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Machine learning in life insurance

sl Accelerate underwriting

* Eliminate evidence
 Automate decisions

mmmal Price more accurately

* Incorporate more factors into mortality / morbidity prediction
* Provide finer segmentation or even individual pricing

smml Drive sales and marketing with data

* New models of IT
 Target for both marketing and risk
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Model case study

Insurancey Driving Lifestyle / Electronic
History Record social health record

Rules-based
Application Predictive models: ALIGITENEE 1L

& - risk selection Holdout Risk Class
* misrep: smoker/BMI

Tele-Interview
Manual UW

!

Traditional Data/Process Medical Attending
Existing Data Sources Lab Physician

New Data Sources Results Statement

Income &
financial
info
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Risk selection model

Model Predicted Probabilities

Actual
UW Class

Case (with labs/exams) |Preferred| Standard Refer |Predicted UW Class
Case 1 Preferred 99% 1% 0% Preferred

Case 2 Declined 50% 30% 20% Refer

Case 3 Preferred 70% 15% 5% Preferred

Case 4 Declined 90% 8% 2% Preferred

Case 5 Standard 20% 75% 5% Standard

Integrated Analytics
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Model performance

\

Precision
Metric

m Preferred = Standard
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Model lifecycle 5 years ago

\ \ \ N\
- Data acquisition :
Define problem ] and cleaning ] Build model ] Assess model ]
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Am | done?

def train(X, y):
"""Train model."""
clf = RandomForestClassifier()
clf.fit(X, y)
with open('model.pickle’, 'wb') as f:
pickle.dump(clf, f)

def predict(X):
"""Model prediction.
with open('model.pickle’, 'rb') as f:
clf = pickle.load(f)
return clf.predict(X)

mar
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Deployment architecture

CRM system

HTTP
Request

Integrated Analytics

Data and
Predictions

N~—
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Model lifecycle today

Define
/ problem \
Data
Monitor acquisition
and cleaning
[ Deploy J [Build modelJ

\ [ Assess J /
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Why model monitoring matters
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Why do models go wrong?

* World changes, training data might no longer
depict real world

* Model inputs might change
* Undiscovered bugs in data pipeline or model
 Model becomes worse over time
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Input monitoring

Schema validation

Correlation checks

Distribution checks

Clustering

Model driven anomaly detection

Integrated Analytics
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Input monitoring — schema validation

* Type checks

* Minimum and
maximum ranges

* Unseen categories

Integrated Analytics

ions

"Find ou

Generate Client v  Switch back to previous editor

Swagger Petstore @

[ Base URL: petstore.swagger.io/v2 ]

This is a sample server Petstore server. You can find out more about Swagger at
http-//swagger.io or on irc.freenode net, #swagger. For this sample, you can use the api key
special-key to test the authorization filters.

Terms of service
Contact the developer
Apache 2.0

Find out more about Swagger

Schemes

pet Everything about your Pets Find out more: http:/swaagerio
‘ m /pet Adda new pet to the store a
PUT /pet Update an existing pet &
7
May 2019



Munich RE =

Input monitoring — distribution

Age distribution
e Missingness
e Metrics 50
« Kolmogorov-Smirnov test
« Kullback-Leibler
divergence
 L-infinity distance

20
. 10

great-expectations library -
0

25-34 35-44
Age bands

Proportion (%)
S

m Train mProduction
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Input monitoring — anomaly detection

e Random Cut
Forests
 Generative

Adversarial
Networks To
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Output monitoring

* Distribution of output

« Compare against ground truth

* Model confidence

 Compare against other model predictions
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Output monitoring — ground truth

Misclassification matrix Cost matrix
Predicted Class Predicted Class
Super Pref  Pref  5td  RUW
Actual
UW Class Preferred @ Standard | Decline Super Pref
% Fref
Preferred 1000 0 0 L o |Std
—_
m —
Standard 50 200 0 30 Smk
i Substd
Decline 10 30 100 =1 .
Decline
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Output monitoring — feature importance

@9
° TraCk ag g reg ated base value hig:ﬁ:rde(l:;utlsxer

. 14:34 16.‘34 18734 20;34 22:34 24.:41 26:34 28:34 30.34
feature importance DI (L
Ove r ti m e PTRATIO = 15.3 ‘ LSTAT = 4.98 RM =6.575 ' NOX =0.538 ' AGE =65.2  RAD =1

* Track reason = J

sample order by similarity

CO d e S a S S I g n e d . 0 2|O 4|0 SIO 8|0 1 (IJO 1 ?O 1?0 1 E?O 1 ?O E{IJO 2?0 24}0 2E|30 290

model output
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Output monitoring — baseline model

Model performance

* Train and deploy a
simple baseline
model in conjunction
with a more
sophisticated
deployed model

Average prediction

2018 Q1 2018 Q2 2018 Q3 2018 Q4 2019 Q1
Date

—e—Deployed model =—e=Baseline model
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Managing alerts

 Dashboard

 Minimize the
number of false
positives

Integrated Analytics
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] Compare Mode (optional)

select a second dataset

Sort by
Feature order + [ Reverseorder Name filter
Features: fixed-length ints(24) variable-length ints(1) fixed-length floats(20) variabledengt’ ~ T~ ' ngth strings(6)
Numeric Faaturas_{4§} . ) ¢ Standard Olog Oexpand
count missing mean std dev zeros min median max 1
xor_int_2 . i :
1600 0% 49855 28487  0.13% 0 490 999 ' Quantiles -
Value listlength . .
_example_num 120
1600 0% 399.5 23094 0.13% 0 400 799 —
20
100 300 500 70O
lopsided_data 250
1600 0% 4.57 2.69 0% 1 5 8 h
o
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Batch learning

« Scheduled vs. trigger based
* How large should our window be?
* When do we accept our retrained model?
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Model versioning

* Reproducibility matters!
 All code should be in code repository (git)
« Data and code should be tied together
« Environment reproducibility (docker)
 Allow for seamless rollbacks

Integrated Analytics May 2019
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Blue-green deployment

s QOO QOO OO

Web app Create
and test

o &3 $ 7| @

------------------------------------------------------------
| C ¥ S X :

. I .. | I o I ! ! I
Environments ! ! N ! ! ' .
1 1 ! :| 1 1 :I :

1 1 ! 1l 1 ! .

Switch to Delete
green blue
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Canary testing

Users
Web app
Switch @

Endpoints ',

Instances

Integrated Analytics

00
J

@ Add new
__endpoint

________________________

Tag a
few users

________________________

@0e
l

Move
more
Uusers

————————————————————————
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users

________________________

Move all
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Online learning

{age: 35, gender: Male, hypertension: True}

l

4 )

Model

Leverages continuous stream of
ground truth - y, Update
Adapts to emerging relationships
Expensive to maintain

Difficult to have tractability

Prediction
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Active learning

= prodigy

Identify cases

model i_s least
certain of ARTIFICIAL INTELLIGENCE

If a Bubble Bursts in Palo Alto, Does It Make a Sound?

SOURCE: The New York Times
Request human
Automatically input for

learn weights labeling a
match
— — v X
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Overall architecture

4 p -

HTTP {
CRM System | Request :
|
|
\_ / '
\\
___________________ .
. . \ A 4
Monitoring Ve
O [
|
Activ Model
| | Dashboards | | Alerts Leaming i_l’ Manager Data and
Data | | Predictions L
Scientist So SN J N e
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ML test score

What's your Machine Learning Test Score? A rubric for ML N "\
production systems. (https://storage.googleapis.com/pub-
tools-public-publication-data/pdf/45742.pdf)

« 0 points: More of a research project than a productionized system.

* 1-2 points: Not totally untested, but it is worth considering the possibility
of serious holes in reliability.

« 3-4 points: There’s been first pass at basic productionization, but
additional investment may be needed.

« 5-6 points: Reasonably tested, but it's possible that more of those tests
and procedures may be automated.

« 7-10 points: Strong levels of automated testing and monitoring,

THAT FACE YOU MAKE

appropriate for mission critical systems. WHEN YOU GET YOUR TEST SCORE

« 12+ points: Exceptional levels of automated testing and monitoring BACK AND YOUR GRADE IS MUCH

LOWER THAN YOU HAD ANTICIPATED

f
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Future reading

* Hidden Technical Debt in Machine Learning Systems
(https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-
learning-systems.pdf)

* Operational monitoring

* MLflow (https://mlflow.org/)

 TFDV (Tensorflow Data Validation) and TFMA (Tensorflow Model Analysis)
(https://www.tensorflow.org/tfx/tutorials/model analysis/chicago taxi)

» Racket (https://racket.readthedocs.io/en/latest/)
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Thank you!
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