

Article from
Predictive Analytics & Futurism News
August 2018
Issue 18

18 | AUGUST 2018 PREDICTIVE ANALYTICS AND FUTURISM

Introduction to PMML in R
By Je� Heaton

Predictive Model Markup Language (PMML)1 is an Exten-
sible Markup Language (XML)–based predictive model
interchange format originally introduced by Dr. Robert

Lee Grossman, who was at that time the director of the National
Center for Data Mining at the University of Illinois at Chicago.
Models produced in R, Python and other platforms can be
exported to PMML. Once in PMML, these models can be exe-
cuted on a variety of other platforms to produce scores.

A platform’s PMML capabilities are described as being a con-
sumer or a producer. Some platforms are both producers and
consumers; however, most only support one side. For example,
the R programming language can function as a producer, but
not a consumer. This means that a random forest that was
trained in R can be exported to PMML. However, the PMML
saved by R cannot be loaded by R. Because of this, PMML is
not a sort of general purpose file format. The primary purpose
of PMML is to allow a trained model to be exported from a
development language, such as R, Python or another language
to be executed on a production language such as Java or Scala.
In this way, PMML is more of an export format for deploy-
ment. The PMML website contains a list of what platforms are
producers and consumers.2

PMML CAPABILITIES
Once a model has been properly trained, it is desirable to save
the state of that model. If the model is not saved, then it will
be necessary to retrain each time the model is needed. Such
retraining is undesirable on several levels. Firstly, it might have
taken many hours of computer runtime to have trained that
model. Secondly, there is a stochastic element to the training of
many models. Saving the model’s internal state is often the only
way to reproduce the results of a particular model. Modeling
frameworks provide a means of saving the state of your model.

The model’s state is whatever the model needs to produce a
score. For a GLM the state includes the coefficients, intercept
and choice of link function. For a random forest, the state would
include the tree structure and any values used to calculate the
score. Programming languages, such as R and Python provide
a means of storing this model state. R stores these models to
RData files and Python uses the Pickle file format.

It might be tempting to think of PMML as another file format
to store your model in, similar to RData or Pickle. However,
this is not exactly the case. I do not suggest that you use

The primary purpose of PMML
is to allow a trained model to be
exported from a development
language.

 AUGUST 2018 PREDICTIVE ANALYTICS AND FUTURISM | 19

PMML as a replacement for Pickle or RData. One obvious
problem is that R only has the ability to write PMML, not
read it—at least with the most popular free PMML libraries.
Because the conversion to PMML might be a one-way trip
for many programming languages, PMML is not a desirable
alternative to that language’s native format. Another difference
between PMML and RData/Pickle is that preprocessing and
ensemble information is encoded into PMML.

Your data will likely require some preprocessing before they
are sent to the model. Continuous values might be normalized
to a z-score. Categorical values might be encoded as dummy
variables. When a model is stored as a RData/Pickle file,
this encoding is not saved as part of the file. A PMML file
attempts to encode the entire pipeline of data processing for
your model. This includes common preprocessing steps, such
as normalization, dummy variables, and dealing with missing
values. PMML can also store the pipeline used to ensemble
multiple models together. Because PMML focuses on encod-
ing the entire pipeline, PMML is primarily a storage format
for deployment. Once your model’s pipeline is encoded into
PMML, it can be deployed with a number of different open
source and commercial products.

One popular open source deployment package for PMML is
OpenScoring.3 The OpenScoring framework can deploy PMML
files as restful web services. These web services can be accessed
by other programs, even those that are outside of your com-
pany. All communication with your deployed web service occurs
using the JavaScript Object Notation (JSON). This allows other
applications, written in nearly any programming language, to
interact with your model. The programming language that you
originally produced the PMML from is not important.

Because PMML is a standard, it requires that each model type
that you seek to use to be covered by the PMML standard.
Because of this, you might not have access to the latest models
or new features from existing model types. However, unless
you are producing models using bleeding edge technology,
this is often not a problem. For example, the list of supported
models for the R programming languages include kNN, Min-
ing Models, Regression Models, General Regression Models
(including Cox), Neural Networks, Decision Trees, Clustering
Models, Association Rules, Support Vector Machines, Multi-
nomial Logistic Regression, Random Forest, Random Survival
Forest, and Naïve Bayes Classifiers.4

EXAMPLE: EXPORTING A RANDOM FOREST IN R
In this section, a sample R script to produce PMML is exam-
ined. This code, along with the resulting PMML, can be found
at the author’s GitHub page.5 This example creates a random
forest and trains it against Fisher’s Iris Dataset.6 The example
code is provided here:

Libraries
library(randomForest)
library(XML)
library(pmml)

data to build model on
data(iris)

train a model on a 75-25 split between
training and validation
z <- sample(2,nrow(iris),replace=TRUE,
prob=c(0.75,0.25))
trainData <- iris[z==1,]
testData <- iris[z==2,]

train model
rf <- randomForest(Species~.,data=trainData,
 ntree=100,proximity=TRUE)
table(predict(rf),trainData$Species)

convertto pmml
pmml <- pmml(iris_rf,name=”Iris Random
Forest”,data=iris_rf)

save PMML XML
saveXML(iris_rf.pmml,”iris.pmml”)

The random forest is created with the common R library
named simply RandomForest. Once the random forest is
trained, it is encoded to PMML using the R PMML library
that can be obtained through the Comprehensive R Archive
Network (CRAN). Once the model has been encoded to
PMML, it can be saved to a file with the R XML library.

The entire PMML file is verbose and lengthy. While the file is
not reproduced here, it can be viewed at the author’s GitHub
repository.

Now that the random forest has been saved to a PMML file, it
can be deployed as a restful web service with a PMML server,
such as OpenScoring. This allows other applications to send
JSON, such as the following, to receive an iris prediction.

{
“petal-width”: 1.1,
“petal-length”: 2.2,
“sepal-width”: 3.3,
“sepal-length”: 4.4
}

20 | AUGUST 2018 PREDICTIVE ANALYTICS AND FUTURISM

Introduction to PMML in R

A result from the model might be as follows:

{
“prediction”: “Iris-versicolor”
“confidence”: .83

}

For a complete guide to setting up a restful web service to score
PMML refer to the URL previously given for OpenScoring.

CONCLUSION
PMML is a standard file format that is typically used to encode
models for deployment. The standard format of PMML allows
model deployment platforms to be designed without consideration
to the original language that the data scientist chose to implement
the model in. If you seek to deploy a model with PMML it is
important to ensure that the model type that you make use of is
supported by the PMML client that you will ultimately deploy
your model on. ■

Je� Heaton, Ph.D. is lead data scientist, RGA
Reinsurance Company, in Chesterfield, Mo. He can
be reached at jheaton@rgare.com.

ENDNOTES

1 http://dmg.org/pmml/v4-3/GeneralStructure.html

2 http://dmg.org/pmml/products.html

3 https://github.com/openscoring/openscoring

4 http://dmg.org/pmml/products.html

5 https://github.com/jeffheaton/present/tree/master/SOA/paf-newsletter/2018/
pmml

6 https://en.wikipedia.org/wiki/Iris_flower_data_set

