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ables one at a time. To put some notation around it, in multiple 
regression, we are trying to create a model: 

 

In this formulation, y = dependent variable, x1, x2, …xk= the inde-
pendent variables, β0 = y-intercept, β1 = regression coefficients, 
and ɛ = random error.

Now, let’s motivate the need for alternate forms of regression. 
One of the difficulties in multiple linear regression is that if a 
variable is included in the modeling process, a nonzero regres-
sion coefficient is generated. This can result in several problems, 
including overfitting or including statistically significant vari-
ables whose effects are small. While there are variable selection 
methods such as forward selection and backward selection that 
can help whittle down the list of potential independent variables, 
they have limitations as well, including high variability and low 
prediction accuracy when there are many independent variables.

This is where penalized regression comes in. This class of mod-
els is good at whittling down a set of potentially many inde-
pendent variables into something more manageable. It works 
well when the number of independent variables is large relative 
to the number of observations. Two other advantages of these 
models are that they avoid overfitting and their solutions are 
readily deployable.

In multiple regression, we estimate regression coefficients by 
minimizing the residual sum of squares. RSS is simply the sum 
of the squared difference between the actual and predicted re-
sponse (y). 

Equation 1: Quantity Minimized in Multiple Regression
 

 
In the formula above, n is the number of observations and p is the 
number of candidate predictors. Now let’s look at the quantity 
that gets minimized in two of the most common types of penal-
ized regression: least absolute shrinkage and selection operator 
(LASSO) and ridge to get us an intuitive sense of how they differ.

Equation 2: Quantity Minimized in Ridge Regression

 

 

Suppose you have a large dataset with many independent 
variables and you want to create a predictive model with 
only the most significant independent variables. One 

of the most commonplace approaches in statistics is to apply 
multiple regression. However, for a dataset with many vari-
ables, there is a class of models called penalized regression (aka 
shrinkage or regularization methods) and least angle regres-
sion (LARS) that offer a useful and potentially better alterna-
tive to “regular” regression. 

To explain these alternate varieties, we need to first backtrack 
and review simple and multiple regression. 

At a cursory level, simple linear regression involves fitting lines 
to a dataset in a way that minimizes the residual sum of squares 
(RSS)—more on this later. Most of us probably remember the 
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formula y = mx + b, the “slope intercept” equation of a line. In 
simple linear regression, y is the variable we are interested in 
predicting (the response or dependent variable), m is the slope 
of the line (in regression, these are the coefficients) and b is the 
y-intercept (β0 in regression). 

The concepts of linear regression can be expanded to contain 
more than one independent variable (x’s). For datasets with po-
tentially many predictive variables, multiple linear regression 
(and its more sophisticated cousins) is much more manageable, 
sound and practical than trying to work with independent vari-
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Equation 3: Quantity Minimized in LASSO Regression

|

 
In the formulas above, the yi’s are the observations, the y ̂i’s are 
the predicted values, λ is the tuning parameter and βj’s are the 
regression coefficients (the parameters we are ultimately trying 
to estimate). 

Notice that extra term on the end in LASSO and ridge regres-
sions? That’s where all the magic is. It adds a penalty in the re-
gression formula that places constraints on the size of the regres-
sion coefficients. For instance, in LASSO regression, the penalty 
is the addition of the sum of the absolute values of the regression 
coefficients multiplied by the tuning parameter. In essence, this 
penalty shrinks the regression coefficient estimates toward zero 
to ultimately make them smaller values in the model.

So why do we append this constraint to the equation? Well, 
it turns out that while adding this tuning parameter adds bias 
to the regression coefficient estimates, it decreases variability, 
thereby improving overall prediction error. Another way of 
thinking about it is that this penalty term prevents us from over-
fitting our model to our specific data while still allowing us to 
still find the signal in the noise.

Now, as an astute reader you may be thinking: “That’s all well 
and good but how do we know what value of λ for our tuning 
parameter to use?” The answer is we don’t know, at least not 
a priori. Rather, we determine the optimal value of λ using 
cross-validation. That is, we don’t train our model on all the 
data available. Instead, we hold some back to use for testing 
later. In our initial stage of model building, we only train our 
model on a subset of the data using multiple values of λ. We 
then ultimately choose the optimal value λ based on the value 
that performs best on the data we withheld (there are multiple 
ways to define “best” here. One way would be to simply use the 
one that minimizes RSS). 

Let’s take a look at another methodology related to LASSO and 
ridge regression called least angle regression (LARS). In LARS, 
we break the process of fitting the regression coefficient into 
many small, piecewise steps. In the first step, we start with all the 
regression coefficients (βj’s) equal to zero. We then find the inde-
pendent variable that has the highest absolute correlation with 
the response variable (y) (recall that correlation can range from 
−1 to 1). We then add a slight increment to this variable’s regres-
sion coefficient in the direction of its correlation with y. What 
we have now is a model with one very small nonzero coefficient 
with all the remaining regression coefficients equal to zero. At 
this point, we calculate the residuals based on the model we have 
developed so far and figure out which independent variable has 
the highest correlation with the residuals and then increment it 
slightly (it is likely this could be the same predictor for multiple 
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iterations). We repeat this process iteratively until we reach a 
predetermined stopping point (for instance, we could decide to 
take 500 steps, each time incrementing one of the βj’s by .05). 

A visualization might help here.

Figure 1: LARS Solution Path

As you can see in Figure 1, different variables are entering the 
equation at each step. For the first 100 steps in this model, there 
are only two variables with nonzero coefficients and, as you can 
see, the value of the coefficient changes with the number of steps 
(eventually they will plateau). Note that in this chart, all the inde-
pendent variables were scaled to have mean 0 and standard devi-
ation 1 so that the coefficients values can be easily compared and 
visualized for magnitude. 

One way to think about LARS is to think about it as moving slow-
ly in the direction of multiple regression, one small step at a time. 
However, we don’t need to climb the entire staircase. Instead, we 
can stop and get off at any time. To determine the optimal stop-
ping point, we can test the model based at various stopping points 
and use cross-validation to select the best model just like we did 
with LASSO and ridge regression for the tuning parameter.

One of the advantages of LARS is that it gives us information 
about how important each variable is to the model and shows 
us in stepwise fashion how the solution was derived. This is 
useful in case we want to test how well the model works (using 
cross-validation) at different points along the solution path. An-
other advantage is that it performs well when there are lots of 
independent variables but relatively few observations. 

To summarize, the ridge, LASSO and LARS methods are three 
tools that can help solve some of the shortcomings of multiple 
regression. They do this by decreasing variability but at the ex-
pense of adding bias to the model. There is a trade-off certainly, 
but, depending on the problem at hand, it might be well worth it. 

The world (of regression models) is large. There are many sophis-
ticated models and methods beyond multiple regression that can be 
useful to a modeler. LASSO, ridge and LARS are a small part of this 
larger world and just three of many possible tools you could add to 
your modeling toolbox. Check them out––you’ll be glad you did.  ■
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