

Article from

CompAct

April 2017
Issue 55

10 | APRIL 2017 COMPACT

program can only handle data up to a certain size. Consider a
simple example that illustrates the process. A large data file has
been provided that contains the premium payments for cus-
tomers over a potentially large span of time. Such a file might
appear as follows.

policy_number,product,premium,month,year
J10234,term15,110,1,2010
Z10400,term10,100,1,2010
J10523,term15,110,1,2010
Z10624,term10,100,1,2010
J10234,term15,110,2,2010
Z10400,term10,100,2,2010
J10523,term15,110,2,2010
Z10624,term10,100,2,2010
...

To see how to handle a file of any length, consider a simple
example where it is necessary to bin/roll up the premium
amount by product and month. This would produce a result
file similar to the following:

product,premium
term15,220
term10,200
...

A simple R program to perform this task is provided:

data <- read.csv(“c:\\test\\sample.csv “)
result <- aggregate(data$premium,
 by=list(product=data$product,month=-
data$month,year=data$year),

 FUN=sum)
write.csv(result,c:\\test\\sample_output.
csv “)

This program begins by reading the entire file “sample.csv” into
the variable named “data.” If this file fits into memory, every-
thing works well and the output file is written. However, if the
file does not fit into memory, an error occurs and there is no
output. An alternative approach is to read the file line by line
and perform the aggregation by the program. This approach is a
bit more complex, but it will work on very large files.

Dealing with Large CSV
Files in R
By Jeff Heaton

The R programming language is becoming a common tool
for actuaries and data scientists to examine and model
a variety of different data types. A number of useful

functions are provided to load data into memory, process the
dataset, and then write results to another file. Unfortunately,
an additional complication can enter the picture when these
files become large. If R is commanded to read a CSV that is
larger than the computer’s memory, an error will be returned.
If you experience this, don’t worry, there are a number of solu-
tions available.

The most obvious solution
is to obtain more memory.
This could be more
physical memory. This
could also mean using part
of the hard drive as virtual
memory.

The most obvious solution is to obtain more memory. This
could be more physical memory. This could also mean using
part of the hard drive as virtual memory. These are certainly
viable solutions. There are also a host of “Big Data” solutions.
A multi-node Hadoop or Spark solution could be installed that
allows many computers to work together to process the file.
Again, this is certainly a solution, but it might not be necessary.
There definitely is a class of data that are so large that “Big
Data” technology is required to process them in any reason-
able amount of time. However, this is often neither necessary
nor economical.

Most R functions simply load an entire file into memory. This
is the simplest way of handling the file, but it means that the

 APRIL 2017 COMPACT | 11

Jeff Heaton is a senior data scientist for RGA. He
can be contacted at jheaton@rgare.com.

Hold all of the bins
bins <- list()

Open the file.
fp <- file(“c:\\test\\sample.csv”, open =
“r”)

Skip header
readLines(fp, n = 1)

Loop over entire file
while (length(line <- readLines(fp, n = 1))
> 0) {

 # Read a single line from the file
 line <- unlist((strsplit(line, “,”)))

 # Extract the columns we care about
 product <- line[2]
 premium <- as.numeric(line[3])
 month <- as.integer(line[4])
 year <-as.integer(line[5])

 # Produce a key that holds all values we
want to “group by”

 # Is this the first time we’ve seen this
combination of month/year/product?
 key <- paste(product,month,year)
 if (key %in% names(bins)) {
 # Add to our running premium bin
 binprem <- as.numeric(bins[[key]][4])
 bins[[key]] <- list(product, year, month,
premium + binprem)
 } else {
 # Create a new premium bin
 bins[[key]] <- list(product, year, month,
premium)
 }
}
close(fp)

Transform the bin’s list into a dataframe
for output
bins <- as.data.frame(matrix(unlist(bins),
nrow=4, byrow = T))
colnames(bins) <- c(‘product’,
‘year’,’month’,’premium’)

bins

The above code uses named lists, called “bins” to hold the value
of each of our bins that aggregate product, year and month. A
key is created to find the correct bin. This key is nothing more
than a string, such as “term15 2010 1” to represent the bin for
January 2010’s term15 premiums. Comments are provided to
demonstrate the process. This short program could be a great
starting point for any other situations where it is necessary to
iterate over a very large file. Similar techniques can be very use-
ful for other types of files, such as XML, JSON or even raw text.

In conclusion, each of the solutions outlined above should be
reviewed within the common context of any problems solving
activity, including money, time and available human and hard-
ware resource capacity. I hope this discussion provides some
meaningful alternatives in the increasing landscape of wide-
spread utilization of R within the financial services vertical
industry. ■

	Dealing with Large CSVFiles in R

