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regression, perceptron for classification and incremental princi-
pal component analysis.

STOCHASTIC GRADIENT DESCENT
In linear regression, f*(x) = wTx is a linear function of the input 
vector. The usual choice of the loss function is the squared loss 
L(y,wTx) = (y-wTx)2. The gradient of L with respect to the weight 
vector w is given by 

.  

Note the gradient is the direction for the function to increase, 
so if we want the squared loss to decrease, we need to let the 
weight vector move opposite to the gradient. This motivates 
the stochastic gradient descent algorithm for linear regression 
as follows: the algorithm starts with the initial guess of w as w0. 
At time t, we receive the t-th observation xt and we can predict 
the output as 

. 

After we observe the true output yt, we can update the estimate 
for w by 

The number ηt>0 is called the step size. Theoretical study shows 
that wt becomes closer and closer to the true coefficient vector w 
provided the step size is properly chosen. Typical choice of the 
step size is 

√
 

for some predetermined constant η0. Another quantity to mea-

Machine learning provides useful tools for predictive an-
alytics. The typical machine learning problem can be 
described as follows: A system produces a specific out-

put for each given input. The mechanism underlying the system 
can be described by a function that maps the input to the output. 
Human beings do not know the mechanism but can observe the 
inputs and outputs. The goal of a machine learning algorithm is 
to infer the mechanism by a set of observations collected for the 
input and output. Mathematically, we use (xi,yi ) to denote the 
i-th pair of observation of input and output. If the real mech-
anism of the system to produce data is described by a function 
f*, then the true output is supposed to be f*(xi ). However, due 
to systematic noise or measurement error, the observed output 
yi satisfies yi = f*(xi)+ϵi  where ϵi is an unavoidable but hopefully 
small error term. The goal then, is to learn the function f* from 
the n pairs of observations {(x1,y1 ),(x2,y2 ),…,(xn,yn )}.

A machine learning algorithm must first specify a loss function 
L(y,f(x)) to measure the error that will occur when we use f(x) 
to predict the output y for an unobserved x. We use the term 
unobserved x to describe new observations outside our training 
sets. We wish to find a function such that the total loss on all 
unobserved data is as small as possible. Ideally, for an appro-
priately designed loss function, f* is the target function. In this 
case, if we can compute the total loss on all unobserved data, 
we can exactly find f*. Unfortunately, computing the total loss 
on unobserved data is impossible. A machine learning algorithm 
usually searches for an approximation of f* by minimizing the 
loss on the observed data. This is called the empirical loss. The 
term generalization error measures how well a function having 
small empirical loss can predict unobserved data.

There are two machine learning paradigms. Batch learning re-
fers to machine learning methods that use all the observed data 
at once. Incremental learning (also called online learning) re-
fers to the machine learning methods that apply to streaming 
data collected over time. These methods are used to update the 
learned function accordingly when new data come in. Incremen-
tal learning mimics the human learning process from experienc-
es. In this article, we will introduce three classical incremental 
learning algorithms: the stochastic gradient descent for linear 
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sure the effectiveness is the accumulated regret after T steps de-
fined by

 

If this algorithm is used in a financial decision-making process 
and wTxt is the optimal decision at step t, the regret measures 
the total additional1 losses because the decisions are not opti-
mal. In theory, the regret is bounded, implying that the average 
additional loss resulting from one decision is minimal when T 
is large.

We use a simulation to illustrate the use and the effect of this 
algorithm. Assume that in a certain business, there are five 
risk factors. They may either drive up or down the financial 
losses. The loss is the weighted sum of these factors plus some 
fluctuation due to noise: y = x1- x2 + 0.5x3 - 0.5x4 + x5 + ϵ. So the 
true weight coefficients are given by w=[1, -1, 0.5, -0.5, 2]. We 
assume each risk factor can take values between 0 and 1 and 
the noise follows a mean zero normal distribution with vari-
ance 0.01. The small variance choice is empirically selected to 
achieve a smaller signal to noise ratio. We generate 1,000 data 
points sequentially to mimic the data-generating process and 
perform the learning with an initial estimate w0=[0,0,0,0,0]. 
In Figure 1, we plot the distance between wt and w, showing 
estimation error decays fast (which is desirable). In Figure 2, 
we plot the regret for each step. We see most additional losses 
occur at the beginning because we have used a stupid initial 
guess. They increase very slowly after 50 steps, indicating the 
decisions become near optimal. In other words, even a poor 
guess can lead to excellent results after a sufficient number 
of steps.

Figure 1: Estimation Error vs. Iterations
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 Figure 2: Regret vs. Iterations
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PERCEPTRON
In a classification problem, the target is to develop a rule to assign 
a label to each instance. For example, in auto insurance, a driver 
could be labeled as a high risk or low risk driver. In financial deci-
sion-making, one can determine whether an action should be tak-
en or not. In a binary classification problem where there are two 
classes, the labels for the two classes are usually taken as 0 and 1 
or −1 and +1. When −1 and +1 are used as the two labels, the clas-
sifier could be determined by the sign of a real valued function. A 
linear classifier is the sign of a linear function of predictors f(x) = 
sign(wTx). Mathematically wTx = 0 forms a separating hyperplane 
in the space of predictors. The perceptron for binary classification 
is an algorithm to incrementally update the weight vectors of the 
hyperplane after receiving each new instance. It starts with an ini-
tial vector w0 and when each new instance (xt,yt) is received, the 
coefficient vector is updated by

otherwise, where y is a user specified parameter called the mar-
gin. The original perceptron introduced by Rosenblatt in the 
1950s has a margin 0, i.e., y = 0. The perceptron can be explained 
as follows. If yt(βt-1xt )<0, the t-th observation is classified incor-
rectly and thus the rule is updated to decrease the chance for it 
being classified incorrectly. If yt(βt-1 xt )>0, the t-th observation is 
classified correctly, and no update is necessary. The idea of using 
a positive margin is from the well-known support vector ma-
chine classification algorithm. The motivation is that the classi-
fication is considered unstable if the observation is too close to 
the decision boundary even when it is classified correctly. Up-
dating is still required in this case as a penalty. The classification 
rule is not updated only when an instance is classified correctly 

,                     otherwise, 
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and has a margin from the decision boundary. For perceptron, 
the cumulative classification accuracy, which is defined as the 
percentage of the classified instances, can be used to measure the 
effectiveness of the algorithm. 

In Figure 3, we simulated 1,000 data points for two classes: the 
positive class contains 500 data points centered at (1, 1) and the 
negative class contains 500 data points centered at (−1, −1). Both 
classes are normally distributed. The optimal separating line is 
x1 - x2 = 0, which can achieve a classification accuracy of 92.14 
percent. That is, there is a systematic error of 7.86 percent. We 
assume the data points come in sequentially and apply the per-
ceptron algorithm. The cumulative classification accuracy is 
shown in Figure 4. As desired, the classification ability of the 
perceptron is near optimal after some number of updates.

 Figure 3: Data for a Binary Classification Problem
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Principal component analysis 
(PCA) is probably the most 
famous feature extraction tool 
for analytics professionals.

An Introduction ...

 Figure 4: Cumulative Classification Accuracy of Perceptron Technique
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INCREMENTAL PCA
Principal component analysis (PCA) is probably the most fa-
mous feature extraction tool for analytics professionals. The 
principal components are linear combinations of predictors that 
preserve the most variability in the data. Mathematically they 
are defined as the directions on which the projection of the data 
has largest variance and can be calculated as the eigenvectors 
associated with the largest eigenvalues of the covariance matrix. 
It can also be implemented by an incremental manner. For the 
first principal component v1, the algorithm can be described as 
follows. It starts with an initial estimation v1,0 and when a new 
instance xt comes in, the estimation is updated by

,

.

The accuracy can be measured by the distance between the esti-
mated principal component and the true one.

Again, we use a simulation to illustrate its use and effectiveness. 
We generated 1,000 data points from a multivariate normal dis-
tribution with mean μ = [1,1,1,1,1] and covariance matrix

0 0 0.2 0 0
0 0 0 0.2 0
0 0 0 0 0.2

. 
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The first principal component is [0.9517, −0.2898, 0, 0, 0]. In 
Figure 5, we used the scatter plot to show the first two variables 
of the data with the red line indicating the direction of the first 
principal component. After applying the incremental PCA algo-
rithm, the distance between the estimated principal component 
and the true principal component is plotted for each step in Fig-
ure 6. As expected, the distance shrinks to 0 as more and more 
data points get in.

Figure 5: Feature Abstraction via Principal Component Analysis
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Figure 6: Estimation Error from Principal Component Analysis
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REMARKS
We close with a few remarks. First, incremental learning has 
very important application domains, for example, personalized 
handwriting recognition for smartphones and sequential deci-
sion-making for financial systems. In the real applications, batch 
learning methods are usually used with a number of experienc-
es to set up the initial estimator. This helps avoid large losses at 
the beginning. Incremental learning can then be used to refine 
or “personalize” the estimation. Second, we have introduced the 
algorithm for linear models. All these algorithms can be extended 
to nonlinear models by using the so-called kernel trick in machine 
learning. Finally, we would mention that it seems the term “online 
learning” is more popular in machine learning literature; however, 
we prefer the term “incremental learning” because “online learn-
ing” is widely used to refer to the learning system via the Internet 
and can easily confuse people. Actually, in Google, you probably 
cannot get what you want by searching “online learning.” Instead, 
“online machine learning” should be used.  ■
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