Bellagos Social Long-Term Care Insurance Program: Evaluation of Sustainability

2018 Society of Actuaries Case Study

The Red Hawk (Pi) rates
Team Members
Jacob Jakubowicz, Jillian Milicki, Steven Rynne,
Yu Zhang, Anthony Zuccolo
Faculty Advisors
Dr. Michelle Yuanying Guan, Dr. Alex Xiaofeng Wang

Table of Contents

1.0 Executive Summary 3
2.0 Data Analysis \& Projections 4
2.1 Summary of 2017 Data 4
2.2 Projection of Trends 8
2.2.1 Population \& LTC I nsurance Trends 8
2.2.2 Economic Trends 9
2.3 Projection of Mortality Rates. 10
3.0 Sustainability Assessment \& Risks 10
3.1 Sustainability of the Program 10
3.2 Potential Risks \& Data Limitations 15
3.2.1 Pricing Risk 15
3.2.2 Mortality Risk 15
3.2.3 Morbidity Risk 16
4.0 Recommendations \& Trade-offs 17
4.1 Recommendations for LTC Program 17
4.2 Trade-offs for Sustainability 20
5.0 References 21
6.0 Appendix 22
6.1 Projection of Population \& LTC Insurance Trends 22
6.1.1 Population Trends 22
6.1.2 Home \& Facility Care Beneficiaries 22
6.1.3 Home \& Facility Care Payout 23
6.2 Projection of Economic Trends 24
6.3 Projection of Mortality Rates. 25

1.0 Executive Summary

To analyze the sustainability of Bellagos' social long-term care program, our team used a microsimulation model on the sample household data to simulate certain demographic changes, such as mortality rates and morbidity matrices, on the sample population. We then applied aggregate controls on the sample data to reflect economic trends on the macro level. This hybrid approach has been used to estimate both tax revenues and healthcare expenses for Bellagos' current long-term care program.

Microsimulation models are often used in evaluating tax revenues, retirement incomes and healthcare policies ${ }^{[1][2][3]}$. With the household sample data of the baseline year 2017, we combined microsimulation techniques with macro trends to predict future tax revenues and healthcare costs for the years 2018 through 2028.

In our microsimulation model, we also combined dynamic aging with static aging to validate available data and make projections about the future population. All individuals in the current sample household data were aged by one year in each step depending on mortality rates and random numbers generated by the Monte Carlo method. New beneficiaries were added with a similar approach depending on the care level transition matrices given in the data. Newborns were added each year based on the predictions on fertility rates. New households were added with adjusted estimations on their future
incomes depending on their age cohorts. The figure below shows the estimations of revenues and expenses for Bellagos' current long-term care program based on our microsimulation model and Monte Carlo simulations.

> MONTE CARLO SIMULATIONS OF REVENUES AND EXPENSES

Figure 1.1.1

2.0 Data Analysis \& Projections

2.1 Summary of 2017 Data

The calculation for Bellagos' 2017 tax revenue (see figure 2.1.1 below) was completed by differentiating the households with children from those without children. The separation into two groups was required to account for the different tax rates: 0.90% for households with children and 1.05\%
for households without children. The total income for the sample was calculated for each category of household and then adjusted to represent the entire Bellagos population by a multiplier. The multiplier is the Bellagos population in 2017 divided by the number of individuals in the sample. Then, the adjusted income for the entire population for households with children and those without were multiplied by their respective tax rates to calculate the tax revenue for each category. Finally, the total tax revenue for Bellagos is the summation of the two previous values.

	2017	Tax	Revenue
Households with Children		Households without Children	
Income for Sample (Bellos)	$198,347,069$	Income for Sample (Bellos)	$648,910,614$
Adjusted Income for Population (Bellos)	$769,049,105,923$	Adjusted Income for Population (Bellos)	$2,516,014,630,500$
Tax Rate	0.90%	Tax Rate	1.05%
Tax Revenue (Bellos)	$6,921,441,953$	Tax Revenue (Bellos)	$26,418,153,620$
Total Tax Revenue for all Households (Bellos)	$\mathbf{3 3 , 3 3 9 , 5 9 5 , 5 7 4}$		

Figure 2.1.1

For the evaluation of Bellagos' 2017 expenses (see figure 2.1.2 below), we accounted for the number of individuals in each state of healthcare. Then, the home care and facility care categories were further separated by the level of care to account for the difference in cost at each level. The total expenses for the sample are the summation of the products of the number of individuals at each degree of care and the cost at each respective care level (brought to a yearly cost by multiplying by 12). The total expenses for the sample were then adjusted to represent the entire

Bellagos population by multiplying the total expenses for the sample by the population multiplier and adding the total government administrative expenses.

	$\mathbf{2 0 1 7}$	Expenses	
Healthcare Status:	Level	Number of Individuals	Costs of Care (Bellos)
Home Care	1	244	221.87
	2	139	413.62
	3	45	607.71
Facility Care	4	24	902.46
	1	2	1006.15
	2	5	1201.91
	3	22	1398.72
Total Cost for Sample Population (Bellos)	191		
Adjusted Total Cost for Entire Population (Bellos)			
Total Government Administrative Expenses	$23,734,387,290$		
Total Expenses (Bellos)	$2,990,530,757$		

Figure 2.1 .2

The predominant age range in the 2017 Bellagos population includes individuals between the ages of 25 and 54 (as seen below in figures 2.1.3 and 2.1.4). The other age ranges are almost evenly distributed with a decrease in individuals as the age increases. Figure 2.1.3 displays the entire population from the 2017 sample and Figure 2.1.4 only accounts for individuals that are listed as household member 1 or household member 2.

2017 Bellagos Sample Demographics

Figure 2.1.3

2017 Number of Individuals by Age Range

Figure 2.1.4

The average income in Bellagos peaks at the end of an individual's career (ages 60 to 64). Figure 2.1.5 showcases the gradual increase in average individual income from age 18 to age 64 before the decline around the age of retirement. Therefore, the individuals that contribute the most to the tax revenue (not based on the number of individuals in each age range) are those between the ages of 45 and 64 .

Figure 2.1.5

2.2 Projection of Trends

2.2.1 Population \& LTC Insurance Trends

To estimate the future trends of the population and LTC insurance, our team used the given historical data through the procedures of interpolation and extrapolation. The method of least squares with a five-year trend was
implemented to determine the future values for total population, population over age 80, population over and under age 65 and population under the age of 20 . The least square method of a five-year trend was also used to predict the number of home care and facility care beneficiaries for each level and the respective costs.

2.2.2 Economic Trends

The estimations of the future unemployment, inflation, fertility and real wage growth rates were also based on the given historical data. Through the procedures of interpolation and extrapolation, future rates were calculated. Although the method of least squares with a five-year trend resulted in a sound projection for the future data of population and LTC insurance trends, it was not applicable for the economic trends. Most of the projected rates for the economic trends resulted in negative values when a five-year trend was applied and were therefore not reasonable estimations. To adjust for this complication, the negative rates were switched to a threeyear trend. This allowed for less fluctuation of future data while maintaining a steady and reasonable trend.

2.3 Projection of Mortality Rates

To project the mortality rates for the next decade, our team used the data from 2005, 2010, and 2015 and applied the Lee-Carter model [4][5]

$$
m_{a t}=\alpha_{a}+\beta_{a} \gamma_{t}+\varepsilon_{a t} .
$$

First, we took the logarithm for all the mortality rates in the years 2005, 2010 and 2015 to calculate $m_{a t}$. Then, the average of the logarithmic values of the mortality rates for those three years was calculated. After the difference between $m_{a t}$ and the average were calculated, a new 110 by 3 matrix was created with ages in columns and years in rows. We used the Singular Value Decomposition (SVD) and random walk with drift model to forecast the γ_{t} for the years 2020, 2025. After we calculated the logarithm of the mortality rate for 2020 and 2025, we used $e^{m_{a t}}$ to find the forecasted mortality rates. In general, mortality rates are projected to decrease in the future years.

3.0 Sustainability Assessment \& Risks

3.1 Sustainability of the Program

The results of the Monte Carlo simulations indicate that the Bellagos social long-term care program is not sustainable in its current form. As seen in the executive summary (figure 1.1.1), the expenses are projected to
increase rapidly while the revenue is projected to gradually increase. In 2028, the current program is not sustainable since the expenses are projected to be nearly twice as much as the revenue in the year.

The Monte Carlo simulations display multiple paths for the future revenue and expenses of Bellagos. Our team ran 100 simulations for the revenue and expenses for the years 2018 through 2028. For the revenues, the minimum projection for 2028 is $40,862,342,625$ Bellos, the maximum is $41,196,219,576$ Bellos and the average is $41,028,158,984$ Bellos. The minimum expense projection for 2028 is $69,874,343,829$ Bellos, the maximum is $75,840,420,048$ Bellos and the average is $72,670,198,301$ Bellos. Therefore, the current program cannot be upheld unless components of the plan are altered as displayed in the following figure.

BellagoS 2028 Projections			
Value (Bellos)	Revenue	Expenses	Difference
Minimum	$40,862,342,625$	$69,874,343,829$	$(29,012,001,204)$
Maximum	$41,196,219,576$	$75,840,420,048$	$(34,644,200,472)$
Average	$41,028,158,984$	$72,670,198,301$	$(31,642,039,317)$

Figure 3.1.1
When calculating the tax revenues each year, we first checked each individual's status (alive or dead) by comparing a random number generated from Uniform $(0,1)$ with the mortality rate of the given individual's age. For those individuals who needed home care or facility care, the mortality rates
were adjusted by $3 *$ mortality rate as indicated in the care level matrix. We then applied the projected real wage growth rates and inflation rates to reflect changes to each alive individual in the sample household data. Their incomes were adjusted by the following formula:

$$
\text { Income }_{t, i}=\text { Income }_{t-1, i} *\left(1+\text { wage }_{t}\right) *\left(1+\text { inflation }_{t}\right)
$$

where Income $_{t, i}$ represents the earning for individual i in year t, wage $_{t}$ represents the real wage growth in year t and inflation ${ }_{t}$ represents the inflation rate in year t. After the income adjustment for each individual in the sample household data was made, the new household incomes from the adult dependents (depending on their age cohorts and the average incomes of their age cohorts) were added. Newborns were added by the projected fertility rates. Some households were switched from households without children to households with children. Finally, we adjusted total incomes by using projections on changes of unemployment rates.

Estimations about future costs came from two resources. First, the microsimulation results of the sample household data. Second, the projections on total healthcare costs based on historical data. For the microsimulation results, we generated random numbers for each individual to simulate his/her health status for the upcoming year: healthy, need home care (level 1, 2, 3, 4), or need facility care (level 1, 2, 3, 4). The baseline numbers we compared with were the probabilities in the care level transition
matrix. We multiplied the total number of beneficiaries in each level by the projected healthcare cost to get the total projected healthcare costs for the sample population. We then multiplied each year's multiplier to calculate the total healthcare costs for the entire population. Since the historical data provided the historical healthcare costs, we also did a projection on total healthcare cost based on past data. According to the credibility theory, we assigned a weight of 0.5 to each estimation. Therefore, the estimation of total expenses in the sustainability analysis is the average of these two valuations.

The figures below show the simulations in a reduced manner to enhance the display of the method used. In figures 3.1.1 and 3.1.2, only 20 simulations are graphed from the years 2017 through 2022 to showcase the different paths that extend from the common starting point in 2017.

Figure 3.1.1

MONTE CARLO SIMULATIONS OF EXPENSES

Figure 3.1.2

3.2 Potential Risks \& Data Limitations

3.2.1 Pricing Risk

One of the risks associated with the projections for revenue and expenses include the potential for future years to not fit the trends from the historical data. Changes in the state of Bellagos' economy can drastically influence the levels of revenue and expenses if there are large variations from the projections in the unemployment, inflation and real wage growth rates. This potential risk can either increase the potential for the stability of the long-term healthcare program or decrease it based on the changes in the economy. Some given data create limitations for better estimations on pricing. For instance, we only have macro predicted data on government administration expenses when calculating the total healthcare costs. The projections of the number of new households, newborns also rely on the projections of fertility rates heavily. We do not have an accurate number of income increment for each individual other than income adjusted by inflation rates and real wage growth rate.

3.2.2 Mortality Risk

The Lee-Carter model projections are sensible estimations of the future mortality rates based on previous data, but the projected rates do not account for drastic increases in technology. A massive technological
advance in the reduction of the rate of mortality would result in individuals living longer and increasing the expenses of the healthcare program. In contrast, a massive epidemic, although not probable, could briefly spike the mortality risk and decrease the expenses of the Bellagos long-term care program.

3.2.3 Morbidity Risk

The current estimation of total healthcare expenses of Bellagos' longterm care program depends heavily on the morbidity rates provided in the care level transition matrix. With the advancement of technology, the mortality rates will likely decline and increase the risk of higher healthcare costs. The morbidity rates, however, will likely decrease at the same time and might serve as a cushion or even completely offset the influence of higher mortality risk coming from the improvement on technology. According to a research study conducted by Society of Actuaries ${ }^{[7]}$ regarding the pricing for long-term care insurance, the positive effects on morbidity improvement offsets the unfavorable financial impact of mortality improvement.

4.0 Recommendations \& Trade-offs

4.1 Recommendations for LTC Program

Since the Bellagos long-term care program is projected to be unsustainable in the future, the conditions of the program must be altered if the government wants to avoid its termination. Several factors can potentially be changed to increase the probability of sustainability, which include the following: increasing the requirements to obtain the coverage (age of eligibility and number of tax credits required for care), an increase in the tax rate for the program, lowering the cost of the care given in the program (such as implementing the caregiver allowance program) or a combination of the various factors. The following alterations for the program are displayed below in figure 4.1.1.

Bellagos 2028 Projections				
Alteration	Value (Bellos)	Revenue	Expenses	Difference
Current Status of LTC Program (No Alteration)	Minimum Maximum Average	$\begin{aligned} & \hline 40,862,342,625 \\ & 41,196,219,576 \\ & 41,028,158,984 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 69,874,343,829 \\ & 75,840,420,048 \\ & 72,670,198,301 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline(29,012,001,204) \\ & (34,644,200,472) \\ & (31,642,039,317) \\ & \hline \end{aligned}$
Age of Retirement Moved from the Age of 65 to 69	Minimum Maximum Average	$\begin{aligned} & \hline 41,041,447,612 \\ & 41,342,277,589 \\ & 41,182,879,172 \\ & \hline \end{aligned}$	$\begin{aligned} & 51,582,139,547 \\ & 62,263,782,148 \\ & 57,720,830,396 \end{aligned}$	$\begin{aligned} & \hline(10,540,691,935) \\ & (20,921,504,559) \\ & (16,537,951,224) \\ & \hline \end{aligned}$
Healthcare Requirement of 2 Tax Credits Moved to 10	Minimum Maximum Average	$\begin{aligned} & \hline 40,847,094,853 \\ & 41,175,389,223 \\ & 41,011,216,682 \\ & \hline \end{aligned}$	$\begin{aligned} & 66,879,311,272 \\ & 76,229,750,156 \\ & 71,573,170,878 \end{aligned}$	$\begin{aligned} & \hline(26,032,216,419) \\ & (35,054,360,933) \\ & (30,561,954,196) \end{aligned}$
Age of Retirement at 69 and Healthcare Requirement of 10 Tax Credits	Minimum Maximum Average	$\begin{aligned} & \hline 40,970,729,261 \\ & 41,350,130,725 \\ & 41,140,895,781 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 49,575,681,928 \\ & 56,673,431,810 \\ & 53,193,269,221 \end{aligned}$	$\begin{array}{r} \hline(8,604,952,667) \\ (15,323,301,085) \\ (12,052,373,440) \\ \hline \end{array}$
Increase in 0.3\% in the Tax Rate for Household with and without Children	Minimum Maximum Average	$\begin{aligned} & \hline 43,682,426,071 \\ & 43,978,376,645 \\ & 43,823,653,581 \\ & \hline \end{aligned}$	$\begin{aligned} & 70,122,522,941 \\ & 75,519,015,259 \\ & 72,623,002,861 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline(26,440,096,870) \\ & (31,540,638,614) \\ & (28,799,349,280) \\ & \hline \end{aligned}$
Implementation of Informal Caregiver Allowance Program	Minimum Maximum Average	$\begin{aligned} & \hline 40,867,239,640 \\ & 41,155,873,495 \\ & 41,021,214,432 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 54,950,251,070 } \\ & 69,516,384,942 \\ & 62,370,231,553 \end{aligned}$	$\begin{aligned} & \hline(14,083,011,430) \\ & (28,360,511,447) \\ & (21,349,017,121) \end{aligned}$
Final Recommendation (Retirement to 69, Tax Credits to 10 and Caregiver Allowance)	Minimum Maximum Average	$\begin{aligned} & \hline 40,928,325,107 \\ & 41,365,996,429 \\ & 41,149,647,776 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37,791,763,481 \\ & 47,430,127,355 \\ & 43,135,843,015 \\ & \hline \end{aligned}$	$\begin{gathered} 3,136,561,626 \\ (6,064,130,926) \\ (1,986,195,239) \end{gathered}$

Figure 4.1.1

Our final recommendation is to increase the requirements to obtain the coverage (including delaying the age of eligibility to 69 and increasing the number of tax credits to 10) and decreasing the home care costs by implementing the Informal Caregiver Allowance Program. The rational to delay the eligible age to 69 comes from a similar research for the United States' Medicare system ${ }^{[7]}$. At the same time, we suggest keeping the current tax rate to avoid backlash from taxpayers ${ }^{[8]}$. The result is shown in figure 4.1.3.

MONTE CARLO SIMULATIONS OF REVENUES AND EXPENSES

Figure 4.1.2
Although we do not have information regarding whether Bellagos' government saves and invests the surpluses collected each year for future years or spends them for other purposes, we highly recommend that they save and invest the surpluses. Therefore, by saving and investing the surplus in each year at a conservative 3\% annual rate of return, the cumulative reserve is projected at $73,418,301,127$ Bellos (Figure 4.1.3).

Bellagos Social Long-Term Program 10-year Projection					
Year	2018	2019	2020	2021	2022
Revenues	35,577,769,790	35,979,969,084	36,557,606,379	37,598,411,650	37,828,037,721
Expenses	24,358,699,084	26,209,093,129	27,968,262,424	29,767,044,588	31,321,233,059
Surplus	11,219,070,706	9,770,875,955	8,589,343,956	7,831,367,062	6,506,804,662
Cumm. Surplus	11,219,070,706	21,326,518,782	30,555,658,302	39,303,695,113	46,989,610,628
2023	2024	2025	2026	2027	2028
38,421,068,353	39,191,533,605	39,532,371,445	40,307,777,234	40,867,325,963	41,149,647,776
32,682,834,135	34,184,807,098	35,815,350,024	37,801,270,842	40,587,373,896	43,135,893,015
5,738,234,218	5,006,726,507	3,717,021,422	2,506,506,392	279,952,068	$(1,986,245,240)$
54,137,533,165	60,768,385,667	66,308,458,659	70,804,218,811	73,208,297,443	73,418,301,127

Figure 4.1.3

4.2 Trade-offs for Sustainability

Increasing the probability that Bellagos' social long-term care program is sustainable comes with a decrease in the quality of the program. An alteration in the program requirements may result in negative feedback from the citizens of Bellagos. Increasing the requirements of obtaining coverage from the program will decrease the expenses, but it will also cut the care for many individuals within the age range of 65 to 69 and individuals that do not have enough tax credits. Also, since the cost of coverage is decreased by the Informal Caregiver Allowance Program, the overall quality of the program may suffer due to inexperienced caregivers. It is possible to avoid the alterations of the program if the surplus is properly saved and invested if by Bellagos' government, but those details were not given. Therefore, obtaining the proper levels of revenues and expenses to maintain the stability of the program will come with several drawbacks or will require a large reserve for investment income.

5.0 References

[1] Microanalytic Simulation Models, Society of Actuaries Research Files, 1997.
https://www.soa.org/Files/Research/Projects/Chapter_2.pdf
[2] Calibrating Macroeconomic and Microsimulation Models to CBO's Baseline Projections, T.L. Foertsch and R.A. Rector, 2007.
https://www.heritage.org/taxes/report/calibrating-macroeconomic-and-microsimulation-models-cbos-baseline-projections
[3] Dynamic Microsimulation Models for Health Outcomes: A Review, C. M. Rutter, A. Zaslavsky, and E. Feuer, Med Decision Making, 2011, 31(1), 1018.
[4] Comment on "Modeling and Forecasting U.S. Mortality", R. Lee and L. Carter. Journal of the American Statistical Association 87(419, September):673-674.
[5] Understanding the Lee-Carter Mortality Forecasting Method, F. Girosi \& G. King, 2007.
[6] Long-Term Care Insurance: The SOA Pricing Project, 2016.
https://www.soa.org/Files/Sections/ltc- pricing-project.pdf
[7] A Road Map to Medicare Sustainability, D.A. Cortese, N. Landman, R.K Smordt, 2013.
http://healthcaretransformationinstitute.org/sites/default/files/RMS_022713. pdf
[8] Bellagos LTC Social Insurance System Overview
https://www.soa.org/Files/Research/bellagos-Itc-system-overview.pdf

6.0 Appendix

6.1 Projection of Population \& LTC I nsurance Trends

6.1.1 Population Trend

| Year | Total
 Population | Population
 Over 80 | Population 65
 and Over | Population
 Under 65 | Population
 Under 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 0 1 8}$ | 80.67 M | 4.50 M | 12.90 M | 67.77 M | 15.54 M |
| $\mathbf{2 0 1 9}$ | 80.66 M | 4.69 M | 13.10 M | 67.57 M | 15.33 M |
| $\mathbf{2 0 2 0}$ | 80.65 M | 4.88 M | 13.31 M | 67.34 M | 15.12 M |
| $\mathbf{2 0 2 1}$ | 80.65 M | 5.07 M | 13.52 M | 67.13 M | 14.92 M |
| $\mathbf{2 0 2 2}$ | 80.65 M | 5.26 M | 13.71 M | 66.94 M | 14.73 M |
| $\mathbf{2 0 2 3}$ | 80.64 M | 5.45 M | 13.92 M | 66.72 M | 14.52 M |
| $\mathbf{2 0 2 4}$ | 80.64 M | 5.64 M | 14.13 M | 66.51 M | 14.32 M |
| $\mathbf{2 0 2 5}$ | 80.64 M | 5.83 M | 14.33 M | 66.30 M | 14.12 M |
| $\mathbf{2 0 2 6}$ | 80.63 M | 6.02 M | 14.54 M | 66.09 M | 13.92 M |
| $\mathbf{2 0 2 7}$ | 80.63 M | 6.20 M | 14.75 M | 65.88 M | 13.71 M |
| $\mathbf{2 0 2 8}$ | 80.63 M | 6.39 M | 14.95 M | 65.68 M | 13.51 M |

6.1.2 Home \& Facility Care Beneficiaries

| Year | Total Home
 Care | Home Care
 Level 1 | Home Care
 Level 2 | Home Care
 Level 3 | Home Care
 Level 4 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 2018 | 1870.3 K | 1005.0 K | 581.0 K | 186.4 K | 97.9 K |
| 2019 | 2058.1 K | 1110.4 K | 633.6 K | 204.9 K | 109.1 K |
| 2020 | 2230.1 K | 1208.0 K | 680.6 K | 221.8 K | 119.7 K |
| 2021 | 2398.8 K | 1303.0 K | 727.4 K | 238.4 K | 129.9 K |
| 2022 | 2557.6 K | 1389.6 K | 775.2 K | 254.2 K | 138.6 K |
| 2023 | 2737.6 K | 1491.7 K | 824.2 K | 271.9 K | 149.7 K |

2024	2902.4 K	1583.8 K	871.0 K	288.2 K	159.5 K
$\mathbf{2 0 2 5}$	3070.3 K	1677.3 K	919.0 K	304.8 K	169.3 K
$\mathbf{2 0 2 6}$	3239.7 K	1771.9 K	967.0 K	321.5 K	179.3 K
$\mathbf{2 0 2 7}$	3410.6 K	1867.9 K	1014.8 K	338.3 K	189.5 K
$\mathbf{2 0 2 8}$	3568.4 K	1960.7 K	1062.3 K	354.8 K	199.3 K

| Year | Total Facility
 Care | Facility Care
 Level 1 | Facility Care
 Level 2 | Facility Care
 Level 3 | Facility Care
 Level 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 0 1 8}$ | 852.0 K | 7.9 K | 18.9 K | 86.9 K | 738.3 K |
| $\mathbf{2 0 1 9}$ | 930.7 K | 8.4 K | 21.3 K | 92.7 K | 808.4 K |
| $\mathbf{2 0 2 0}$ | 1010.4 K | 8.9 K | 23.7 K | 98.2 K | 879.5 K |
| $\mathbf{2 0 2 1}$ | 1068.3 K | 9.3 K | 25.6 K | 101.8 K | 931.6 K |
| $\mathbf{2 0 2 2}$ | 1119.6 K | 9.7 K | 27.0 K | 106.3 K | 976.6 K |
| $\mathbf{2 0 2 3}$ | 1198.0 K | 10.1 K | 29.5 K | 111.6 K | 1046.8 K |
| $\mathbf{2 0 2 4}$ | 1258.5 K | 10.5 K | 31.3 K | 115.9 K | 1100.8 K |
| $\mathbf{2 0 2 5}$ | 1318.8 K | 10.9 K | 33.1 K | 120.3 K | 1154.4 K |
| $\mathbf{2 0 2 6}$ | 1384.6 K | 11.4 K | 35.1 K | 125.1 K | 1213.0 K |
| $\mathbf{2 0 2 7}$ | 1451.1 K | 11.8 K | 37.2 K | 129.7 K | 1272.4 K |
| $\mathbf{2 0 2 8}$ | 1511.9 K | 12.2 K | 39.0 K | 134.2 K | 1326.5 K |

6.1.3 Home \& Facility Care Payout

Year	Home Care Level 1	Home Care Level 2	Home Care Level 3	Home Care Level 4	
$\mathbf{2 0 1 8}$	233.42	432.39	635.07	943.40	
$\mathbf{2 0 1 9}$	244.49	452.12	664.00	986.27	
$\mathbf{2 0 2 0}$	255.28	472.31	693.61	1029.14	
$\mathbf{2 0 2 1}$	265.77	492.18	722.68	1072.01	
$\mathbf{2 0 2 2}$	277.06	511.63	751.16	1114.87	

2023	287.78	531.69	780.56	1157.74
2024	298.59	551.53	809.60	1200.61
$\mathbf{2 0 2 5}$	309.48	571.25	838.48	1243.48
$\mathbf{2 0 2 6}$	320.42	591.07	867.51	1286.35
$\mathbf{2 0 2 7}$	331.19	610.97	896.65	1329.22
$\mathbf{2 0 2 8}$	342.08	630.73	925.59	1372.09

Year	Facility Care Level 1	Facility Care Level 2	Facility Care Level 3	Facility Care Level 4
2018	1051.48	1256.39	1462.60	1699.90
2019	1099.68	1313.72	1529.69	1777.62
2020	1148.82	1372.32	1598.06	1856.88
2021	1197.04	1430.04	1665.55	1934.82
2022	1244.37	1486.54	1731.67	2011.18
2023	1293.22	1544.79	1799.71	2090.00
2024	1341.42	1602.39	1867.03	2167.82
2025	1389.39	1659.68	1934.03	2245.26
2026	1437.61	1717.22	2001.30	2323.07
2027	1485.99	1775.00	2068.82	2401.18
2028	1534.05	1832.39	2135.93	2478.75

6.2 Projection of Economic Trends

Year	Unemployment rate	Inflation rate	Fertility rate	Real wage growth rate
$\mathbf{2 0 1 8}$	3.8%	0.6%	1.39	2.3%
$\mathbf{2 0 1 9}$	4.3%	1.0%	1.22	1.5%
$\mathbf{2 0 2 0}$	4.2%	0.9%	1.40	1.7%
$\mathbf{2 0 2 1}$	3.8%	0.7%	1.33	2.2%

2022	4.3%	1.0%	1.26	1.4%
2023	4.1%	0.8%	1.40	1.9%
2024	4.0%	0.8%	1.29	2.0%
2025	4.3%	1.0%	1.30	1.5%
$\mathbf{2 0 2 6}$	4.0%	0.7%	1.38	2.0%
$\mathbf{2 0 2 7}$	4.1%	0.8%	1.28	1.8%
$\mathbf{2 0 2 8}$	4.2%	0.9%	1.33	1.6%

6.3 Projections of Mortality Rates

	FEMALE					Male				
Age	2005	2010	2015	2020	2025	2005	2010	2015	2020	2025
0	0.00330	0.00312	0.00310	0.00299	0.00291	0.00421	0.00377	0.00337	0.00303	0.00271
1	0.00024	0.00020	0.00023	0.00022	0.00022	0.00030	0.00026	0.00024	0.00021	0.00019
2	0.00012	0.00008	0.00010	0.00009	0.00008	0.00012	0.00019	0.00015	0.00019	0.00022
3	0.00012	0.00010	0.00014	0.00015	0.00016	0.00018	0.00013	0.00012	0.00009	0.00008
4	0.00009	0.00012	0.00009	0.00009	0.00009	0.00016	0.00013	0.00012	0.00010	0.00009
5	0.00011	0.00009	0.00008	0.00007	0.00006	0.00013	0.00011	0.00008	0.00006	0.00005
6	0.00014	0.00008	0.00006	0.00004	0.00003	0.00012	0.00012	0.00010	0.00009	0.00009
7	0.00010	0.00007	0.00006	0.00005	0.00004	0.00010	0.00008	0.00007	0.00006	0.00005
8	0.00008	0.00008	0.00006	0.00005	0.00005	0.00011	0.00008	0.00008	0.00006	0.00005
9	0.00008	0.00008	0.00005	0.00004	0.00003	0.00011	0.00008	0.00007	0.00005	0.00004
10	0.00010	0.00006	0.00007	0.00006	0.00005	0.00008	0.00007	0.00008	0.00008	0.00008
11	0.00012	0.00009	0.00008	0.00006	0.00005	0.00010	0.00007	0.00008	0.00007	0.00006
12	0.00009	0.00006	0.00011	0.00012	0.00013	0.00013	0.00013	0.00008	0.00007	0.00005
13	0.00011	0.00009	0.00006	0.00004	0.00003	0.00017	0.00012	0.00008	0.00006	0.00004
14	0.00015	0.00008	0.00011	0.00009	0.00008	0.00016	0.00015	0.00011	0.00010	0.00008
15	0.00006	0.00004	0.00014	0.00020	0.00033	0.00014	0.00018	0.00016	0.00018	0.00020
16	0.00014	0.00008	0.00013	0.00012	0.00012	0.00027	0.00025	0.00021	0.00019	0.00017
17	0.00014	0.00013	0.00016	0.00017	0.00018	0.00037	0.00024	0.00021	0.00015	0.00011
18	0.00024	0.00015	0.00018	0.00015	0.00013	0.00063	0.00048	0.00032	0.00024	0.00017
19	0.00021	0.00021	0.00012	0.00009	0.00007	0.00058	0.00048	0.00033	0.00026	0.00020
20	0.00020	0.00016	0.00020	0.00020	0.00020	0.00057	0.00039	0.00044	0.00035	0.00031
21	0.00014	0.00013	0.00010	0.00008	0.00007	0.00060	0.00055	0.00048	0.00043	0.00039
22	0.00020	0.00015	0.00014	0.00011	0.00010	0.00060	0.00049	0.00044	0.00037	0.00032
23	0.00018	0.00021	0.00017	0.00017	0.00016	0.00063	0.00044	0.00040	0.00030	0.00024
24	0.00019	0.00013	0.00012	0.00009	0.00008	0.00059	0.00045	0.00040	0.00032	0.00026
25	0.00025	0.00017	0.00013	0.00009	0.00007	0.00057	0.00049	0.00046	0.00041	0.00037
26	0.00015	0.00014	0.00016	0.00016	0.00017	0.00067	0.00062	0.00040	0.00033	0.00026
27	0.00020	0.00022	0.00017	0.00016	0.00014	0.00065	0.00064	0.00050	0.00046	0.00040
28	0.00020	0.00016	0.00026	0.00029	0.00034	0.00066	0.00063	0.00045	0.00039	0.00033
29	0.00027	0.00025	0.00028	0.00028	0.00029	0.00067	0.00065	0.00062	0.00060	0.00058
30	0.00034	0.00024	0.00026	0.00022	0.00020	0.00066	0.00058	0.00053	0.00047	0.00042
31	0.00029	0.00028	0.00033	0.00035	0.00038	0.00074	0.00066	0.00073	0.00070	0.00069
32	0.00033	0.00030	0.00027	0.00024	0.00022	0.00072	0.00077	0.00067	0.00067	0.00065
33	0.00035	0.00035	0.00033	0.00032	0.00031	0.00082	0.00080	0.00067	0.00063	0.00057
34	0.00033	0.00038	0.00035	0.00037	0.00037	0.00079	0.00085	0.00079	0.00081	0.00081
35	0.00048	0.00036	0.00039	0.00034	0.00032	0.00096	0.00086	0.00082	0.00075	0.00069
36	0.00053	0.00049	0.00040	0.00035	0.00030	0.00104	0.00093	0.00085	0.00077	0.00069
37	0.00059	0.00052	0.00039	0.00032	0.00026	0.00099	0.00094	0.00091	0.00087	0.00083
38	0.00057	0.00052	0.00052	0.00049	0.00047	0.00122	0.00119	0.00093	0.00085	0.00074

39	0.00071	0.00068	0.00058	0.00053	0.00047	0.00131	0.00125	0.00105	0.00097	0.00087
40	0.00077	0.00063	0.00058	0.00050	0.00044	0.00156	0.00129	0.00125	0.00109	0.00097
41	0.00079	0.00078	0.00064	0.00058	0.00052	0.00173	0.00138	0.00136	0.00116	0.00103
42	0.00106	0.00089	0.00084	0.00074	0.00067	0.00194	0.00163	0.00148	0.00128	0.00112
43	0.00116	0.00089	0.00086	0.00073	0.00064	0.00221	0.00182	0.00165	0.00141	0.00121
44	0.00131	0.00112	0.00103	0.00091	0.00081	0.00251	0.00199	0.00175	0.00144	0.00120
45	0.00145	0.00114	0.00104	0.00087	0.00075	0.00272	0.00230	0.00207	0.00179	0.00156
46	0.00164	0.00135	0.00125	0.00108	0.00095	0.00315	0.00244	0.00214	0.00173	0.00143
47	0.00182	0.00163	0.00136	0.00117	0.00102	0.00350	0.00300	0.00250	0.00213	0.00180
48	0.00202	0.00180	0.00153	0.00133	0.00116	0.00392	0.00315	0.00272	0.00225	0.00187
49	0.00233	0.00206	0.00174	0.00150	0.00130	0.00429	0.00369	0.00310	0.00266	0.00226
50	0.00238	0.00225	0.00198	0.00181	0.00165	0.00472	0.00398	0.00355	0.00306	0.00265
51	0.00250	0.00242	0.00219	0.00205	0.00192	0.00519	0.00488	0.00381	0.00340	0.00292
52	0.00283	0.00282	0.00246	0.00230	0.00214	0.00572	0.00503	0.00449	0.00398	0.00353
53	0.00311	0.00298	0.00270	0.00252	0.00234	0.00608	0.00561	0.00497	0.00454	0.00411
54	0.00333	0.00314	0.00303	0.00288	0.00276	0.00683	0.00645	0.00554	0.00509	0.00459
55	0.00379	0.00355	0.00332	0.00310	0.00291	0.00732	0.00685	0.00630	0.00588	0.00545
56	0.00389	0.00376	0.00360	0.00346	0.00333	0.00803	0.00762	0.00684	0.00639	0.00590
57	0.00439	0.00399	0.00395	0.00372	0.00355	0.00840	0.00815	0.00755	0.00723	0.00686
58	0.00459	0.00433	0.00440	0.00429	0.00422	0.00926	0.00891	0.00846	0.00812	0.00776
59	0.00494	0.00448	0.00467	0.00450	0.00441	0.00961	0.00956	0.00945	0.00938	0.00931
60	0.00572	0.00533	0.00533	0.00512	0.00497	0.01091	0.01051	0.01022	0.00988	0.00956
61	0.00601	0.00584	0.00576	0.00563	0.00552	0.01186	0.01116	0.01108	0.01061	0.01025
62	0.00640	0.00627	0.00610	0.00595	0.00581	0.01292	0.01201	0.01215	0.01160	0.01124
63	0.00680	0.00677	0.00660	0.00651	0.00641	0.01402	0.01335	0.01340	0.01298	0.01268
64	0.00681	0.00717	0.00734	0.00764	0.00791	0.01469	0.01408	0.01433	0.01400	0.01381
65	0.00767	0.00804	0.00803	0.00824	0.00841	0.01700	0.01554	0.01546	0.01453	0.01384
66	0.00841	0.00870	0.00882	0.00905	0.00925	0.01785	0.01724	0.01633	0.01570	0.01502
67	0.00943	0.00888	0.00998	0.01018	0.01056	0.01947	0.01801	0.01800	0.01707	0.01640
68	0.01034	0.01003	0.01040	0.01039	0.01046	0.02164	0.01964	0.01930	0.01798	0.01697
69	0.01200	0.01025	0.01097	0.01034	0.01002	0.02385	0.02075	0.02068	0.01880	0.01749
70	0.01353	0.01192	0.01267	0.01212	0.01185	0.02715	0.02356	0.02343	0.02125	0.01971
71	0.01489	0.01299	0.01387	0.01322	0.01291	0.02932	0.02528	0.02491	0.02244	0.02065
72	0.01672	0.01424	0.01430	0.01307	0.01222	0.03229	0.02718	0.02616	0.02302	0.02069
73	0.01884	0.01641	0.01628	0.01499	0.01406	0.03566	0.03077	0.02931	0.02614	0.02368
74	0.02125	0.01851	0.01685	0.01491	0.01336	0.03972	0.03433	0.03088	0.02711	0.02390
75	0.02392	0.02241	0.01977	0.01797	0.01634	0.04448	0.03862	0.03532	0.03126	0.02785
76	0.02756	0.02452	0.02229	0.01994	0.01802	0.04920	0.04191	0.03831	0.03347	0.02951
77	0.03064	0.02839	0.02483	0.02234	0.02012	0.05426	0.04703	0.04171	0.03654	0.03204
78	0.03500	0.03256	0.02887	0.02620	0.02382	0.05817	0.05422	0.04688	0.04281	0.03847
79	0.04026	0.03704	0.03329	0.03021	0.02753	0.06448	0.06077	0.05250	0.04830	0.04363
80	0.04663	0.04193	0.03999	0.03681	0.03429	0.07167	0.06638	0.06170	0.05732	0.05319
81	0.05261	0.04843	0.04434	0.04060	0.03737	0.07931	0.07518	0.06698	0.06242	0.05741
82	0.05970	0.05515	0.05223	0.04866	0.04568	0.08935	0.08159	0.07683	0.07097	0.06580
83	0.06978	0.06419	0.05993	0.05534	0.05146	0.10022	0.09007	0.08683	0.07990	0.07431
84	0.07729	0.07327	0.06968	0.06602	0.06281	0.11115	0.10177	0.09792	0.09119	0.08555
85	0.09726	0.08437	0.07975	0.07161	0.06535	0.13312	0.11265	0.11072	0.09838	0.08958
86	0.08989	0.09595	0.09181	0.09339	0.09381	0.11997	0.12544	0.12432	0.12780	0.13017
87	0.11005	0.10841	0.10415	0.10135	0.09855	0.14568	0.14075	0.13494	0.13018	0.12531
88	0.13109	0.12398	0.11839	0.11225	0.10692	0.16500	0.15714	0.15111	0.14451	0.13829
89	0.13789	0.13812	0.13692	0.13650	0.13596	0.17591	0.17063	0.16480	0.15979	0.15469
90	0.16784	0.16758	0.15782	0.15336	0.14841	0.20614	0.20213	0.18654	0.17972	0.17109
91	0.17795	0.15445	0.17304	0.16812	0.16810	0.22092	0.18962	0.20835	0.19324	0.18714
92	0.19857	0.18950	0.19254	0.18881	0.18663	0.23307	0.22947	0.22603	0.22266	0.21927
93	0.21373	0.22091	0.21516	0.21663	0.21666	0.25832	0.25577	0.24788	0.24392	0.23900
94	0.23490	0.22838	0.23291	0.23126	0.23089	0.27042	0.26746	0.26899	0.26744	0.26668
95	0.25928	0.25787	0.25939	0.25925	0.25944	0.29802	0.28998	0.28965	0.28423	0.28013
96	0.28215	0.28164	0.28414	0.28501	0.28614	0.31912	0.31151	0.31207	0.30720	0.30371
97	0.30545	0.30593	0.30954	0.31149	0.31365	0.34031	0.33337	0.33478	0.33058	0.32780
98	0.32906	0.33054	0.33510	0.33811	0.34127	0.36140	0.35510	0.35743	0.35386	0.35179
99	0.35281	0.35523	0.36069	0.36470	0.36878	0.38240	0.37675	0.37982	0.37693	0.37556
100	0.37624	0.37963	0.38596	0.39096	0.39598	0.40290	0.39790	0.40180	0.39963	0.39901
101	0.39928	0.40351	0.41067	0.41657	0.42244	0.42283	0.41861	0.42325	0.42177	0.42188

102	0.42165	0.42662	0.43451	0.44117	0.44777	0.44215	0.43870	0.44384	0.44303
103	0.44320	0.44888	0.45719	0.46452	0.47170	0.46071	0.45786	0.46356	0.46331
0.464784									
104	0.46376	0.47000	0.47868	0.48652	0.49416	0.47838	0.47617	0.48225	0.48251
105	0.48327	0.48984	0.49871	0.50684	0.51474	0.49507	0.49342	0.49986	0.50072
106	0.50159	0.50844	0.51731	0.52555	0.53354	0.51074	0.50972	0.51622	0.51751
107	0.51859	0.52558	0.53442	0.54276	0.55081	0.52539	0.52488	0.53148	0.53309
	0.53424	0.54135	0.54995	0.55817	0.56611	0.53907	0.53889	0.54561	0.54747
109	0.54868	0.55569	0.56408	0.57216	0.57994	0.55167	0.55187	0.55853	0.56060
0.55068									
$110+$	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

