
 

 

Article from 
 
Forecasting and Futurism 
 
Month Year July 2015 
Issue Number 11 



JULY 2015 FORECASTING & FUTURISM |  43

B ig data is a frequent participant in headlines today. 
The amount of electronic data available is growing 
at an exponential rate. Every few years new terms 

such as megabyte, gigabyte, terabyte, petabyte, exabyte, and 
even zettabyte enter everyday vocabulary as a new measure 
for “really large data.” Some estimates state that the total 
amount of electronic data by 2020 will exceed 35 zetabytes. 
But what exactly is “big data,” and how much of those 35 
zetabytes will a typical company actually need to process?

Much hype surrounds the term “big data,” and several def-
initions exist for the term. One of the most useful defini-
tions of big data comes from Wikipedia, “big data is a broad 
term for data sets so large or complex that traditional data 
processing applications are inadequate.” There are several 
thresholds effectively established by this definition. Will the 
data fit into a server’s RAM? Will the data fit onto a single 
hard disk drive? As the size of the data grows more tradi-
tional tools begin to fail. There are a multitude of companies 
ready to sell you new tools to handle big data. Often these 
tools cost big dollars.

Going by these definitions, big data is nothing new. If your 
computer has 16K of RAM, then 17K is “big data.” Back in 
the 1990s I had to make many modifications to a C++ ap-
plication to allow it to make use of its full 2 MB of RAM. 
The Intel architecture of the time could only access 1MB of 
RAM at a time. My program had to share the lower 640K 
with DOS and map sections of the EMS memory into the 
upper 384 MB of the address space. Was this “big data?” 
In a sense it was “big data,” the problem had become large 
enough that it no longer fit into RAM.

WHY IS BIG DATA HARD
Big data is hard because computer programs do not always 
scale well. In computer science, the scalability of a comput-
er program is measured in something called big O notation. 
You may have heard of algorithms referred to as running in 
O(log N), O(N2) squared or even O(N!) exponential time. 
These refer to how well the program scales to its data set.

The most efficient computer program would be O(1) time. 
Such a program will always run in the same amount of time, 

regardless of how large the data set is. Consider a program 
that finds the first name in a list. Such a program will always 
take the same amount of time because it does not matter if 
the list has 10 items or 10 million items. Very few things 
run in O(1) time, however, O(n) is reasonably good as well. 
Consider if I asked you to find the longest name in a list. 
For this you must visit each item in the list, so it is O(n). As-
suming n is the number of items in your list. The processing 
time should scale linearly. If it takes 10 minutes to process 
10 items, it should take 100 minutes to process 100 if you 
are dealing with an O(N) algorithm.

Not every algorithm behaves linearly. Knowing the O-mag-
nitude of an algorithm can help you decide which to use. 
The seven most common magnitudes are shown on the fol-
lowing chart.

As can be seen from the chart algorithms, the most favorable 
magnitude algorithms are O(1) , O(log(n)) and O(n). The 
least favorable are O(n2), O(2n) and o(!n). 

If n is relatively small, it does not matter what the magni-
tude of your algorithm is. However, as n grows, so does the 
processing time of the algorithm. Some algorithms simply 
do not work with big data because of their magnitude. When 
dealing with a high-magnitude algorithm, and big data, it 
is often necessary to accept an approximation, rather than 
process the entire data set. Some algorithms that initially 
seem high-magnitude can be rewritten to be more efficient. 
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Vowpal Wabbit is a popular out-of-core machine learning 
framework. By using memory only as a cache, Vowpal Wab-
bit is capable of processing any size dataset. It might take 
Vowpal Wabbit a very long time to process a dataset; how-
ever, it would not run out of memory and crash, like many 
similar programs. This is very similar to how programs were 
written in the past when RAM was scarce. Modern com-
puters, with their large memory systems, often encourage 
programmers to not pay attention to their memory usage. 
Programs that naively load entire datasets into RAM simply 
will not scale to large amounts of data.

TOOLS FOR BIG DATA
Two of the most commonly used tools for big data are Ha-
doop and Spark. The Apache Foundation manages both 
of these programs. Hadoop is the foundation upon which 
Spark is built. Hadoop provides distributed file storage and 
the communication infrastructure needed by Spark. Ha-
doop uses the map-reduce algorithm to perform distributed 
processing. Map-reduce requires considerable disk I/O, as 
large problem spaces are mapped into parts, and those parts 
combine and reduce into the ultimate solution. Spark uses 
Resilient Distributed Data (RDD) to break the problem into 
many pieces that can be processed in RAM on the nodes. 
Whereas Hadoop needs fast disk I/O, Spark needs consid-
erable RAM. For the right tasks, this can mean processing 
time increases of 100 times compared to Hadoop alone.

One type of problem that excels under Spark is machine 
learning. The ability to break the problem into many units 
executed in RAM is very conducive to many machine learn-
ing algorithms. Spark has a model called MLlib, or Machine 
Learning Library that provides many machine learning 
models right out of the box. Hadoop, along with another 
Apache framework called Pig, is very good at performing 
traditional SQL queries over very large datasets.

TOWARD SCALABLE ALGORITHMS
Traditional programming wisdom says to first focus on get-
ting a working program and optimize later. Donald Knuth 
is quoted as saying, “Premature optimization is the root of 
all evil (or at least most of it) in programming.” While this 

THE LANGUAGE OF BIG DATA
Big data has its own terminology, just like any other field. 
Doug Laney, of the META Group defined datasets in terms 
of three V’s. This has come to be known as the three V’s of 
big data. The first V, volume, describes the size of the data 
set. This is the characteristic that frequently comes to mind 
when discussing big data. The second V, variety, describes 
the complexity of the data. When dealing with big data there 
will often be several large datasets of different variety. This 
can pose unique challenges for the algorithms that must pro-
cess these datasets. The final V, velocity, describes the rate 
at which the data is changing. The underlying dataset will 
often change during the time that the big data algorithm is 
processing. 

Velocity introduces streaming, which is another important 
big data concept. Streaming, or real-time processing, refers 
to a large amount of data that arrives continuously over time. 
The amount of data arriving in the stream may increase and 
decrease as the stream of information flows into your pro-
gram. Examples of stream data include trading, fraud detec-
tion, system monitoring, and others. 

Out-of-core, or external memory algorithms, is another im-
portant concept for big data. Such algorithms do not use 
computer RAM to process their datasets. It is very common 
practice to load an entire dataset into memory and then pro-
cess it. However, this is not always necessary. Even if a low-
magnitude O(N) algorithm is chosen, it will fail as soon as n 
grows to the point that the list can no longer fit into memory. 
Consider calculating the mean of numbers in a very large 
list. A computer program could read the list, number-by-
number, and maintain two variables. The first variable keeps 
a sum of the numbers encountered, and the second variable 
keeps a count of the number elements processed so far. At 
the end, these two variables will hold the sum of the list, as 
well as the count of items in the list. Simply divide the sum 
by the count and you have the mean. It does not matter how 
large the list is, you will have sufficient memory to calculate 
this mean.
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This approach has several issues. First, between the two 
passes, people would have been born and died. Barring a 
large-scale natural disaster, the world population count 
would be higher for your second pass than the first. The 
sample would no longer be uniform, and would bias against 
those that were born since the first pass. This is the velocity 
problem of big data. However, the biggest problem is that 
it is potentially necessary to visit everyone twice. The two-
pass method also becomes nearly impossible to use when 
dealing with an endless stream of data.

The following figure illustrates how to use reservoir sam-
pling with a stream of numbers.

To sample two elements from a large stream of numbers you 
simply add the first two to the reservoir. When selecting the 
third element you now replace an element in the reservoir 
with #3 with a 1/3 probability. Likewise, for the fourth el-
ement you replace an element in the reservoir with a 1/4 
probability. This continues for as much data as you have.

CONCLUSIONS
Big data presents many challenges for analytics systems. It 
is very important to choose tools and underlying algorithms 
that will scale to the size of your data. Data have a tendency 
to grow as systems mature. The sooner in the development 
cycle that you make scalability decisions the better. Tools 
designed to work with big data can help to facilitate this 
growth, even if you are not dealing with big data today. 

is generally true, big data forces optimization to increase in 
priority. Analytics often forces many runs before the desired 
result is achieved. The shorter a runtime that you achieve, 
the more experimentation you can do.

Many common programming tasks have both naive and op-
timized implementations. Consider some of the following 
operations on a big list of numbers:

• Percentile and Quintile Estimation,

• Randomly sampling a subset,

• Sorting,

• Taking the mean,

• Taking the standard deviation,

• and more.

Each of the above algorithms has naïve and optimized ap-
proaches. Searching and sorting are among the most re-
searched algorithms in computer science for efficiency. 
Consider the standard deviation, which normally requires 
two passes over the data. First you calculate the mean, and 
then you calculate the mean deviation of each data point 
from that mean. A naïve standard deviation calculation re-
quires two passes over the data. There are algorithms that 
can do it with one pass. These same algorithms are also 
good for calculating the mean and standard deviation over 
an endless stream of numbers.

Reservoir sampling is a very common big data technique 
that can be used to randomly sample a set of numbers from a 
very large pool. Consider if you wanted to randomly choose 
two people from the world population. The naïve approach 
would be to visit each person in the world once to obtain an 
accurate count and place him or her into a consistent order-
ing. You would then select two random numbers up to the 
world population count. Using this number, you would now 
visit everyone in the world again, and stop at the index num-
bers that you randomly chose in the previous step.

Jeff Heaton is data scientist, Global R&D at RGA Reinsurance Company in 
Chesterfield, Mo. He can be reached at jheaton@rgare.com.

Jeff Heaton



46 | FORECASTING & FUTURISM JULY 2015

A ‘Hot Date’ with Julia: Parallel  
Computations of Stochastic Valuations
By Charles Tsai

computer may have four Central Processing Units (CPUs) 
in resemblance to a soccer team with four members. Pro-
grammers can leverage Julia’s multiprocessing environment 
to specify certain tasks to those CPUs on the bench. On the 
one hand, the art of scheduling may be a bulk process for 
infrequent and smaller tasks. On the other hand, the flex-
ibility to pass messages to multiple processors may be one’s 
niche in strategic scalability and performance. Actuaries 
may then manage disparate layers of stochastic simulations 
via a multiprocessing environment. Shorter runtimes may be 
a doomsday for a few students who use waiting time as an 
opportunity for studying. However, such efficiency opens 
doors to comprehensive iterations and widens windows of 
perspectives.

IS JULIA A DISRUPTIVE INNOVATION? 
Julia has several features2 that supplement its power in par-
allelism and distributed computation. Some features are for 
specialists like Sheldon Cooper (of The Big Bang Theory) 
while others may be easier for amateurs like me to appreci-
ate. 

• First, it is free and open sourced as licensed by MIT. 
Actuaries can share research results seamlessly at 
SOA/CAS events without worrying about whether the 
audiences have access to the same tools to review (and 
build upon) the findings.

• Second, users can define composite types that are equiv-
alent to “objects” in other languages. These user-defined 
types can run “as fast and compact as built-ins”.3 

• Third, users can call C functions directly, and their pro-
grams’ performances can approach those of languages 
like C. Such speed makes it a considerable alternative 
to proprietary computational software tools.4

• Fourth, one does not need to be a genius like Gaston Ju-
lia in order to learn the language. Justin Domke’s blog 
post “Julia, Matlab, and C”5 presents a crystal clear 
comparison of syntactic and runtime complexity trad-
eoffs. Learning Julia is like learning Matlab® and C++ 
for Towers Watson MoSes® simultaneously.

M eet “Julia,” a free programming language li-
censed by MIT that may help you with paral-
lel computing. It may be an alternative tool for 

those who are interested in nested stochastic processes for 
actuarial research (if not for regulatory compliance).

Nested stochastic processes may become more relevant and 
prevalent as stakeholders consider a broader spectrum of 
possible outcomes. Such “stochastic-in-stochastic” anal-
yses often add color to actuaries’ palette of tail risks and 
conditional tail dependencies (if any). However, they also 
introduce issues of runtime and memory allocation. The 
article “Nested Stochastic Pricing”1 provides a comprehen-
sive summary of nested stochastic applications in response 
to recent regulatory reforms. IFRS seems to require a com-
prehensive range of scenarios that reflects the full range of 
possible outcomes for calculating fulfillment cash flows. 
Economic capital calculations may likewise require sto-
chastic-in-stochastic simulations. A practice that may have 
been previously deemed as a costly bonus may evolve into a 
minimum expectation for actuaries in the near future.

Nested stochastic processes may become more acceptable 
with parallel computations. One may boil down “parallel 
computing” to daily applications with an analogy. Imagine 
an investment banker who is planning a date with a lady. He 
barely has enough time to smoke, and he has completing 
the following four tasks in mind: 1) dress up, 2) buy flow-
ers, 3) research a restaurant’s menu, and 4) fold a thousand 
origami cranes. He has made these preparations in solo for 
all of his previous dates. Would it not be nice for him to have 
friends help him perform the latter three tasks simultane-
ously? Delegation may take some time, but it may be more 
efficient than performing all four tasks in sequence. Parallel 
computing is a form of dividing and conquering problems 
using multiple processes concurrently. It may help actuaries 
slam-dunk tasks like traversing a thousand scenarios, even 
if the tasks already take less time than folding a thousand 
origami cranes.

Julia allows users to distribute and execute processes (such 
as nested stochastic valuations) in parallel. In essence, a 
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A SIMPLIFIED GMMB CASE STUDY
I have drafted an exemplary Julia application of an actuarial 
model. It is available at https://github.com/Chuckles2013/
GMMB_RSLN2_Julia, and is an independent project for 
educational purposes only. All parameters and values have 
been arbitrarily chosen. The case study involves calculating 
the present values of liabilities for an extremely simplified 
Guaranteed Minimum Maturity Benefit (GMMB).

The scale of the project can be partitioned into two major 
layers. The first layer involves simulating parameters for N 
world scenarios. For simplicity, I have structured all key pa-
rameters to be the same across all N world scenarios. It is 
easy to see that one can simply modify the codes to utilize 
simulated parameter inputs for considering different world 
scenarios and economic environments. The second layer in-
volves simulating fund returns for 1000 funds, from which 
one can derive a conditional tail expectation of liabilities. 
Both layers provide N figures of conditional tail expecta-
tions, from which one can extract a maximum level.

The superimposed bar graph below compares runtimes for 
non-parallel versus parallel computations under various 
numbers (N) of world scenarios. Four processors performed 
the parallel computations. The absolute values of the excess 
time elapsed are evident in the divergent gap. 

• Last but not least, Julia is a functional programming 
language like OCaml, which is adopted by niche firms 
like Jane Street. Functional programming frameworks 
can help actuaries adapt to and master recursions.

Julia also has several Achilles’ heels that may significantly 
jeopardize its adoption among actuaries. 

• One obstacle is communication. Due diligence may 
be lost in translation. A few know how to use and in-
terpret proprietary actuarial software products due to 
limited availability. Fewer know how to read and re-
view (or even find) its generated C++ codes. In a like 
manner, few have learned (or are willing to learn) the 
Julia language, and its graphical features are still under 
development. Some actuaries may still prefer parallel 
computations via multiple Microsoft Excel® sessions. 
Calibrations of Julia programs with validated Microsoft 
Excel® workbook models might just have exceeded 
paychecks. 

• Another hindrance is the language’s relative immatu-
rity. Development commenced in 2009.6 Its scale of 
recognition seems to be light years from the tipping 
point for a stabilized discussion ecosystem to exist. On-
line inquiries for relevant debugging notes make pass-
ing bills during gridlocks look easy. A tool may only be 
as valuable as its received appreciation. 

• Lastly, the manipulation of processes in parallel com-
putations requires an acute awareness of read-write 
conflicts. In light of the previous analogy, the banker 
may wish to match his suit with the flowers purchased, 
or the flowers purchased with the restaurant’s cuisine. 
Tasks may not be completely independent from each 
other. Inexperienced users may inadvertently manipu-
late and designate processes in manners inconsistent 
with intentions.

Runtime Comparisons Across Different Numbers of 
Scenarios (When 4 CPUs Are Available)
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NEXT STEPS 
One’s vision for Julia in actuarial science can be the devel-
opment of packages. A few companies were bold enough 
to have utilized R, and none has adopted (or even plan to 
leverage) Julia to my knowledge. Full adoption of Julia 
among actuaries within the next decade may be more of a 
fantasy than a reality, just as few actuaries have learned Py-
thon since its inception in 1991.7 Nevertheless, open-source 
packages for broader usage are lower hanging fruit for in-
trigued actuaries to consider. To the best of my knowledge, 
there are no Julia packages similar to the lifecontingencies 
and actuar packages in R libraries. Templates of actuarial 
functions in Julia may capture more attention and apprecia-
tion for the beauty of parallel computations for nested sto-
chastic valuations. 

ENDNOTES

1 “Nested Stochastic Pricing: The Time Has Come” by 
Milliman®’s Craig Reynolds and Sai Man is available at http://
www.milliman.com/insight/insurance/pdfs/Nested-stochastic-
pricing-The-time-has-come/

2 http://julialang.org/
3 http://nbviewer.ipython.org/github/bensadeghi/julia-

datascience-talk/blob/master/datascience-talk.ipynb
4 Professor Fernández-Villaverde’s “A Comparison of 

Programming Languages in Economics”, which is available at 
www.econ.upenn.edu/~jesusfv/comparison_languages.pdf

5 http://justindomke.wordpress.com/2012/09/17/julia-matlab-
and-c/

6 web.maths.unsw.edu.au/~mclean/talks/Julia_talk.pdf
5 This is a rather fun proof left for the reader. First, prove that 

each row of (I – S) sums to zero. What does this imply about the 
triangularized matrix?

7 http://svn.python.org/view/*checkout*/python/trunk/Misc/
HISTORY 

Charles Tsai

Charles Tsai, ASA, is a Life Actuarial Analyst at AIG in Shanghai, China. He 
can be reached at charles-cw.tsai@aig.com.
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