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Calibrating Risk Score  
Model with Partial Credibility 
By Shea Parkes and Brad Armstrong

to only adjust the coefficients that are credibly different for 
the target population. This can result in a model that is bet-
ter than either of the off-the-shelf coefficients, or one that is 
completely retrained on the target population.

Definitions of “better” are often nebulous, especially when 
dealing with concurrent risk scores. In this case, “better” 
means that the model produces a lower error metric on a new 
dataset (other than that used to train it). If “better” were in-
stead focused on the lowest error metric on the dataset used to 
train the model, then the fully re-estimated model will be best 
as long as it is optimizing the corresponding loss function. In 
the following example, the new dataset used to judge perfor-
mance was claim experience from a different year of the pro-
gram for the same population used to re-estimate the model.

AN APPLIED EXAMPLE
Recently, we have been exploring different techniques to 
recalibrate the Medicaid Rx (MRx) model to better fit spe-
cific populations. Medicaid Rx, a risk adjustment model 
designed for Medicaid populations, uses enrollment and 
National Drug Code (NDC) coded pharmacy claim data to 
assign individuals to age and gender categories and to flag 
each member for the presence of a variety of medical condi-
tions, which are identified based on pharmacy utilization. 
The age/gender buckets and condition flags are then used 
as features in a linear regression model that predicts a risk 
score for each member. While we wanted to keep the vari-
ables used in the standard Medicaid Rx model intact, our 
goal was to reweight these variables in the linear model to 
better fit the characteristics of specific Medicaid programs 
and to improve the accuracy of the predictions on new data.

With enough data and experience, one way to accomplish 
this would be simply to take the known normalized costs of 
individuals, and fit a new linear regression model with the 
same features as the standard MRx model in order to com-
pletely recreate the coefficients from scratch. However, some 
populations are not large enough to be considered fully cred-
ible on their own. In this example, we focused on a popula-
tion with approximately 30,000 members, which is not large 
enough to warrant full credibility. Instead of completely re-

Risk adjustment models are commonly used in man-
aged care programs to ensure that participating health 
plans are compensated based on their ability to man-

age costs, rather than on the underlying morbidity of their 
enrollees. The accuracy of the models can influence which 
plans receive a larger (or smaller) proportion of the funds.

A variety of claims-based risk adjustment models are avail-
able; each is designed to predict costs for a certain type 
of program, such as a Medicaid population versus a com-
mercial population. However, the variety of managed care 
populations (and benefits) is much larger than the variety 
of off-the-shelf risk adjustment models that are available. 
It is inevitable that any specific program will exhibit char-
acteristics—reimbursement, covered benefits, prevalence, 
and severity of disease states—that are different from those 
assumed by even the most appropriate model available. For 
example, a common concern in Medicaid is that reimburse-
ment varies materially between states. The target program 
may have higher hospital reimbursement and lower profes-
sional reimbursement than other programs, or vice versa.

Although the off-the-shelf model may still do an accept-
able job of predicting costs, it is likely that the accuracy of 
the model could be improved by recalibrating it to better 
fit the specific population for which it is being used. Most 
risk adjustment models are based on linear regression, so a 
common method of adjusting the model is to estimate new 
parameters (or weights) for the population of interest.

However, estimating new weights is only appropriate if the 
population is large enough to provide credible estimates of 
all the potential coefficients, especially those associated with 
less prevalent conditions or disease states. For example, the 
population may be large enough to support adjustments for 
more common conditions such as diabetes, but adjustments 
for less common conditions, such as tuberculosis or rare ge-
netic conditions, may be based on a small sample of a few 
individuals and not fully credible. The off-the-shelf models 
represent valuable learnings from a very large, very credible 
data source. Instead of estimating completely new weights, 
it is possible to use a technique known as ridge regression 
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The outcome variable of our regression model was the nor-
malized cost of each individual. The outcomes for very high 
cost individuals were capped at the 99.5th percentile cost of 
the population. This was done to avoid having a handful of 
observations inordinately affect the values of the coefficients 
estimated by the regression model. For example, one very 
high-cost individual flagged for a certain condition could 
singlehandedly push the coefficient associated with that con-
dition much higher than it should be. By introducing the cap 
to the outcome variable, that individual would still be consid-
ered high-cost in the regression, but not by several orders of 
magnitude, which could swamp the importance of all other 
observations with that condition. This was especially impor-
tant for the process of cross validation explained below.

To perform the ridge regression with cross validation, we 
used the glmnet package in R, which allows the user to fit a 
regression model with a ridge penalty, a lasso penalty, or a 
blend between the two (elastic net penalty). A lasso model 
penalizes the sum of the absolute values of the coefficients, 
while the ridge model penalizes the sum of the squared co-
efficients. By using the ridge penalty, the regression pro-
duced non-zero delta-coefficients for all of the features in 
the model, but the size of the adjustment varied based on 
the evidence in the population data. Using a lasso penalty 
would have made the delta-coefficient for many of the fea-
tures zero, while only making adjustments to coefficients for 
which there was strong evidence. While the lasso approach 
could also produce reasonable results, we chose ridge re-
gression based on a prior assumption that none of the co-
efficients were precisely centered for the target population.

CHOOSING A SPECIFIC  
SET OF COEFFICIENTS
To decide how strong a ridge penalty to apply, we utilized 
10-fold cross-validation within the training data. This means 
the training observations were divided into 10 segments, 
and the regression was performed 10 times, leaving a seg-
ment of the data out each time. For each fit, the model was 
judged against this smaller portion of the training data that 
was currently withheld, generating a cross-validated error 
metric. In theory, this produces a more realistic estimate of 
model performance on new data. There is still uncertainty 
about how new data might differ from the training data, so 

training the MRx model, we used the standard MRx weights 
as a starting point, but made adjustments to the coefficients 
of the model based on evidence from the population data. To 
strike this balance, we used a penalized regression and cross 
validation to choose a reasonable point between the standard 
weights and completely retrained weights.

Our linear regression model for creating new weights in-
cluded all of the features of the standard MRx model (the 
demographic and condition variables), but also included 
an additional “offset” variable that represented the original 
model’s risk score prediction. In a standard linear regres-
sion with conditional Gaussian response, this is equivalent 
to fitting a new model on the residuals of the original model. 
However, the “offset” paradigm can still apply in a general-
ized linear model setting.

Adding this new variable effectively meant that the coef-
ficients estimated for all of the other features in the model 
could be interpreted as “deltas,” or the adjustments that 
should be made to the standard/original weights. We then 
estimated the delta-coefficients with a ridge regression pen-
alty, optimized via cross-fold validation. The ridge regres-
sion penalizes a model for the sum of its squared coeffi-
cients; this tends to prefer models with smaller coefficients 
versus those with wildly large coefficients even if the latter 
are slightly more accurate on the training data set. Because 
the coefficients were in fact “deltas” from the original coef-
ficients, this essentially favors models that are closer to the 
off-the-shelf model. An alternative interpretation is that we 
put strong Bayesian priors on each coefficient, centered at 
the values used in the standard MRx model. Because the 
ridge regression framework adds a larger penalty as the co-
efficients for each variable get further away from zero, the 
tendency of the model was to use values close to the stan-
dard weights unless there was strong evidence in the popula-
tion data that a certain coefficient should be changed. Even 
better, since the size of the ridge penalty can be scaled using 
a parameter, we are able to tune the procedure to vary the 
amount of credibility given to the population data. 

Figure 1 shows how the values of the coefficients for select 
features change as different levels of credibility are given to 
target population data.
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Credibility of Model

Figure 1: Values of Coefficients for Select Features
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Credibility of Model

Figure 2: Error Estimates for Penalty Values
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even this estimate of accuracy should be used with caution. 
For this application we utilized root-mean-square-error as 
the error metric, after capping extremely high cost mem-
bers’ outcomes to bound their influence. The insights should 
be the same for any reasonable choice of error metric.

This whole cross-validation procedure was repeated for dif-
ferent sizes of ridge penalty to produce a range of gener-
alization error estimates for different penalty sizes. Instead 
of picking the penalty value with the absolute best cross-
validated error estimate, we chose a slightly simpler (closer 
to off-the-shelf) model that was within one standard error 
of the minimum cross-validated error estimate. This is a 
standard convention to protect against overfitting, because 
resampling the training data does not truly reflect the new 
data to which one might want to generalize.

Figure 2 displays the error estimate for a range of penalty 
values. For our final model, we chose to use a penalty value 
for which the error estimate was within one standard error 
of the minimum, in order to prevent overfitting to new data.

In this example, our goal was to generalize to the next year 
of claims. Upon actual application, it was shown that the 
penalized model produced a better average error metric on 
the new year of data than the off-the-shelf model, and one 
very similar to the fully re-trained model. The specific error 
metrics are presented in the table below:

Model Description Error Metric on  
Next Year of Claims

Off-The-Shelf  3.157

Partial Credibility  3.123

Fully Re-trained  3.123

While the penalized model exhibited the same level of pre-
dictive power as the fully re-trained model, the coefficients 
used in the penalized model appeared more reasonable and 
credible, because the weights for certain features were not 
based entirely on a low volume of observations. Using this 
methodology allowed us to still use the information con-
tained in the standard weights of the MRx model, but to ad-
just them slightly to better accommodate the characteristics 
of this specific program. We recommend exploring this ap-
proach when trying to recalibrate a model for a population 
that is of a moderate size, but perhaps not fully credible. 
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