

Article from

Forecasting and Futurism

Month Year July 2015
Issue Number 11

JULY 2015 FORECASTING & FUTURISM | 43

B ig data is a frequent participant in headlines today.
The amount of electronic data available is growing
at an exponential rate. Every few years new terms

such as megabyte, gigabyte, terabyte, petabyte, exabyte, and
even zettabyte enter everyday vocabulary as a new measure
for “really large data.” Some estimates state that the total
amount of electronic data by 2020 will exceed 35 zetabytes.
But what exactly is “big data,” and how much of those 35
zetabytes will a typical company actually need to process?

Much hype surrounds the term “big data,” and several def-
initions exist for the term. One of the most useful defini-
tions of big data comes from Wikipedia, “big data is a broad
term for data sets so large or complex that traditional data
processing applications are inadequate.” There are several
thresholds effectively established by this definition. Will the
data fit into a server’s RAM? Will the data fit onto a single
hard disk drive? As the size of the data grows more tradi-
tional tools begin to fail. There are a multitude of companies
ready to sell you new tools to handle big data. Often these
tools cost big dollars.

Going by these definitions, big data is nothing new. If your
computer has 16K of RAM, then 17K is “big data.” Back in
the 1990s I had to make many modifications to a C++ ap-
plication to allow it to make use of its full 2 MB of RAM.
The Intel architecture of the time could only access 1MB of
RAM at a time. My program had to share the lower 640K
with DOS and map sections of the EMS memory into the
upper 384 MB of the address space. Was this “big data?”
In a sense it was “big data,” the problem had become large
enough that it no longer fit into RAM.

WHY IS BIG DATA HARD
Big data is hard because computer programs do not always
scale well. In computer science, the scalability of a comput-
er program is measured in something called big O notation.
You may have heard of algorithms referred to as running in
O(log N), O(N2) squared or even O(N!) exponential time.
These refer to how well the program scales to its data set.

The most efficient computer program would be O(1) time.
Such a program will always run in the same amount of time,

regardless of how large the data set is. Consider a program
that finds the first name in a list. Such a program will always
take the same amount of time because it does not matter if
the list has 10 items or 10 million items. Very few things
run in O(1) time, however, O(n) is reasonably good as well.
Consider if I asked you to find the longest name in a list.
For this you must visit each item in the list, so it is O(n). As-
suming n is the number of items in your list. The processing
time should scale linearly. If it takes 10 minutes to process
10 items, it should take 100 minutes to process 100 if you
are dealing with an O(N) algorithm.

Not every algorithm behaves linearly. Knowing the O-mag-
nitude of an algorithm can help you decide which to use.
The seven most common magnitudes are shown on the fol-
lowing chart.

As can be seen from the chart algorithms, the most favorable
magnitude algorithms are O(1) , O(log(n)) and O(n). The
least favorable are O(n2), O(2n) and o(!n).

If n is relatively small, it does not matter what the magni-
tude of your algorithm is. However, as n grows, so does the
processing time of the algorithm. Some algorithms simply
do not work with big data because of their magnitude. When
dealing with a high-magnitude algorithm, and big data, it
is often necessary to accept an approximation, rather than
process the entire data set. Some algorithms that initially
seem high-magnitude can be rewritten to be more efficient.

What Big Data is, and How to Deal with It
By Jeff Heaton

CONTINUED ON PAGE 44

44 | FORECASTING & FUTURISM JULY 2015

Vowpal Wabbit is a popular out-of-core machine learning
framework. By using memory only as a cache, Vowpal Wab-
bit is capable of processing any size dataset. It might take
Vowpal Wabbit a very long time to process a dataset; how-
ever, it would not run out of memory and crash, like many
similar programs. This is very similar to how programs were
written in the past when RAM was scarce. Modern com-
puters, with their large memory systems, often encourage
programmers to not pay attention to their memory usage.
Programs that naively load entire datasets into RAM simply
will not scale to large amounts of data.

TOOLS FOR BIG DATA
Two of the most commonly used tools for big data are Ha-
doop and Spark. The Apache Foundation manages both
of these programs. Hadoop is the foundation upon which
Spark is built. Hadoop provides distributed file storage and
the communication infrastructure needed by Spark. Ha-
doop uses the map-reduce algorithm to perform distributed
processing. Map-reduce requires considerable disk I/O, as
large problem spaces are mapped into parts, and those parts
combine and reduce into the ultimate solution. Spark uses
Resilient Distributed Data (RDD) to break the problem into
many pieces that can be processed in RAM on the nodes.
Whereas Hadoop needs fast disk I/O, Spark needs consid-
erable RAM. For the right tasks, this can mean processing
time increases of 100 times compared to Hadoop alone.

One type of problem that excels under Spark is machine
learning. The ability to break the problem into many units
executed in RAM is very conducive to many machine learn-
ing algorithms. Spark has a model called MLlib, or Machine
Learning Library that provides many machine learning
models right out of the box. Hadoop, along with another
Apache framework called Pig, is very good at performing
traditional SQL queries over very large datasets.

TOWARD SCALABLE ALGORITHMS
Traditional programming wisdom says to first focus on get-
ting a working program and optimize later. Donald Knuth
is quoted as saying, “Premature optimization is the root of
all evil (or at least most of it) in programming.” While this

THE LANGUAGE OF BIG DATA
Big data has its own terminology, just like any other field.
Doug Laney, of the META Group defined datasets in terms
of three V’s. This has come to be known as the three V’s of
big data. The first V, volume, describes the size of the data
set. This is the characteristic that frequently comes to mind
when discussing big data. The second V, variety, describes
the complexity of the data. When dealing with big data there
will often be several large datasets of different variety. This
can pose unique challenges for the algorithms that must pro-
cess these datasets. The final V, velocity, describes the rate
at which the data is changing. The underlying dataset will
often change during the time that the big data algorithm is
processing.

Velocity introduces streaming, which is another important
big data concept. Streaming, or real-time processing, refers
to a large amount of data that arrives continuously over time.
The amount of data arriving in the stream may increase and
decrease as the stream of information flows into your pro-
gram. Examples of stream data include trading, fraud detec-
tion, system monitoring, and others.

Out-of-core, or external memory algorithms, is another im-
portant concept for big data. Such algorithms do not use
computer RAM to process their datasets. It is very common
practice to load an entire dataset into memory and then pro-
cess it. However, this is not always necessary. Even if a low-
magnitude O(N) algorithm is chosen, it will fail as soon as n
grows to the point that the list can no longer fit into memory.
Consider calculating the mean of numbers in a very large
list. A computer program could read the list, number-by-
number, and maintain two variables. The first variable keeps
a sum of the numbers encountered, and the second variable
keeps a count of the number elements processed so far. At
the end, these two variables will hold the sum of the list, as
well as the count of items in the list. Simply divide the sum
by the count and you have the mean. It does not matter how
large the list is, you will have sufficient memory to calculate
this mean.

WHAT BIG DATA IS … | FROM PAGE 43

JULY 2015 FORECASTING & FUTURISM | 45

This approach has several issues. First, between the two
passes, people would have been born and died. Barring a
large-scale natural disaster, the world population count
would be higher for your second pass than the first. The
sample would no longer be uniform, and would bias against
those that were born since the first pass. This is the velocity
problem of big data. However, the biggest problem is that
it is potentially necessary to visit everyone twice. The two-
pass method also becomes nearly impossible to use when
dealing with an endless stream of data.

The following figure illustrates how to use reservoir sam-
pling with a stream of numbers.

To sample two elements from a large stream of numbers you
simply add the first two to the reservoir. When selecting the
third element you now replace an element in the reservoir
with #3 with a 1/3 probability. Likewise, for the fourth el-
ement you replace an element in the reservoir with a 1/4
probability. This continues for as much data as you have.

CONCLUSIONS
Big data presents many challenges for analytics systems. It
is very important to choose tools and underlying algorithms
that will scale to the size of your data. Data have a tendency
to grow as systems mature. The sooner in the development
cycle that you make scalability decisions the better. Tools
designed to work with big data can help to facilitate this
growth, even if you are not dealing with big data today.

is generally true, big data forces optimization to increase in
priority. Analytics often forces many runs before the desired
result is achieved. The shorter a runtime that you achieve,
the more experimentation you can do.

Many common programming tasks have both naive and op-
timized implementations. Consider some of the following
operations on a big list of numbers:

• Percentile and Quintile Estimation,

• Randomly sampling a subset,

• Sorting,

• Taking the mean,

• Taking the standard deviation,

• and more.

Each of the above algorithms has naïve and optimized ap-
proaches. Searching and sorting are among the most re-
searched algorithms in computer science for efficiency.
Consider the standard deviation, which normally requires
two passes over the data. First you calculate the mean, and
then you calculate the mean deviation of each data point
from that mean. A naïve standard deviation calculation re-
quires two passes over the data. There are algorithms that
can do it with one pass. These same algorithms are also
good for calculating the mean and standard deviation over
an endless stream of numbers.

Reservoir sampling is a very common big data technique
that can be used to randomly sample a set of numbers from a
very large pool. Consider if you wanted to randomly choose
two people from the world population. The naïve approach
would be to visit each person in the world once to obtain an
accurate count and place him or her into a consistent order-
ing. You would then select two random numbers up to the
world population count. Using this number, you would now
visit everyone in the world again, and stop at the index num-
bers that you randomly chose in the previous step.

Jeff Heaton is data scientist, Global R&D at RGA Reinsurance Company in
Chesterfield, Mo. He can be reached at jheaton@rgare.com.

Jeff Heaton

46 | FORECASTING & FUTURISM JULY 2015

A ‘Hot Date’ with Julia: Parallel
Computations of Stochastic Valuations
By Charles Tsai

computer may have four Central Processing Units (CPUs)
in resemblance to a soccer team with four members. Pro-
grammers can leverage Julia’s multiprocessing environment
to specify certain tasks to those CPUs on the bench. On the
one hand, the art of scheduling may be a bulk process for
infrequent and smaller tasks. On the other hand, the flex-
ibility to pass messages to multiple processors may be one’s
niche in strategic scalability and performance. Actuaries
may then manage disparate layers of stochastic simulations
via a multiprocessing environment. Shorter runtimes may be
a doomsday for a few students who use waiting time as an
opportunity for studying. However, such efficiency opens
doors to comprehensive iterations and widens windows of
perspectives.

IS JULIA A DISRUPTIVE INNOVATION?
Julia has several features2 that supplement its power in par-
allelism and distributed computation. Some features are for
specialists like Sheldon Cooper (of The Big Bang Theory)
while others may be easier for amateurs like me to appreci-
ate.

• First, it is free and open sourced as licensed by MIT.
Actuaries can share research results seamlessly at
SOA/CAS events without worrying about whether the
audiences have access to the same tools to review (and
build upon) the findings.

• Second, users can define composite types that are equiv-
alent to “objects” in other languages. These user-defined
types can run “as fast and compact as built-ins”.3

• Third, users can call C functions directly, and their pro-
grams’ performances can approach those of languages
like C. Such speed makes it a considerable alternative
to proprietary computational software tools.4

• Fourth, one does not need to be a genius like Gaston Ju-
lia in order to learn the language. Justin Domke’s blog
post “Julia, Matlab, and C”5 presents a crystal clear
comparison of syntactic and runtime complexity trad-
eoffs. Learning Julia is like learning Matlab® and C++
for Towers Watson MoSes® simultaneously.

M eet “Julia,” a free programming language li-
censed by MIT that may help you with paral-
lel computing. It may be an alternative tool for

those who are interested in nested stochastic processes for
actuarial research (if not for regulatory compliance).

Nested stochastic processes may become more relevant and
prevalent as stakeholders consider a broader spectrum of
possible outcomes. Such “stochastic-in-stochastic” anal-
yses often add color to actuaries’ palette of tail risks and
conditional tail dependencies (if any). However, they also
introduce issues of runtime and memory allocation. The
article “Nested Stochastic Pricing”1 provides a comprehen-
sive summary of nested stochastic applications in response
to recent regulatory reforms. IFRS seems to require a com-
prehensive range of scenarios that reflects the full range of
possible outcomes for calculating fulfillment cash flows.
Economic capital calculations may likewise require sto-
chastic-in-stochastic simulations. A practice that may have
been previously deemed as a costly bonus may evolve into a
minimum expectation for actuaries in the near future.

Nested stochastic processes may become more acceptable
with parallel computations. One may boil down “parallel
computing” to daily applications with an analogy. Imagine
an investment banker who is planning a date with a lady. He
barely has enough time to smoke, and he has completing
the following four tasks in mind: 1) dress up, 2) buy flow-
ers, 3) research a restaurant’s menu, and 4) fold a thousand
origami cranes. He has made these preparations in solo for
all of his previous dates. Would it not be nice for him to have
friends help him perform the latter three tasks simultane-
ously? Delegation may take some time, but it may be more
efficient than performing all four tasks in sequence. Parallel
computing is a form of dividing and conquering problems
using multiple processes concurrently. It may help actuaries
slam-dunk tasks like traversing a thousand scenarios, even
if the tasks already take less time than folding a thousand
origami cranes.

Julia allows users to distribute and execute processes (such
as nested stochastic valuations) in parallel. In essence, a

JULY 2015 FORECASTING & FUTURISM | 47

CONTINUED ON PAGE 48

A SIMPLIFIED GMMB CASE STUDY
I have drafted an exemplary Julia application of an actuarial
model. It is available at https://github.com/Chuckles2013/
GMMB_RSLN2_Julia, and is an independent project for
educational purposes only. All parameters and values have
been arbitrarily chosen. The case study involves calculating
the present values of liabilities for an extremely simplified
Guaranteed Minimum Maturity Benefit (GMMB).

The scale of the project can be partitioned into two major
layers. The first layer involves simulating parameters for N
world scenarios. For simplicity, I have structured all key pa-
rameters to be the same across all N world scenarios. It is
easy to see that one can simply modify the codes to utilize
simulated parameter inputs for considering different world
scenarios and economic environments. The second layer in-
volves simulating fund returns for 1000 funds, from which
one can derive a conditional tail expectation of liabilities.
Both layers provide N figures of conditional tail expecta-
tions, from which one can extract a maximum level.

The superimposed bar graph below compares runtimes for
non-parallel versus parallel computations under various
numbers (N) of world scenarios. Four processors performed
the parallel computations. The absolute values of the excess
time elapsed are evident in the divergent gap.

• Last but not least, Julia is a functional programming
language like OCaml, which is adopted by niche firms
like Jane Street. Functional programming frameworks
can help actuaries adapt to and master recursions.

Julia also has several Achilles’ heels that may significantly
jeopardize its adoption among actuaries.

• One obstacle is communication. Due diligence may
be lost in translation. A few know how to use and in-
terpret proprietary actuarial software products due to
limited availability. Fewer know how to read and re-
view (or even find) its generated C++ codes. In a like
manner, few have learned (or are willing to learn) the
Julia language, and its graphical features are still under
development. Some actuaries may still prefer parallel
computations via multiple Microsoft Excel® sessions.
Calibrations of Julia programs with validated Microsoft
Excel® workbook models might just have exceeded
paychecks.

• Another hindrance is the language’s relative immatu-
rity. Development commenced in 2009.6 Its scale of
recognition seems to be light years from the tipping
point for a stabilized discussion ecosystem to exist. On-
line inquiries for relevant debugging notes make pass-
ing bills during gridlocks look easy. A tool may only be
as valuable as its received appreciation.

• Lastly, the manipulation of processes in parallel com-
putations requires an acute awareness of read-write
conflicts. In light of the previous analogy, the banker
may wish to match his suit with the flowers purchased,
or the flowers purchased with the restaurant’s cuisine.
Tasks may not be completely independent from each
other. Inexperienced users may inadvertently manipu-
late and designate processes in manners inconsistent
with intentions.

Runtime Comparisons Across Different Numbers of
Scenarios (When 4 CPUs Are Available)

48 | FORECASTING & FUTURISM JULY 2015

NEXT STEPS
One’s vision for Julia in actuarial science can be the devel-
opment of packages. A few companies were bold enough
to have utilized R, and none has adopted (or even plan to
leverage) Julia to my knowledge. Full adoption of Julia
among actuaries within the next decade may be more of a
fantasy than a reality, just as few actuaries have learned Py-
thon since its inception in 1991.7 Nevertheless, open-source
packages for broader usage are lower hanging fruit for in-
trigued actuaries to consider. To the best of my knowledge,
there are no Julia packages similar to the lifecontingencies
and actuar packages in R libraries. Templates of actuarial
functions in Julia may capture more attention and apprecia-
tion for the beauty of parallel computations for nested sto-
chastic valuations.

ENDNOTES

1 “Nested Stochastic Pricing: The Time Has Come” by
Milliman®’s Craig Reynolds and Sai Man is available at http://
www.milliman.com/insight/insurance/pdfs/Nested-stochastic-
pricing-The-time-has-come/

2 http://julialang.org/
3 http://nbviewer.ipython.org/github/bensadeghi/julia-

datascience-talk/blob/master/datascience-talk.ipynb
4 Professor Fernández-Villaverde’s “A Comparison of

Programming Languages in Economics”, which is available at
www.econ.upenn.edu/~jesusfv/comparison_languages.pdf

5 http://justindomke.wordpress.com/2012/09/17/julia-matlab-
and-c/

6 web.maths.unsw.edu.au/~mclean/talks/Julia_talk.pdf
5 This is a rather fun proof left for the reader. First, prove that

each row of (I – S) sums to zero. What does this imply about the
triangularized matrix?

7 http://svn.python.org/view/*checkout*/python/trunk/Misc/
HISTORY

Charles Tsai

Charles Tsai, ASA, is a Life Actuarial Analyst at AIG in Shanghai, China. He
can be reached at charles-cw.tsai@aig.com.

A ‘HOT DATE’ WITH JULIA … | FROM PAGE 47

	coverpage
	What Big Data.pdf

