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Machine learning in life insurance
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• Eliminate evidence
• Automate decisions

Accelerate underwriting

• Incorporate more factors into mortality / morbidity prediction
• Provide finer segmentation or even individual pricing

Price more accurately

• New models of IT
• Target for both marketing and risk

Drive sales and marketing with data



Predictive models:
• risk selection
• misrep: smoker/BMI
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Risk selection model
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Model Predicted Probabilities

Case

Actual 
UW Class 

(with labs/exams) Preferred Standard Refer Predicted UW Class

Case 1 Preferred 99% 1% 0% Preferred

Case 2 Declined 50% 30% 20% Refer

Case 3 Preferred 70% 15% 5% Preferred

Case 4 Declined 90% 8% 2% Preferred

Case 5 Standard 20% 75% 5% Standard
0

10

20

30

40

50

60

70

80

90

100

Precision Recall

%
Metric

Model performance

Preferred Standard



Model lifecycle 5 years ago

May 2019 5Integrated Analytics

Define problem Data acquisition 
and cleaning Build model Assess model Deploy



Am I done?
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Deployment architecture
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Model lifecycle today
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Why model monitoring matters
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• World changes, training data might no longer 
depict real world

• Model inputs might change
• Undiscovered bugs in data pipeline or model
• Model becomes worse over time

Why do models go wrong?
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• Schema validation
• Correlation checks
• Distribution checks
• Clustering
• Model driven anomaly detection

Input monitoring
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• Type checks
• Minimum and 

maximum ranges
• Unseen categories

Input monitoring – schema validation
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Input monitoring – distribution 
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Input monitoring – anomaly detection 
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Use a model

To monitor a 
model

• Random Cut 
Forests

• Generative 
Adversarial 
Networks



• Distribution of output
• Compare against ground truth
• Model confidence
• Compare against other model predictions

Output monitoring
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Output monitoring – ground truth
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Predicted Class

Actual 
UW Class Preferred Standard Decline

Preferred 1000 0 0

Standard 50 200 0

Decline 10 30 100

Misclassification matrix Cost matrix



• Track aggregated 
feature importance 
over time

• Track reason 
codes assigned

Output monitoring – feature importance
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Output monitoring – baseline model
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Managing alerts
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• Dashboard
• Minimize the 

number of false 
positives



• Scheduled vs. trigger based
• How large should our window be?
• When do we accept our retrained model?

Batch learning
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• Reproducibility matters!
• All code should be in code repository (git)
• Data and code should be tied together
• Environment reproducibility (docker)

• Allow for seamless rollbacks

Model versioning
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Blue-green deployment
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Canary testing
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• Leverages continuous stream of 
ground truth

• Adapts to emerging relationships
• Expensive to maintain
• Difficult to have tractability

Online learning
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Active learning
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Identify cases 
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certain of
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Overall architecture
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ML test score
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• 0 points: More of a research project than a productionized system. 
• 1-2 points: Not totally untested, but it is worth considering the possibility 

of serious holes in reliability.
• 3-4 points: There’s been first pass at basic productionization, but 

additional investment may be needed. 
• 5-6 points: Reasonably tested, but it’s possible that more of those tests 

and procedures may be automated. 
• 7-10 points: Strong levels of automated testing and monitoring, 

appropriate for mission critical systems. 
• 12+ points: Exceptional levels of automated testing and monitoring

What’s your Machine Learning Test Score? A rubric for ML 
production systems. (https://storage.googleapis.com/pub-
tools-public-publication-data/pdf/45742.pdf)

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45742.pdf


• Hidden Technical Debt in Machine Learning Systems 
(https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-
learning-systems.pdf)

• Operational monitoring 
• MLflow (https://mlflow.org/)
• TFDV (Tensorflow Data Validation) and TFMA (Tensorflow Model Analysis) 

(https://www.tensorflow.org/tfx/tutorials/model_analysis/chicago_taxi)
• Racket (https://racket.readthedocs.io/en/latest/)

Future reading
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https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://mlflow.org/
https://www.tensorflow.org/tfx/tutorials/model_analysis/chicago_taxi
https://racket.readthedocs.io/en/latest/


Thank you!
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