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Bayesian Inference in 
Machine Learning
By Denis Perevalov

As the amount of data keeps growing, machine learning is 
drawing interest from different fields. With more data, 
one could find patterns and potentially use them in fore-

casts and recommendations. Maximum likelihood estimations 
(MLEs) are the most widely used machine learning methods, 
which is due to their speed and scalability. However, when 
dealing with smaller amounts of data or when data is narrow in 
the longitudinal direction, Bayesian analysis is arguably a better 
approach. Not only can it make more precise predictions, but its 
confidence intervals of model parameters are more interpretable.

Machine learning can be defined as the process of learning a 
predictive model’s parameters from data. For a full specification 
of a problem, one has to have three ingredients: data, a predic-
tive model hypothesis with parameters θ and a specification 
of the likelihood of observations, given the model and a set of 
predictive variables:

( )θL y X| , 

where y is a vector of observations and X is a matrix of predictors.

The task of machine learning is the following: Given a training 
set of data (y, X), make the inference or best estimate of θ. In 
MLE, the latter is the one that yields the highest total likelihood 
in the training set:

( )θ = θL y Xˆ argmax | , best

In the Bayesian approach, instead of a single point estimate θ̂best

, we predict a probability distribution function (PDF) of θ. We 
use the famous Bayes formula:
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( )θP y X| ,    and p(θ) are called posterior and prior distributions 
of θ, respectively. The integral in the denominator is a normal-
ization constant, which is usually not important because we are 
interested in relative comparisons of θ.

The main feature of Bayesian analysis is that there is no opti-
mization involved—it is simply a calculation of the posterior. 

However, the calculation should be performed for every single 
point in the space of θ. This is obviously unfeasible. Thus, we 
have to rely on the approximation of the posterior using sam-
ples of θ. In lower dimensions of θ, it is possible to do random 
sampling for the posterior estimation. In higher dimensions, 
one has to use more sophisticated sampling techniques. These 
techniques do not sample the entire θ space, but only its most 
likely part, and they still deliver an unbiased posterior estima-
tion. Finally, because there is no optimization involved, there is 
no overfitting problem in the Bayesian inference.1

The prior distribution p(θ) is an assumption for the θ distri-
bution before inferring it from the training data. It could be 
informative or noninformative. People talk about informative 
prior to when there is a good understanding of the θ distribu-
tion, which usually comes from an inference from some other 
data prior to the current study and results in a relatively narrow 
p(θ). Noninformative prior is used when conducting the study 
for the first time and when there is a very vague understanding 
of the θ distribution, maybe in terms of wide ranges. In that case, 
very wide prior distributions are used, such as normal with very 
high variance or uniform distribution with high width. Posterior 
lies somewhere within the prior distribution and is usually much 
narrower than the latter.

One has to be careful when choosing the prior distribution. 
For example, if one chooses prior to be uniform [−1,1], then 
posterior will always be somewhere in this interval, no matter 
what data suggests. The “Frequentism and Bayesianism” blog 
post has other good examples where a poor choice of prior may 
significantly bias the posterior.2

The main advantage of the Bayesian approach is that its result 
is a much richer description of the possible values of the model 
parameters. Apart from prior, the MLE result is only a special 
statistic for the Bayesian result—it is approximately its mode. 
MLE describes a single point in the θ space that is most likely, 
whereas a Bayesian result provides an entire distribution. For 
example, one could immediately calculate a mean, variance and 
skewness. In the case when one is interested in the expected 
value of θ, the mean is a more appropriate statistic than the 
mode, especially for highly skewed θ posteriors. Moreover, 
one could use the Bayesian θ posterior straight to infer the 
parameters’ confidence intervals and infer possibly nonlinear 
correlations among individual parameters whereas MLE has to 
rely on variance approximations.

The disadvantage is that it usually takes much more time to fit 
a Bayesian model. Also, the result contains samples of the θ dis-
tribution, which may take a lot of disk space. Recent advances in 
the sampling algorithms, and in general having more computing 
power, have made it applicable to larger data sets. Currently the 
rule of thumb is that it is useful for data sets with at most tens of 
thousands of data points.
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For a more detailed comparison of the Bayesian and MLE 
approaches please refer to the outstanding blog post “Fre-
quentism and Bayesianism,” cited above.

SIMULATION
In this article we will consider a hypothetical problem in the con-
text of a variable annuity (VA) product and apply the Bayesian 
approach. Simulation and visualization are done in R, whereas 
Bayesian inference is done using a probabilistic language, Stan.3 
All the code, including the main Jupyter notebook, can be found 
on GitHub.4 This may serve as a good-use case example for the 
reader.

We are going to simulate the following toy model. We will have 
100 or 1,000 simulated people in our study. For each person we 
have 10 consecutive observations. Each observation is a binary 
event (i.e., 1 or 0), whether a person took a withdrawal in the 
given quarter or not.

The 100 or 1,000 simulated people samples will have the same 
random number seed, so that for the first 100 people both sam-
ples are identical. This is so that we can observe how adding 
more data helps in the inference of parameters.

Each person has a base withdrawal probability that can be dif-
ferent from other people. For example, maybe there is another 
parameter (income or credit score) that we do not have data for 
that affects the person’s withdrawal probability. In our simula-
tion, the base withdrawal probability is drawn from a normal 
probability density function (PDF) with a predefined mean and 
variance. Once drawn, it stays the same for this person. How-
ever, we allow the withdrawal probability to change with time 
(quarter number dependence).

To make the model more realistic, we will also allow the proba-
bility of withdrawal in a given quarter to depend on the pattern 
observed before that. Namely, the logit probability will have an 
instantaneous jump right after the first withdrawal event. This is 
to simulate the fact that once the first withdrawal happens, there 
is much higher probability that the person would withdraw in 
the next quarter than before that.

A one-person simulation algorithm is as follows. With pre-
defined overall constants µ, σ, CWD and Cq:

1. Draw base logit probability from normal distribution:

( )σNbase_logit ~  ,  2

2. Initialize withdrawal indicator WDIND = 0

3. Loop q from 1 to 10

• Calculate quarterly withdrawal probability (quarter count 
starts from 1):

( )( )+ − − − −C q C WD
1

1 exp base_logit 1  q WD IND

• Draw the resulting withdrawal observation (0 or 1) for 
the current quarter from Bernoulli distribution:

( )WD Bernoulli p~q q

• If WD  q  == 1, then set WDIND = 1. If the first withdrawal 
happens, set the indicator to 1.

Both µ and σ define the base logit withdrawal distribution, Cq 
defines withdrawal probability dependence on quarter number 
and CWD defines an instantaneous jump in the withdrawal 
probability after the first observed withdrawal.

We are interested in the inference of overall model constants µ, 
σ, CWD and Cq, as well as base logit probabilities for individual 
people.

EXPLORATION
In Figure 1, one can see the simulated withdrawal probabilities 
and withdrawal events for the first two simulated people. The 
first person turned out to have a much lower base withdrawal 
probability than the second person, by about 40 percent. We can 
also observe this effect in the observed withdrawal events. The 
second person has a higher number of withdrawals: eight versus 
four.

The first person’s first withdrawal happens in the third quarter. 
For the second person, the first withdrawal is in the second 
quarter. Right after the first withdrawal we can observe an 
instantaneous jump in the simulated withdrawal probabilities 
for both of them, by about 6 percent in this case.

There is a roughly linear increase in probability of withdrawal 
with the quarter number.

BAYESIAN MODEL AND RESULTS
For the Bayesian inference we used Stan. Stan has an interface 
with R, the rstan package. When using rstan, one can construct 
data in R, launch Stan inference and get results back in R. All 
the code is available on GitHub. From the example, one could 
see that programming in Stan is fairly straightforward. All that’s 
required is to specify the data structure, declare model param-
eters and specify the model—both prior and likelihood. When 
you pass data and the model code to Stan, it produces posterior 
distributions for the model parameters.

In this case we have 4+N people model parameters: four coeffi-
cients—µ, σ, CWD and Cq—and a base logit probability for each 
person in the training sample. Performing inference using MLE 
with this many parameters would be problematic because of a 
high chance of overfitting. However, as discussed earlier, in the 
Bayesian approach there is no overfitting.
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Figure 1
Simulated Withdrawal Probabilities
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Figure 2
Inferred Distributions for µ, σ, CWD and Cq
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Inferred PDFs of the four coefficients, together with their sim-
ulated true values, are shown in Figure 2. As one can see, having 
more data helps in the model coefficients inference—distribu-
tions become narrower.

Also, we can infer the base logit withdrawal probabilities for 
individual people—their withdrawal logit probabilities in the 
first quarter. The inferred base logit probability PDFs for the 
first two people in the samples are shown in Figure 3. These 
are the same two people from Figure 1. The two means that 
both sample PDFs in Figure 3 are very close, because they are 
the same two individuals in the two samples. These particular 
people have the same observations in 100- and 1,000-people 
samples, in terms of both total number of withdrawals and the 
withdrawal pattern from Figure 1. The true values in Figure 3 
are a bit off from the means, because the first person had more 
withdrawals than expected and the second person had slightly 
fewer withdrawals than expected. But these true values are still 
within the posterior PDFs.

As one can see in Figure 3, we do infer higher values of the base 
withdrawal probability for the second person than for the first 
person, as we observed more withdrawal events for the second 
person. However, the distributions are fairly wide, because we 
have only 10 observations for these people. We can see that 
using 1,000-people sample makes inferred distributions a little 
narrower, because we have much better inferred model coeffi-
cients. However, even if we knew those coefficients exactly, the 
base logit distribution for individual people would still be fairly 
wide, because we have only 10 observations. Thus, we conclude 
that, for a good inference of the individual base probability, we 
need more longitudinal data—more quarters.

CONCLUSION
In this article we briefly described both MLE and Bayesian 
approaches in machine learning, looking at their advantages and 

disadvantages. We then proceeded with an example toy model 
that may be applicable for studying VA policyholder behavior. 
We used a simulation so that we fully understand the input data 
and the underlying true model.

For Bayesian inference, we used Stan probabilistic language. 
All inferred distributions made sense. As the amount of training 
data increases, the inferred distributions become narrower and 
closer to the true values.

This may serve as a good example for the reader in how to use 
Bayesian inference. ■

Denis Perevalov is a portfolio research analyst 
at Milliman in Chicago. He can be reached at 
denis.perevalov@milliman.com.

ENDNOTES

1 Pythonic Perambulations, “Frequentism and Bayesianism: A Practical Introduc-
tion” (March 11, 2014), http://jakevdp.github.io/blog/2014/03/11/frequentism
-and-bayesianism-a-practical-intro/.

2 Frequentism and Bayesianism, ibid.

3 For more information, see http://mc-stan.org/.

4 See https://github.com/Denisevi4/BayesianInference.
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Figure 3
Inferred Distributions for Base Logit Probabilities for the First Two People in the Sample
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