
 

 

Article from 
 
Predictive Analytics and Futurism 
 
June 2017 
Issue 15 



44 | JUNE 2017 PREDICTIVE ANALYTICS AND FUTURISM 

Maximal Information 
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Introduction to 
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By Bryon Robidoux

The maximal information coefficient (MIC) has been 
described as a 21st-century correlation that has its roots 
in information theory.1 Information theory was developed 

by Claude Shannon back in 1948 when he published the paper 
“A Mathematical Theory of Communication” while working 
for Bell Labs. Scientists were trying to understand the limits of 
communication through a communication channel and how to 
send a signal and minimize the errors in the received message.3 
Even though this seems far removed from any problem in actu-
arial science, it turns out that it can be very useful for actuaries, 
such as:

1. Choosing between competing models for a stochastic phe-
nomenon under investigation;

2. Adjusting mortality tables in a statistically valid manner to 
obtain exactly certain known or assumed individual charac-
teristics, while simultaneously developing a table that is as 
close as possible to a given standard mortality table;

3. Smoothing observed insurance data to obtain smoothed esti-
mates that are as close as possible to the observed data; and

4. Incorporating monotonicity constraints into a life table 
graduation.4

This article will describe the basic mechanics behind informa-
tion theory, such as bits, entropy and mutual information, give 
some intuitive interpretation of its results and relate Pearson’s 
correlation to MIC.

The basic unit of information theory is the bit, which stands 
for binary digit. This is unfortunate because a binary digit 
and a bit are different. A binary digit is the value of a binary 
variable, which can have only two values: zero and one. A bit 
is the amount of information required to choose between 
two equally probable alternatives. If there are m equally 
probable alternatives that can be arrived at by successively 
making n binary choices, then n = mlog2  bits of informa-
tion are required. If the log is changed from base 2 to base 
e or base 10, then the units are nats or bans, respectively.3 
Information theory’s original intent was to determine how to 
efficiently communicate information from point A to B with 
the least amount of error. Figure 1 shows the basic structure of  
communication.

Figure 1 
Basic Structure of Communication
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1. A source s generates a message, which is an ordered sequence of k symbols 𝑠𝑠 𝑠
(𝑠𝑠1, … , 𝑠𝑠𝑘𝑘). 

2. The source can be coded from an alphabet 𝐴𝐴𝑠𝑠 which can have α letters, so 𝐴𝐴𝑠𝑠 𝑠
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1. A source s generates a message, which is an ordered sequence 
of k symbols ( )= …s s s  , , k1 .

2. The source can be coded from an alphabet As  which can 
have α letters, so ( )= … αA s s  , ,s 1 .

3. A message s is encoded as an input x by some function g into 
code words ( )= …x x x  , , n1 .

4. These code words can have their own alphabet with m let-
ters, hence ( )= …A x x, ,x m1 .

5. The input x is transmitted through the channel where noise 
ἠ is added to the output Y = X + ἠ.

6. The output y code words are decoded back into the original 
message.

Both the input X and output Y code words are defined as ran-
dom variables, so there is a probability associated with each 
one of the encoded and decoded code words. The probability 
p of all the possible letters in an alphabet need to sum to unity. 
The output may not be the same as the input because the noise 
could have added errors into the transmission and changed 
the resulting alphabet character. The encoder is responsible 
for compressing and adding error-detecting redundancy. The 
decoder is responsible for decompressing the message and 
using the redundancy to remove errors from the message. The 
error rate in the transmission is the number of incorrect inputs 
associated with the output per the number of possible inputs.3 
Now that the original problem has been explained, it is time to 
formally define information and entropy.

Suppose that a biased coined is flipped and the probability of 
a heads is 95 percent. When the coin comes up heads, there is 
little information provided or surprise in this result. But if the 
result is tails, this is a lot more surprising and informative. The 
Shannon information is the amount of uncertainty or surprise in 
a random variable. It is defined as the ( )p z log 1/2  bits, where z 
is any random variable, so the uncertainty of a variable should 
decrease as the probability of an event increases. The entropy 

( )H Z  is the expected value of the Shannon information
∑( ) ( ) ( )= −
=

H Z p z p z    log
i

n

i i
1

2 . A variable with ( )H Z  bits entropy 
will have enough Shannon information to choose between ( )2H z  
equally probable outcomes.3 The calculation for the entropy 
is different for discrete versus continuous random variables. 
To see the problem, the entropy differential ( )H Z Δ  needs to 

be defined: Δ∑( ) ( )=H Z p z z
p z z

  log 1
( )i i

i
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Δ

Δ
. It is obvious 

that as →z 0Δ  then ( ) → ∞H Z  Δ . This can be interpreted as 
saying that as the precision of a variable increases, so dos the 
bits of information provided by the variable.3 This means that 
integrals cannot be used to calculate the continuous entropy. To 
do the calculation, the random variables must be discretized by 

dividing the ranges into variable bins and counting how many 
values fall in the histogram grid.1 Entropy has some very nice 
properties regardless if discrete or continuous:

• Continuity—the amount of information associated with an 
event increases or decreases continuously;

• Symmetry—the amount of information associated with a 
sequence of events does not depend on the order in which 
they occurred;

• Maximal Value—the amount of information associated with 
a set of events cannot be increased if the events are equally 
likely;

• Additive—the information associated with a set of events is 
obtained by adding the events together;

• Positive—it will always be greater than equal zero.3

The conditional entropy H(Y|X) is the average amount of 
uncertainity in Y given that X has occurred, or, to phrase it 
another way, it is the amount of uncertainty in Y that cannot be 
contributed to X.3 If the focus is put back on signal processing 
then the output Y is nothing more than the input X + random 
noise. The H(Y|X) = H(X + ἠ |X) = H(ἠ) so the average uncer-
tainty in the output given the input is equivalent to the average 
uncertainty in the noise.3

The relative entropy between two distributions can be calculated 
by the Kullback-Liebler (KL) divergence. The relative entropy 
is a measure of the dissimilarity between probability distribu-

tions p and q: ∑ ∑ ∑= = −KL p q p
p
q
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k k2 is called the cross entropy. The cross entropy 

is the average number of bits needed to encode data coming 
from a source with distribution p when model q is used. The 
KL divergence is the average number of extra bits needed to 
encode the data, due to the fact that the distribution q was 
used to encode the data versus p: ≥KL p q( || ) 0  unless p = q.1 
Note that in general the relative entropy is not symmetric 
under interchange of the distributions p and q: in general

↑KL p q KL q p  ( || ) ( || ) , so KL, although it is sometimes called 
the “KL distance,” is not strictly a distance. The relative entropy 
is important in pattern recognition and neural networks, as well 
as in information theory.2

If there was a goal to state how one variable depends on 
another, one measurement that would suffice is to calculate 
the Pearson’s correlation ρ that we are all so familiar with:
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. Pearson’s correla-

tion measures only the linear relationship between random 
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variables x and y within a range [−1, 1] where 0,−1, 1 implies 
no relationship, perfectly negative relationship and perfectly 
positive relationship, respectively. Even though 0 implies no 
relationship, it does not imply that the random variables are 
independent. This is a limiting measure of dependence because 
many relationships are nonlinear. Mutual information is a more 
general approach of calculating how random variables depend 
on each other. It has a range from [0, ∞). There are actually sev-
eral different formulas with corresponding interpretations for 
mutual information:

1. ∑∑( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

= =I X Y KL p x y p x p y p x y
p x y

p x p y
, ( , || ) , log

,

x y
2 . 

This is the extra bits needed to encode the data given inde-
pendent distributions were used versus the joint distribution 
of X and Y.

2.  ( ) ( ) ( ) ( )= + −I X Y H X H Y H X Y, , . This is the intersection 
between the average uncertainty of the input and output.

3.  ( ) ( )= −I X Y H X H X Y, ( | ) . This is the difference between 
the average uncertainty of the input and the average uncer-
tainty of the input knowing the output.

4.  ( ) ( ) ( )= −I X Y H Y H Y X, | . This is the average uncertainty 
of the output less the average uncertainty of the output given 
the input.

5.  ( ) ( ) ( )= −I X Y H Y H noise, . This is the difference between 
the average uncertainty of the output and the noise.3

Given that the mutual information is derived from the entropy, 
it suffers from the same problem of being infinite for con-
tinuous variables. Unfortunately, the number of bins used, 
and the location of the bin boundaries, can have a significant 
effect on the results of MIC. The maximal information coef-
ficient is an approach to try many different bin sizes and 
locations, and to compare the maximum mutual information 
received. It is defined as ( )<MIC max m x y,x y xy B, :  such that 

( )
( )

( ) ( )
( )

= ( )∈m x y
max I X G Y G

log x y
,  

,

min ,
G G x y,

2

 where B is some sam-

ple-size dependent bound on the number of bins that can be 
used to reliably estimate the distribution and G(x,y) is the set of 
two-dimensional grids of size ×x y   and X(G), Y(G) represents a 
discretization of the variables onto this grid. The MIC lies in a 

range [0,1], where 0 represents no relationship between variables 
and 1 represents a noise-free relationship of any form, not just 
linear. MIC will not give any indication of the type of the rela-
tionship, though. It is possible with the MIC to find interesting 
relationships between variables in a way that simpler measures, 
such as the correlation coefficient, cannot.1 With MIC the goal 
is equitability: similar scores will be seen in relationships with 
similar noise levels regardless of the type of relationship. Because 
of this, it may be particularly useful with high dimensional set-
tings to find a smaller set of the strongest correlations. Where 
distance correlation might be better at detecting the presence of 
(possibly weak) dependencies, the MIC is more geared toward 
the assessment of strength and detecting patterns that we would 
pick up via visual inspection.5

In conclusion, this article has taken you from the elementary 
beginnings of information theory. The concepts of bits and nats 
were explained, which led to the definition of entropy and its 
many flavors as well as the definition of the KL divergence and 
its interpretation. This led to the description mutual informa-
tion for the discrete and continuous cases. Last, the familiar 
Pearson’s correlation coefficient was compared to MIC. MIC 
is important to pattern recognition because it is a general 
approach to measure the dependency between two random 
variables, whereas Pearson’s correlation measures only linearity 
between two random variables. ■
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