 parameter calculation

The need to have a more granular study of R0 appeared in the previous study. We calculate
the value of R0 value for shorter time intervals corresponding to changes in policy to fight the
pandemic. For instance, we separate the period of 19/03-03/05 and 04/05-07/06 in 19/03-03/04
for the full lockdown and 04/04-07/06 for Phase 1 and 2 of the post-lockdown period, better
reflecting restrictions. Table 6 provides a summary of the periods considered.

Table 6: Division of periods for R0

Period Level of restrictions
01/03/2020 - 13/03/2020 Pre-lockdown
14/03/2020 - 18/03/2020 Schools and leisure closed
19/03/2020 - 03/04/2020 Full lockdown
04/04/2020 - 07/06/2020 Phase 1-2
08/06/2020 - 30/06/2020 Phase 3
01/07/2020 - 28/07/2020 Phase 4
29/07/2020 - 31/08/2020 Phase 4 bis
01/09/2020 - 05/10/2020 Second wave
06/10/2020 - 18/10/2020 Limited social contacts
19/10/2020 - 01/11/2020 Curfew
02/11/2020 - 31/11/2020 (light) Lockdown
01/12/2020 - 23/12/2020 Reopening of shops
24/12/2020 - 31/12/2020 Public holiday period
Source: the authors.
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Firstly, we calculate the R0 parameter according to the period division proposed in Table
6. Given the time intensive procedure, this is done by parallel computing in R. The models
obtained are compared with regards to their RMSE. We separate the first and second wave in
the calculation of R0. Table 7 highlights the computational time for an array of parameter
sets and number of cores used in parallel computing.

Table 7: R0 identification benchmarking

# parameter set
6 10 15360 94527

# de cores
1 14.00s 26.21s NA NA
3 5.63s 15.26s NA NA
8 2.92s 5.17s 1h39m50.09s 10h14m23.06s

Source: the authors.

The best model according to the RMSE calculation yields the model depicted in Figure 4.
There is a clear delay between the peaks and valleys of the simulated model versus reality.
Indeed, our simulated peak is in 2020-03-20 whereas the real peak is observed 2020-04-08,
indicating a 18 day delay. We denote this model the model with delay.

Figure 4: Daily observed vs simulated COVID-19 related deaths according to the model with
delay (01/03/2020-31/12/2020)

Source: the authors.

A priori, multiple reasons could be raised in order to understand this delay. A first
explanation lies in the recovery rate γ. This empirically varies between the two waves, whereas
our preliminary model considered the same γ for the whole period of 2020. We will hence
use a new set of parameters for the recovery, assuming a longer recovery period during the
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first wave compared to the second wave. The new parameters are given in Table 8. A second
explanation lies in the calculation of R0. This parameter changes at the beginning of the
pandemic in a much quicker way than it does during the second wave. Utilizing the same time
step for the calculation of R0 may seem misleading. A weekly step instead is then adopted
from 01-03 to 09-04.

Table 8: γ values per age-category

First wave 0-24 25-44 45-64 65-74 75-84 85+
γi 5.163516−1 5.789604−1 6.595812−1 8.52948−1 10.152384−1 20.2464−1

Second wave 0-24 25-44 45-64 65-74 75-84 85+
γi 4.5294−1 5.0786−1 5.7858−1 8.01−1 9.0512−1 17.76−1

Source: The first wave values correspond to the second wave values increased by 14% based on the slower
recovery during the first wave as seen in Franco (2021).

We observe in Figure 5a and 5b the R0 parameter for the model with delay and final model
respectively. We clearly see the need for a finer grid in order to replicate the rapid evolution
of R0 at the beginning of the pandemic10. The former grid yielded strong jumps.

Figure 5: R0 values

(a) R0 in the model with delay (b) R0 in the final model
Source: the authors.

Of course, we could consider working on a finer grid for the whole duration of the study.
However, computational time would be greatly affected. Using a weekly time step for the
whole study would yield to a number of parameter sets equal to 2377728 which would take
10 days and 17 hours to fit. Furthermore, we observe in Figure 6 that the enhanced model
fits the raw data reasonably well. Indeed, incorporating the new R0 calculation and recovery
rates yields the first wave peak to 08/04/2020, coinciding with the raw data. Hence, we reduce
the timestep to a weekly basis for the beginning of the first wave whilst keeping the longer
timestep for the remainder of the analysis. We denote this model as final model.

10This corresponds to the following intervals in the final model: 1/3/2020, 8/3/2020, 14/03/2020, 19/03/2020,
26/03/2020, 2/4/2020, 9/4/2020, 4/5/2020, 8/6/2020, 1/7/2020, 29/07/2020, 1/9/2020, 6/10/2020, 19/10/2020,
2/11/2020, 1/12/2020, 24/12/2020 and 31/12/2020.
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Figure 6: Daily observed vs simulated COVID-19 related deaths according to the final model
(01/03/2020-31/12/2020)

Source: the authors.

Finally, we compare the three models, preliminary model, model with delay and final model,
with regards to their RMSE (Table 9). We distinguish two time periods, Period 1 going until
31/10/2020 and period 2 going until 31/12/2020. Of course, the preliminary model does not
have a value for period 2 as the R0 values of Franco (2021) were only available until 31/10/2020
limiting our preliminary study to that period. It is clear that our final model outperforms the
others in terms of RMSE.

Table 9: RMSE for the different models

Model Period 1 Period 2
Preliminary model 402.3329 NA
Model with delay 393.6614 543.0819

Final model 239.5903 525.7816
Source: the authors.

4.2.4 Epidemiological model: results

Figure 7 depicts the evolution of Susceptible, Infectious, Recovered et Dead as a solution of
the final model.
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Figure 7: Final model compartments

Source: the authors.

The Infectious graph shows clearly the two waves of the epidemic. Despite the greatest
number of sick individuals during the second waves, deaths were more numerous during the first
wave. Our solution also allows us to calculate the empirical mortality rate. These empirical
mortality rates, merged with the global mortality, will allow us to assess the effect of excess of
mortality within a life insurance product context.

The empirical mortality rates are calculated using the number of deaths per age-category
given by the model together with the estimated ETRi(t=2020) given in equation (6). Exposure
data being not available for 2020, we approximate it through ETRxt=2018 . We obtain the
results in Table 10.

Table 10: Empirical mortality rate per age-category (en %)

0-24 25-44 45-64 65-74 75-84 85+
µi 0 0.005 0.039 0.4 1.081 3.39
Source: the authors.

4.3 Cairns-Blake-Dowd model

We need the base mortality in order to be able to assess excess mortality. Here we focus on
the fit of the Cairns et al. (2006) model for Belgium using Human Mortality Database (2021).

4.3.1 Estimation

The theoretical methodological procedure is detailed in Section 3.2. We calibrate the model
from 1968 to 2018, last year available under Human Mortality Database (2021), using the
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StMoMo package in R.11 This period is chosen as a linear trend becomes clear from 1968
as shown in Figure 8. We consider the age period 45 to 100, excluding the accident hump
that would be otherwise poorly fitted by this model. Furthermore, we are solely interested in
the effect of COVID-19 and its insurance products for adults and old ages since COVID-19
mortality rates are negligible under the age of 44 (Table 10).

Figure 8: Choice of time period

Source: the authors.

Figure 9 shows the estimated parameters for the age and period interval chosen. The trends
observed coincide with expectation, κ(1)

t decreases over time reflecting mortality improvements
whereas κ(2)

t increases indicating improvements have been more important under x̄ than beyond
the mean age considered in our study.

11Missing values, as wel as NA, are associated zero weight and are hence not included in the fit.
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Figure 9: CBD fit

Source: the authors.

Residuals are calculated as in equation 11 and are depicted in figure 10. We observe no
clear trends beyond a reduced cohort effect for the individiuals born in 1920 after the first
world war.

Figure 10: Residual heatmap

Source: the authors.

4.3.2 Mortality projection and extrapolation

We project κt as indicated in Section 3.2 and obtain the trends depicted in Figure 11. Having
unsatisfactory data beyond the age of 100, we perform the logistic regression indicated in
equation 14 using x̃ = 90, ..., 100 allowing us to project mortality rates µx(t) until ω=120, the
ultimate age. Results are given in Figure 12a and 12b. The vertical dotted line indicates the
start of the logistic extrapolation. The discontinued line depicts the modeled rates whereas
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the blue lines correspond to the historical information.

Figure 11: Projection of κ(1)
t and κ(2)

t

Source: the authors.

Figure 12: Old age logistic regression

(a) 1968 (b) 1990
Source: the authors.

4.3.3 Global mortality: results

We analyse the effect of COVID-19 mortality in life insurance products. This is done for
various cohorts to assess the relative impact of the pandemic for recent contracts versus
contracts underwritten in 2000. In particular, we are interested in studying the male cohort
born in 1935 and a second male cohort born in 1955.12 Figures 13a and 13b show the fitted
model (discontinued line) versus empirical mortality rates (blue continuous line) given by the
maximum likelihood estimator for the two cohorts of interest. It is clear that the mortality

12Details about the characteristics of the contract are given in Section 4.5.
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rate for the 1935 cohort is greater than the 1955, which clearly follows from the fact that the
former was born during the world war II. The vertical dotted line represents the age from
which no empirical data is available.13

Figure 13: Simulated versus historical log mortality rates

(a) 1935 cohort (b) 1955 cohort
Source: the authors.

4.4 Model reconciliation

Agggregating the mortality rates obtained in Sections 4.2.4 and 4.3 we obtain the COVID and
no COVID scenarios. Of course, as long as µCOVID > 0 we will have some excess mortality
since µtotal = µCBD + µCOVID > µCBD. However, the extend of this excess of mortality, and
whether it greatly impacts life expectancy and product valuation is unknown. We investigate
this here.

Log mortality rates log(µx(t)) for year 2020, for the two scenarios, are presented in Figure
14. Vertical discontinuous lines represent the age categories, the blue and black line represent
the COVID and non COVID scenarios respectively. We observe a jump upon each age-category
change. These are explained considering differences between natural mortality and excess of
mortality COVID for the first part of the age interval. Indeed, let us focus on 75-84 to clarify
this. The excess of mortality is, in relative, much more important for a person aged 75 with
respect to someone aged 84 since µCOVID is constant for a particular age-category.14

We also calculate the cohort life expectancies using equation (15) for cohorts born in 1935,
1945 and 1970 for the COVID and non-COVID scenario (Figures 15a, 15b and 15c) aged 75,
85 and 50 in 2020 respectively. We observe that the relative big differences in the log mortality
rate do not translate in extreme differences in cohort life expectancy, especially for old ages.
We observe that the older the cohort, the greater the effect of COVID-19. However, this effect
is at most three months. We deduce that the effect of COVID-19 in lifetime annuity pricing
might be hence also reduced.

13Obviously, the 1935 and 1955 cohorts are aged 83 and 63 in 2018 the last observed year according to
Human Mortality Database (2021), making it impossible to compare with empirical data beyond these ages.

14In reality COVID related mortality will most likely vary within the age category. However, we are unable
to extract this trend due to data limitations.
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Figure 14: log(µx(t)), in 2020, two scenarios

Source: the authors.

Figure 15: ex(t): two scenarios

(a) Cohort born in 1935 (b) Cohort born in 1945

(c) Cohort born in 1970
Source: the authors.
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4.5 Actuarial application

We study a whole life insurance, paying capital e20,000 (= C) at the end of the year of
death to the insured’s beneficiary. The second product is a lifetime annuity immediate, paying
e2,000 (= P ) per month while the insured is alive. We price at the technical rate of δ = 3%.
These product have an inverse relationship with mortality. Indeed, an adverse mortality shock
will increase the price of a whole life insurance whereas it will decrease the price of a lifetime
annuity as death becomes more likely.

We consider two cohorts per underwriting year. We study cohorts born in 1970 and 1955
for the contracts underwritten in 2019, a year before the pandemic. These are 49 and 64 at
underwriting and 65 and 50 during the pandemic. We consider cohorts born in 1945 and
1935 for contracts underwritten in 2000. These are aged 55 and 65 at underwriting and 85
and 75 during the COVID-19 year of 2020. Furthermore, we consider the effect of COVID-19
excess mortality during the year 2020 by studying a with and without scenario. The NPV, its
variance, presented in Section 3.4 and the relative difference between COVID and non-COVID
scenarios given by equation (29) are analysed:

∆NPV = NPVCOVID
NPVnon COVID

− 1. (29)

We also study the difference between the no COVID case and the catastrophic COVID scenario,
whereby

µCOVID CAT = 10 · µCOVID.

Table 11 shows the NPV and standard deviation for the base COVID case, corresponding to
the estimated mortality presented in the previous sections for the whole life insurance (left
block) and lifetime annuity (right block). For the whole insurance case, we observe that the
NPV increases in presence of COVID as expected. Indeed, higher mortality increases the
likelihood of paying the capital, increasing accordingly the NPV. On the contrary, the NPV
of the annuity decreases in presence of COVID. However, as in the case of the whole life
insurance, the variation is negligible.

The standard deviation, on the other hand, has a more interesting trend. Indeed, for both
insurance products we observe that the the variance increases for the contracts underwritten
soon before the pandemic to younger individuals whereas it decreases for old contracts. Table
12 presents the effect of a catastrophic COVID scenario where mortality rate is multiplied by
10. We see that the relative change in NPV corresponds to roughly 10 times as well. Similarly
decreases or increases in variance are almost 10-fold.

We found that the variance changed, depending on whether the contract was underwritten
soon or long before the start of the pandemic. The worst possible outcome is to have a variance
increase, which is the case for contracts underwritten in 2019 to individuals aged 49 and 64.
On the contrary, old contracts see their variance decrease. This is linked to the behavior of the
confidence intervals (CI) of the mortality rates which we depict in Figure 16. This graph shows
the CI for all age categories with an adjusted scale in order to see the differences between the
two scenarios.
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Figure 16: Confidence intervals for 2020: two scenarios

(a) ages 45-54 (b) ages 55-64 (zoom)

(c) ages 65-74 (zoom) (d) ages 75-84

(e) ages 85+ (zoom) (f) ages 100+ (zoom)
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Table 11: NPV and variance for the COVID vs no COVID scenario: whole life insurance (left) and lifetime immediate annuity (right)

Whole life insurance Lifetime immediate annuity
NPV Standard deviation (= σ) NPV Standard deviation (= σ)

Scenario ∆1 (%) Scenario ∆1 (%) Scenario ∆1 (%) Scenario ∆1 (%)COVID no COVID COVID no COVID COVID no COVID COVID no COVID
Underwriting year: 2000

Age 75 9,492 9,469 0.241 3,374 3,379 -0.148 402,980 403,932 -0.235 131,879 132,138 -0.196
85 12,225 12,203 0.180 3,289 3,308 -0.567 288,976 289,892 -0.316 122,519 123,434 -0.741

Underwriting year: 2019

Age 50 7,156 7,151 0.064 2,951 2,943 0.288 500,451 500,641 -0.038 117,177 116,817 0.308
65 11,023 10,992 0.285 3,309 3,279 0.935 339,090 340,397 -0.384 126,118 124,801 1.055

Table 12: Difference between catastrophic COVID and no COVID: whole life insurance (left) and lifetime immediate annuity (right)

Whole life insurance Lifetime immediate annuity
∆ VAP1 (%) ∆σ1 (%) ∆ VAP1 (%) ∆σ1 (%)

Underwriting year: 2000

Age 75 2.294 -1.611 -2.244 -2.099
85 1.551 -5.150 -2.724 -6.781

Underwriting year: 2019

Age 50 0.637 2.826 -0.379 3.019
65 2.799 8.474 -3.770 9.491

1 given by equation (29). We define the catastrophic COVID as 10 · µCOVID. Source: the authors.
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Obviously mortality is greater in presence of COVID for all ages. However, the variability
varies. Indeed, we observe wider bounds in presence of COVID prior to retirement (Figures 16a
and 16b), slightly greater level of uncertainty for ages 65-74 (Figure 16c) and narrower bounds
with COVID beyond the age of 75 (Figures 16d, 16e and 16f). We hypothesize that this is due
to deaths being more unlikely in normal circumstances before retirement, so every additional
death due to COVID yields a more uncertain outcome and affects the CI and variability of the
insurance products accordingly. After retirement, it has the opposite effect as natural deaths
are more common, and considering COVID renders them even more likely, narrowing down
the CIs of the mortality rates and contracts for insured these ages accordingly.

Hence, the CI widens for younger ages whereas they narrow for older ages in presence
of COVID. The narrowing (widening) of the CIs translates to a reduction (increase) in the
standard deviation, respectively. Consequences of such a pandemic scenario show clear risks:
for products that pay in the event of death we have a risk of underpricing, and overall we can
observe a volatility increase that would put our reserves and capital levels at risk.

5 Conclusion
This paper provides an actuarial analysis based on excess of mortality in the context of
COVID-19. We develop an epidemiological model to estimate the COVID-19 related mortality
in Belgium in 2020 and reconciliate it with an aggregate mortality model. We contribute in
this way to actuarial recent work on epidemiological models of e.g. Feng and Garrido (2011),
Chen et al. (2021) and Hall et al. (2020). We extend Feng and Garrido (2011) considering a
SIRD component with a death compartment and both Feng and Garrido (2011) and Chen
et al. (2021) by adding age categories inspired by recent epidemiological work of Balabdaoui
and Mohr (2020) for Switzerland and Franco (2021) for Belgium.

We present a SIRD epidemiological model that relies on data-specific R0. It results in
a model that very accurately reflects number of deaths for different age categories as well
as accurate timing with regards to peaks and valleys. From an empirical epidemiological
perspective, we extend the work of Franco (2021) to the full year of 2020, whereas their study
is limited to 31/10/2020 due to data constraints.

We find that considering COVID-19 increases the Net Present Value (NPV) of a whole life
insurance and decreases the NPV of a lifetime immediate annuity as expected. We find that
variability of the contract increases for recently underwritten contracts whereas variability
decreases for old contracts, and this for both insurance products. We hypothesize this is due
to COVID-19 rendering death at older ages more certain, decreasing the variability of such
products. In all cases, the level of standard deviation changes remains limited.

Our work is comprehensive but has various venues to improve. The study is limited to
one year of COVID-19 related mortality data. Adding more years, combined with the various
age categories, would raise the need to create a transition mechanisms between age categories.
That could be added within the EDO system. Furthermore, our model reflects the main
compartments of interest in the context of an insurance application, be it recovery or death as
payments are contingent on either survival or death. It does not reflect other aspects of the
pandemic such as quarantine, incubation or hospitalization. Finally, we have abstracted, due
to data limitations, from considering the effect of COVID-19 in the global health landscape.
Indeed, one of the challenges of the pandemic has been managing the sudden inflow of sick
people in the intensive care units. This obviously has had a (negative) effect in the treatment
of other diseases for which the short and long-term effects are still unknown.
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