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1 Executive Summary

In recent years, climate change has been at the forefront of discussion regarding
severe climate events in California. Between 2012 and 2016, California was mired in a
drought of record duration and magnitude that devastated its agricultural industry, which
accounts for 80 percent of state water usage. Total crop revenue losses during this time
exceeded $45 billion [1]. Droughts and other causes of crop loss such as storms and wild-
fires are expected to rise in frequency as global warming accelerates. To understand how
climate change and water access will impact Californian agriculture in the coming decades,
our team seeks to provide mathematically-founded insights on this issue.

We specifically analyzed the production of almonds, avocados, and grapes, several
leading state commodities. Using historical climate data from the National Oceanic and
Atmospheric Administration, we selected nine factors: temperature, precipitation, atmo-
spheric water vapor, snowfall, humidity, consecutive dry days, heat wave duration, and
severe and moderate storm occurrences. We used these factors to build a random for-
est regression model that predicts crop loss as a proportion for every county in Califor-
nia, which we trained on crop loss data from the USDA Risk Management Agency. By
inputting climate predictions from NOAA models, we projected yearly loss for almonds,
avocados, and grapes from 2020 to 2100. We predict that while average crop loss will only
slightly rise over time, losses in “outlier” years will increase in magnitude, aligning with
the expectation that climate change leads to more drastic weather spikes. We also deter-
mined that heat wave duration, number of consecutive dry days (drought), and temper-
ature most greatly influence crop loss. Exploratory factor analysis showed that our nine
climate variables could be linearly combined into three uncorrelated components that to-
gether accounted for 77.4% of the climate model’s variability.

The results of our random forest model allowed us to conduct a regional risk anal-
ysis, which indicated that most counties can expect to witness increases in annual crop
loss between 5 to 15% by 2100. Kern, Ventura, Santa Barbara, Stanislaus, and Los Ange-
les were particularly high-risk counties, with Kern projected to have the highest percent
change in crop loss of 18.14%. Kern, Stanislaus, and Ventura had the greatest potential
economic losses, of approximately $1.3 million, $350,000, and $250,000 per year respec-
tively. We also identified several at-risk organizations: economies of predominantly agrar-
ian communities, private insurers such as Global Ag, low socioeconomic status and minor-
ity farmers, as well as ancillary industries.

Based on our analysis, we outlined insurance and public policy recommendations
to the RMA and other federal agencies. Specifically, we suggest the extension of several
safety net programs to cover currently-excluded fruits and vegetables, including the 3 crops
we studied. To improve affordability of crop insurance, we propose implementing a more
progressive pricing model for subsidizing premiums that would also reduce government
costs. We propose expanding programs that incentivize eco-friendly, water-conserving
farming practices to encourage sustainable agriculture and greater crop insurance partici-
pation in California. As climate change becomes an increasingly formidable challenge faced
by farmers nationwide, we believe our models and recommendations provide novel insight
and the potential to benefit one of the United States’ most integral industries.
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2 Background Information

For both developed and developing nations, agriculture has always been the backbone of
civilization. The cultivation of crops and rearing of livestock not only feed an expanding
population but also play a crucial role in a country’s economy, providing jobs (nearly 1
million in the United States), income, and “homegrown security” when conflict with other
nations restricts crop trade [2]. In 2017, California’s 77,100 farms and ranches generated
over $50 billion, with the leading commodities of dairy, grapes, and almonds [3]. For a
state that produces 82% of the world’s almonds, the importance of preserving and pro-
tecting its agricultural industry cannot be understated [4].

Given that output optimization in agriculture relies on a predictable, consistent climate,
climate change is becoming an ever-increasing threat to crop production worldwide. Cli-
mate change has given rise to and accelerated global warming, droughts, rising sea levels,
and severe weather events, which are expected to only worsen in the upcoming decades.
Notably, climate change pushes weather to both opposite extremes, resulting in twofold
consequences. Consequently, floods are waterlogging soil at the same time that heat and
drought are destroying crops in other regions. Heat and drought also work in tandem with
severe windstorms to blow away topsoil and expose the roots of crops. The US Depart-
ment of Agriculture estimates that a staggering 90 percent of crop losses are related to ex-
treme weather [5]. California in particular has been a hotspot for climate change-induced
agricultural crises in recent years—subject to a 376-week-long drought from 2011 to 2019,
rising sea levels along the coast, as well as heat waves, smog, and wildfires [6]. Still wors-
ening matters is California’s continued dependence on fossil fuels like natural gas and oil
for energy, which release carbon dioxide, methane, and other gases to the atmosphere when
burned and further contribute to the greenhouse effect [7].

Agriculture also is heavily dependent on freshwater access for irrigating crops and raising
livestock; the industry accounts for approximately 80 percent of the United States’ ground
and surface water use and over 90 percent in many Western states such as California [8].
Freshwater access is not only affected by depletion and contamination through human ex-
traction but is also exacerbated by climate change. Glaciers, which store about 69 percent
of the world’s freshwater, have been rapidly melting throughout the past century. If all
land ice melted, the global sea level would rise approximately 70 meters [9]. This would
not only contaminate groundwater supplies with saltwater but also flood coastal farms and
communities. In addition, increased droughts caused by climate change dry out existing
wells and necessitate the drilling of deeper and deeper wells to extract dwindling ground-
water reservoirs, often resulting in permanent drops in the water table—an indication that
the rate of groundwater extraction through wells is higher than the rate of replenishment
via precipitation [10].

To protect farmers and ranchers against the effects of climate volatility, crop insurance is
partially subsidized by the federal government and covers crop loss due to natural disas-
ters as well as revenue loss due to declines in the sale prices of their output. Several ma-
jor types of crop insurance are multiple peril crop insurance (MPCI), crop-hail insurance,
and revenue insurance. MPCI policies are available for over 120 different crops, and cover
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losses caused by natural events such as hail, frost, wind, disease, drought, fire, flooding,
and insect damage [11]. These MPCI policies are written and insured by private compa-
nies that have been authorized by the USDA Risk Management Agency (RMA) under the
Federal Crop Insurance Program’s public-private partnership. To make insurance more af-
fordable, the federal government subsidizes the farmer-paid premiums. Meanwhile, crop-
hail insurance is purchased from private insurers in regions experiencing frequent hail-
storms and is not part of the Federal Crop Insurance Program. In California, where hail
is a relatively rare event, this type of insurance is not significantly utilized. The final type,
crop revenue insurance, pays farmers indemnities according to fluctuations in annual rev-
enues compared to previous years in order to protect against drastic swings in crop prices
[11].

More than ever, crop insurance is vital to California’s agricultural sector, protecting 6.7
million acres and providing $8.4 billion in liability protection in 2018. That year, private
crop-hail insurance provided an additional $27.1 million in liability protection in the state
[12]. In California and other agricultural regions in the US, the most common causes of
loss for federal crop insurance policies tend to be excess precipitation and flood, drought,
heat and cold, wind, and hail [13]. While protecting crops is important for farmers in ev-
ery state, it is in many ways even more crucial for Californian growers. California leads
the nation in 75 crops and livestock commodities, and is the sole national producer (99
percent or more) of 14 crops, including almonds, artichokes, raisin grapes, kiwifruit, olives,
and pistachios [3]. Thus, risks to California’s leading commodities, if sufficiently severe,
would cripple the entire nationwide supply of that crop, given that in many cases, there
are no ”backup” states to supplement the Californian supply.

Recognizing the unique risks and concomitant challenges with being such a vital agricul-
tural state, this report seeks to first analyze the impact of climate change and water access
on the production of three of California’s major commodities—grapes, almonds, and av-
ocados—in the upcoming decades. Our model results can then be used to determine the
organizations at greatest risk as a result of the predicted changes, and provide recommen-
dations on how to adapt to them. California is a particularly crucial region of the United
States to study because of its aforementioned vulnerabilities to the most damaging ramifi-
cations of climate change. As the state persists through its decade-long drought, tempera-
tures and storm frequency climb steadily, and its freshwater supplies continue to dwindle,
a deeper understanding of both the underlying climate change and its agricultural ramifi-
cations is necessary.
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3 Model Development and Results

Numerous aspects of climate can be quantified, not all of which impact crop growth and
agricultural loss/yield equally. In this section, we develop, implement, and test a mathe-
matical model to project crop loss of grape, almond, and avocado farmland in California
over the next decades using climate parameters.

3.1 Data Methodology

Effective analysis of the impact of climate change and water access on agriculture in Cali-
fornia requires comprehensive state climate and crop data covering at least several decades.
We utilized data from NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL), which
provides a database of climate summaries from land surface stations worldwide. GFDL
creates global climate models (CM) containing data on many aspects of climate, including
historical data from 1861 to the current year and predictions made by the laboratory up
until 2100. Using data from these models was preferable to using NOAA’s other climate
datasets because it seamlessly transitions from past data to future projections, allowing us
to train a model on historical climate and apply it directly to another period of time.

We utilize this pre-existing climate model to analyze the effects of climate change on the
agricultural industry because GFDL is an esteemed laboratory in a national institute for
oceanic and atmospheric research, responsible for the development of the first climate
models to study global warming. Thus, their climate models are both comprehensive and
highly reliable. From the GFDL database, we used the CM2.1 model, which is part of
GFDL’s contribution to the Coupled Model Intercomparison Project (CMIP3), an inter-
national endeavor headed by the World Climate Research Program [14]. The CM2.1 model
contains data for each of many climate factors at given latitude-longitude coordinates, in
increments of 200 km in both directions (approximately 1.5 latitude and 2.5 longitude in-
crements) [15].

In order to construct a model that predicts agricultural yield from various climate fac-
tors, we need to train the model on existing loss data for the crops of interest. For this, we
use federal crop insurance policy data from the USDA Risk Management Agency (RMA),
which provides information on the total acreage per county of specific crops that had a
loss each month due to various reasons [16]. RMA contains data from 1989 up until present
day. From the RMA Report Generator tool, we can calculate the total number of insured
acres per county [17]. As a government agency, the USDA dataset is reliable, and therefore
useful in providing crop insurance loss data for the model.

3.2 Mathematics Methodology

3.2.1 Assumptions and Justifications

1. The current trend of climate change progression remains constant. We are unable to
assume any major scientific or technological advances that would significantly reduce
the effects of climate change, nor any major events that would significantly increase
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them. Thus, we assume that current climate projections (e.g. of increasing tempera-
tures, more droughts, and more severe storms) are accurate.

2. This model analyzes the effects of climate change and water access on grape, almond,
and avocado production in California. These three major crops comprise a significant
portion of the state’s agricultural production [18]. While the remaining commodi-
ties are not negligible, we limit the scope of our investigation in order to make more
specific predictions and recommendations relating to these industries.

3. Earth is a perfectly spherical planet. This assumption allows us to calculate distances
using the Haversine formula for angular distances between two points on a sphere.

4. Environmental conditions vary smoothly within 200 km increments. It is unlikely
that drastic changes in the values of climate variables will occur within these rel-
atively small regions. This assumption facilitates the usage of an inverse distance
weighting formula to estimate climate factors between discrete grid points. The in-
crement value of 200 km was chosen because it is the width of the intervals at which
the NOAA GFDL climate data is recorded.

5. Only insured farms are considered. As our data on historic crop loss is taken from
the USDA’s information on federal crop insurance policies, this assumption is neces-
sary because we do not have data on uninsured farms. We also seek to provide insur-
ance policy recommendations, which are only applicable to insured farms.

6. Wildfire is not considered in our model. According to the Los Angeles Times, “84%
of U.S. wildfires were caused by human-related activity” [19]. Since wildfires are
caused by human actions much more frequently than by purely natural causes, we
decided not to incorporate wildfires into our model as we are primarily concerned
with the impact of climate on the agricultural industry.

3.2.2 Model Development

We implemented a random forest model to predict crop loss when given a number of in-
dependent input variables, including temperature, precipitation, and other factors. A ran-
dom forest regression model constructs an ensemble of regression trees (decision trees with
continuous target variables) and outputs the mean value of the predictions made by the
individual trees. Each regression tree in the forest takes a random subset of input variables
with replacement to predict the output variable—in this case, the proportion of crops lost
per acre. We utilize a random forest rather than a single regression tree to reduce overfit-
ting and improve accuracy and robustness of the model.

As detailed in Section 3.1, we used the CM2.1 database from GFDL as our input data,
which contains data for climate factors at given latitude-longitude coordinates in incre-
ments of 200 km on each side. However, the 200 km increments of environmental measure-
ments are not precise enough to capture all of the counties in California, many of which
are less than 200 km across. Since our intention was to analyze climate by county, we
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used the Python package geopy to convert each of the 58 counties in California to lat-
itude and longitude coordinates according to the geographic center (centroid) of each.
We then calculated the Haversine distance—the angular distance between two points on
a sphere—to each of the four nearest coordinates at which the GFDL created predictions
for. The Haversine distance is calculated as follows:

d = 2r arcsin(

√√√√sin2

(
φ2 − φ1

2

)
+ cos (φ1) cos (φ2) sin2

(
λ2 − λ1

2

)
) (1)

We used the Python package Haversine to calculate the φ and λ values from latitude-
longitude coordinates. We then estimated the values of each climate variable at the county
centroids by applying an inverse-distance weighting formula, which allowed us to compute
a weighted average of the 4 surrounding grid points. The inverse-distance weighting for-
mula is defined as follows:

xcounty =

∑4
i=1

xi

di∑4
i=1 di

(2)

where x is the value of any climate variable in the model and d is the calculated Haver-
sine distance from the centroid to a given grid point. Figure 3.1.1 visualizes our climate
estimation method using an outline of Alameda County as an example.

Figure 3.2.1: Diagram of Climate Estimation Method for Sample County (not to scale)

The GFDL database contained data in more factors than we deemed necessary to include
in our model, so we selected elements that prior research showed to be the most impact-
ful on crop output. Our final annual climate factors are listed in Table 3.2.1 below. The
selected factors were chosen to incorporate both common meteorological parameters such
as precipitation and average temperature as well as variables to represent extreme weather
events that affect crop output.
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Table 3.2.1: Annual Climate Variables for Random Forest Model
Symbol Definition Units
TAS Average daily temperature ◦C
PR Total annual precipitation (including snow and hail) kg/m2/s
R95T Average daily atmospheric water vapor content cm
PRSN Total annual snowfall mm
HUR Relative humidity, expressed as a decimal N/A
CDD Highest number of consecutive dry days days
HWDI Heat wave duration index N/A

PRW
Percent of annual precipitation from large events,
expressed as a decimal between 0 and 1

N/A

R10 Number of days with precipitation exceeding 10 mm days

While the input of the random forest model is climate data, taken from the CM2.1 database
and preprocessed as aforementioned, the dependent variable is the percent crop loss of
farmland, which is calculated by the formula:

Loss =
NDA

TA
(3)

where NDA is the Net Determined Acres and TA is the total number of insured acres of
the crop of interest. NDA is taken from the RMA cause of loss files, and is defined as the
number of acres of loss due to damage after the insured’s share is applied. TA is taken
from the RMA report generator and is calculated as the sum of all acres covered by crop
insurance policies, including those that did not have losses. For all available years (1989 to
2019), we computed percent loss per county for each of the three commodities of almonds,
grapes, and avocados.

We wrote a Python program (see Code Appendix) to run our preprocessed data through
a random forest regression model with 100 trees. Although the CM2.1 dataset contains
climate data starting from 1861, the RMA database only contains loss data starting from
1989, so we were only able to use data for 1989 and later from the CM2.1 dataset. The
historical data (1989 through 2019) were then randomly sorted and split into 2/3 for train-
ing the model and 1/3 for assessing accuracy. Since the CM2.1 dataset contains not only
historical values but also predictions for all climate variables until the year 2100, we ap-
plied our random forest model to the predicted climate data in order to project future loss
of the three crops.

3.3 Results and Model Analysis

3.3.1 Model Output

Executing our Python program generated 100 regression trees that individually predicted
the proportion for crop loss in each county. Figure 3.3.1 diagrams the flow of logic for a
sample regression tree in the random forest. Each box except for those in the last row con-
tains a conditional statement; the result of those conditional statements dictate how the
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algorithm gradually modifies its prediction to arrive at the final value on the bottom row.
For example, in this sample tree, if the first conditional statement (HWDI ≤ 2.05) evalu-
ates to True, the model modifies its prediction from 0.12 to 0.29, and so on until a box on
the final row is reached.

Figure 3.3.1: Visualization of Sample Single Regression Tree in Random Forest
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Testing the trained model on the reserved 1/3 of historical data resulted in a relatively
low mean squared error of 0.08. We then inputted the CM2.1 predicted values to project
future crop loss by county. Figures 3.3.2, 3.3.3, and 3.3.4 show scatterplots of our random
forest’s projected average proportion of crop loss (across all counties) from 2020 to 2100.

Figure 3.3.2: Projected Average Proportion of Crop Loss for Almonds Over Time

Figure 3.3.3: Projected Average Proportion of Crop Loss for Avocados Over Time
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Figure 3.3.4: Projected Average Proportion of Crop Loss for Grapes Over Time

We also calculated and recorded in Table 3.3.2 the unusual values, data points that fell
outside of 2 standard deviations of the mean, in each of the above three figures. For each
crop, the amount of crop loss in ”unusual” years generally rises over time in value. Al-
though there are several unusual years that are in common among the three crops, the
years still differ for each crop because they respond differently to changing climate con-
ditions. These unusual or ”outlying” points represent the years that are projected to cause
the most harm to farmers. For instance, almond and avocado farmers may lose nearly 18%
of their crops in 2076.

Table 3.3.2: Unusual Data Points in Crop Loss Predictions

Year Almond Avocado Grape
2033 0.1226
2040 0.1570 0.1551 0.1296
2054 0.1650 0.1301
2073 0.1530
2076 0.1780 0.1744 0.1549
2086 0.1574 0.1621 0.1446

After obtaining the prediction results, our model returned the feature importances of the
nine climate factors, as reported and ranked in Table 3.3.3. Our model indicated that heat
wave duration index (HWDI ), highest number of consecutive dry days (CDD), and aver-
age daily temperature (TAS ) are the three most influential features in determining loss
of the selected crops, while average daily atmospheric water vapor (R95T ), total annual
precipitation (PR), and total annual snowfall (PRSN ) are relatively the least influential
variables out of the nine factors we analyzed. From this, we infer that our model is sound,
as it is logical for daily temperature as well as excessive heat and dryness to most greatly
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impact crop loss—these factors relate directly to a crop’s basic requirements for survival.
Furthermore, it is relatively unlikely that water vapor content and snowfall to significantly
impact crop loss, especially since crops are not typically grown in the wintertime when
snowfall most often occurs; the same reasoning applies to total annual precipitation since
this variable includes snowfall.

Table 3.3.3: Importance of Climate Features in Random Forest Model

Symbol Feature Importance Importance Rank
HWDI 0.1264 1
CDD 0.1138 2
TAS 0.1079 3
PRW 0.1034 4
R10 0.1031 5
HUR 0.0981 6
R95T 0.0962 7
PR 0.0894 8

PRSN 0.0772 9

3.3.2 Analysis of Climate Factors

Recognizing that the graphs of predicted crop loss (Figures 3.3.2, 3.3.3, 3.3.4) exhibit no
apparent trend, we sought to analyze the most impactful variables in our model. As afore-
mentioned, heat wave duration index (HWDI ), highest number of consecutive dry days
(CDD), and average daily temperature (TAS ) are the three most influential features. To
investigate how these variables were individually influencing predicted crop loss, we graphed
the predictions for each of them in Figure 3.3.6, using predictions for 2020 through 2100
taken directly from the GFDL CM2.1 model, as these were the inputs in our random for-
est model. While all three plots trend slightly upward, there is a significant amount of
scatter that suggests only a very weak correlation between time and each of the three
variables. However, these predictions do align with current scientific notions regarding
the progression of climate change—while global warming is certainly cause for concern
and threatens the delicate equilibrium of ecosystems, temperature and drought increases
throughout the century are still slow.

Since the graphs of our three most important model factors in Figure 3.3.6 all have a large
amount of scatter and only weak trends over time, we conclude that our crop loss predic-
tions in Figures 3.3.2, 3.3.3, and 3.3.4 are reasonable with respect to available data. We
also observed that the high outliers in the loss predictions for almonds, avocados, and
grapes appeared to increase in magnitude over time. This observation is in agreement
with the expectation that climate change will increase the frequency and severity of se-
vere weather events, such as hurricanes, floods, heat waves, and droughts, that threaten
crop growth. Finally, the predictions for all three crops appear to be very similar from
their scatter plots, which suggests that between almonds, avocados, and grapes, none of
the three crops are significantly more/less resistant to climate change than the others.
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Figure 3.3.6: GFDL CM2.1 Predictions of TAS, HWDI, and CDD Over Time

3.3.3 Exploratory Factor Analysis of Climate Model

In creating our model, we implemented the CM2.1 dataset without considering possible
underlying relationships between the climate variables; this was because random forest
models do not require independent data to make reliable predictions. However, uncover-
ing the underlying structure of our model’s inputs can assist in the creation of legislation
to target different aspects of climate with minimum redundancy. To this end, we ran an
exploratory factor analysis (EFA) to identify any defining climate features in our model
that influence the others. The first step of EFA is to run a principal component analysis
(PCA). PCA is an operation that reduces the dimensionality of data while still account-
ing for most of its variability. The principal components obtained by PCA form an uncor-
related basis set that fully describe the data. However, it should be noted that principal
components, as linear combinations of the input features, have no intrinsic meaning and
are unitless.

First, we standardized each feature to have a mean of 0 and standard deviation of 1 be-
cause PCA is sensitive to the scale of the data. The covariance matrix A was created by
computing the covariance, as defined below, between every combination of factors:

cov(X, Y ) =
1

n− 1

n∑
i=1

(Xi− x)(Y i− y) (4)

We then computed the eigenvalues of matrix A and sort the eigenvectors by their eigen-
values in decreasing order. In order to choose the correct number of principal components
that can explain the data, we use the Kaiser criterion: the number of principal compo-
nents that have an eigenvalue greater than 1. This resulted in three principal components:
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PC1, PC2, and PC3. Then, we can create a transformation matrix W with the eigenvec-
tors as columns, and compute the new principal components as follows:

y = W T × x (5)

We then obtain factor loadings, which represent the correlation of each variable with the
principal components, by multiplying each eigenvector in the transformation matrix W by
the square root of its corresponding eigenvalue. However, these loadings do not have much
separation and are all close to around 0.5. To obtain high factor loadings for a few vari-
ables (i.e. to obtain the underlying features that can describe the entire data), we apply a
varimax rotation, which maximizes the sum of the variance of the squared loadings.

For each variable, the rotated loading with magnitude greater than 0.5 was assigned to its
corresponding principal component. Finally, we obtained the communalities, which rep-
resent the percent of variance that can be explained by the principal components. These
were obtained by squaring the loading of our chosen principal components for each vari-
able, as shown below.

Cvar =
n∑

i=1

(PC2
i ) (6)

If for each variable we squared all the principal components, not just those that we chose,
we would obtain 1. Our exploratory factor analysis results are summarized in Table 3.3.3,
including the rotated loading factor, the communality of each feature, and the variance
explained by each principal component.

Table 3.3.4: Loading Values and Communalities of Climate Factors

Variable PC1 PC2 PC3 Communality
TAS 0.95 -0.21 0.04 0.95
PRW 0.91 0.16 -0.2 0.9
PRSN -0.9 0.28 0.05 0.88
CDD 0.56 -0.25 0.39 0.53
PR -0.47 0.81 -0.13 0.91
R10 -0.43 0.81 -0.11 0.85
HUR -0.04 0.75 -0.26 0.64
R95T 0.16 0.67 0.31 0.57
HWDI -0.11 -0.05 0.85 0.74

PC variance % 45.8 20.3 11.3

The results of EFA suggest that the climate variables we chose can be primarily grouped
into three uncorrelated components that together describe 45.8 + 20.3 + 11.3 = 77.4%
of the model’s variability. From Table 3.3.3 above, we can see that the most influential
component PC1 is primarily comprised of the average temperature, the atmospheric water
vapor content, and snowfall precipitation, all having loading magnitudes greater than 0.90.
The cumulative dry days variable is more evenly spread across the three components with
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a low communality of 0.53, indicating that it is not so well described by a single principal
component. Overall, PC1 generally describes temperature and atmospheric water content,
through water vapor and snow. PC2, which generally describes precipitation, consists of
precipitation, days of more than 10 mm of rainfall, relative humidity, and percentage of
precipitation from large events, each with relatively high communalities. Finally, PC3 only
contains the heat wave duration index, and by itself describes extreme heat events.

These component classifications indicate that PC1, PC2, and PC3 each contain uncorre-
lated, independent data. The EFA results allow us to conclude that the key uncorrelated
factors affecting variability in climate data are temperature and atmospheric water con-
tent, precipitation, and extreme heat events. In context, this is useful in informing poli-
cymakers of which factors independently affect climate; such knowledge points to areas of
focus for legislation to create maximum impact. The relatively low cumulative PC vari-
ance of 77.4% indicates, as expected, that climate is a complex phenomenon, and that a
large number of principal components would be required to fully represent it. However,
the fact that we were able to account for a majority of climate variability with only three
independent components validates our choice of the nine climate variables in our random
forest model, suggesting that our manual selection was effective.

3.3.4 Summary of Model and Analysis Results

We first obtained our model results by running the random forest regression model built
in Section 3.2 with 100 trees. This resulted in three graphs for projected average crop loss
per year from 2020 to 2100, one for each of the crops almonds, avocados, and grapes. For
each crop’s graph, we calculated and discussed the physical significance of the statistically
unusual points, and evaluated the sensibility of the model output, determining that the
results were reasonable. We also analyzed time-based trends in the three most influential
climate variables (average daily temperature—TAS, heat wave duration index—HWDI,
and highest number of consecutive dry days—CDD); we noted that the very slight upward
trends in these three climate variables over time corresponded logically to the relatively
small magnitude of trends in our random forest model output. Then, we performed ex-
ploratory factor analysis (EFA) with principal component analysis (PCA) to analyze any
underlying relationships, or covariance, between our input variables. EFA resulted in 3
principal components that each contained uncorrelated data, which allowed us to conclude
that the key independent factors affecting climate data variability are temperature/atmo-
spheric water vapor, precipitation, and extreme heat events. Collectively, the model re-
sults, conclusions, and analysis of input (climate) variables highlight meaningful targets for
agricultural and climate legislation.

3.3.5 Strengths and Weaknesses

Our model is strong and outputs sensible results, as described previously. In particular,
implementing a random forest model mitigates the tendency of single regression trees to
overfit to the data set on which they are trained; this supports both the robustness and
the resilience of our model, as the final prediction outputted by the forest is the mean of
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many (100) individual regression tree predictions. We were also able to determine the rel-
ative impact of the nine climate factors that we considered via the feature importances
obtained from the model. Such information is useful in risk analysis because it highlights
the aspects of climate that have the greatest influence on crop yield and should therefore
be addressed using insurance and public policy changes, as discussed in future sections.
Our per-county breakdown of data also enables regional analysis. Furthermore, the data
on which the random forest model is trained is sourced from reliable and unbiased organi-
zations—specifically, the USDA Risk Management Agency and the National Oceanic and
Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory.

However, the model is somewhat limited in its scope of analysis. As per assumption 5, we
only analyze insured farmland, since the crop loss data from the Risk Management Agency
is only available for crops with insurance policies taken out on them. Historically, crop in-
surance participation in California has been relatively low. For example, although raisin
grapes have a Federal Crop Insurance Program participation rate of 80 percent, almonds
have a participation rate of only 34 percent [20]. In addition, the nine climate factors an-
alyzed in our model were hand-selected from the CM2.1 database based on prior research
to likely have impact on crop growth. Narrowing our pool of factors was necessary due to
the large size of the dataset and the high computational intensity of both the data prepro-
cessing and the random forest model. Given more time and computing power, a greater
number of factors recorded in the database could be investigated. While our current model
had a program runtime of 30 minutes, 6 to 7 hours would be required to account for every
climate variable in the CM2.1 database.

Overall, our model is reproducible, flexible, and can easily be applied to other crops and
US states as long as appropriate data is available. As aforementioned, it can also be ex-
panded to incorporate a larger set of climate factors for a more comprehensive analysis.
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4 Analysis and Conclusions

In this section, we utilize our model predictions to determine which organizations will be
negatively affected by the anticipated trends and quantify the risk. We then provide rec-
ommendations on how these identified risks can be countered or combatted, including in-
surance and public policy changes.

4.1 Risk Analysis

4.1.1 Regional Risk Analysis

Although our climate data was recorded by county, we primarily analyzed the model re-
sults in terms of average trends across the entire state. In this section, we performed a re-
gional risk analysis to identify the counties with the highest risk for crop loss as a result of
climate change in the coming decades.

Due to disparities in growing conditions between different regions of California, we aimed
to quantify risk for each county in relation to its own current status quo. Thus, we defined
risk of future crop loss as the percent change from the mean loss in years 2000–2030 to the
mean loss in years 2070–2100. A greater percent change would indicate a higher risk, since
over the next several decades that county would lose a higher percentage of their usual
profits compared to counties with lower risk. We computed these percent changes and col-
ored a map of the counties of California accordingly, where darker colors represent more
positive percent changes in loss (and therefore higher risk). This is shown in Figure 4.1.1;
see Appendix Table 6.2.1 for all values used in our calculation.

Figure 4.1.1: Counties of California Colored by Risk of Crop Loss (% Change in Loss)

From these results, we concluded that most counties in California are expected to witness
increases in crop loss of around 5 to 15% by the end of the century. Notably, both the
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northernmost and southernmost counties appear to maintain relatively constant propor-
tions of crop loss over time. The top 5 high-risk counties are Kern, Santa Barbara, Ven-
tura, Stanislaus, and Los Angeles County; their percent changes are listed in Table 4.1.1.
We then multiplied the percent change in crop loss by each high-risk county’s annual crop
production value [21], obtaining values for annual loss of agricultural value in 2070–2100
compared to 2000–2030. Our results are also reported in the table below.

Table 4.1.1: Crop and Economic Loss Projections of High-Risk Counties

High-Risk County
% Change in

Crop Loss
Total Annual

Production Value ($)
Potential Annual

Loss ($)
Kern 18.14% 7,187,938 1,303,892
Ventura 11.84% 2,110,187 249,846
Santa Barbara 11.30% 1,426,662 161,213
Stanislaus 10.76% 3,261,412 350,928
Los Angeles 9.79% 192,519 18,848

As expected, Kern County is predicted to have the highest potential annual loss because
it has both the highest total annual production value as well as the greatest risk for crop
loss. Stanislaus, Ventura, and Santa Barbara Counties are also at risk for significant finan-
cial loss.

4.1.2 Direct Risks to the Agricultural Industry

From our quantitative analysis, several risk groups or organizations are identifiable. The
primary persons at risk are farmers, whose livelihoods are directly impacted by crop failure
and resulting revenue loss. Logically, farmers in areas most prone to crop losses—namely,
the counties listed in Table 4.1.1—are at the most risk overall. However, the socioeco-
nomic status of farmers plays a large role in whether, and how well, they can adapt to
changes. Crop insurance, managed by the USDA RMA, is available for many common
crops and subsidized at a variable rate, ranging from 38 to 80 percent of the premiums
[22]. Despite this, farmers of low socioeconomic status are still often unable to afford in-
surance. Without insurance, these disadvantaged farmers are always susceptible to revenue
loss from crop damage and thus do not have a safety net to provide them peace of mind,
unlike their wealthier counterparts. Over time, this situation may evolve into a cycle in
which poorer farmers fall further and further behind middle-class and wealthy agricultural
producers due to lack of resources and greater vulnerability to catastrophic financial blows.

Currently, the Federal Crop Insurance Program is a public-private partnership in which
the USDA RMA, as a government agency, authorizes 15 private insurance companies to
write MPCI (multiple peril crop insurance) policies: AFBIS, ARMtech, Country Finan-
cial, Crop Risk Services, Diversified Crop Insurance services, Farmers Mutual Hail, Global
Ag, Great American, Hudson, NAU Country, ProAg, Precision Risk Management, Rain
and Hail and RCIS [23]. As a result of our projected increase in crop losses over time, we
can expect the financial assets of these private insurers to take a hit as a greater num-
ber of insurance claims will most likely be filed, and more indemnities paid out overall.
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Specifically in our state of interest, Global Ag faces a unique risk as it is the first crop in-
surance provider based in California and the only company in the Federal MPCI program
focused primarily on specialty crops. Specialty crops are defined legally as “fruits and veg-
etables, tree nuts, dried fruits and horticulture and nursery crops, including floriculture,”
which California’s farms produce a large proportion of the nation’s supply of [24]. How-
ever, since the welfare of approved private insurers is intertwined with RMA regulation,
which controls the rates that can be charged to farmers, it remains relatively unlikely that
these companies will suffer irrecoverable damage. Not only does the government subsidize
farmer-paid premiums, it also reimburses the private insurance companies to offset their
operating and administrative costs [23]. Overall, individual farmers are still the group that
faces the greatest risk as a result of our model’s projected agricultural changes.

4.1.3 Ancillary Risk and At-Risk Subgroups

We centered our analysis on grapes, almonds, and avocados, for all of which California is
one of the country’s major producers. Consequently, there is significantly greater risk to
the industries that rely on the production of those crops than industries linked with more
universally-grown commodities, such as wheat and corn. For example, companies respon-
sible for packaging, transporting, and distributing almonds, which California produces
82% of the world’s supply of, would be significantly affected by changes in output across
the state. In addition, if a county has a primarily agrarian local economy, its residents are
also subject to greater risk. Of the high-risk counties identified in Section 4.1.1, Kern was
the state’s #1 agricultural county based on 2017 gross production value, while Stanislaus
and Ventura also fell within California’s top ten [25]. Since its economy is predominantly
agrarian, and the region is also anticipated to have the greatest increase in crop loss over
the next few decades according to our model, we consider Kern to be an especially high-
risk county.

A specific subset of farmers who face particular risk from climate change and dwindling
water access is historically underserved farmers. The Agriculture Improvement Act of 2018
(2018 US Farm Bill) defines and includes provisions to accommodate the concerns of his-
torically underserved producers, which include socially disadvantaged, beginning, limited
resource, and veteran farmers and ranchers [26]. Resource inequity is important to address
everywhere, but particularly so in California, which has a relatively high Hispanic popu-
lation: the state ranks third in the US in concentration of Latinx farmers, and 12% of all
California farms are operated by Latinx farmers, compared to the national average of 3
percent. On average, Latinx and other farmers of color are of lower socioeconomic status
and receive 36% less government funding than their white counterparts. Furthermore, the
Sustainable Economies Law Center stated that “while 35% of non-Hispanic farmers ac-
quire crop insurance. . . only 10% of Hispanics are enrolled in USDA insurance programs,
and just 1% in Monterey County” [27]. Given that crop insurance is one of the most reli-
able and well-established means of risk management in agriculture, populations with lesser
or inferior access to such programs are more susceptible to financial devastation. Although
Hispanics are the largest minority group of Californian producers, Asian and Native Amer-
ican/Alaskan producers also comprise non-negligible portions of the industry [28].



Team #6475 Page 19 of 21

4.2 Recommendations

4.2.1 Insurance Recommendations

Formed in 1938 as part of President Franklin D. Roosevelt’s New Deal as a result of the
devastating impact of the Dust Bowl on American farmers, the Federal Crop Insurance
Corporation is a government program that provides U.S. farmers and agricultural entities
with crop insurance protection. Today, the FCIC, as a part of USDA’s Risk Management
Agency, oversees the implementation of crop insurance and risk management provisions
in the US Farm Bill [29]. The Farm Bill is the federal government’s primary agricultural
and food policy tool; its most recent iteration is the 2018 Farm Bill, which was signed into
effect in December of that year. Regarding insurance, the legislation was intended to in-
crease the availability, affordability, and integrity of crop insurance programs for US farm-
ers. The results of our mathematical modeling and risk analysis have led us to outline the
following recommendations for crop insurance programs.

The Federal Crop Insurance Program, through government-subsidized Multiple Peril Crop
Insurance policies written by authorized private companies, provides coverage for hundreds
of crops, livestock, organics, dairy, and other agricultural products. Under the 2018 Farm
Bill, the USDA Farm Service Agency provides a supplementary safety net that farmers
and ranchers can use in addition to FCIP coverage through the Agricultural Risk Coverage
(ARC) and Price Loss Coverage (PLC) programs. These both protect farm revenue from
changes in market conditions. Notably, none of three crops analyzed in our model are cov-
ered by the programs. Therefore, we propose the Farm Service Agency to extend its cov-
erage for ARC and PLC to common vegetables, fruits, and tree nuts, which are currently
excluded from the programs’ benefits. Given California’s status as the nation’s largest pro-
ducer of vegetables, this insurance policy change would be a noteworthy first step toward
mitigating the struggles of fruit and vegetable farmers in the state, whose crops face com-
parable risk from climate change yet are not offered the same insurance options as other
commodities. ARC and PLC benefits are provided by farm, which is more in the interest
of individual farmers than by-county benefits. Furthermore, since the largest proportion
of spending projected by the 2018 Agricultural Improvement Act were for nutrition pro-
grams, we believe this extension of popular safety net programs is in line with the priori-
ties of the federal government.

One of the major issues with the current state of the Federal Crop Insurance Program is
the disparity between the lowest and highest subsidies received by farmers. Unlike sub-
sidies for commodities, which cannot be paid to farm couples with over $1.8 million in
gross income, there is no income restriction on eligibility for crop insurance subsidies. Con-
sequently, large and already successful farms take up a vast majority of the total insur-
ance premium support fund (Figure 4.2.1)—the top-selling 10 percent of farmers receive
nearly 70 percent of all subsidies [30]. To address the inequitable distribution of subsidies,
we propose that the Durbin-Grassley amendment be passed in the next Farm Bill, which
would reduce subsidies for farmers with an Adjusted Gross Income (AGI) over $700,000.
Though this amendment has passed the Senate twice, it ultimately never became law.
However, this policy change not only would affect less than one percent of farmers (those
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with sufficient AGI) but is also estimated by the Congressional Budget Office to save more
than $490 million over ten years [31]. Given that both the insurance and public policy rec-
ommendations outlined in our report are dependent upon increased funding, reducing fed-
eral costs with this amendment is a beneficial course of action.

Figure 4.2.1: Crop Insurance Subsidy Payment Distributions for Farms in the Top 10
Percent of Crop Sales [30].

Another significant area of concern is addressing historically underserved agricultural pro-
ducers. Section 4.1.3 notes that Latinx farmers in particular—but also Asian and Native
American/Alaskan farmers—tend to be of lower socioeconomic status on average while
also receiving 36% less government funding than white farmers. In addition, poorer farm-
ers may either be unable to afford crop insurance premiums (even after subsidies) or would
experience significant financial setback if they paid it. Since insurers are legally required
to write MPCI policies for any eligible applicant, regardless of race, we propose first focus-
ing on improving affordability of insurance. To this end, one possible measure would be for
the RMA to create a more progressive pricing model for subsidizing premiums, in which
farmers with a lower gross income would be given subsidies closer to 80% of the premium
price (the upper end of the current range of subsidy rates) while farmers with higher gross
income would be given subsidies gradually closer to 40% (the lower end of the range). Fu-
ture studies would have to be conducted after the implementation of these changes to as-
sess their efficacy in making crop insurance more accessible across the board. Then, if data
suggests that minority groups are still receiving significantly less funding, further steps
should be undertaken to investigate potential racial bias among crop insurers.
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4.2.2 Public Policy Recommendations

Addressing the agricultural risks of climate change at their roots requires strengthening
and expanding US environmental policy. As shown in Figure 4.2.2, total water withdrawals
in the US are the lowest they have ever been since the 1970s, despite a national population
that has increased by over 50 percent during that time [32]. This statistic is a strong indi-
cation that water conservation efforts have resulted in tangible success, and attests to the
capacity of legislation to effect change. Though changes to most of the policies below are
outside the scope of the USDA RMA, we nevertheless recommend that the federal govern-
ment prioritize climate preservation in future iterations of the Farm Bill and other envi-
ronmental legislation.

Figure 4.2.2: Trends in Total US Water Withdrawals by Category, 1950–2015 [33].

Specifically, we recommend the continuation of the Environmental Quality Incentives Pro-
gram (EQIP), which was created by the 1996 Farm Bill to provide cost-sharing assistance
for farmers to adopt more environmentally-friendly agricultural techniques. These tech-
niques are expected to be more sustainable in the future but require greater initial invest-
ments, revenue losses, and lower crop yields. The 2018 Farm Bill already expanded eligi-
bility, allowing the National Resources Conservation Service to enter into EQIP contracts
with water management entities to support water conservation and irrigation efficiency
[33]. Since our model has indicated that drought (or consecutive days without precipita-
tion) is one of the most influential factors in determining crop loss, we suggest that the
NRCS continue their water conservation efforts.
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In addition, current EQIP policy dictates that in 2020, states may identify and increase
payment rates for up to ten high-priority practices; eligible high-priority practices include
water conservation to mitigate drought and address declining aquifers, habitat restora-
tion, and natural resource concerns [33]. As we predict agriculture in California to be
threatened by heat and drought, we suggest that its State Conservationists indicate wa-
ter conservation and drought mitigation, as well as decreasing fossil fuel dependence, as
high-priority practices beginning in 2020. The latter will provide greater incentive—via
financial assistance—for farmers to invest in renewable energy in order to reduce carbon
emissions. We highlighted these priorities based on the results of our principal component
analysis in Section 3.3.2: water conservation and drought mitigation efforts corresponds to
PC2 (precipitation), while decreasing fossil fuel dependence/curbing global warming corre-
sponds to PC1 and PC3 (temperature; heat waves).

The Natural Resources Conservation Service, an agency of the USDA, offers both EQIP as
well as the Agricultural Management Assistance (AMA) to help producers manage finan-
cial risk through diversification, marketing, and natural resource conservation practices.
AMA provides up to 75 percent financial assistance of the cost of installing conservation
practices, such as water management and irrigation structures, soil erosion control, and in-
tegrated pest management. It is currently available in sixteen states where participation
in the Federal Crop Insurance Program has been historically low, but notably, California
is not one of them. For the crops studied in our model, wine grapes and table grapes were
35 percent and 19 percent insured respectively by acreage, almond farmland was 42 per-
cent insured, and avocados were 8 percent insured in 2012 [34]. (This final number should
be viewed with discretion, as crop insurance for avocados was piloted fairly recently, in
1998 [35].) Given that 86 percent of eligible acres were insured under FCIP in 2015, Cal-
ifornia’s participation in the program is still relatively low. Consequently, we recommend
that NRCS and RMA make Agricultural Management Assistance available to California,
as this would have the potential to significantly benefit local economies, such as in major
agriculture counties Kern and Stanislaus, as well as the livelihoods of farmers.

4.2.3 Concluding Remarks

Overall, our model and analysis conclude that climate change, especially the effects of
droughts, heat waves, and changing average temperatures, will introduce risk to produc-
ers of grapes, almonds, and avocados in California in the upcoming decades. To address
projected risks, both economic and social, we recommend that the federal government ex-
pand safety net programs such as Agricultural Risk Coverage and Price Loss Coverage to
cover fruits and vegetables, as a majority of California’s agricultural economy depend on
these ”specialty crops.” We also suggest incorporating the Durbin-Grassley amendment in
the next Farm Bill to reduce insurance subsidies for farmers with gross annual income over
$700,000, and implementing a more progressive premium subsidy system to address the
unique risks faced by historically underserved and impoverished farmers. Ultimately, we
recommend that the federal government prioritize climate preservation—for more than just
the agricultural industry—by strengthening and expanding incentive programs for sustain-
able farming, resource conservation, and renewable energy use.
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7 Appendix

7.1 Changelog: 17 April 2020

• [Updated] Section 2, Background Information, page 3

– Included more information on agricultural industry in California

• [Added] Section 3.3.3, Exploratory Factor Analysis of Climate Model, page 12

– Inserted subsection header to provide additional organization

– Provided greater justification for conducting EFA

– Included details on communality calculation

• [Updated] Section 3.3, Results and Model Analysis

– Figures 3.3.2, 3.3.3, 3.3.4, and 3.3.6 (pages 9, 10, 12) - Made scatter dots larger
to improve readability

– [Added] Table 3.3.2 to highlight unusual values in crop loss results

• [Added] Section 3.3.4, Summary of Model and Analysis Results, page 14

– Added summary of entire section 3.3 for increased structure and clarity

• [Updated] Section 4.1.1, Regional Risk Analysis, page 15

– Included reference to new Appendix Table 6.2.1

• [Added] Section 7.1, Changelog: 17 April 2020 (Appendix)

• [Added] Section 7.2, Supplementary Information (Appendix)

– New Table 7.2.1: Historical and Future Loss by County

7.2 Supplementary Information

Table 7.2.1: Historical and Future Loss by County

County Average Loss 2000-2030 Average Loss 2070-2100 % Change
0 Alameda 0.098877563 0.10720841 8.425417664
1 Alpine 0.167253181 0.169781535 1.511692761
2 Amador 0.150239815 0.157862905 5.073947918
3 Butte 0.153000488 0.164588267 7.573688026
4 Calaveras 0.147993304 0.154944966 4.697281397
5 Colusa 0.105449088 0.115098315 9.150602284
6 Contra Costa 0.098854814 0.106408244 7.640932574
7 Del Norte 0.127613287 0.128905391 1.012515003
8 El Dorado 0.156940792 0.165805702 5.648569926
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9 Fresno 0.103985681 0.112017228 7.723703817
10 Glenn 0.144995747 0.148278968 2.264357228
11 Humboldt 0.11544957 0.116669851 1.056981966
12 Imperial 0.19666483 0.196190139 -0.241370872
13 Inyo 0.18065855 0.183389086 1.511434639
14 Kern 0.117391808 0.138684831 18.13842379
15 Kings 0.104469001 0.114730979 9.82298915
16 Lake 0.100666113 0.1103534 9.623186102
17 Lassen 0.184747711 0.183882813 -0.468150618
18 Los Angeles 0.14809017 0.162591872 9.792481033
19 Madera 0.109441821 0.115288228 5.342022555
20 Marin 0.09892704 0.107307386 8.471239146
21 Mariposa 0.152453605 0.162435538 6.547521648
22 Mendocino 0.102505115 0.112041771 9.303590739
23 Merced 0.100523911 0.107085138 6.527031142
24 Modoc 0.17977572 0.181200922 0.792766581
25 Mono 0.175491006 0.17841301 1.665044979
26 Monterey 0.1221739 0.128445012 5.132938518
27 Napa 0.099371368 0.107881779 8.564248605
28 Nevada 0.162439103 0.166920184 2.758622166
29 Orange 0.158191832 0.171427453 8.366816863
30 Placer 0.160100401 0.166474318 3.981200095
31 Plumas 0.177774705 0.179054712 0.72001639
32 Riverside 0.206120826 0.193913258 -5.922530473
33 Sacramento 0.101557517 0.109518027 7.838424608
34 San Benito 0.102196924 0.110859162 8.476026156
35 San Bernardino 0.153675203 0.165116045 7.444819842
36 San Diego 0.19188971 0.191639307 -0.130493286
37 San Francisco 0.098882434 0.107282742 8.495247822
38 San Joaquin 0.098921489 0.106486943 7.647937193
39 San Luis Obispo 0.147806229 0.156779715 6.071114927
40 San Mateo 0.098790831 0.108007434 9.329411137
41 Santa Barbara 0.14440268 0.160723668 11.30241334
42 Santa Clara 0.108387461 0.114919731 6.026776497
43 Santa Cruz 0.109484875 0.119488836 9.137299405
44 Shasta 0.155205873 0.161306261 3.930513586
45 Sierra 0.178115081 0.179642741 0.857681115
46 Siskiyou 0.149748797 0.151777177 1.354522021
47 Solano 0.099571107 0.106934878 7.395489716
48 Sonoma 0.099133475 0.10768692 8.628210557
49 Stanislaus 0.101048663 0.111918014 10.75655099
50 Sutter 0.110089866 0.118797959 7.909986133
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51 Tehama 0.147307111 0.154266468 4.724386426
52 Trinity 0.142351201 0.145835655 2.447786619
53 Tulare 0.110295786 0.118323079 7.277968875
54 Tuolumne 0.154136929 0.163736402 6.227886604
55 Ventura 0.142462776 0.159335298 11.8434604
56 Yolo 0.103162173 0.111486334 8.069005174
57 Yuba 0.145635276 0.147742375 1.446832765

7.3 pca.py

from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import pickle
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from factor analyzer import FactorAnalyzer

with open(’yields2.pkl’, ’rb’) as f: # Our output file
yields = pickle.load(f)

with open(’hist nc.pkl’, ’rb’) as f: # Historical climate data
hist nc = pickle.load(f)

with open(’pred nc.pkl’, ’rb’) as f: # Predicted climate data
pred nc = pickle.load(f)

#print(yields.loc[(yields[’year’] == 1989) & (yields[’county’] == ’Butte’)])

nc = pd.concat([hist nc, pred nc], ignore index=True) # Combine the two climate datas

# plt.scatter(np.array(nc[’year’]),
# np.array(nc[’pr’])∗8640∗12)
# plt.show(block=True)

nc = nc.drop([’county’, ’year’], axis=1) # Remove countyand year b/c they don’t matter in PCA

scaler = StandardScaler()
scaler.fit(nc)
nc scaled = scaler.transform(nc) # Scale everything with a mean of 0 and std dev of 1

print(nc scaled)

fa = FactorAnalyzer(rotation=’varimax’, n factors=3, # Analyze 3 factors and drop na values
use smc=False, impute=’drop’, method=’principal’)

fa.fit(nc scaled)

pca = PCA(3) # Do PCA with 3 components
pca.fit(nc scaled)
print(pca.explained variance ratio ) # % variance for each PC
print(pca.explained variance )
print(list(zip(nc.columns, fa.get communalities()))) # Get communalities correlated with names of metrics

print(list(zip(nc.columns, fa.loadings ))) # Get loadings correlated with names of metrics

7.4 readFuture.py

import xarray as xr
from geopy.geocoders import Nominatim
import pandas as pd
from tqdm import tqdm
from datetime import datetime
from functools import reduce
from haversine import haversine

geolocator = Nominatim( # Server to get lat/long of county
user agent=”mtf−stuff”, domain=’localhost/nominatim’, scheme=’http’)

counties = [ # List of CA counties
”Alameda”, ”Alpine”, ”Amador”, ”Butte”, ”Calaveras”, ”Colusa”, ”Contra Costa”, ”Del Norte”, ”El Dorado”, ”Fresno”,
”Glenn”, ”Humboldt”, ”Imperial”, ”Inyo”, ”Kern”, ”Kings”, ”Lake”, ”Lassen”, ”Los Angeles”, ”Madera”, ”Marin”, ”Mariposa”,
”Mendocino”, ”Merced”, ”Modoc”, ”Mono”, ”Monterey”, ”Napa”, ”Nevada”, ”Orange”, ”Placer”, ”Plumas”, ”Riverside”, ”Sacramento”,
”San Benito”, ”San Bernardino”, ”San Diego”, ”San Francisco”, ”San Joaquin”, ”San Luis Obispo”, ”San Mateo”, ”Santa Barbara”, ”

↪→ Santa Clara”,
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”Santa Cruz”, ”Shasta”, ”Sierra”, ”Siskiyou”, ”Solano”, ”Sonoma”, ”Stanislaus”, ”Sutter”, ”Tehama”, ”Trinity”, ”Tulare”,
”Tuolumne”, ”Ventura”, ”Yolo”, ”Yuba”]

# Historical data files for each metric
datas = [”cdd A4.1861−2000.nc”, ”pr A0.1861−2000.nc”,

”hwdi A4.1861−2000.nc”, ”prsn A0.1861−2000.nc”, ”r10 A4.1861−2000.nc”, ”tas A0.1861−2000.nc”, ”hur A0.1861−2000.nc”, ”prw A0
↪→ .1861−2000.nc”, ”r95t A4.1861−2000.nc”]

# Prediction data files for each metric
# datas = [”cdd A4.2001−2100.nc”, ”pr A0.2001−2100.nc”,
# ”hwdi A4.2001−2100.nc”, ”prsn A0.2001−2100.nc”, ”r10 A4.2001−2100.nc”, ”tas A0.2001−2100.nc”, ”hur A0.2001−2100.nc”, ”prw A0

↪→ .2001−2100.nc”, ”r95t A4.2001−2100.nc”]

# The end dataframe
out data = pd.DataFrame(columns=(’county’, ’year’, ”cdd”, ”hwdi”, ”prsn”, ”r10”, ”tas”,

”hur”, ”pr”, ”prw”, ”r95t”))

# List of dataframes for each metric
raw dfs = []

lats = [] # The possible latitude and longitudes in the file
longs = []

for data in datas: # Go through each file
ds = xr.open dataset(data)
df = ds.to dataframe()

measurement = data.split(’ ’)[0]

# Some things are in days, so convert them to floats
if isinstance(list(df.iloc[[0]].to dict()[measurement].values())[0], pd. libs.tslibs.timedeltas.Timedelta):

df[measurement] = df[measurement].dt.days.astype(’float’)

curr out = pd.DataFrame(columns=(’county’, ’year’, measurement)) # Our output dataframe, per metric

if lats == []: # We haven’t populated the possible lats and longs (they’re the same in each metric, so we only do it once)
lats = list(set(df.lat bnds.index.get level values(1).values))
longs = list(set(df.lon bnds.index.get level values(2).values))

for county in tqdm(counties):
location = geolocator.geocode(county+” County, California”) # Get the lat/long of each location

# print(county, location)

county loc = (location.latitude, location.longitude +
360 if location.longitude < 0 else location.longitude) # Convert to positive lat/longs

lat loc = 0
for ilat in range(len(lats)−1): # Search for where our latitude would fit in

if lats[ilat] <= county loc[0] <= lats[ilat+1]:
lat loc = ilat
break

lon loc = 0# Search for where our longitude would fit in
for ilon in range(len(longs)−1):

if longs[ilon] <= county loc[1] <= longs[ilon+1]:
lon loc = ilon
break

x1 = (lats[lat loc], longs[lon loc]) # The four corners that surround the center of the county
x2 = (lats[lat loc+1], longs[lon loc])
y1 = (lats[lat loc], longs[lon loc+1])
y2 = (lats[lat loc+1], longs[lon loc+1])

# find distance from county centroid to each of 4 grid corners
d1 = haversine(county loc, x1)
d2 = haversine(county loc, x2)
d3 = haversine(county loc, y1)
d4 = haversine(county loc, y2)

pd.options.mode.chained assignment = None # Suppress error messages

sub df1 = df.query( # Get the rows for each latitude and longitude
f”lat == {x1[0]} and lon == {x1[1]}”)

sub df1.columns = [ # Append 1 or 2 etc to each column name so they don’t conflict when we merge
str(col) + ’ 1’ if col == measurement else str(col) for col in sub df1.columns]

sub df2 = df.query(f”lat == {x2[0]} and lon == {x2[1]}”)
sub df2.columns = [

str(col) + ’ 2’ if col == measurement else str(col) for col in sub df2.columns]
sub df3 = df.query(f”lat == {y1[0]} and lon == {y1[1]}”)
sub df3.columns = [

str(col) + ’ 3’ if col == measurement else str(col) for col in sub df3.columns]
sub df4 = df.query(f”lat == {y2[0]} and lon == {y2[1]}”)
sub df4.columns = [

str(col) + ’ 4’ if col == measurement else str(col) for col in sub df4.columns]

e = 1.0/d1 + 1.0/d2 + 1.0/d3 + 1.0/d4 # The e value on the bottom

# print(sub df1.index.get level values(−1))
# print(sub df1.index)

# sub df1.columns = sub df1.columns.map(’|’.join).str.strip(’|’)



Team #6475

sub df1[’time ’] = sub df1.index.get level values(−1) # The year that it occured
sub df2[’time ’] = sub df2.index.get level values(−1)
sub df3[’time ’] = sub df3.index.get level values(−1)
sub df4[’time ’] = sub df4.index.get level values(−1)

# sub df1 = sub df1.drop(’lon bnds’, axis=1)
# sub df1 = sub df1.drop(’lat bnds’, axis=1)

sub df = reduce(lambda left, right: pd.concat( # Concatenate based on time into one whole dataframe
[left, right], axis=1), [sub df1.set index(’time ’), sub df2.set index(’time ’), sub df3.set index(’time ’), sub df4.set index(’time ’)])

sub df[measurement + ” total”] = (sub df[measurement+” 1”]/d1 + # Create a final measurement according to the formula
sub df[measurement+” 2”]/d2 +
sub df[measurement+” 3”]/d3 + sub df[measurement+” 4”]/d4) / e

for , line in sub df.iterrows():
# print(line)
o = {’county’: county, ’year’: line.name.year} # Get the year for each line in the dataframe
o[measurement] = line[measurement + ’ total’] # And just put in our total
curr out = curr out.append(o, ignore index=True) # Append to our cleaned dataframe

curr out.groupby([’county’, ’year’], as index=False).mean() # In case there are any duplicates, just get the mean
raw dfs.append(curr out)

out data = reduce(lambda left, right: pd.merge(left, right, on=[’county’, ’year’],
how=’inner’), raw dfs) # Combine our measurement dataframes into one giant dataframe

#out data = out data.drop duplicates(ignore index=True)

out data = out data.groupby([’county’, ’year’], as index=False).mean() # We want unique rows, so get the mean if there are any duplicates

out data.to pickle(’hist nc.pkl’) # Pickle it so we don’t have to do it again

print(out data.head())

7.5 runForestRun.py

import pandas as pd
import pickle
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.model selection import train test split
from sklearn.model selection import cross val score, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.tree import export graphviz
import pydot
import matplotlib.pyplot as plt
import plotly.express as px
from urllib.request import urlopen
import json
import sys

with urlopen(’https://raw.githubusercontent.com/codeforamerica/click that hood/master/public/data/california−counties.geojson’) as response:
counties json = json.load(response) # Get a GeoJSON of all the counties in California (for mapping with plotly)

with open(’yields2.pkl’, ’rb’) as f:
yields = pickle.load(f)

with open(’hist nc.pkl’, ’rb’) as f:
hist nc = pickle.load(f)

with open(’pred nc.pkl’, ’rb’) as f:
pred nc = pickle.load(f)

#print(yields.loc[(yields[’year’] == 1989) & (yields[’county’] == ’Butte’)])

nc = pd.concat([hist nc, pred nc], ignore index=True) # Load our climate data

#nc current = nc.loc[nc[’year’] <= 2019]

# print(nc current)

# print(yields.describe())
# print(hist nc.columns)

# cc = ’San Diego’
# cro = ’Avocado’

# plt.scatter(yields.loc[(yields[’county’] == cc) & (yields[’crop’] == cro)][’year’], yields.loc[(yields[’county’] == cc) & (yields[’crop’] == cro)][’yield’])
# plt.show(block=True)

merged = pd.merge(nc, yields, on=[’county’, ’year’],
how=’outer’) # Combine the climate data and yield data together

merged.loc[merged[’yield’] == 0] = np.nan
merged = merged.dropna().reset index() # Drop all rows with 0 yield
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merged = merged.drop([’county’, ’index’, ’year’], axis=1) # Drop our county, index, and year (not inputs)
merged[’yield’] = merged[’yield’].astype(’float’) # Convert yield to float

print(merged.loc[merged[’crop’] == ’Almond’][’yield’].describe())

#merged = merged.loc[merged[’crop’] == ’Almond’]
#merged = merged.drop(’crop’, axis=1)

# print(merged[’r95t’].describe())

features = pd.get dummies(merged) # One hot encode the type of crop

labels = np.array(features[’yield’]) # Our output labels
features = features.drop([’yield’], axis=1) # Our input features

feature list = list(features.columns) # The list of our inputs
features = np.array(features) # RF takes in a numpy array

print(feature list)

train features, test features, train labels, test labels = train test split(
features, labels, test size=0.25, random state=42) # Split into training testing data

print(train features[0], train labels[0])
print(test features[0], test labels[0])

print(’Training Features Shape:’, train features.shape) # The shapes of our data, to make sure its consistent
print(’Training Labels Shape:’, train labels.shape)
print(’Testing Features Shape:’, test features.shape)
print(’Testing Labels Shape:’, test labels.shape)

rf = RandomForestRegressor(n estimators=100, random state=42, # Make our RF regressor
max features=0.33, max depth=4, oob score=True) # Some limits to make it faster

rf.fit(train features, train labels)

dot data = export graphviz(rf.estimators [0], feature names=feature list, rounded=True, proportion=False,
precision=2, filled=True, rotate=True, out file=’tree.dot’) # Get a tree in dot format

(graph,) = pydot.graph from dot file(’tree.dot’) # Convert dot format to png
graph.write png(’tree.png’)

# Use the forest’s predict method on the test data
predictions = rf.predict(test features)
# Print out the mean absolute error (mae)
errors = abs(predictions − test labels)
print(’Mean Absolute Error:’, round(np.mean(errors), 2))

print(list(zip(feature list, rf.feature importances ))) # the importances of each of our features (sums to 1)

plt.rcParams.update({’font.size’: 32})

future ncs = nc.loc[(nc[’year’] > 2019)] # Predict for years past 2019
future ncs[’crop Almond’] = 0
future ncs[’crop Avocado’] = 0
future ncs[’crop Grape’] = 1 # We want to predict grapes
future ncs = future ncs.groupby([’year’], as index=False).mean() # Combine all counties
future ncs2 = future ncs.drop([’year’], axis=1) # Drop our years (not an input)
print(future ncs2.head())

pred features = np.array(future ncs2)

out = rf.predict(pred features) # Predict our crop loss

for yr in range(2020, 2120, 20): # Get key data for years 2020, 2040, 2060, 2080, 2100
print(”PREDICTED Year ”, yr, out[yr−2020])

sys.exit(0)

plt.scatter(np.array(future ncs[’year’]), out) # Plot it
plt.ylabel(”Crop Loss (proportion)”)
plt.xlabel(”Year”)
# plt.show(block=True)

f, (ax1, ax2, ax3) = plt.subplots(1, 3)

ax1.scatter(np.array(future ncs[’year’]), np.array(future ncs[’tas’])) # Plot our climate data in the future
ax2.scatter(np.array(future ncs[’year’]), np.array(future ncs[’hwdi’]))
ax3.scatter(np.array(future ncs[’year’]), np.array(future ncs[’cdd’]))

ax1.set xlabel(”Year”)
ax2.set xlabel(”Year”)
ax3.set xlabel(”Year”)

ax1.set ylabel(”Temperature (K)”)
ax2.set ylabel(”Heat Wave Duration Index”)
ax3.set ylabel(”Consecutive Dry Days (days)”)

# plt.show(block=True)

def get avg map(change df): # Get the average mapping

counties = change df[’county’].unique() # List of counties
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change df[’crop Almond’] = 1 # Do it for almonds
change df[’crop Avocado’] = 0
change df[’crop Grape’] = 0
#one year predict = one year predict.groupby([’year’], as index=False).mean()
change predict2 = change df.drop([’year’, ’county’], axis=1)

# DO FOR EACH CROP
plot map almond = rf.predict(np.array(change predict2))
change predict2[’crop Almond’] = 0
change predict2[’crop Avocado’] = 1
change predict2[’crop Grape’] = 0
plot map avocado = rf.predict(np.array(change predict2))
change predict2[’crop Almond’] = 0
change predict2[’crop Avocado’] = 0
change predict2[’crop Grape’] = 1
plot map grape = rf.predict(np.array(change predict2))

plot map all = (plot map almond + plot map avocado + plot map grape) / 3 # Average our crops

change df[’yield’] = plot map all
# print(change predict.head())

dropped yield = change df.loc[:, change df.columns.intersection(
[’yield’, ’county’])] # Remove everything except yield and county name

# grouped = dropped yield.groupby(
# [’county’])

# grouped outliers = grouped.transform(
# lambda group: (group − group.mean()).div(group.std()))
# outliers = grouped outliers.abs() > 2 # Calculate outliers (2 std devs)

# # print(outliers)

# dropped yield = dropped yield[outliers.any(axis=1)].groupby([
# ’county’]).size()

# o = dropped yield.to frame().reset index().rename(columns={0: ’yield’})

# print(counties)

# print(o[’county’])

# for county in counties:
# if county not in o[’county’].unique():
# print(”Adding”, county)
# o = o.append({’county’: county, ’yield’: 0}, ignore index=True)
# return o

dropped yield = dropped yield.groupby( # Average all data by county
[’county’], as index=False).mean()

# dropped yield = dropped yield.groupby(
# [’county’]).std().reset index() # Plot the standard deviation

return dropped yield

change predict = nc.loc[(nc[’year’] >= 2000) & (
nc[’year’] <= 2030)] # Our base years is 2000 to 2030

change pred future = nc.loc[(nc[’year’] >= 2070) & (nc[’year’] <= 2100)] # Our future years are 2070 to 2100

plot hist = get avg map(change predict)
plot future = get avg map(change pred future)

plot change = pd.DataFrame( # Calculate percent change, and remove County if its in the name
{’yield’: 100 ∗ (np.array(plot future[’yield’]) − np.array(plot hist[’yield’])) / np.array(plot hist[’yield’]), ’county’: [county.replace(’ County’, ’

↪→ ’) for county in plot future[’county’]]})

# print(plot map df)

plot change.columns = [’loss’, ’county’] # Rename to loss

# print(counties json[”features”][10])

fig = px.choropleth(plot change, geojson=counties json, color=”loss”, # Plot our map
locations=”county”, featureidkey=”properties.name”,
color continuous scale=’Plasma r’
)

fig.update geos(fitbounds=”locations”, visible=False) # Make it fit to california and ignore everything else
fig.update layout(margin={”r”: 0, ”t”: 0, ”l”: 0, ”b”: 0})
fig.show()

7.6 totalLand.py

import os
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import pandas as pd
import numpy as np

fileLand = open(”totalLand.txt”, ”r”) # The text file with total land for each county
rawdata = fileLand.readlines()
headers = rawdata[0].split(”|”)
data = [x.split(”|”) for x in rawdata[1:]] # Its separated by pipes
land = [[[0 for i in range(3)] for j in range(58)] for k in range(32)] # Initialize a 3d array for each crop, county, year

# comodity name”: 1
# area: 13
# county: 7
counties = [

”Alameda”, ”Alpine”, ”Amador”, ”Butte”, ”Calaveras”, ”Colusa”, ”Contra Costa”, ”Del Norte”, ”El Dorado”, ”Fresno”,
”Glenn”, ”Humboldt”, ”Imperial”, ”Inyo”, ”Kern”, ”Kings”, ”Lake”, ”Lassen”, ”Los Angeles”, ”Madera”, ”Marin”, ”Mariposa”,
”Mendocino”, ”Merced”, ”Modoc”, ”Mono”, ”Monterey”, ”Napa”, ”Nevada”, ”Orange”, ”Placer”, ”Plumas”, ”Riverside”, ”Sacramento”,
”San Benito”, ”San Bernardino”, ”San Diego”, ”San Francisco”, ”San Joaquin”, ”San Luis Obispo”, ”San Mateo”, ”Santa Barbara”, ”

↪→ Santa Clara”,
”Santa Cruz”, ”Shasta”, ”Sierra”, ”Siskiyou”, ”Solano”, ”Sonoma”, ”Stanislaus”, ”Sutter”, ”Tehama”, ”Trinity”, ”Tulare”,
”Tuolumne”, ”Ventura”, ”Yolo”, ”Yuba”]

crop = −1
count = 0
for line in data:

count+=1
if ”ALMONDS” in line[1].upper(): # Find the crops we’re interested in

crop = 0
elif ”GRAPES” in line[1].upper():

crop = 1
elif ”AVOCADOS” in line[1].upper():

crop = 2
if crop != −1:

try:
land[int(line[0])−1989][counties.index(line[7]) # Conevrt to float the amount in acres of land

][crop] += float(line[13])
except:

pass
crop = −1

counter = 1989
for year in land:

print(”\nyear: ” + str(counter))
counter += 1
for i in range(3):

sum = 0
for line in year:

sum += line[i] # Get the sum for each county+crop
print(sum)

# year, county, crop
lostLand = [[[0 for i in range(3)] for j in range(58)] for l in range(31)] # Now get land lost
for root, dirs, files in os.walk(”./colsom”, topdown=False): # Go through each file

for name in files:
if name[−4:] == ”.txt”:

fileIn = open(os.path.join(root, name)) # Open up the file for the year
rawdata = fileIn.readlines()
data = [x.split(”|”) for x in rawdata]
for line in data:

if line[1] == ”06”:
crop = −1
if ”ALMONDS” in line[6].upper():

crop = 0
elif ”GRAPES” in line[6].upper():

crop = 1
elif ”AVOCADOS” in line[6].upper():

crop = 2
if crop != −1:

lostLand[int(
line[0])−1989][counties.index(line[4].strip())][crop] += float(line[27]) # Add together the lost land

yields = [[[0 for i in range(3)] for j in range(58)] for l in range(31)] # Calculate the yields
for i in range(3):

for j in range(58):
for k in range(31):

if land[k][j][i] != 0: # If we have no land
yields[k][j][i] = 1.0∗lostLand[k][j][i] / land[k][j][i]
if yields[k][j][i] > 1.0: # If we have a loss > 1(for some reason), set it to 1

yields[k][j][i] = 1.0

np.save(”./yeilds”, yields)

#yields = np.load(’yeilds.npy’)

# year = index/58
# county = index%58

crops = [’Almond’,’Grape’,’Avocado’]

df = pd.DataFrame({},columns=[’year’, ’county’, ’crop’, ’yield’]) # Make a dataframe

yield2D = [[0 for i in range(3)] for j in range(1798)]
for i in range(3):

for j in range(1798): # Convert everything into the dataframe
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year = j//58
county = j%58
df = df.append({’year’: year+1989, ’county’: counties[county], ’crop’: crops[i], ’yield’: yields[year][county][i]}, ignore index=True)
#yield2D[j][i] = yields[year][county][i]

# df = pd.DataFrame(yield2D,columns=[’Almond’,’Grape’,’Avocado’])

print(df)
df.to pickle(”./yields2.pkl”) # Pickle the dataframe


