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Learning Objective 1: The candidate will understand key 
types of derivatives 
 

QFI QF Fall 2021 Question 5 
Learning Outcomes: 

a) Understand the payoffs of basic derivative instruments 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapters 
1, 7, pages 28-30, 39, 183-185 

Commentary on Question: 

In general, the candidates performed well, particularly in identifying the input data, the 
formula and the calculation of the 2-year swap rate and its value, and the forward swap rate 
of the 2-year forward swap contract with expiry of 1 year in parts c), d), and e). 

However, the results were below expectation in part b) in the determination of an arbitrage 
opportunity as to the price of the forward 1-year zero-coupon bond, and in a less 
proportion, in part a) for the definitions of a forward rate agreement, and interest rate 
swaps. 

Other comments will be made under the appropriate section. 

Solution: 

(a) Describe forward rate agreements, forward contracts, and interest rate swaps. 
Commentary on Question: 

For the forwards rate agreement, many did refer to an exchange of a fixed rate versus 
a floating rate.  This was not the completed answer, and the candidates should have 
been more precise and refer more specially to an exchange of the forward rate 
versus the future spot rate.  

 

Also, for the interest rate swap, we expected the candidates to go further than 
describing an exchange of fixed cash flows for floating rate cash flows.  To obtain 
more grading points, the candidates should have completed this answer with 
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mentioning the usual reference of the LIBOR floating rate, the swap rate itself, and 
the value of the contract at initiation. 

Forward Rate Agreement: A FRA is a contract between two counterparties to exchange one cash flow 
in the future, namely, the forward rate in exchange of the future spot rate. 
 
Forward contract: This is a contract between two counterparties in which they agree that at some 
predetermined date, they will exchange a security, such as a Treasury note, for a cash price that is also 
predetermined at initiation of the contract.  
 
Interest Rate Swap: A swap is a contract between two counterparties to exchange cash flows in the 
future. In a fixed-for-floating swap a counterparty pays a fixed coupon while the other pays a rate linked 
to a floating rate, typically the LIBOR rate. The fixed rate is called the swap rate, and it is set at initiation 
of the contract so that the value of the swap is zero.  
 

(b) Determine arbitrage strategy based on the above data.  
Commentary on Question: 

The calculations and the determination of an arbitrage opportunity as to the price of 
the forward 1-year zero-coupon quoted by the bank bond ($96,08) versus the 
implied 1-year forward bond price (($95.60) were well done, but there were fewer 
good results in the determination of the strategy to take advantage of the situation. 

In particular, some candidates but not such many, did complete the answer by 
describing the cash flows at duration 0, 1, and 2. This was giving additional grading 
points. 

The 2-year bond price is exp(-3.5%*2)*100 = 93.239 
The 1 year bond price is exp(-2.5%*1)*100 = 97.531 
The implied 1 year forward bond price = 93.239/97.531*100 =  95.600  
Yes, there is an arbitrage opportunity.   
 
The company should sell a 1 year bond for $93.71(=96.08*.97531) with notional of $96.08 and agree 
with the bank to sell the forward bond at $96.08. Buy 2 year zero coupon bond at $95.60 
 
At year 0 – receive $93.71 for the 1 year bond; 
                     pay $93.24 for the 2 year bond 
                     net cash proceeds = $93.71 -$93.24 = $0.47 from the portfolio  
 
At year 1 –  pay $96.08 from the 1 year bond purchase 
                     receive $96.08 for selling $100 notioanal 1 year zero coupond bond 
                     net cash proceed is 0 
 
At year 2 -  pay $100 from the 1 year zero coupon bond 
                     receive $100 for the 2 year zero coupon bond 
                     net cash proceed is 0 
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(c) Calculate the 2-year swap rate and the value of the swap at time 0.  

Commentary on Question: 

Usually well answered. 

Swap value at initiation is 0.  

 

Z(0,.5) = exp(-2%*0.5) = 0.99005 
Z(0,1) = exp(-2.5%*1) = 0.97531 
Z(0,1.5) = exp(-3%*1.5) = 0.95600 
Z (0,2) = exp (-3.5%*2) = 0.93239   

 

 

(d) Calculate the value of the 2-year swap in part (c) at time 0.5 (after cash payment). 
Commentary on Question: 

Usually well answered to the exception that some have not considered the value of 
for the PFR (T, T). 

At T0.5  

Z(0.5,1) = exp(-1%*.5) = 0.99501 
Z(0.5,1.5) = exp(-1.5%*1) = 0.98511 
Z (0.5,2) = exp (-2%*1.5) = 0.97045   

Value of swap = Value of floating rate bond – Value of fixed rate bond 

 

 

= 100 − �
𝑐𝑐
2

∗ 100 ∗ � 𝑍𝑍�𝑇𝑇𝑖𝑖, 𝑇𝑇𝑗𝑗�
𝑀𝑀

𝑗𝑗=𝑡𝑡+1

+ 100 ∗ 𝑍𝑍(𝑇𝑇𝑖𝑖, 𝑇𝑇𝑀𝑀)� 

= 100 − (3.51
2

∗ 100 ∗ (0.99501+0.98511+0.97045) +100*0.97045) = -2.22 

 

𝑐𝑐 = 𝑛𝑛 ∗ �
1 − 𝑍𝑍(0, 𝑇𝑇𝑀𝑀)
∑ 𝑍𝑍�0, 𝑇𝑇𝑗𝑗 �𝑀𝑀

𝑗𝑗 =1
� = 2 ∗

1 − 0.93239
0.99005 + 0.97531 + 0.95600 + 0.93239

= 3.51% 

Vswap(t; c, T) =  𝑃𝑃FR(t, T)– 𝑃𝑃c(t, T) 



7 
 

(e) Calculate the forward swap rate of the 2-year forward swap contract with expiry of 1 
year.  

Commentary on Question: 

Some have used the values of the Z’s instead of the F’s. 

Z(0,.5) = exp(-2%*0.5) = 0.99005 
Z(0,1) = exp(-2.5%*1) = 0.97531 
Z(0,1.5) = exp(-3%*1.5) = 0.95600 
Z(0,2) = exp(-3.5%*2) = 0.93239 
Z(0,2.5) = exp(-3.5%*2.5)=0.91622     
Z(0,3) = exp(-4%*3)=0.88692 
F(0,1,1.5) = Z(0.1.5)/Z(0,1) = 0.980199 
F(0,1,2) = Z(0.2)/Z(0,1) = 0.955997 
F(0,1,2.5) = Z(0.2.5)/Z(0,1) = 0.939413 
F(0,1,3) = Z(0.3)/Z(0,1) = 0.909373 
 

 
Where 

 
 

= 2*(1-0.909373) / (0.980199+0.955997+0.939413+0.909373) 

= 4.79% 

 

 

 

Learning Objective 2: The candidate will understand the 
principles and techniques for the valuation of derivatives 
 

QFI QF Fall 2020 Question 1 
Learning outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

Source references: 
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• Options, Futures, and Other Derivatives, Hull, John, 11th Edition, 2021, Chapter 14, 
pages 318-321, 327 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 52, 57-58, 128-130, 132-137 

Commentary on Question: 

Overall, parts (a), (b), and (d) were answered well by most candidates.  Part (c) presented 
some challenge, as did correctly justifying the normal distribution in part (e). 

Solution: 

(a) Show that tX  satisfies the stochastic differential equation  

 

( )t t tdX f t X dWθ=  

Commentary on Question: 

Most candidates answered this part well.  The statement of the question included an 
extra minus sign in front of the 𝑀𝑀𝑡𝑡 term in the definition of 𝑋𝑋𝑡𝑡, which was a typo. 

From Ito’s Formula, 

𝑑𝑑𝑋𝑋𝑡𝑡 =
𝜕𝜕𝑋𝑋𝑡𝑡

𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕 +

𝜕𝜕𝑋𝑋𝑡𝑡

𝜕𝜕𝑊𝑊𝑡𝑡
𝑑𝑑𝑊𝑊𝑡𝑡 +

1
2

𝜕𝜕2𝑋𝑋𝑡𝑡

𝜕𝜕𝑊𝑊𝑡𝑡
2 + ⋯ =

𝜕𝜕𝑋𝑋𝑡𝑡

𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕 + �

𝜕𝜕𝑋𝑋𝑡𝑡

𝜕𝜕𝑀𝑀𝑡𝑡

𝜕𝜕𝑀𝑀𝑡𝑡

𝜕𝜕𝑊𝑊𝑡𝑡
� 𝑑𝑑𝑊𝑊𝑡𝑡 +

1
2

𝜕𝜕
𝜕𝜕𝑊𝑊𝑡𝑡

�
𝜕𝜕𝑋𝑋𝑡𝑡

𝜕𝜕𝑀𝑀𝑡𝑡

𝜕𝜕𝑀𝑀𝑡𝑡

𝜕𝜕𝑊𝑊𝑡𝑡
� 𝑑𝑑𝜕𝜕 

= �𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝑡𝑡

+ 1
2

𝜕𝜕
𝜕𝜕𝑊𝑊𝑡𝑡

�𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝑀𝑀𝑡𝑡

𝜕𝜕𝑀𝑀𝑡𝑡
𝜕𝜕𝑊𝑊𝑡𝑡

�� 𝑑𝑑𝜕𝜕 + �𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝑀𝑀𝑡𝑡

𝜕𝜕𝑀𝑀𝑡𝑡
𝜕𝜕𝑊𝑊𝑡𝑡

� 𝑑𝑑𝑊𝑊𝑡𝑡. 
 
Now  

𝜕𝜕𝑋𝑋𝑡𝑡

𝜕𝜕𝑀𝑀𝑡𝑡
= 𝜃𝜃exp {𝜃𝜃𝑀𝑀𝑡𝑡 −

1
2

� 𝑓𝑓(𝑠𝑠)2𝑑𝑑𝑠𝑠} = 𝜃𝜃𝑋𝑋𝑡𝑡

𝑡𝑡

0
 

 
and 

𝜕𝜕𝑀𝑀𝑡𝑡

𝜕𝜕𝑊𝑊𝑡𝑡
= 𝑓𝑓(𝜕𝜕) 

 
and 

𝜕𝜕
𝜕𝜕𝑊𝑊𝑡𝑡

�𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝑀𝑀𝑡𝑡

𝜕𝜕𝑀𝑀𝑡𝑡
𝜕𝜕𝑊𝑊𝑡𝑡

� = 𝜃𝜃2𝑓𝑓(𝜕𝜕)2𝑋𝑋𝑡𝑡. 
 
Finally, 

𝜕𝜕𝑋𝑋𝑡𝑡

𝜕𝜕𝜕𝜕
= −

1
2

𝜃𝜃2𝑓𝑓(𝜕𝜕)2𝑋𝑋𝑡𝑡 
 
resulting in 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜃𝜃𝑓𝑓(𝜕𝜕)𝑋𝑋𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡. 
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(b) Show that tM  ~ Normal(0, 2

0
( )

t
f s ds∫ ) for any 0.t >  

Commentary on Question: 

Most candidates attempted the alternative solution but did not receive full credit.  
Most did not remark that the integrand is deterministic thus implying normality. 

Write the preceding in integral form and take expectations: 

� 𝑑𝑑𝑋𝑋𝑠𝑠 = � 𝜃𝜃𝑓𝑓(𝑠𝑠)𝑋𝑋𝑠𝑠𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡

0

𝑡𝑡

0
 

 
so 
𝑋𝑋𝑡𝑡 − 𝑋𝑋0 = ∫ 𝜃𝜃𝑓𝑓(𝑠𝑠)𝑋𝑋𝑠𝑠𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡
0 . 

Hence  

𝐸𝐸(𝑋𝑋𝑡𝑡) − 𝐸𝐸(𝑋𝑋0) = 𝐸𝐸(� 𝜃𝜃𝑓𝑓(𝑠𝑠)𝑋𝑋𝑠𝑠𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡

0
) = 0 

implying 𝐸𝐸(𝑋𝑋𝑡𝑡) = 𝐸𝐸(𝑋𝑋0) = 1.  Thus 

𝐸𝐸�𝑒𝑒𝜃𝜃𝑀𝑀𝑡𝑡� = exp (
1
2

𝜃𝜃2 � 𝑓𝑓(𝑠𝑠)2𝑑𝑑𝑠𝑠
𝑡𝑡

0
) 

Hence 𝑀𝑀𝑡𝑡~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, ∫ 𝑓𝑓(𝑠𝑠)2𝑑𝑑𝑠𝑠𝑡𝑡
0 ). 

Alternative Solution: As tM is an Ito integral with deterministic integrand, tM is normally 

distributed.  Now E[ tM ]=0 and Var( tM )=∫ 𝑓𝑓(𝑠𝑠)2𝑑𝑑𝑠𝑠𝑡𝑡
0  by Ito isometry. 

(c) Show that 
0

1(1 )( )
1

t

t sZ yt t z dW
s

= + − +
−∫  for 0 1t≤ < . 

Commentary on Question: 

Candidates struggled on this part of the question.  Most used the alternative 
solution to arrive at the result. 

Since 𝜕𝜕𝑌𝑌𝑡𝑡
𝜕𝜕𝑡𝑡

= 𝑦𝑦−𝑍𝑍𝑡𝑡
(1−𝑡𝑡)2, 𝜕𝜕𝑌𝑌𝑡𝑡

𝜕𝜕𝑍𝑍
= −1

1−𝜕𝜕 , 𝜕𝜕2𝑌𝑌𝑡𝑡
𝜕𝜕𝑍𝑍2 = 0, applying Ito’s lemma we have 

𝑑𝑑𝑌𝑌𝑡𝑡 =
𝜕𝜕𝑌𝑌𝑡𝑡

𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕 +

𝜕𝜕𝑌𝑌
𝜕𝜕𝑍𝑍

𝑑𝑑𝑍𝑍𝑡𝑡 +
1
2

𝜕𝜕2𝑌𝑌𝑡𝑡

𝜕𝜕𝑍𝑍2 (𝑑𝑑𝜕𝜕)2 

=
𝑦𝑦 − 𝑍𝑍𝑡𝑡

(1 − 𝜕𝜕)2 𝑑𝑑𝜕𝜕 −
𝑑𝑑𝑍𝑍𝜕𝜕

1 − 𝜕𝜕 = − �
1

1 − 𝜕𝜕
� 𝑑𝑑𝑊𝑊𝑡𝑡 

  
Take integrals to obtain 

� 𝑑𝑑𝑌𝑌𝑠𝑠 = − �
1

1 − 𝑠𝑠
𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡

0

𝑡𝑡

0
 

so  
𝑌𝑌𝑡𝑡 − 𝑌𝑌0 = − ∫ 1

1−𝑠𝑠
𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡
0 . 
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Hence 
𝑦𝑦 − 𝑍𝑍𝑡𝑡

1 − 𝜕𝜕
= 𝑦𝑦 − 𝑧𝑧 − �

1
1 − 𝑠𝑠

𝑑𝑑𝑊𝑊𝑠𝑠

𝜕𝜕

0
 

so 

𝑍𝑍𝑡𝑡 = 𝑦𝑦𝜕𝜕 + (1 − 𝜕𝜕) �𝑧𝑧 + �
1

1 − 𝑠𝑠
𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡

0
�. 

 
Alternatively:  

𝑑𝑑𝑍𝑍𝑡𝑡

1 − 𝜕𝜕
=

𝑦𝑦 − 𝑍𝑍𝑡𝑡
(1 − 𝜕𝜕)2 +

𝑑𝑑𝑊𝑊𝑡𝑡

1 − 𝜕𝜕
 

𝑑𝑑𝑍𝑍𝑡𝑡

1 − 𝜕𝜕
+

𝑍𝑍𝑡𝑡𝑑𝑑𝜕𝜕
(1 − 𝜕𝜕)2 =

𝑦𝑦 𝑑𝑑𝜕𝜕
(1 − 𝜕𝜕)2 +

𝑑𝑑𝑊𝑊𝑡𝑡

1 − 𝜕𝜕
 

𝑑𝑑 �
𝑍𝑍𝑡𝑡

1 − 𝜕𝜕
� =

𝑦𝑦 𝑑𝑑𝜕𝜕
(1 − 𝜕𝜕)2 +

𝑑𝑑𝑊𝑊𝑡𝑡

1 − 𝜕𝜕
 

� 𝑑𝑑 �
𝑍𝑍𝑡𝑡

1 − 𝜕𝜕
� = �

𝑦𝑦 𝑑𝑑𝜕𝜕
(1 − 𝜕𝜕)2 + �

𝑑𝑑𝑊𝑊𝑠𝑠

1 − 𝑠𝑠

𝑡𝑡

0

𝑡𝑡

0

𝑡𝑡

0
 

𝑍𝑍𝑡𝑡

1 − 𝜕𝜕
− 𝑧𝑧 =

𝑦𝑦
1 − 𝜕𝜕

− 𝑦𝑦 + �
𝑑𝑑𝑊𝑊𝑠𝑠

1 − 𝑠𝑠

𝑡𝑡

0
 

so 

𝑍𝑍𝑡𝑡 = 𝑦𝑦𝜕𝜕 + (1 − 𝜕𝜕) �𝑧𝑧 + �
1

1 − 𝑠𝑠
𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡

0
�. 

 

(d) Find the mean and the variance of tZ  for 0 1t≤ < .  

Commentary on Question 

Most candidates were able to derive the mean and variance correctly. 

Using the properties of stochastic integrals, 

𝐸𝐸 ��
1

1 − 𝑠𝑠
𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡

0
� = 0 

 
and 

𝐸𝐸 ���
1 − 𝜕𝜕
1 − 𝑠𝑠

𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡

0
�

2

� = 𝐸𝐸 �(1 − 𝜕𝜕)2 �
1

(1 − 𝑠𝑠)2 𝑑𝑑𝑠𝑠
𝑡𝑡

0
� = 𝜕𝜕(1 − 𝜕𝜕) 

 
Thus the mean of 𝑍𝑍𝑡𝑡  is 𝐸𝐸(𝑍𝑍𝑡𝑡|𝑍𝑍0 = 𝑧𝑧) = 𝑦𝑦𝜕𝜕 + 𝑧𝑧(1 − 𝜕𝜕) and the variance is 
𝑉𝑉𝑁𝑁𝑁𝑁((𝑍𝑍𝑡𝑡|𝑍𝑍0 = 𝑧𝑧) =  𝜕𝜕(1 − 𝜕𝜕). 

(e) Show that tZ  follows a normal distribution for 0 1t< < . 

Commentary on Question: 
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Most candidates did not adequately justify normality as it does not follow from being 
an Ito integral only.  Candidates had to comment that the integrand was 
deterministic. 

Now since ∫ � 1
1−𝑠𝑠

�
2

𝑑𝑑𝑠𝑠𝑡𝑡
0 = 𝑡𝑡

1−𝑡𝑡
< ∞ for 0 < 𝜕𝜕 < 1, ∫ 1

1−𝑠𝑠
𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡
0  is in the form required for part (b), so 

∫ 1
1−𝑠𝑠

𝑑𝑑𝑊𝑊𝑠𝑠
𝑡𝑡

0  follows a normal distribution.  
 
Alternatively, noting that ∫ 1

1−𝑠𝑠
𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡
0  is square integrable and the integrand is deterministic allows one to 

conclude that the Ito integral is normal. 
 

 

QFI QF Fall 2020 Question 2 
Learning outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

e) Understand and apply the concepts of risk-neutral measure, forward measure, 
normalization, and the market price of risk 

Source references: 

• Options, Futures, and Other Derivatives, Hull, John, 11th Edition, 2021, Chapter 28, 
pages 671-672 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 72-73, 221-227 

Solutions: 

(a) Establish a condition on 1µ , 2µ , 1σ  and 2σ  such that both rt
tX e−  and rt

tY e−  are 

martingales under the risk-neutral measure  . 

Commentary on Question: 

This part proved to be the most challenging.  Candidates who weren’t able to derive 
the desired condition received partial credit for correct steps.  

By product rule, we have 
𝑑𝑑(𝑋𝑋𝑡𝑡𝑒𝑒−𝑟𝑟𝑡𝑡) = 𝑋𝑋𝑡𝑡𝑒𝑒−𝑟𝑟𝑡𝑡((𝜇𝜇1 − 𝑁𝑁)𝑑𝑑𝜕𝜕 + 𝜎𝜎1𝑑𝑑𝑊𝑊𝑡𝑡) = 𝑋𝑋𝑡𝑡𝑒𝑒−𝑟𝑟𝑡𝑡𝜎𝜎1 �

𝜇𝜇1 − 𝑁𝑁
𝜎𝜎1

𝑑𝑑𝜕𝜕 + 𝑑𝑑𝑊𝑊𝑡𝑡� 

𝑑𝑑(𝑌𝑌𝑡𝑡𝑒𝑒−𝑟𝑟𝑡𝑡) = 𝑌𝑌𝑡𝑡𝑒𝑒−𝑟𝑟𝑡𝑡((𝜇𝜇2 − 𝑁𝑁)𝑑𝑑𝜕𝜕 + 𝜎𝜎2𝑑𝑑𝑊𝑊𝑡𝑡) = 𝑌𝑌𝑡𝑡𝑒𝑒−𝑟𝑟𝑡𝑡𝜎𝜎2 �
𝜇𝜇2 − 𝑁𝑁

𝜎𝜎2
𝑑𝑑𝜕𝜕 + 𝑑𝑑𝑊𝑊𝑡𝑡� 
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To make both 𝑋𝑋𝑡𝑡𝑒𝑒−𝑟𝑟𝑡𝑡 and 𝑌𝑌𝑡𝑡𝑒𝑒−𝑟𝑟𝑡𝑡 are martingales under the risk-neutral measure 𝑄𝑄, we need to define the 
following Wiener process under 𝑄𝑄 

𝑑𝑑𝑊𝑊𝑡𝑡
∗ =

𝜇𝜇1 − 𝑁𝑁
𝜎𝜎1

𝑑𝑑𝜕𝜕 + 𝑑𝑑𝑊𝑊𝑡𝑡 =
𝜇𝜇2 − 𝑁𝑁

𝜎𝜎2
𝑑𝑑𝜕𝜕 + 𝑑𝑑𝑊𝑊𝑡𝑡 

Hence we need 
𝜇𝜇1 − 𝑁𝑁

𝜎𝜎1
=

𝜇𝜇2 − 𝑁𝑁
𝜎𝜎2

 

(b) Derive the Radon-Nikodym derivative 
d
d



 by assuming that the condition in part (c) 

holds. 

Commentary on Question: 

Candidates did well on this part.  

Suppose the condition given in part (d) holds.  Let 
𝛼𝛼 =

𝜇𝜇1 − 𝑁𝑁
𝜎𝜎1

 

and  
𝑑𝑑𝑊𝑊𝑡𝑡

∗ = 𝛼𝛼𝑑𝑑𝜕𝜕 + 𝑑𝑑𝑊𝑊𝑡𝑡 
Then by the Girsanov theorem, we have 

𝑑𝑑𝑄𝑄
𝑑𝑑𝑃𝑃

= 𝜉𝜉𝑇𝑇 = 𝑒𝑒
−𝜇𝜇1−𝑟𝑟

𝜎𝜎1
𝑊𝑊𝑇𝑇−(𝜇𝜇1−𝑟𝑟)2

2𝜎𝜎1
2 𝑇𝑇

 

 

 

QFI QF Fall 2020 Question 3 
Learning outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

Source references: 

• Options, Futures, and Other Derivatives, Hull, John, 11th Edition, 2021, Chapter 14, 
page 327, 329 

Solution: 

(a) Show that for all 𝑖𝑖, 𝑗𝑗 = 0, 1, … , 𝑛𝑛 − 1 
 

(i) 𝐸𝐸 ��Δ𝑊𝑊𝑡𝑡𝑖𝑖�
4

� = 3ℎ2 using Ito’s lemma. 
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(ii) 𝐸𝐸 ��Δ𝑊𝑊𝑡𝑡𝑖𝑖�
2

�Δ𝑊𝑊𝑡𝑡𝑗𝑗�
2

� = ℎ2 if 𝑖𝑖 < 𝑗𝑗. 
 

Commentary on Question: 

Candidates performed as expected on part (a).  To receive full credit for part (a)(i), 
Ito’s Lemma must be used.  To receive full credit for part (a)(ii), independence must 
be clearly specified or implied. 

 

(i) 
 
From Ito’s lemma: 

d ��Wt − Wti�
4� = 4�Wt − Wti�

3dWt + 6�Wt − Wti�
2dt. 

 
Integrating over (ti, ti+1),we have: 

�Wti+1 − Wti�
4 = 4 � �Wt − Wti�

3dWt + 6 � �Wt − Wti�
2dt

ti+1

ti

ti+1

ti

 

It follows that: 

E ��ΔWti�
4� = 0 + 6 � E ��Wt − Wti�

2�  dt
ti+1

ti

= 6 � (t − ti)dt
ti+1

ti

 

= 3(ti+1 − ti)2 = 3h2 
(ii)  

 
Since ΔWtiand ΔWtjare independent when i < j 

E ��ΔWti�
2

�ΔWtj�
2

� = E ��ΔWti�
2

� E ��ΔWtj�
2

� = h2 

 

 

QFI QF Fall 2020 Question 7 
Learning Outcomes: 

f) Understand option pricing techniques 

j) Define and explain the concept of volatility smiles and describe several approaches 
for modeling smiles, including stochastic volatility, local- volatility, jump-diffusions 

Source References: 

• The Volatility Smile, Derman, Emanuel and Miller, Michael, 2016, Chapter 8, pages 
144-145, 163-164 
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• Options, Futures, and Other Derivatives, Hull, John, 11th Edition, 2021, Chapters 15, 
20, pages 352-353, 451 

Commentary on Question: 

This question was intended to measure candidates' understanding of equity derivative and 
volatility smile.  Most candidates well understood the volatility smile but showed a lack of 
knowledge of the practical equity derivative application. 

Solution: 

(a)  

(i) Explain volatility smiles.  
 

Commentary on Question: 

Most candidates performed well in part (a).  The purpose of part (a) was to measure 
the understanding of volatility smile. 

(i) When plot the market implied volatility vs the strike price or in-the-
moneyness of the options, we often observe implied volatility is non-
constant as function of strikes, with lower implied volatility near the at-the-
money (ATM) strike, and higher implied volatility for both lower and higher 
strikes. 

(b) Describe the most salient characteristics of the equity volatility smile. 
Commentary on Question: 

Candidates demonstrated modest understanding in part (b). 

• Its most notable character is the negative slope as a function of the strike. 
• The negative slope is generally steeper for short expiration. 
• Implied volatility and index returns are negatively correlated. 
• Equity smile is often a smirk than a smile – increase and decrease in implied 

volatility are often asymmetric. skew is partially due to an asymmetry in the 
way equity index movement: large negative returns are much more frequent 
than large positive returns. 

• There is also a demand component that contributes to smile, people are 
willing to pay additional premium for hedge of large movement. 

 

(c) Identify the trades of the replicating portfolio. 
Commentary on Question: 

Most candidates performed poorly in part (c).  Some candidates showed a lack of 
understanding of replicating portfolio construction. 
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By offering return of premium and a cap on T&T growth, the index annuity longs an 
at-the-money call and shorts an out-of-the-money call at 5 delta. 

Assume no lapse or redemption before renewal, to hedge this liability, company 
should buy an at-the-money call and sell an out-the-money call at 105%, at 
inception.  

(d) Calculate the price for the replicating portfolio and determine whether the budget is 
sufficient for the hedging, using the fitted implied volatility function IV(K) provided.  

Commentary on Question: 

The candidates who had a right approach in part (c) also performed well in part (d).  
However, many candidates made mistakes in calculation. 

𝐶𝐶(𝑆𝑆, 𝐾𝐾, 𝜕𝜕, 𝜎𝜎, 𝑁𝑁) = 𝑆𝑆𝑁𝑁(𝑑𝑑1) − 𝐾𝐾𝑒𝑒−𝑟𝑟𝑡𝑡𝑁𝑁(𝑑𝑑2) 

𝑑𝑑1,2 =
ln �𝑆𝑆

𝐾𝐾� + �𝑁𝑁 ± 𝜎𝜎2

2 � 𝜕𝜕

𝜎𝜎√𝜏𝜏
 

𝑁𝑁(𝑧𝑧) =
1

√2𝜋𝜋
� 𝑒𝑒−1

2𝑦𝑦2 𝑑𝑑𝑦𝑦
𝑧𝑧

−∞
 

For at-the-money call: S=100, K=100, r =3%, d=0%, t=1, σ=15% + (100-100) 
*1.4%=15% 

Plug into formula above, C(100) = 7.49  

For Out-of-money call: S=100, K=105, r =3%, d=0%, t=1; σ=15% + (105-100) 
*1.4%=22%  

Plug into formula above, C(105) = 7.93  

The hedge portfolio price = 7.49 – 7.93 = -0.44 < 0.5  

Yes, the budget is sufficient 

(e) Explain the reasonableness of the implied volatility function IV(K) in the context of 
smile arbitrage. 

Commentary on Question: 

Most candidates performed poorly in part (e).  Most candidates didn't approach the 
question from the arbitrage-free perspective. 
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When a portfolio of options with non-negative (non-positive) payoff actually has a 
negative (positive) market price while using the volatility smile, the volatility smile is 
considered not arbitrage-free.  

Since we are long an at-the-money call (paying $5.80) and short an out-the-money 
call (receiving $6.50), we are receiving $0.7 by constructing this portfolio, while the 
portfolio will have a non-negative payoff (call spread).  

Therefore, arbitrage exists, due to unreasonable volatility smile.  

(f)  

(i) Identify types of market conditions that would negatively affect the ability to 
manage the product with the added guarantee. 

(ii) Suggest a modeling approach to better measure the risk. 

 

(i) The embedded option in this index annuity is basically a call spread (long 
ATM call + short OTM call), with the new product design feature, the price of 
the portfolio is 0.5 = ATM call – OTM call, where we could back out the OTM 
call strike, however which is floored at 3%.  
 
The possible challenge of such product design is budget is not enough to 
offer a cap of at least 3%, then the product has to be offered at a loss or 
below the expected profit level.  
 

(ii) It is important for the pricing actuaries to understand the market condition 
where such risk exists. 

 

This could be achieved by model the market condition: interest rate, equity 
level, equity volatility stochastically, especially equity volatility smile, as it 
drives the difference between ATM call and OTM call. 

With, stochastically volatility models, volatility can change through time, are 
a function of time, index level, strike level. 

Pros: automatically create a volatility smile – is appropriate for pricing exotic 
option, it could also match the term structure of the volatility. 

Cons: cannot replicate European options, only can approximate.  The 
calibration can be unstable, resulting in jumps in mark-to-market Profit/Loss; 
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can be calibrated using vanilla option or exotic option, but not both at the 
same time. 

 

 

QFI QF Fall 2020 Question 8 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives 

e) Understand and apply the concepts of risk-neutral measure, forward measure, 
normalization, and the market price of risk 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John, 11th Edition, 2021, Chapter 31, 
pages 721-724 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 132-137 

Solution: 

(a) Explain why interest rates are always positive in this model. 

Commentary on Question: 

Candidates generally answered this question okay.  The most common error or 
omitted portion were not commenting on the technical condition was true to ensure 
the drift term cannot force it negative. 

When the interest rate 𝑁𝑁𝑡𝑡 is moving toward zero, the diffusion part �𝛼𝛼𝑁𝑁𝑡𝑡 declines, and it 
becomes in fact zero when 𝑁𝑁𝑡𝑡 hits zero.  

When 𝑁𝑁𝑡𝑡 = 0, the only term left is 𝑑𝑑𝑁𝑁𝑡𝑡 = 𝛾𝛾(�̅�𝑁)>0. Thus, the next step will be for sure that 
𝑁𝑁𝑡𝑡 increases (because the change 𝑑𝑑𝑁𝑁𝑡𝑡 > 0).  

One important caveat is that to ensure the interest rate process is always positive (and well 

defined), we must have the following technical condition satisfied: 𝛾𝛾�̅�𝑁 > 1
2

𝛼𝛼 

That is, the term that “pulls up” the interest rate when 𝑁𝑁𝑡𝑡 hits zero, “ 𝛾𝛾�̅�𝑁,” must be large 
enough. 

(b) Show that 0 0
(1 )

tt t t s
t s sr e r r e ae e r dXγ γ γ γ− − −= + − + ∫ . 
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Commentary on Question: 

Candidates performed well on this question.  Clearer answers were those that 
stated they were using Ito’s lemma and mentioned integrating both sides. 

Using the Ito`s lemma on 𝑍𝑍𝑡𝑡 = 𝑒𝑒𝛾𝛾𝑡𝑡𝑁𝑁, we have 

𝑑𝑑(𝑒𝑒𝛾𝛾𝑡𝑡𝑁𝑁𝑡𝑡) =
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑒𝑒𝛾𝛾𝑡𝑡𝑁𝑁𝑡𝑡)𝑑𝑑𝜕𝜕 +
𝜕𝜕

𝜕𝜕𝑁𝑁
(𝑒𝑒𝛾𝛾𝑡𝑡𝑁𝑁)|𝑟𝑟=𝑟𝑟𝑡𝑡𝑑𝑑𝑁𝑁𝑡𝑡 +

1
2

𝜕𝜕2

𝜕𝜕𝑁𝑁2 (𝑒𝑒𝛾𝛾𝑡𝑡𝑁𝑁)|𝑟𝑟=𝑟𝑟𝑡𝑡   (𝑑𝑑𝑁𝑁𝑡𝑡)2 

=  𝛾𝛾𝑒𝑒𝛾𝛾𝑡𝑡𝑁𝑁𝑡𝑡𝑑𝑑𝜕𝜕 + 𝑒𝑒𝛾𝛾𝑡𝑡[(𝛾𝛾(𝑁𝑁̅ − 𝑁𝑁𝑡𝑡)𝑑𝑑𝜕𝜕 + �𝛼𝛼𝑁𝑁𝑡𝑡𝑑𝑑𝑋𝑋𝑡𝑡] 

=𝛾𝛾(�̅�𝑁)𝑒𝑒𝛾𝛾𝑡𝑡 𝑑𝑑𝜕𝜕 + 𝑒𝑒𝛾𝛾𝑡𝑡�𝛼𝛼𝑁𝑁𝑡𝑡𝑑𝑑𝑋𝑋𝑡𝑡 

Integrating the above expressions on both sides from 0 to t 

� 𝑑𝑑(𝑒𝑒𝛾𝛾𝑠𝑠𝑁𝑁𝑠𝑠) =
𝑡𝑡

0
� 𝛾𝛾(�̅�𝑁)𝑒𝑒𝛾𝛾𝑠𝑠 𝑑𝑑𝑠𝑠

𝑡𝑡

0
+ � 𝑒𝑒𝛾𝛾𝑠𝑠�𝛼𝛼𝑁𝑁𝑠𝑠𝑑𝑑𝑋𝑋𝑠𝑠

𝑡𝑡

0
 

𝑁𝑁𝑡𝑡 = 𝑒𝑒−𝛾𝛾𝑡𝑡𝑁𝑁0 + 𝑁𝑁(̅1 − 𝑒𝑒−𝛾𝛾𝑡𝑡) + √𝛼𝛼 𝑒𝑒−𝛾𝛾𝑡𝑡 � 𝑒𝑒𝛾𝛾𝑠𝑠
𝑡𝑡

0
�𝑁𝑁𝑠𝑠 𝑑𝑑𝑋𝑋𝑠𝑠 

 

(c) Determine [ ]tE r  and [ ]tVar r . 

Commentary on Question: 

Candidates performed okay on this part of the question.  Most had no issue with the 
Expectation and the beginning of the Variance including the relation with Ito’s 
Isometry.  Most struggled with substituting back in the E[t] to push to the final 
equation. 

𝐸𝐸[𝑁𝑁𝑡𝑡] = 𝑒𝑒−𝛾𝛾𝑡𝑡𝑁𝑁0 + 𝑁𝑁(̅1 − 𝑒𝑒−𝛾𝛾𝑡𝑡) + 𝐸𝐸[√𝛼𝛼 𝑒𝑒−𝛾𝛾𝑡𝑡 � 𝑒𝑒𝛾𝛾𝑠𝑠
𝑡𝑡

0
�𝑁𝑁𝑠𝑠 𝑑𝑑𝑋𝑋𝑠𝑠] 

𝐸𝐸[𝑁𝑁𝑡𝑡] = 𝑒𝑒−𝛾𝛾𝑡𝑡𝑁𝑁0 + 𝑁𝑁(̅1 − 𝑒𝑒−𝛾𝛾𝑡𝑡) as 𝐸𝐸[√𝛼𝛼 𝑒𝑒−𝛾𝛾𝑡𝑡 ∫ 𝑒𝑒𝛾𝛾𝑠𝑠𝑡𝑡
0 �𝑁𝑁𝑠𝑠 𝑑𝑑𝑋𝑋𝑠𝑠] = 0 

𝑉𝑉𝑁𝑁𝑁𝑁[𝑁𝑁𝑡𝑡] = 𝐸𝐸[𝑁𝑁𝑡𝑡 − 𝐸𝐸(𝑁𝑁𝑡𝑡)]2 = 𝛼𝛼 𝑒𝑒−2𝛾𝛾𝑡𝑡𝐸𝐸[�� 𝑒𝑒𝛾𝛾𝑠𝑠
𝑡𝑡

0
�𝑁𝑁𝑠𝑠 𝑑𝑑𝑋𝑋𝑠𝑠�

2

] 

using Ito’s Isometry 

=  𝛼𝛼 𝑒𝑒−2𝛾𝛾𝑡𝑡 ∫ 𝑒𝑒2𝛾𝛾𝑠𝑠𝑡𝑡
0 𝐸𝐸[𝑁𝑁𝑠𝑠]𝑑𝑑𝑠𝑠  

Substituting 𝐸𝐸[𝑁𝑁𝑡𝑡] gives: 



19 
 

𝛼𝛼 𝑒𝑒−2𝛾𝛾𝑡𝑡 ∫ 𝑒𝑒2𝛾𝛾𝑠𝑠𝑡𝑡
0 [𝑒𝑒−𝛾𝛾𝑠𝑠𝑁𝑁0 + 𝑁𝑁(̅1 − 𝑒𝑒−𝛾𝛾𝑠𝑠)] 𝑑𝑑𝑠𝑠 = (𝛼𝛼 �̅�𝑁) 1

2𝛾𝛾
(1 − 𝑒𝑒−2𝛾𝛾𝑡𝑡 − 2𝑒𝑒−𝛾𝛾𝑡𝑡 + 2𝑒𝑒−2𝛾𝛾𝑡𝑡) + 𝛼𝛼

𝛾𝛾
𝑁𝑁0𝑒𝑒−2𝛾𝛾𝑡𝑡(𝑒𝑒𝛾𝛾𝑡𝑡 −

1)or 

𝛼𝛼�̅�𝑁
2𝛾𝛾

(1 − 𝑒𝑒−𝛾𝛾𝑡𝑡)2 +
𝛼𝛼
𝛾𝛾

 𝑁𝑁0𝑒𝑒−𝛾𝛾𝑡𝑡(1 − 𝑒𝑒−𝛾𝛾𝑡𝑡) 

(d) Express 
Z
t

∂
∂

, 
Z
r

∂
∂

 and 
2

2

Z
r

∂
∂

 in terms of ( , , )tZ r t T , ( , )A t T  and ( , )B t T . 

Commentary on Question: 

Candidates performed well on this section.  Most common mistake was with the 𝜕𝜕𝑍𝑍
𝜕𝜕𝑡𝑡

 

term either including an incorrect extra term or omitting the r term on 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

 component. 

𝑍𝑍(𝑁𝑁, 𝜕𝜕, 𝑇𝑇) = 𝑒𝑒𝐴𝐴(𝑡𝑡,𝑇𝑇)−𝜕𝜕(𝑡𝑡,𝑇𝑇)𝑟𝑟 

𝜕𝜕𝑍𝑍
𝜕𝜕𝜕𝜕

= �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑁𝑁� 𝑍𝑍(𝑁𝑁, 𝜕𝜕, 𝑇𝑇) 

𝜕𝜕𝑍𝑍
𝜕𝜕𝑁𝑁

=  −𝜕𝜕(𝜕𝜕, 𝑇𝑇) 𝑍𝑍(𝑁𝑁, 𝜕𝜕, 𝑇𝑇) 

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑁𝑁2 =  𝜕𝜕2(𝜕𝜕, 𝑇𝑇) 𝑍𝑍(𝑁𝑁, 𝜕𝜕, 𝑇𝑇) 

(f) Show that 

(i) ( , )A rB t T
t

γ∂
=

∂
 

(ii) 21( , ) ( , ) 1
2

B B t T aB t T
t

γ∂
= + −

∂
 

 

Commentary on Question: 

Candidates performed poorly on this question.  A good portion of the candidate did 
not attempt this part of the question.  An alternate solution was also accepted using 
given formulas and is present below. 

Primary Solution: 

Plugging the results of part (e) to the fundamental pricing equation 

𝜕𝜕𝑍𝑍
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑍𝑍
𝜕𝜕𝑁𝑁

𝛾𝛾(�̅�𝑁 − 𝑁𝑁) +
1
2

𝜕𝜕2𝑍𝑍
𝜕𝜕𝑁𝑁2 𝑁𝑁𝛼𝛼 = 𝑁𝑁𝑍𝑍 

we have 
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�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑁𝑁� 𝑍𝑍 − 𝜕𝜕𝑍𝑍 𝛾𝛾(�̅�𝑁 − 𝑁𝑁) +
1
2

𝜕𝜕2𝑍𝑍 𝑁𝑁𝛼𝛼 =  𝑁𝑁𝑍𝑍 

It follows that 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑁𝑁� − 𝜕𝜕(𝜕𝜕, 𝑇𝑇) 𝛾𝛾(�̅�𝑁 − 𝑁𝑁) +
1
2

𝜕𝜕2(𝜕𝜕, 𝑇𝑇)𝑁𝑁𝛼𝛼 = 𝑁𝑁 

Rearranging the terms 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝜕𝜕(𝜕𝜕, 𝑇𝑇) 𝛾𝛾(�̅�𝑁)� − �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝜕𝜕(𝜕𝜕, 𝑇𝑇) 𝛾𝛾 −
1
2

𝜕𝜕2(𝜕𝜕, 𝑇𝑇)𝛼𝛼 + 1� 𝑁𝑁 = 0 

In order to have the above expression =0 for all t and r 

𝜕𝜕𝐴𝐴
𝜕𝜕𝑡𝑡

− 𝜕𝜕(𝜕𝜕, 𝑇𝑇) 𝛾𝛾(�̅�𝑁) = 0  This implies  𝜕𝜕𝐴𝐴
𝜕𝜕𝑡𝑡

= 𝜕𝜕(𝜕𝜕, 𝑇𝑇) 𝛾𝛾(�̅�𝑁) 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝜕𝜕(𝜕𝜕, 𝑇𝑇) 𝛾𝛾 −
1
2

𝜕𝜕2(𝜕𝜕, 𝑇𝑇)𝛼𝛼 + 1� = 0 

This implies 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛾𝛾𝜕𝜕(𝜕𝜕, 𝑇𝑇)  +
1
2

𝛼𝛼𝜕𝜕2(𝜕𝜕, 𝑇𝑇) − 1 

 

QFI QF Fall 2020 Question 12 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives 

e) Understand and apply the concepts of risk-neutral measure, forward measure, 
normalization, and the market price of risk 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John, 11th Edition, 2021, Chapters 14, 
28, pages 327, 675 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 97-98, 221-227 

Commentary on Question: 

This question is to test candidates on how to apply Ito’s Lemma and the concept of 
Martingale. 

Solution: 

(a) Show, using Ito’s Lemma, that  
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



2( ) ( )Z V Z V Z t
dV dt dX
V

σ σ σ σ σ= − + −  

Commentary on Question: 

Overall, candidates did well on this part.  Alternative approaches such as using 
product rule, quotient rule, etc. were also awarded full marks provided derivation 
was done correctly. 

From Ito’s lemma it’s straightfoward to have 

𝑑𝑑(ln𝑉𝑉) = �𝑁𝑁 −
𝜎𝜎𝑉𝑉

2

2
� 𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑉𝑉𝑑𝑑𝑋𝑋𝜕𝜕 

𝑑𝑑(ln𝑍𝑍) = �𝑁𝑁 −
𝜎𝜎𝑍𝑍

2

2
� 𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑍𝑍𝑑𝑑𝑋𝑋𝜕𝜕 

It follows that  

𝑑𝑑�ln𝑉𝑉�� = 𝑑𝑑(ln𝑉𝑉) − 𝑑𝑑(ln𝑍𝑍) = �
𝜎𝜎𝑍𝑍

2

2
−

𝜎𝜎𝑉𝑉
2

2
� 𝑑𝑑𝜕𝜕 + (𝜎𝜎𝑉𝑉 − 𝜎𝜎𝑍𝑍)𝑑𝑑𝑋𝑋𝜕𝜕 

 

In turn, from Ito’s lemma it’s straightfoward to have 

𝑑𝑑𝑉𝑉�

𝑉𝑉�
= ��

𝜎𝜎𝑍𝑍
2

2
−

𝜎𝜎𝑉𝑉
2

2 � +
(𝜎𝜎𝑉𝑉 − 𝜎𝜎𝑍𝑍)2

2
� 𝑑𝑑𝜕𝜕 + (𝜎𝜎𝑉𝑉 − 𝜎𝜎𝑍𝑍)𝑑𝑑𝑋𝑋𝑡𝑡 

= (𝜎𝜎𝑍𝑍
2 − 𝜎𝜎𝑉𝑉𝜎𝜎𝑍𝑍)𝑑𝑑𝜕𝜕 + (𝜎𝜎𝑉𝑉 − 𝜎𝜎𝑍𝑍)𝑑𝑑𝑋𝑋𝑡𝑡 

(b) Show that V  is a martingale under Z  using: 

(i) the result in part (a); 
 

(ii) the Feynman-Kac theorem. 
 

Commentary on Question: 

Candidates did well on part (b)(i).  However, very few candidates were able to apply 
Feynman-Kac theorem correctly.  Partial marks were awarded for stating the 
theorem and identifying R(r)=0. 

(i) By differntiating  𝑋𝑋�𝑡𝑡 = 𝑋𝑋𝑡𝑡 − ∫ 𝜎𝜎𝑍𝑍(𝑁𝑁, 𝑢𝑢)𝑑𝑑𝑢𝑢t
0  
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𝑑𝑑𝑋𝑋� 𝑡𝑡 = 𝑑𝑑𝑋𝑋𝑡𝑡 − 𝜎𝜎𝑍𝑍(𝑁𝑁, 𝜕𝜕)𝑑𝑑𝜕𝜕, 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑑𝑑𝑋𝑋� 𝑡𝑡 + 𝜎𝜎𝑍𝑍(𝑁𝑁, 𝜕𝜕)𝑑𝑑𝜕𝜕 

plugging it in the 𝑑𝑑𝑋𝑋𝑡𝑡 of result of (a) yields the driftless martingale. 

𝑑𝑑𝑉𝑉�

𝑉𝑉�
= (𝜎𝜎𝑍𝑍

2 − 𝜎𝜎𝑉𝑉𝜎𝜎𝑍𝑍)𝑑𝑑𝜕𝜕 + (𝜎𝜎𝑉𝑉 − 𝜎𝜎𝑍𝑍)𝑑𝑑𝑋𝑋𝑡𝑡 

= (𝜎𝜎𝑉𝑉 − 𝜎𝜎𝑍𝑍)𝑑𝑑𝑋𝑋� 𝑡𝑡 

(ii) From the Feynman-Kac theorem, it implies 𝑅𝑅 = 0 in the following equation 

𝑅𝑅(𝑁𝑁)𝑉𝑉� = 0 =  
𝜕𝜕𝑉𝑉�
𝜕𝜕𝜕𝜕

  +  
𝜕𝜕𝑉𝑉�
𝜕𝜕𝑁𝑁

 (𝑁𝑁∗(𝑁𝑁, 𝜕𝜕)  +  𝜎𝜎𝑍𝑍 (𝑁𝑁, 𝜕𝜕) 𝑠𝑠(𝑁𝑁, 𝜕𝜕))  +  
1
2

 
𝜕𝜕2𝑉𝑉�  
𝜕𝜕𝑁𝑁2  𝑠𝑠(𝑁𝑁, 𝜕𝜕) 2 

Hence 

𝑉𝑉� (𝑁𝑁, 𝜕𝜕;  𝑇𝑇) = 𝐸𝐸𝑓𝑓
∗ �𝑒𝑒− ∫ 𝑅𝑅(𝑢𝑢)𝑑𝑑𝑢𝑢  𝑇𝑇

𝑡𝑡  𝑉𝑉�(𝑁𝑁, 𝑇𝑇; 𝑇𝑇)|𝑁𝑁𝑡𝑡� = 𝐸𝐸𝑓𝑓  ∗�𝑉𝑉� (𝑁𝑁, 𝑇𝑇; 𝑇𝑇)|𝑁𝑁𝑡𝑡�, 

which is a martingale. 

(c) Derive expressions for zσ  and vσ  in terms of ( , )s r t , V , and Z . 

Commentary on Question: 

Candidates did very poorly on this part.  

By the Ito’s lemma and the Fundamental Pricing equation,  

𝑑𝑑𝑉𝑉 =  �
𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑉𝑉
𝜕𝜕𝑁𝑁

𝑁𝑁∗(𝑁𝑁, 𝜕𝜕)  + 
1
2

 
𝜕𝜕2𝑉𝑉�  
𝜕𝜕𝑁𝑁2  𝑠𝑠(𝑁𝑁, 𝜕𝜕)2� 𝑑𝑑𝜕𝜕 +

𝜕𝜕𝑉𝑉
𝜕𝜕𝑁𝑁

𝑠𝑠(𝑁𝑁, 𝜕𝜕)𝑑𝑑𝑋𝑋𝑡𝑡 

= 𝑁𝑁𝑉𝑉𝑑𝑑𝜕𝜕 +
𝜕𝜕𝑉𝑉
𝜕𝜕𝑁𝑁

𝑠𝑠(𝑁𝑁, 𝜕𝜕)𝑑𝑑𝑋𝑋𝑡𝑡 

= 𝑁𝑁𝑉𝑉𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑉𝑉𝑉𝑉𝑑𝑑𝑋𝑋𝑡𝑡 

with 

𝜎𝜎𝑉𝑉 =
1
𝑉𝑉

�
𝜕𝜕𝑉𝑉
𝜕𝜕𝑁𝑁

� 𝑠𝑠(𝑁𝑁, 𝜕𝜕). 

For other security 𝑍𝑍(𝑁𝑁, 𝜕𝜕), 

𝑑𝑑𝑍𝑍 =  �
𝜕𝜕𝑍𝑍
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑍𝑍
𝜕𝜕𝑁𝑁

𝑁𝑁∗(𝑁𝑁, 𝜕𝜕)  + 
1
2

 
𝜕𝜕2𝑍𝑍 
𝜕𝜕𝑁𝑁2  𝑠𝑠(𝑁𝑁, 𝜕𝜕)2� 𝑑𝑑𝜕𝜕 +

𝜕𝜕𝑍𝑍
𝜕𝜕𝑁𝑁

𝑠𝑠(𝑁𝑁, 𝜕𝜕)𝑑𝑑𝑋𝑋𝑡𝑡 

= 𝑁𝑁𝑍𝑍𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑍𝑍𝑍𝑍𝑑𝑑𝑋𝑋𝑡𝑡 

with 
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𝜎𝜎𝑍𝑍 =
1
𝑍𝑍

�
𝜕𝜕𝑍𝑍
𝜕𝜕𝑁𝑁

� 𝑠𝑠(𝑁𝑁, 𝜕𝜕). 

 

 

QFI QF Spring 2021 Question 1 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapters 
14, 28, pages 329, 671-675   

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 72-73, 221-227 

Commentary on Question: 

The focus of this question is understanding the differences and implications of real-world 
versus risk-neutral probability measures by applying Ito’s lemma, Girsanov’s theorem, and 
the Radon-Nikodym (“R-N”) derivative.  Candidates struggled to show this understanding, 
especially for parts (c) and (d).  Detailed commentaries are listed underneath each part. 
 
Solution: 

(a) Determine the market price of risk for all  

Commentary on Question: 

There is a typo in the question, where the “S” is missing in the process of dSt when 
0 ≤ t ≤ 0.5.  The correct process should be dSt = 0.05Stdt + 0.2StdWt. But most 
candidates identified the typo. Overall, most candidates were able to calculate the 
correct market price of risk.  Credits were also given to the answers using the wrong 
process as stated in the question. 

 

The market price of risk is defined as 

𝜆𝜆𝑡𝑡 =
𝜇𝜇𝑡𝑡 − 𝑁𝑁𝑡𝑡

𝜎𝜎𝑡𝑡
 

1.t ≤
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where 𝜇𝜇𝑡𝑡 is the stock price drift rate, 𝑁𝑁𝑡𝑡 is the risk-free rate, and 𝜎𝜎𝑡𝑡  is the stock price 
volatility.  By plugging in the numbers, we get 

𝜆𝜆𝑡𝑡 = �

0.05 − 0.01
0.2

= 0.2 𝑖𝑖𝑓𝑓 0 ≤ 𝜕𝜕 ≤ 0.5

−0.05 − 0.01
0.3

= −0.2 𝑖𝑖𝑓𝑓 0.5 < 𝜕𝜕 ≤ 1
 

(b) Calculate . 

Commentary on Question: 

Candidates were able to apply Ito’s Lemma to get dlnSt and to express St in terms of 
S0.5.  But they had difficulties calculating the expected value.  Some candidates also 
demonstrated that they did not understand S0.5 is a known quantity and can be treated 
as constant in the expectation. 

For 0.5 < 𝜕𝜕 ≤ 1, we apply Ito’s lemma and get 

𝑑𝑑𝑁𝑁𝑛𝑛𝑆𝑆𝑡𝑡 = �𝜇𝜇𝑡𝑡 −  
𝜎𝜎𝑡𝑡

2

2
� 𝑑𝑑𝜕𝜕 +  𝜎𝜎𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡 =  −0.095 𝑑𝑑𝜕𝜕 + 0.3𝑑𝑑𝑊𝑊𝑡𝑡  

which gives 

ln𝑆𝑆𝑡𝑡 − ln𝑆𝑆0.5 = −0.095(𝜕𝜕 − 0.5) + 0.3(𝑊𝑊𝑡𝑡 − 𝑊𝑊0.5) 

or 

𝑆𝑆𝑡𝑡 = 𝑆𝑆0.5𝑒𝑒−0.095(𝑡𝑡−0.5)+0.3(𝑊𝑊𝑡𝑡−𝑊𝑊0.5) 

Hence 

𝐸𝐸𝑃𝑃[𝑆𝑆𝑡𝑡|𝑆𝑆0.5] = 𝑆𝑆0.5𝐸𝐸𝑃𝑃[𝑒𝑒−0.095(𝑡𝑡−0.5)+0.3(𝑊𝑊𝑡𝑡−𝑊𝑊0.5)] = 𝑆𝑆0.5𝑒𝑒−0.095(𝑡𝑡−0.5)+0.045(𝑡𝑡−0.5) 

which leads to 𝐸𝐸𝑃𝑃[𝑆𝑆1|𝑆𝑆0.5] = 𝑆𝑆0.5𝑒𝑒−0.025. 

(c) Derive the Radon-Nikodym derivative of the risk-neutral measure ℚ with respect to 
the real-world measure ℙ. 

Commentary on Question: 

Candidates performed poorly on this question.  One source for this question (Chin et 
al) has many typos related to the Radon-Nikodym derivative. (page 222-223, 225, 239, 
240).  Whereas the other source - page 194-196, 203, 205, 218, 219 and 234 of (Chin 
el al) have the correct Radon-Nikodym derivatives.  Credit was given to answers using 
the wrong R-N derivative as stated in the incorrect source. 

1 0.5E S S  

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For candidates that provided a general form of the R-N derivative, a common mistake 
made was to use λt with the incorrect sign on the first integral component.  

Most candidates were not able to derive the correct derivative when 0.5 < 𝜕𝜕 ≤ 1. 

Solution 1 – Based on the correct R-N derivative form from the source page 218. 

The Radon-Nikodym derivative is calculated as 

𝑍𝑍𝑠𝑠 = 𝑒𝑒− ∫ 𝜆𝜆𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡−1
2 ∫ 𝜆𝜆𝑡𝑡

2𝑑𝑑𝑡𝑡𝑠𝑠
0

𝑠𝑠
0  

where 𝜆𝜆𝑡𝑡 is the market price of risk as 𝜆𝜆𝑡𝑡 = 𝜇𝜇𝑡𝑡−𝑟𝑟𝑡𝑡
𝜎𝜎𝑡𝑡

, we get 

𝜆𝜆𝑡𝑡 = � 0.2 , 0 ≤ 𝜕𝜕 ≤ 0.5
−0.2, 0.5 < 𝜕𝜕 ≤ 1 

Plugging in the numbers, we get 

� 𝜆𝜆𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡

𝑠𝑠

0
= �

0.2𝑊𝑊𝑠𝑠 𝑖𝑖𝑓𝑓 0 ≤ 𝑠𝑠 ≤ 0.5
−0.2(𝑊𝑊𝑠𝑠 − 2𝑊𝑊0.5) 𝑖𝑖𝑓𝑓 0.5 < 𝑠𝑠 ≤ 1 

and 

� 𝜆𝜆𝑡𝑡
2𝑑𝑑𝜕𝜕

𝑠𝑠

0
= 0.04𝑠𝑠 

Hence 

𝑍𝑍𝑠𝑠 = �
𝑒𝑒−0.2𝑊𝑊𝑠𝑠−0.02𝑠𝑠 𝑖𝑖𝑓𝑓 0 ≤ 𝑠𝑠 ≤ 0.5

𝑒𝑒0.2(𝑊𝑊𝑠𝑠−2𝑊𝑊0.5)−0.02𝑠𝑠 𝑖𝑖𝑓𝑓 0.5 < 𝑠𝑠 ≤ 1
. 

Or 

The Radon-Nikodym derivative is calculated as 

𝑍𝑍𝑠𝑠 = 𝑒𝑒∫ 𝑋𝑋𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡−1
2 ∫ 𝑋𝑋𝑡𝑡

2𝑑𝑑𝑡𝑡𝑠𝑠
0

𝑠𝑠
0  

 

where  𝑋𝑋𝑡𝑡 = −𝜆𝜆𝑡𝑡 = 𝑟𝑟𝑡𝑡−𝜇𝜇𝑡𝑡
𝜎𝜎𝑡𝑡

, we get 

𝑋𝑋𝑡𝑡 = �−0.2, 0 ≤ 𝜕𝜕 ≤ 0.5
0.2, 0.5 < 𝜕𝜕 ≤ 1 

Plugging in the numbers, we get 

� 𝑋𝑋𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡

𝑠𝑠

0
= �

−0.2𝑊𝑊𝑠𝑠 𝑖𝑖𝑓𝑓 0 ≤ 𝑠𝑠 ≤ 0.5
0.2(𝑊𝑊𝑠𝑠 − 2𝑊𝑊0.5) 𝑖𝑖𝑓𝑓 0.5 < 𝑠𝑠 ≤ 1 
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and 

� 𝑋𝑋𝑡𝑡
2𝑑𝑑𝑊𝑊𝑡𝑡

𝑠𝑠

0
= 0.04𝑠𝑠 

Hence 

𝑍𝑍𝑠𝑠 = �
𝑒𝑒−0.2𝑊𝑊𝑠𝑠−0.02𝑠𝑠 𝑖𝑖𝑓𝑓 0 ≤ 𝑠𝑠 ≤ 0.5

𝑒𝑒0.2(𝑊𝑊𝑠𝑠−2𝑊𝑊0.5)−0.02𝑠𝑠 𝑖𝑖𝑓𝑓 0.5 < 𝑠𝑠 ≤ 1
 

 

(d) Show that  is a ℚ-martingale. 

Commentary on Question: 

Candidates had the most difficulty with this part.  Many were able to prove the no drift 
condition, but failed to mention Girsanov’s theorem or the R-N derivative as 
justification for the substitution of a different standard Wiener process under an 
equivalent measure.  A complete response should demonstrate and justify the 
relationship between the two Wiener processes. 

For ease of presentation, we use 𝑁𝑁𝑡𝑡, 𝜇𝜇𝑡𝑡, and 𝜎𝜎𝑡𝑡  to denote the risk-free rate, the drift rate of 

the stock price, and the volatility of the stock price. Let 𝑌𝑌𝑡𝑡 = 𝑆𝑆𝑡𝑡𝑒𝑒− ∫ 𝑟𝑟𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡
0 . 

Applying Ito’s lemma on 𝑌𝑌𝑡𝑡 and using the fact that  

𝑑𝑑𝑆𝑆𝑡𝑡 = 𝜇𝜇𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡  

we obtain  

𝑑𝑑𝑌𝑌𝑡𝑡 = 𝑒𝑒− ∫ 𝑟𝑟𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡
0 𝑑𝑑𝑆𝑆𝑡𝑡 − 𝑁𝑁𝑡𝑡𝑌𝑌𝑡𝑡𝑑𝑑𝜕𝜕   = 𝑒𝑒− ∫ 𝑟𝑟𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡

0 (𝜇𝜇𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡) − 𝑁𝑁𝑡𝑡𝑆𝑆𝑡𝑡𝑒𝑒− ∫ 𝑟𝑟𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡
0 𝑑𝑑𝜕𝜕

= 𝑒𝑒− ∫ 𝑟𝑟𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡
0 (𝜇𝜇𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝜕𝜕 − 𝑁𝑁𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡) 

=  𝜎𝜎𝑡𝑡𝑆𝑆𝑡𝑡𝑒𝑒− ∫ 𝑟𝑟𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡
0 �𝑑𝑑𝑊𝑊𝑡𝑡 +

𝜇𝜇𝑡𝑡 − 𝑁𝑁𝑡𝑡

𝜎𝜎𝑡𝑡
𝑑𝑑𝜕𝜕� 

Now let 

𝑊𝑊�𝑡𝑡 = 𝑊𝑊𝑡𝑡 + �
𝜇𝜇𝑢𝑢 − 𝑁𝑁𝑢𝑢

𝜎𝜎𝑢𝑢

𝑡𝑡

0
𝑑𝑑𝑢𝑢 

By Girsanov’s theorem, there exists an equivalent measure defined by the R-N derivative, 
so that 𝑊𝑊�𝑡𝑡 is a standard Wiener process on the same filtration. 

We then have 

{ }0.01 : 0 1t
tS e t− ≤ ≤
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𝑑𝑑𝑌𝑌𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑆𝑆𝑡𝑡𝑒𝑒− ∫ 𝑟𝑟𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡
0 𝑑𝑑𝑊𝑊�𝑢𝑢 

Since 𝑑𝑑𝑌𝑌𝑡𝑡 does not have the 𝑑𝑑𝜕𝜕 term, 𝑌𝑌𝑡𝑡 is a martingale under the risk-neutral measure ℚ. 

 

 

QFI QF Spring 2021 Question 2 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapters 
14, 28, pages 327, 675 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 128-130 

Solution: 

(a) Evaluate tVar W  


. 

Commentary on Question: 

Most candidates failed to work out the integrals. 

𝐸𝐸ℙ[|𝑊𝑊𝑡𝑡|] = ∫ |𝑤𝑤| 1
√2𝜋𝜋𝑡𝑡

𝑒𝑒−𝑤𝑤2

2𝑡𝑡 𝑑𝑑𝑤𝑤∞
−∞   

𝐸𝐸ℙ[|𝑊𝑊𝑡𝑡|]= 2 ∫ |𝑤𝑤| 1
√2𝜋𝜋𝑡𝑡

𝑒𝑒−𝑤𝑤2

2𝑡𝑡 𝑑𝑑𝑤𝑤∞
0  

𝐸𝐸ℙ[|𝑊𝑊𝑡𝑡|] = −2 �
𝑑𝑑

𝑑𝑑𝑤𝑤 �
√𝜕𝜕

√2𝜋𝜋
𝑒𝑒−𝑤𝑤2

2𝑡𝑡 � 𝑑𝑑𝑤𝑤 = 2
√𝜕𝜕

√2𝜋𝜋
=

∞

0

�2𝜕𝜕
𝜋𝜋

 

𝑉𝑉𝑁𝑁𝑁𝑁ℙ[|𝑊𝑊𝑡𝑡|] = 𝐸𝐸ℙ[|𝑊𝑊𝑡𝑡|2] − 𝐸𝐸ℙ[|𝑊𝑊𝑡𝑡|]2 (de�inition of variance) 

𝑉𝑉𝑁𝑁𝑁𝑁ℙ[|𝑊𝑊𝑡𝑡|] = 𝐸𝐸ℙ[𝑊𝑊𝑡𝑡
2] − 𝐸𝐸ℙ[|𝑊𝑊𝑡𝑡|]2  (𝑁𝑁𝑠𝑠 𝐸𝐸ℙ[|𝑊𝑊𝑡𝑡|2] =   𝐸𝐸ℙ[𝑊𝑊𝑡𝑡

2]) 

𝑉𝑉𝑁𝑁𝑁𝑁ℙ[|𝑊𝑊𝑡𝑡|] = t – 2t/ 𝜋𝜋 

(b) Determine integer k that makes k
tW  a martingale. 

Commentary on Question: 
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Most of the candidates got this part right.  Some did not provide the k = 0 solution.  

By Ito’s Lemma, 𝑑𝑑𝑊𝑊𝑡𝑡
𝑘𝑘 = 𝑘𝑘𝑊𝑊𝑡𝑡

𝑘𝑘−1𝑑𝑑𝑊𝑊𝑡𝑡 + 1
2

𝑘𝑘(𝑘𝑘 − 1)𝑊𝑊𝑡𝑡
𝑘𝑘−2(𝑑𝑑𝑊𝑊𝑡𝑡)2 

= 𝑘𝑘𝑊𝑊𝑡𝑡
𝑘𝑘−1𝑑𝑑𝑊𝑊𝑡𝑡 +

1
2

𝑘𝑘(𝑘𝑘 − 1)𝑊𝑊𝑡𝑡
𝑘𝑘−2𝑑𝑑𝜕𝜕 

We need drift term to be zero to make the process a martingale. 

When k=0 or 1, the drift term=0. 

So if k=0, 1, then the process is a martingale.  

 

 

QFI QF Spring 2021 Question 3 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapters 
14, 28, pages 327, 675 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 128-130 

Commentary on Question: 

This question tests candidates’ knowledge of Ito’s lemma, Ito’s isometry, martingales, and 
basic properties of Brownian Motion.  Most candidates did well on this question. Some 
candidates did not state what rules and formulas they were applying to from step to step. 

Solution: 

(a) Derive 3
s tE W W    for .t s>  

 

Commentary on Question: 

Most candidates did well on this part.  The few candidates who did badly tried to 
decompose the wrong term and failed to state the independence of 𝑊𝑊𝑠𝑠

3and 𝑊𝑊𝑡𝑡 −
𝑊𝑊𝑠𝑠. 
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By the properties of Brownian motion, we have 

𝐸𝐸[𝑊𝑊𝑠𝑠
3𝑊𝑊𝑡𝑡]  

= 𝐸𝐸[𝑊𝑊𝑠𝑠
3(𝑊𝑊𝑠𝑠 + 𝑊𝑊𝑡𝑡 − 𝑊𝑊𝑠𝑠)]  

= 𝐸𝐸[𝑊𝑊𝑠𝑠
4] + 𝐸𝐸[𝑊𝑊𝑠𝑠

3(𝑊𝑊𝑡𝑡 − 𝑊𝑊𝑠𝑠)]  

= 𝐸𝐸[𝑊𝑊𝑠𝑠
4] + 𝐸𝐸[𝑊𝑊𝑠𝑠

3]𝐸𝐸[(𝑊𝑊𝑡𝑡 − 𝑊𝑊𝑠𝑠)]  

= 𝐸𝐸[𝑊𝑊𝑠𝑠
4]  

Let 𝑍𝑍 = 𝑊𝑊𝑠𝑠
 √𝑠𝑠

, which is a standard normal distribution. Then 𝐸𝐸[𝑍𝑍4] = 3. 

This gives 

𝐸𝐸[𝑊𝑊𝑠𝑠
4] = 𝑠𝑠2𝐸𝐸[𝑍𝑍4] = 3𝑠𝑠2  

 

(b) Determine the value of c such that 3
t tW ctW−  is a martingale. 

Commentary on Question: 

Most candidates did well on this part.  Some candidates pursued the alternate 
solution of using Ito’s lemma and setting the drift term to 0.  

Let 𝑀𝑀𝑡𝑡 =  𝑊𝑊𝑡𝑡
3 − 𝑐𝑐𝜕𝜕𝑊𝑊𝑡𝑡. Then we have 

𝐸𝐸[𝑀𝑀𝑡𝑡|𝐹𝐹𝑠𝑠] =  𝐸𝐸[(𝑊𝑊𝑠𝑠 + 𝑊𝑊𝑡𝑡 − 𝑊𝑊𝑠𝑠)3|𝐹𝐹𝑠𝑠] − 𝑐𝑐𝜕𝜕𝐸𝐸[𝑊𝑊𝑡𝑡|𝐹𝐹𝑠𝑠] 

            =  𝐸𝐸[𝑊𝑊𝑠𝑠
3|𝐹𝐹𝑠𝑠] + 3𝐸𝐸[𝑊𝑊𝑠𝑠

2(𝑊𝑊𝑡𝑡 − 𝑊𝑊𝑠𝑠)|𝐹𝐹𝑠𝑠] + 3𝐸𝐸[𝑊𝑊𝑠𝑠(𝑊𝑊𝑡𝑡 − 𝑊𝑊𝑠𝑠)2|𝐹𝐹𝑠𝑠] + 𝐸𝐸[(𝑊𝑊𝑡𝑡 − 𝑊𝑊𝑠𝑠)3|𝐹𝐹𝑠𝑠] −
𝑐𝑐𝜕𝜕𝐸𝐸[𝑊𝑊𝑠𝑠|𝐹𝐹𝑠𝑠] −  𝑐𝑐𝜕𝜕𝐸𝐸[𝑊𝑊𝑡𝑡 − 𝑊𝑊𝑠𝑠|𝐹𝐹𝑠𝑠] 

                  = 𝑊𝑊𝑠𝑠
3 + 0 + 3𝑊𝑊𝑠𝑠(𝜕𝜕 − 𝑠𝑠) + 0 − 𝑐𝑐𝜕𝜕𝑊𝑊𝑠𝑠 + 0  

                  = 𝑀𝑀𝑠𝑠 if c = 3 

(c) Show that 
0

t

t uX W du= ∫  is not a martingale. 

Commentary on Question: 

Most candidates did well on this part.  However, some candidates mistook the 

integral ∫ 𝑊𝑊𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡
0  for ∫ 𝑊𝑊𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡
0  and said it is a martingale.  Some candidates failed to 

apply stochastic integrals clearly and effectively to show that 𝑋𝑋𝑡𝑡 is not a martingale.  

By Product Rule, we have 



30 
 

𝑋𝑋𝑡𝑡 = 𝜕𝜕𝑊𝑊𝑡𝑡 − � 𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
 

Let 𝑠𝑠 ≤ 𝜕𝜕. Since the Ito integral is a martingale, we have 

𝐸𝐸[𝑋𝑋𝜕𝜕|𝐹𝐹𝑠𝑠] = 𝐸𝐸[𝜕𝜕𝑊𝑊𝑡𝑡|𝐹𝐹𝑠𝑠] − 𝐸𝐸 �� 𝑢𝑢𝑑𝑑
𝜕𝜕

0
𝑊𝑊𝑢𝑢|𝐹𝐹𝑠𝑠� = 𝜕𝜕𝑊𝑊𝑠𝑠 − � 𝑢𝑢𝑑𝑑

𝑠𝑠

0
𝑊𝑊𝑢𝑢 = 𝑋𝑋𝑠𝑠 + (𝜕𝜕 − 𝑠𝑠)𝑊𝑊𝑠𝑠 ≠ 𝑋𝑋𝑠𝑠 

for  t>s.  Hence 𝑋𝑋𝑡𝑡 is not a martingale. 

(d) Calculate  

(i) 2[ ]E V   
 
(ii) [ ]E VY  

Commentary on Question: 

Most candidates did well on this part.  Some candidates lost points for not 
mentioning Ito’s Isometry in part (i) or not stating the independence of V and G in 
part (ii). 

By Ito’s isometry 

(i) 

𝐸𝐸[𝑉𝑉2] =  � 𝑒𝑒−2𝑠𝑠𝑑𝑑𝑠𝑠 =
1
2

(1 − 𝑒𝑒−2)
1

0
 

(ii) 

Let G = ∫ 𝑒𝑒−𝑠𝑠𝑑𝑑𝑊𝑊𝑠𝑠
2

1  

Y = V +G 

𝐸𝐸[𝑉𝑉𝑌𝑌] = 𝐸𝐸[𝑉𝑉(𝑉𝑉 + 𝐺𝐺)]  

Since V and G are independent, 

= 𝐸𝐸[𝑉𝑉2] + 𝐸𝐸[𝑉𝑉𝐺𝐺]  

= 𝐸𝐸[𝑉𝑉2] + 𝐸𝐸[𝑉𝑉]𝐸𝐸[𝐺𝐺]  

= 𝐸𝐸[𝑉𝑉2]  

= 1
2

(1 − 𝑒𝑒−2)  
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QFI QF Spring 2021 Question 4 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

f) Understand option pricing techniques  

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapter 
14, page 327 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 221-227 

• INV201-101-25: Chapter 6 of Introduction to Stochastic Finance with Market 
Examples by Privault 

Commentary on Question: 

The objective in this question was to test Ito’s Lemma as applied to the valuation of 
derivatives on a security that is driven by a Weiner Process.  Most candidates performed 
above average and partial credit was given for answers with calculation errors or missing 
steps. 

Solution: 

(a) Show, using Ito’s lemma, that 𝜎𝜎 = 0.3. 

Commentary on Question: 

Candidates performed well on this question.  An alternative solution was also 
accepted.  

Let 𝑉𝑉 = 𝑆𝑆𝑐𝑐. Find the partial derivatives: 

• 𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

= (𝑆𝑆)𝑐𝑐−1𝑐𝑐 = 𝑉𝑉𝑆𝑆−1𝑐𝑐 

• 𝜕𝜕2𝑉𝑉
𝜕𝜕𝜕𝜕2 = (𝑆𝑆)𝑐𝑐−2𝑐𝑐(𝑐𝑐 − 1) = 𝑉𝑉𝑆𝑆−2𝑐𝑐(𝑐𝑐 − 1) 

• 𝜕𝜕𝑉𝑉
𝜕𝜕𝑡𝑡

= 0 
Apply Ito’s Lemma:  

𝑑𝑑𝑉𝑉 =
𝜕𝜕𝑉𝑉
𝜕𝜕𝑆𝑆

(𝑑𝑑𝑆𝑆) +
1
2

𝜕𝜕2𝑉𝑉
𝜕𝜕𝑆𝑆2 (𝑑𝑑𝑆𝑆)2 +

𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

(𝑑𝑑𝜕𝜕) 

= (𝑉𝑉𝑆𝑆−1𝑐𝑐)(0.045 𝑆𝑆 𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑆𝑆𝑑𝑑𝑊𝑊𝑡𝑡) +
1
2

�𝑉𝑉𝑆𝑆−2𝑐𝑐(𝑐𝑐 − 1)�(𝜎𝜎𝑆𝑆 𝑑𝑑𝑊𝑊𝑡𝑡)2 + 0 
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= (𝑉𝑉𝑐𝑐)(0.045 𝑑𝑑𝜕𝜕 + 𝜎𝜎 𝑑𝑑𝑊𝑊𝑡𝑡) +
1
2

�𝑉𝑉𝑐𝑐(𝑐𝑐 − 1)�(𝜎𝜎2 𝑑𝑑𝜕𝜕) 

= 𝑉𝑉 �0.045𝑐𝑐 +
1
2

𝑐𝑐(𝑐𝑐 − 1)𝜎𝜎2� 𝑑𝑑𝜕𝜕 + 𝑉𝑉𝑐𝑐𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡 

𝑑𝑑𝑉𝑉
𝑉𝑉

= �0.045 𝑐𝑐 +
1
2

𝑐𝑐(𝑐𝑐 − 1)𝜎𝜎2� 𝑑𝑑𝜕𝜕 + 𝑐𝑐𝜎𝜎 𝑑𝑑𝑊𝑊𝑡𝑡 

𝑑𝑑𝑆𝑆𝑐𝑐

𝑆𝑆𝑐𝑐 = �0.045 𝑐𝑐 +
1
2

𝑐𝑐(𝑐𝑐 − 1)𝜎𝜎2� 𝑑𝑑𝜕𝜕 + 𝑐𝑐𝜎𝜎 𝑑𝑑𝑊𝑊𝑡𝑡 

Compare the coefficient of 𝑑𝑑𝜕𝜕 and 𝑑𝑑𝑊𝑊𝑡𝑡: 

• 0.045 𝑐𝑐 + 1
2

𝑐𝑐(𝑐𝑐 − 1)𝜎𝜎2 = 0.18 

• 𝑐𝑐𝜎𝜎 = 0.6 ⇒ 𝑐𝑐 = 0.6
𝜎𝜎

 
Substitute the second equation into the first: 

0.045 �
0.6
𝜎𝜎

� +
1
2

�
0.6
𝜎𝜎

� �
0.6
𝜎𝜎

− 1� 𝜎𝜎2 = 0.18 

This can be written as  

�
0.027

𝜎𝜎
� + 0.3 �

0.6
𝜎𝜎

− 1� 𝜎𝜎 = 0.18 

or 𝜎𝜎2 = 0.09 which implies 𝜎𝜎 = 0.3 since it is positive. 

Alternative Solution:  

Using the solution formula to the Geometric Brownian Motion: 

(𝑆𝑆𝑡𝑡)𝑐𝑐 = (𝑆𝑆0)𝑐𝑐𝑒𝑒𝑐𝑐�𝑟𝑟−1
2𝜎𝜎2�𝑡𝑡+𝑐𝑐𝜎𝜎𝑊𝑊𝑡𝑡  

         = (𝑆𝑆0)𝑐𝑐𝑒𝑒𝑐𝑐�.045−1
2𝜎𝜎2�𝑡𝑡+𝑐𝑐𝜎𝜎𝑊𝑊𝑡𝑡  

(𝑆𝑆𝑡𝑡)𝑐𝑐 = (𝑆𝑆0)𝑐𝑐𝑒𝑒�0.18−1
20.62�𝑡𝑡+0.6𝑊𝑊𝑡𝑡 

         = (𝑆𝑆0)𝑐𝑐𝑒𝑒0.6𝑊𝑊𝑡𝑡  

Compare the coefficient of 𝑑𝑑𝜕𝜕 and 𝑑𝑑𝑊𝑊𝑡𝑡: 

• 0.045 𝑐𝑐 − 1
2

𝑐𝑐𝜎𝜎2 = 0 

• 𝑐𝑐𝜎𝜎 = 0.6 
Solve the system of equations:  

𝜎𝜎2 = 2 ∗ 0.045 

𝜎𝜎2 = 0.09 which implies 𝜎𝜎 = 0.3 since it is positive 
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𝑐𝑐 =
0.6
𝜎𝜎

=
0.6
0.3

= 2 

(b) Calculate the time-0 no-arbitrage price of this derivative security. 

Commentary on Question: 

Candidates performed ok on this part of the question.  Common mistakes were to 
forget the discount term when computing the time-0 no-arbitrage price and failing to 
convert to a standard normal random variable before applying the formula given in 
the question.  

Use the following equivalency: 

𝑑𝑑𝑆𝑆𝑡𝑡

𝑆𝑆𝑡𝑡
= 𝑁𝑁 𝑑𝑑𝜕𝜕 + 𝜎𝜎 𝑑𝑑𝑊𝑊𝑡𝑡 ⟺ 𝑆𝑆𝑡𝑡 = 𝑆𝑆0𝑒𝑒�𝑟𝑟−1

2𝜎𝜎2�𝑡𝑡+𝜎𝜎𝑊𝑊𝑡𝑡 

𝑑𝑑𝑆𝑆𝑡𝑡

𝑆𝑆𝑡𝑡
= 0.045 𝑑𝑑𝜕𝜕 + 0.3 𝑑𝑑𝑊𝑊𝑡𝑡 ⟺ 𝑆𝑆𝑡𝑡 = 1𝑒𝑒�0.045−1

2(0.3)2�𝑡𝑡+0.3𝑊𝑊𝑡𝑡 = 𝑒𝑒0.3𝑊𝑊𝑡𝑡  

Thus, we have 𝑆𝑆3 = 𝑒𝑒0.3𝑊𝑊3, where 𝑊𝑊3~𝑁𝑁(0,3). 

The expected value of the derivative security under the risk-neutral probability measure is: 

𝐸𝐸[𝑆𝑆3(ln 𝑆𝑆3)2] = 𝐸𝐸[𝑒𝑒0.3𝑊𝑊3(ln 𝑒𝑒0.3𝑊𝑊3)2] 
= 𝐸𝐸[𝑒𝑒0.3𝑊𝑊3(0.3𝑊𝑊3)2] 
= 0.09𝐸𝐸[𝑒𝑒0.3𝑊𝑊3𝑊𝑊3

2] 

Since 𝑍𝑍~𝑁𝑁(0,1), it follows that 𝑊𝑊3 = 𝑍𝑍√3, and thus: 

𝐸𝐸[𝑆𝑆3(ln 𝑆𝑆3)2] = 0.09𝐸𝐸 �𝑒𝑒0.3𝑍𝑍√3�𝑍𝑍√3�
2

� 

= 0.09(3)𝐸𝐸�𝑒𝑒0.3√3⋅𝑍𝑍𝑍𝑍2� 

= 0.09(3) ⋅ �1 + �0.3√3�
2

� 𝑒𝑒0.5�0.3√3�
2
 

= 0.39246 

The time-0 no-arbitrage price is: 

𝐸𝐸[𝑆𝑆3(ln 𝑆𝑆3)2] ⋅ 𝑒𝑒−3𝑟𝑟 = 0.39246 ⋅ 𝑒𝑒−3(0.045) = 0.3429 

 

 

QFI QF Spring 2021 Question 7 
Learning Outcomes: 
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d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

i) Calibrate a model to observed prices of traded securities including fitting to a given 
yield curve 

Source References: 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 128-130, 132-137 

• Calibrating Interest Rate Models (Section 1.1-4.3 excl 4.1.2) 

Commentary on Question: 

The purpose of this question is to test candidates’ understanding of the Vasicek model and 
calibration used in practice.  Most of candidates understood the Vasicek model well but 
almost all candidates did not perform well in the calibration problem. 

Solution: 

(a)  

(i) Solve the stochastic differential equation. 
 

(ii) Identify the distribution of tr  by providing its mean and variance. 
 

Consider 𝐹𝐹(𝜕𝜕, 𝑁𝑁𝑡𝑡) = 𝑒𝑒𝑎𝑎𝑡𝑡𝑁𝑁𝑡𝑡. 

Since 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 𝑁𝑁𝑒𝑒𝑎𝑎𝑡𝑡𝑁𝑁𝑡𝑡, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

= 𝑒𝑒𝑎𝑎𝑡𝑡 , 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑟𝑟2 = 0, Ito’s lemma gives us 

𝑑𝑑𝐹𝐹 = 𝑁𝑁𝑒𝑒𝑡𝑡
𝑎𝑎𝑡𝑡𝑁𝑁𝑡𝑡𝑑𝑑𝜕𝜕 + 𝑒𝑒𝑎𝑎𝑡𝑡𝑑𝑑𝑁𝑁𝑡𝑡 = [𝑁𝑁𝑒𝑒𝑎𝑎𝑡𝑡𝑁𝑁𝑡𝑡 + 𝑒𝑒𝑎𝑎𝑡𝑡(𝜈𝜈 − 𝑁𝑁𝑁𝑁𝑡𝑡)]𝑑𝑑𝜕𝜕 + 𝑒𝑒𝑎𝑎𝑡𝑡𝜎𝜎𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑒𝑒𝑎𝑎𝑡𝑡𝜈𝜈𝑑𝑑𝜕𝜕 + 𝑒𝑒𝑎𝑎𝑡𝑡𝜎𝜎𝑑𝑑𝑋𝑋𝑡𝑡 

𝐹𝐹(𝜕𝜕, 𝑁𝑁𝑡𝑡) = 𝐹𝐹(0, 𝑁𝑁0) + 𝜈𝜈 � 𝑒𝑒𝑎𝑎𝑠𝑠𝑑𝑑𝑠𝑠 + � 𝑒𝑒𝑎𝑎𝑠𝑠𝜎𝜎𝑑𝑑𝑋𝑋𝑠𝑠

𝑡𝑡

0

𝑡𝑡

0
 

where 𝐹𝐹(0, 𝑁𝑁0) = 𝑁𝑁0 

∴ 𝑁𝑁𝑡𝑡 = 𝑒𝑒−𝑎𝑎𝑡𝑡𝑁𝑁0 + 𝜈𝜈 � 𝑒𝑒𝑎𝑎(𝑠𝑠−𝑡𝑡)𝑑𝑑𝑠𝑠 + 𝜎𝜎𝑒𝑒−𝑎𝑎𝑡𝑡 � 𝑒𝑒𝑎𝑎𝑠𝑠𝑑𝑑𝑋𝑋𝑠𝑠

𝑡𝑡

0

𝑡𝑡

0
= 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑒𝑒−𝑎𝑎𝑡𝑡 � 𝑒𝑒𝑎𝑎𝑠𝑠𝑑𝑑𝑋𝑋𝑠𝑠

𝑡𝑡

0
 

where 𝜇𝜇𝑡𝑡 = 𝑒𝑒−𝑎𝑎𝑡𝑡𝑁𝑁0 + 𝜈𝜈 � 𝑒𝑒𝑎𝑎(𝑠𝑠−𝑡𝑡)𝑑𝑑𝑠𝑠
𝑡𝑡

0
 

The mean of 𝑁𝑁𝑡𝑡 is 𝜇𝜇𝑡𝑡. 

The variance is: 
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𝜎𝜎2𝑒𝑒−2𝑎𝑎𝑡𝑡 ∫ 𝑒𝑒2𝑎𝑎𝑠𝑠𝑑𝑑𝜕𝜕𝑡𝑡
0  (by Ito Isometry) = 𝜎𝜎2𝑒𝑒−2𝑎𝑎𝑡𝑡

2𝑎𝑎
(𝑒𝑒2𝑎𝑎𝑡𝑡 − 1) = 𝜎𝜎2�1−𝑒𝑒−2𝑎𝑎𝑡𝑡�

2𝑎𝑎
  

Also, it shows Gaussian distribution. 

(b) Show that the limiting distribution of tr  as t approaches infinity is 
2

,
2

vN
a a
σ 

 
 

 

 

lim
𝑡𝑡→∞

𝐸𝐸[𝑁𝑁𝑡𝑡] = lim
𝑡𝑡→∞

�𝑒𝑒−𝑎𝑎𝑡𝑡𝑁𝑁0 + 𝜈𝜈 � 𝑒𝑒𝑎𝑎(𝑠𝑠−𝑡𝑡)𝑑𝑑𝑠𝑠
𝑡𝑡

0
� = lim

𝑡𝑡→∞
�𝑒𝑒−𝑎𝑎𝑡𝑡𝑁𝑁0 +

(1 − 𝑒𝑒−𝑎𝑎𝑡𝑡)𝜈𝜈
𝑁𝑁

� =
𝜈𝜈
𝑁𝑁

 

lim
𝑡𝑡→∞

𝑉𝑉𝑁𝑁𝑁𝑁[𝑁𝑁𝑡𝑡] = lim
𝑡𝑡→∞

𝜎𝜎2(1 − 𝑒𝑒−2𝑎𝑎𝑡𝑡)
2𝑁𝑁

=
𝜎𝜎2

2𝑁𝑁
 

 

(c) Demonstrate that the interest rate, ,t mr +  follows the same distribution.  Hint:  Use 

time frame ( ),m t m+  from solution of part (a).  

Commentary on Question: 

Quite a few candidates expressed 𝑁𝑁𝑡𝑡+m with an initial value of 𝑁𝑁0 instead of 𝑁𝑁𝑚𝑚..  
Then, they took a limit value as in part (b) to get the desired answer. 

Assume 𝑁𝑁𝑚𝑚 is stochastic, independent of the Brownian motion 𝑋𝑋𝑡𝑡.  If we have that 

𝑁𝑁𝑚𝑚~𝑁𝑁 �𝜈𝜈
𝑎𝑎

, 𝜎𝜎2

2𝑎𝑎
�, independent of 𝑋𝑋𝑡𝑡, then we have: 

𝐹𝐹(𝜕𝜕 + 𝑁𝑁, 𝑁𝑁𝑡𝑡+𝑚𝑚) = 𝐹𝐹(𝑁𝑁, 𝑁𝑁𝑚𝑚) + 𝜈𝜈 � 𝑒𝑒𝑎𝑎𝑠𝑠𝑑𝑑𝑠𝑠 + � 𝑒𝑒𝑎𝑎𝑠𝑠𝜎𝜎𝑑𝑑𝑋𝑋𝑠𝑠

𝑡𝑡+𝑚𝑚

𝑚𝑚

𝑡𝑡+𝑚𝑚

𝑚𝑚
 

where 𝐹𝐹(𝑁𝑁, 𝑁𝑁𝑚𝑚) = 𝑁𝑁𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚 

∴ 𝑁𝑁𝑡𝑡+𝑚𝑚 = 𝑒𝑒−𝑎𝑎(𝑡𝑡)𝑁𝑁𝑚𝑚 + 𝜈𝜈𝑒𝑒−𝑎𝑎(𝑡𝑡+𝑚𝑚) � 𝑒𝑒𝑎𝑎𝑠𝑠𝑑𝑑𝑠𝑠 + 𝜎𝜎𝑒𝑒−𝑎𝑎(𝑡𝑡+𝑚𝑚) � 𝑒𝑒𝑎𝑎𝑠𝑠𝑑𝑑𝑋𝑋𝑠𝑠

𝑡𝑡+𝑚𝑚

𝑚𝑚

𝑡𝑡+𝑚𝑚

𝑚𝑚
 

𝐸𝐸[𝑁𝑁𝑡𝑡+𝑚𝑚] = 𝑒𝑒−𝑎𝑎(𝑡𝑡)𝐸𝐸[𝑁𝑁𝑚𝑚] +
�1 − 𝑒𝑒−𝑎𝑎(𝑡𝑡)�𝜈𝜈

𝑁𝑁
=

𝜈𝜈
𝑁𝑁

 

𝑉𝑉𝑁𝑁𝑁𝑁[𝑁𝑁𝑡𝑡+𝑚𝑚] = 𝑒𝑒−2𝑎𝑎(𝑡𝑡)𝑉𝑉𝑁𝑁𝑁𝑁[𝑁𝑁𝑚𝑚] +
𝜎𝜎2�1 − 𝑒𝑒−2𝑎𝑎(𝑡𝑡)�

2𝑁𝑁
=

𝜎𝜎2

2𝑁𝑁
 

(d)  

(i) Estimate the parameters for interest rate process above. 
 

(ii) Describe for the estimation of arbitrage free parameters using the table 
below observed in the market. 
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From  
𝑑𝑑𝑁𝑁𝑡𝑡 = [𝜈𝜈 − 𝑁𝑁𝑁𝑁𝑡𝑡]𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑑𝑑𝑋𝑋𝑡𝑡 

It can be written in discrete manner  

𝑁𝑁𝑡𝑡+𝛿𝛿 − 𝑁𝑁𝑡𝑡 = −𝑁𝑁𝑁𝑁𝑡𝑡𝛿𝛿 + 𝜈𝜈𝛿𝛿 + 𝜎𝜎𝜀𝜀𝑡𝑡√𝛿𝛿, 𝜀𝜀𝑡𝑡~𝑁𝑁(0,1) 

𝑁𝑁𝑡𝑡+𝛿𝛿 = (1 − 𝑁𝑁𝛿𝛿)𝑁𝑁𝑡𝑡 + 𝜈𝜈𝛿𝛿 + 𝜎𝜎𝜀𝜀𝑡𝑡√𝛿𝛿, 𝜀𝜀𝑡𝑡~𝑁𝑁(0,1) 

 

According to coefficient of regression from the hint, 

𝛽𝛽 = 1 − 𝑁𝑁𝛿𝛿, 

𝛼𝛼 = 𝜈𝜈𝛿𝛿, 

𝑉𝑉𝑁𝑁𝑁𝑁(𝑁𝑁𝑡𝑡+𝛿𝛿) = 𝜎𝜎2𝛿𝛿 

with 𝛿𝛿 = 0.25 from the table 

 

𝛽𝛽 =
20 ⋅ ∑ 𝑁𝑁𝑖𝑖−1

20
𝑖𝑖=1 ⋅ 𝑁𝑁𝑖𝑖 − ∑ 𝑁𝑁𝑖𝑖

20
𝑖𝑖=1 ⋅ ∑ 𝑁𝑁𝑖𝑖−1

20
𝑖𝑖=1

20 ⋅ ∑ 𝑁𝑁𝑖𝑖−1
220

𝑖𝑖=1 − �∑ 𝑁𝑁𝑖𝑖−1
20
𝑖𝑖=1 �

2 = 0.089788 

 

𝛼𝛼 =
(∑ 𝑁𝑁𝑖𝑖

20
𝑖𝑖=1 − 𝛽𝛽 ∑ 𝑁𝑁𝑖𝑖−1

20
𝑖𝑖=1 )

20
= 0.037312 

Therefore, 

𝑁𝑁 =
1 − 𝛽𝛽

𝛿𝛿
=

1 − 0.089788
0.25

= 3.6408 

𝜈𝜈 =
𝛼𝛼
𝛿𝛿

=
0.03737

0.25
= 0.14927, 

𝑉𝑉𝑁𝑁𝑁𝑁(𝑁𝑁𝑡𝑡+𝛿𝛿) =
1

20
⋅ � 𝑁𝑁𝑖𝑖

2
20

𝑖𝑖=1

− �
1

20
� 𝑁𝑁𝑖𝑖

20

𝑖𝑖=1

�

2

= 0.000266 

𝜎𝜎 = �𝑉𝑉𝑁𝑁𝑁𝑁(𝑁𝑁𝑡𝑡+𝛿𝛿)
𝛿𝛿

= �0.000266
0.25

= 0.032628 

For the arbitrgae free parameter estimation, it can be found by minimizing the errors 
between the arbitrage zero coupon bond prices in parametric formula and observed zero 
coupon bond prices. 

For instance, 𝑁𝑁∗, 𝜐𝜐∗ can be searched by minimizing 
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𝐽𝐽(𝑁𝑁∗, 𝜐𝜐∗) = � �𝑍𝑍𝑉𝑉𝑎𝑎𝑠𝑠𝑖𝑖𝑐𝑐𝑒𝑒𝑘𝑘(0, 𝑇𝑇𝑖𝑖, 𝑁𝑁∗, 𝜐𝜐∗) − 𝑍𝑍𝐷𝐷𝑎𝑎𝑡𝑡𝑎𝑎(0, 𝑇𝑇𝑖𝑖)�
𝑛𝑛

𝑖𝑖=1

 

Each term in the parenthesis is the model’s pricing error for each maturity 𝑇𝑇𝑖𝑖, that is, the 
distance between the model price and the data.  If the model works well, each pricing error 
should be small, and thus also the sum of the pricing errors squared for nonlinear least 
square search. 

 

 

QFI QF Spring 2021 Question 10 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

e) Understand and apply the concepts of risk-neutral measure, forward measure, 
normalization, and the market price of risk 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapters 
29, 31, pages 688-68, 722-723 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 132-137 

Commentary on Question: 

Overall, candidates performed as expected on this question.  There was a mistake in the 
given equation for A(t;T). However, credit was given when it was due; candidates were not 
penalized for using the correct or incorrect version equation.  The model solution showed 
the work assuming candidates used the equation for A(t;T) given in the question.   

Solution: 

(a) Compare ( ),m r t  with an arbitrage-free parameter ( )* ,m r t  and explain the meaning 

of the parameters when ( ) ( )* * *,m r t r rγ= − . 

Commentary on Question: 

Partial credit was awarded for candidates who demonstrated some understandings 
with regard to risk-neutral vs. real world as well as mean reversion. 
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The drift 𝑁𝑁∗(𝑁𝑁, 𝜕𝜕) provides arbitrage-free bond return, while 𝑁𝑁(𝑁𝑁, 𝜕𝜕) does not. 

Vasicek model assumes that 𝑁𝑁∗(𝑁𝑁, 𝜕𝜕) has the same form as the drift rate of the original 
interest rate process: 

𝑁𝑁∗(𝑁𝑁, 𝜕𝜕) =  𝛾𝛾∗(�̅�𝑁∗ − 𝑁𝑁) 

where 𝛾𝛾∗, �̅�𝑁∗ are two constants, which 𝛾𝛾∗ controls the sensitivity of the long-term bond 
prices to variation in the short-term rates.  

 

(b) Show that ( ) ( )
2

*
*

/ 1
2t

dZ dt BE E r
Z

σ γ
γ

  = + −  
 using Ito’s lemma. 

Commentary on Question: 

Partial credit was awarded for candidates who showed the appropriate partial 
derivatives and applying them using Ito’s Lemma. 

∂Z
∂t

= (A′ − B′r)Z,
∂Z
∂r

=  −BZ,
∂2Z
∂r2 = B2Z 

where 

∂B
∂t

= B′ = −e−r∗(T−t) 

∂A
∂t

= A′ = (1 + B′) �r̅∗ −
σ2

2γ∗� −
σ2B(t; T)′B(t; T)

2γ∗  

By Ito’ lemma: 

dZ = �
∂Z
∂t

+
∂Z
∂r

γ∗(r̅∗ − rt) +
σ2

2
∂2Z
∂r2� dt +

∂Z
∂r

σdXt  

Note that γ∗B = 1 + B′, thus:  

 A′ = γ∗Br̅∗ − σ2

2
B − σ2(γ∗B−1)B(t;T)

2γ∗ = γ∗Br̅∗ − σ2

2γ
B − σ2

2
B2 + σ2B(t;T)

2γ∗  

So: 

 ∂Z
∂t

= �Bγ∗r̅∗ − σ2

2
B2 − B′r� Z 

Therefore: 
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dZ
Z

= �γ∗Br̅∗ −
σ2

2
B −

σ2

2
B2 +

σ2B
2γ∗ − B′rt − Bγ∗(r̅∗ − rt) +

σ2

2
B2� dt +

1
Z

∂Z
∂r

σdXt 

E �
dZ
dt
Z

� = �−B′E(rt) +  Bγ∗E(rt) −
σ2

2
B +

σ2B
2γ∗ � = (−B′ + Bγ∗)E(rt) +

σ2B
2γ∗ (1 − γ∗)

= E(rt) +
σ2B
2γ∗ (1 − γ∗) 

(c) Compute 
/dZ dtE

Z
 
  

 on zero-coupon bond with 10 years to maturity.  

 Commentary on Question: 

The zero-coupon bond prices given were not correct for the given risk-neutral 
parameters.  However, credit was given where it was due.  

𝜕𝜕(0,10) = 1
0.4653

(1 − 𝑒𝑒−0.4653∗10) = 2.129  

E[r0] = r0 = 2% 

Using the result from part (b), we have: 

𝐸𝐸 �
𝑑𝑑𝑍𝑍/𝑑𝑑𝜕𝜕

𝑍𝑍
� = 2% +

2.21%2 × 2.129
2 × 0.4653

(1 − 0.4653) = 2.0597 % 

 

(d) Calculate the value of a call option with 1 year to maturity ( )0 1T = , strike price 

0.9K = , written on a zero-coupon bond with 5 years to maturity.  

Under the Vasicek model, a European call open with strike price K and maturity 𝑇𝑇0 
on a zero coupon maturiing on 𝑇𝑇𝜕𝜕 > 𝑇𝑇0is given by: 

𝑉𝑉(𝑁𝑁0, 0) = 𝑍𝑍(𝑁𝑁0, 0; 𝑇𝑇𝜕𝜕)𝑁𝑁(𝑑𝑑1) − 𝐾𝐾𝑍𝑍(𝑁𝑁0, 0; 𝑇𝑇0)𝑁𝑁(𝑑𝑑2) 

𝑑𝑑1 =
1
𝑆𝑆

𝑁𝑁𝑁𝑁𝑙𝑙 �
𝑍𝑍(𝑁𝑁0, 0; 𝑇𝑇𝜕𝜕)

𝐾𝐾𝑍𝑍(𝑁𝑁0, 0; 𝑇𝑇0)� +
𝑆𝑆
2

 

𝑑𝑑2 = 𝑑𝑑1 − 𝑆𝑆 

𝑆𝑆 = 𝜕𝜕(𝑇𝑇0; 𝑇𝑇𝜕𝜕) ∗ �
𝜎𝜎2

2𝛾𝛾∗ (1 − 𝑒𝑒−2𝛾𝛾∗𝑇𝑇0) 

Thus, we have: 
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𝜕𝜕(1; 5) =
1
𝛾𝛾∗ �1 − 𝑒𝑒−𝛾𝛾∗(5−1)� = 1.815 

𝑆𝑆(1,5) = 1.815 ∗ � 2.21%2

2 ∗ 0.4653
(1 − 𝑒𝑒−2∗0.4653) = 0.03236 

𝑑𝑑1 =
1

0.03236
𝑁𝑁𝑁𝑁𝑙𝑙 �

0.898
0.9 ∗ 0.975

� +
0.03236

2
= 0.7298 

𝑑𝑑2 = 0.7298 − 0.03236 = 0.6975 

The value of the call option is:  

𝑉𝑉 = 0.898 ∗ 𝑁𝑁(𝑑𝑑1) − 0.9 ∗ 0.975 ∗ 𝑁𝑁(0.6975) = 0.02425 

 

 

QFI QF Fall 2021 Question 1 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapter 
14, page 327 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 128-130 

Commentary on Question: 

Candidates performed fairly on this question. 

Solution: 

(a) Explain why 𝑋𝑋𝑡𝑡is a normally distributed random variable. 

Commentary on Question: 

Candidates performed fairly well on this part.  To receive full credit, candidates 
needed to note that we have a Riemann sum and the linear combinations of normal 
variables are normal and normality is preserved in the limit.  
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By Ito’s lemma or Ito’s product rule we have 
𝑑𝑑(𝑢𝑢𝑊𝑊𝑢𝑢) = 𝑊𝑊𝑢𝑢𝑑𝑑𝑢𝑢 + 𝑢𝑢𝑑𝑑𝑊𝑊𝑢𝑢, 

which gives 

𝑋𝑋𝑡𝑡 = � 𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
− 𝜕𝜕𝑊𝑊𝑡𝑡 

 
Both terms on the right-hand side are normally distributed, hence the result. 

 

(b) Compute 𝐸𝐸[𝑋𝑋𝑡𝑡] and 𝑉𝑉𝑁𝑁𝑁𝑁[𝑋𝑋𝑡𝑡].  
Commentary on Question: 

Candidates performed poorly on this part.  Most candidates did not work through all 
the details of the whole derivation. 

By Ito’s lemma or Ito’s product rule we have 
𝑑𝑑(𝑢𝑢𝑊𝑊𝑢𝑢) = 𝑊𝑊𝑢𝑢𝑑𝑑𝑢𝑢 + 𝑢𝑢𝑑𝑑𝑊𝑊𝑢𝑢, 

which gives 

𝜕𝜕𝑊𝑊𝑡𝑡 = 𝑋𝑋𝑡𝑡 + � 𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
 

𝑋𝑋𝑡𝑡 = 𝜕𝜕𝑊𝑊𝑡𝑡 − � 𝑢𝑢𝑑𝑑
𝑡𝑡

0
𝑊𝑊𝑢𝑢. 

Hence 

𝐸𝐸[𝑋𝑋𝑡𝑡] = 𝐸𝐸[𝜕𝜕𝑊𝑊𝑡𝑡] − 𝐸𝐸 �� 𝑢𝑢𝑑𝑑
𝑡𝑡

0
𝑊𝑊𝑢𝑢� = 0. 

 
We also have 

𝑉𝑉𝑁𝑁𝑁𝑁(𝑋𝑋𝑡𝑡) = 𝑉𝑉𝑁𝑁𝑁𝑁(𝜕𝜕𝑊𝑊𝑡𝑡) + 𝑉𝑉𝑁𝑁𝑁𝑁 �� 𝑢𝑢𝑑𝑑
𝑡𝑡

0
𝑊𝑊𝑢𝑢� − 2𝐶𝐶𝑁𝑁𝐶𝐶 �𝜕𝜕𝑊𝑊𝑡𝑡 , � 𝑢𝑢𝑑𝑑

𝑡𝑡

0
𝑊𝑊𝑢𝑢 �

= 𝜕𝜕2𝑉𝑉𝑁𝑁𝑁𝑁(𝑊𝑊𝑡𝑡) + 𝑉𝑉𝑁𝑁𝑁𝑁 �� 𝑢𝑢𝑑𝑑
𝑡𝑡

0
𝑊𝑊𝑢𝑢� − 2𝜕𝜕𝐶𝐶𝑁𝑁𝐶𝐶 �𝑊𝑊𝑡𝑡, � 𝑢𝑢𝑑𝑑

𝑡𝑡

0
𝑊𝑊𝑢𝑢 � 

Note that 
𝑉𝑉𝑁𝑁𝑁𝑁(𝑊𝑊𝑡𝑡) = 𝜕𝜕 

From Ito’s isometry, we get 

𝑉𝑉𝑁𝑁𝑁𝑁 �� 𝑢𝑢𝑑𝑑
𝑡𝑡

0
𝑊𝑊𝑢𝑢� = � 𝑢𝑢2𝑑𝑑

𝑡𝑡

0
𝑢𝑢 =

1
3

𝜕𝜕3 

 
In addition from Ito’s isometry, we have 

2𝐶𝐶𝑁𝑁𝐶𝐶 �𝑊𝑊𝑡𝑡 , � 𝑢𝑢𝑑𝑑
𝑡𝑡

0
𝑊𝑊𝑢𝑢 � = 𝑉𝑉𝑁𝑁𝑁𝑁 �𝑊𝑊𝑡𝑡 + � 𝑢𝑢𝑑𝑑

𝑡𝑡

0
𝑊𝑊𝑢𝑢� − 𝑉𝑉𝑁𝑁𝑁𝑁(𝑊𝑊𝑡𝑡) − 𝑉𝑉𝑁𝑁𝑁𝑁 �� 𝑢𝑢𝑑𝑑

𝑡𝑡

0
𝑊𝑊𝑢𝑢�

= 𝑉𝑉𝑁𝑁𝑁𝑁 �� 𝑑𝑑
𝑡𝑡

0
𝑊𝑊𝑢𝑢 + � 𝑢𝑢𝑑𝑑

𝑡𝑡

0
𝑊𝑊𝑢𝑢� − 𝜕𝜕 −

1
3

𝜕𝜕3 = 𝑉𝑉𝑁𝑁𝑁𝑁 �� (𝑢𝑢 + 1)𝑑𝑑
𝑡𝑡

0
𝑊𝑊𝑢𝑢� − 𝜕𝜕 −

1
3

𝜕𝜕3

= � (𝑢𝑢 + 1)2𝑑𝑑𝑢𝑢
𝑡𝑡

0
− 𝜕𝜕 −

1
3

𝜕𝜕3 = 𝜕𝜕2 

Hence we have 
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𝑉𝑉𝑁𝑁𝑁𝑁(𝑋𝑋𝑡𝑡) =
1
3

𝜕𝜕3 
 
Alternative method for calculating 2𝐶𝐶𝑁𝑁𝐶𝐶 �𝑊𝑊𝑡𝑡 , ∫ 𝑢𝑢𝑑𝑑𝑡𝑡

0 𝑊𝑊𝑢𝑢 �: 

Since 𝑊𝑊𝑡𝑡 = ∫ 𝑑𝑑𝑡𝑡
0 𝑊𝑊𝑢𝑢, from Ito’s isometry 

 

2𝐶𝐶𝑁𝑁𝐶𝐶 �𝑊𝑊𝑡𝑡 , � 𝑢𝑢𝑑𝑑
𝑡𝑡

0
𝑊𝑊𝑢𝑢 � = 2𝐶𝐶𝑁𝑁𝐶𝐶 �� 𝑑𝑑

𝑡𝑡

0
𝑊𝑊𝑢𝑢, � 𝑢𝑢𝑑𝑑

𝑡𝑡

0
𝑊𝑊𝑢𝑢 � 

= 2 � 𝑢𝑢𝑑𝑑𝑢𝑢
𝑡𝑡

0
= 𝜕𝜕2 

 
Alternative Solution: 

Work with 𝑋𝑋𝑡𝑡 directly, which clearly has mean zero, and then evaluate the expectation of its 
square as a double integral using the known covariance function of a Wiener process. 

𝐸𝐸 �∫ 𝑊𝑊𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡
0 � = 0  

𝑉𝑉𝑁𝑁𝑁𝑁 �∫ 𝑊𝑊𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡
0 � = 𝐸𝐸 ��∫ 𝑊𝑊𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡

0 �
2

� − �𝐸𝐸 �∫ 𝑊𝑊𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡
0 ��

2
  

𝑉𝑉𝑁𝑁𝑁𝑁 �∫ 𝑊𝑊𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡
0 � = 𝐸𝐸[(�∫ 𝑊𝑊𝑠𝑠𝑑𝑑𝑠𝑠𝑡𝑡

0 � (�∫ 𝑊𝑊𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡
0 �] − �𝐸𝐸 �∫ 𝑊𝑊𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡

0 ��
2

  
 
= 𝐸𝐸[(�∫ ∫ 𝐸𝐸[𝑊𝑊𝑠𝑠𝑊𝑊𝑢𝑢]𝑑𝑑𝑢𝑢𝑢𝑢=𝑡𝑡

𝑢𝑢=𝑜𝑜 𝑑𝑑𝑠𝑠𝑠𝑠=𝑡𝑡
𝑠𝑠=0 �  

 
𝐸𝐸[𝑊𝑊𝑠𝑠𝑊𝑊𝑢𝑢] = 𝑁𝑁𝑖𝑖 𝑛𝑛(𝑠𝑠, 𝑢𝑢)  
𝑉𝑉𝑁𝑁𝑁𝑁 �∫ 𝑊𝑊𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡

0 � = ∫ ∫ min(𝑠𝑠, 𝑢𝑢) 𝑑𝑑𝑢𝑢𝑢𝑢=𝑡𝑡
𝑢𝑢=𝑜𝑜 𝑑𝑑𝑠𝑠𝑠𝑠=𝑡𝑡

𝑠𝑠=0   

= ∫ ∫ 𝑢𝑢𝑑𝑑𝑢𝑢𝑢𝑢=𝑠𝑠
𝑢𝑢=𝑜𝑜

𝑠𝑠=𝑡𝑡
𝑠𝑠=0  +∫ ∫ 𝑠𝑠𝑑𝑑𝑢𝑢𝑢𝑢=𝑡𝑡

𝑢𝑢=𝑠𝑠 𝑑𝑑𝑠𝑠𝑠𝑠=𝑡𝑡
𝑠𝑠=0   

= ∫ 1
2

𝑠𝑠2𝑑𝑑𝑠𝑠 +  ∫ 𝑠𝑠(𝜕𝜕 − 𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡
0    

𝑠𝑠=𝑡𝑡
𝑠𝑠=0   

= 1
3

𝜕𝜕3  
 
Let 𝑌𝑌𝑡𝑡 be defined as 

𝑌𝑌𝑡𝑡 = � �|W𝑢𝑢|𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
. 

(c) Compute [ ].tVar Y  

Commentary on Question: 

Candidates performed fairly well on this part.  Most candidates were able to obtain 
partial credit by identifying the need to use Ito isometry. 

We know that 𝐸𝐸(𝑌𝑌𝑡𝑡) = 0 because 𝑌𝑌𝑡𝑡 is an Ito integral for all 0 < 𝜕𝜕 < 𝑇𝑇. 

Therefore, 𝑉𝑉𝑁𝑁𝑁𝑁(𝑌𝑌𝑡𝑡) = 𝐸𝐸[𝑌𝑌𝑡𝑡
2] = ∫ 𝐸𝐸(|𝑊𝑊𝑢𝑢|)𝑡𝑡

0 𝑑𝑑𝑢𝑢 by Ito isometry. 
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Now: 𝐸𝐸(|𝑊𝑊𝑢𝑢|) = ∫ |𝑤𝑤| 1
√2𝜋𝜋𝑢𝑢

𝑒𝑒−𝑤𝑤2

2𝑢𝑢
∞

−∞  𝑑𝑑𝑤𝑤 = 2 ∫ 𝑤𝑤 1
√2𝜋𝜋𝑢𝑢

𝑒𝑒−𝑤𝑤2

2𝑢𝑢 𝑑𝑑𝑤𝑤 = �2𝑢𝑢
𝜋𝜋

.∞
0  

Finally: 𝑉𝑉𝑁𝑁𝑁𝑁(𝑌𝑌𝑡𝑡) = ∫ �2𝑢𝑢
𝜋𝜋

𝑡𝑡
0 𝑑𝑑𝑢𝑢 = �2

π
2
3

𝜕𝜕3/2 = � 8
9𝜋𝜋

𝜕𝜕3/2. 

 

 

QFI QF Fall 2021 Question 2 
Learning Outcomes: 

b) Understand Arrow-Debreau security and the distinction between complete and 
incomplete markets 

f) Understand option pricing techniques  

Source References: 

• INV201-100-25: Chapter 5 of Financial Mathematics – A Comprehensive Treatment, 
2nd Edition, Campolieti 

• INV201-101-25: Chapter 6 of Introduction to Stochastic Finance with Market 
Examples by Privault 

Solution: 

(a) Show that ℙ and ℚ are equivalent probability measures on the probability space 
implied by the price process tA . 

Commentary on Question: 

This question tests the understanding of the definition of equivalent probability 
measures.  Candidates performed as expected on this part. 

From the two trees, we see that the sample space and the event space are the same for the 
probability measures ℙ and ℚ.  Additionally, ℙ(𝜕𝜕𝑡𝑡) = 0 ⟺ ℚ(𝜕𝜕𝑡𝑡) = 0 for every event 𝜕𝜕𝑡𝑡  in 
the event space.  

Note: The following statements are equivalent: 

• ℙ(𝜕𝜕𝑡𝑡) = 0 ⟺ ℚ(𝜕𝜕𝑡𝑡) = 0 for every event 𝜕𝜕𝑡𝑡  in the event space. 
• If an event cannot occur under the ℙ measure, then it also cannot occur 

under the ℚ measure, and vice versa. 
• ℙ and ℚ are absolutely continuous with respect to each other. 

• ℙ ≪ ℚ and ℚ ≪ ℙ. 
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(b) Determine if the price process tA  is a: 

(i) ℚ-martingale. 
 

(ii) ℙ-martingale. 
 

Commentary on Question: 

Candidates performed well on this part.  Most candidates reached the correct 
conclusions, although many candidates did not check all the conditional 
expectations under the ℚ measure. 

Part (i) 

A discrete process 𝑋𝑋 = {𝑋𝑋𝑛𝑛: 𝑛𝑛 = 0,1,2, … } is a martingale relative to (Ω, ℱ, ℙ) if for all 𝑛𝑛: 

(a) 𝐸𝐸(𝑋𝑋𝑛𝑛+1 |ℱ𝑛𝑛) = 𝑋𝑋𝑛𝑛; 

(b) 𝐸𝐸(|𝑋𝑋𝑛𝑛|) < ∞; 

(c) 𝑋𝑋𝑛𝑛 is ℱ𝑛𝑛-adapted. 

The last two conditions can be seen trivially from the tree.  To check the first condition, with 
𝑁𝑁 = 0, we can calculate: 

𝐸𝐸ℚ(𝜕𝜕2|𝜕𝜕1 = 120) =
3
5

× 144 +
2
5

× 84 =  120 =  𝜕𝜕1  

𝐸𝐸ℚ(𝜕𝜕2|𝜕𝜕1 = 60) =
4
7

× 84 +
3
7

× 28 =  60 =  𝜕𝜕1 

𝐸𝐸ℚ(𝜕𝜕1|𝜕𝜕0 = 100) =
2
3

× 120 +
1
3

× 60 = 100 = 𝜕𝜕0 

Hence, the process 𝜕𝜕𝑡𝑡  is a ℚ-martingale.  

 

Part (ii) 

𝐸𝐸ℙ(𝜕𝜕2|𝜕𝜕1 = 120) = 1
2

× 144 + 1
2

× 84 = 114 ≠ 120.  Under ℙ, the process 𝜕𝜕𝑡𝑡  

violates the martingale property 𝐸𝐸(𝑋𝑋𝑛𝑛+1 |ℱ𝑛𝑛) = 𝑋𝑋𝑛𝑛, so it is not a ℙ-martingale. 
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(c) Calculate the values of the Radon-Nikodym derivative 𝑑𝑑ℚ
𝑑𝑑ℙ

  for all paths through the 

tree, (i.e. up-up, up-down, down-up, down-down nodes). 

Commentary on Question: 

Candidates performed below expectation on this part.  Many candidates did not 
write down the derivatives for 𝜕𝜕 = 0 and 𝜕𝜕 = 1.  Some candidates used a wrong 
formula for 𝜕𝜕 = 2. 

The Radon-Nikodym derivative on the finite sample space 𝜔𝜔 ∈ Ω is a random variable 

defined as  dℚ
dℙ

(ω) = ℚ(ω)
ℙ(ω).   The sample paths of the tree are ω.  Therefore, at each node of 

the tree, we can calculate the following: 

𝑑𝑑ℚ
𝑑𝑑ℙ

(𝑠𝑠𝜕𝜕𝑁𝑁𝜕𝜕𝑖𝑖𝑁𝑁𝑛𝑛𝑁𝑁𝑁𝑁𝑦𝑦;  𝜕𝜕 = 0) = 1 

𝑑𝑑ℚ
𝑑𝑑ℙ

(𝑢𝑢𝑢𝑢;  𝜕𝜕 = 1) =
2/3
1/2

=
4
3

 

𝑑𝑑ℚ
𝑑𝑑ℙ

(𝑑𝑑𝑁𝑁𝑤𝑤𝑛𝑛;  𝜕𝜕 = 1) =
1/3
1/2

=
2
3

 

𝑑𝑑ℚ
𝑑𝑑ℙ

(𝑢𝑢𝑢𝑢, 𝑢𝑢𝑢𝑢;  𝜕𝜕 = 2) =
2/3 × 3/5
1/2 × 1/2

=
8
5

  

𝑑𝑑ℚ
𝑑𝑑ℙ

(𝑢𝑢𝑢𝑢, 𝑑𝑑𝑁𝑁𝑤𝑤𝑛𝑛;  𝜕𝜕 = 2) =
2/3 × 2/5
1/2 × 1/2

=
16
15

  

𝑑𝑑ℚ
𝑑𝑑ℙ

(𝑑𝑑𝑁𝑁𝑤𝑤𝑛𝑛, 𝑢𝑢𝑢𝑢;  𝜕𝜕 = 2) =
1/3 × 4/7
1/2 × 1/2

=
16
21

  

𝑑𝑑ℚ
𝑑𝑑ℙ

(𝑑𝑑𝑁𝑁𝑤𝑤𝑛𝑛, 𝑑𝑑𝑁𝑁𝑤𝑤𝑛𝑛;  𝜕𝜕 = 2) =
1/3 × 3/7
1/2 × 1/2

=
4
7

 

(d) Evaluate the process t t
dE
d

ξ  
=  

 
 


  at time 1t =  for both up and down nodes 

where t  is the filtration history up to time t. 

Commentary on Question: 

Candidates performed as expected on this part.  Partial credits were awarded if 
candidates wrote down the correct formula but used incorrect results from the last 
part. 
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𝐸𝐸ℙ �𝑑𝑑ℚ
𝑑𝑑ℙ �𝜕𝜕1 = 120� =

1
2

×
8
5

+
1
2

×
16
15

=
4
3

 

𝐸𝐸ℙ �𝑑𝑑ℚ
𝑑𝑑ℙ �𝜕𝜕1 = 60� =

1
2

×
16
21

+
1
2

×
4
7

=
2
3

 

 

(e) Show numerically that [ ] dE X E X
d

 =   
  


 at time 0 by using the results in part (d).  

Commentary on Question: 

Candidates performed as expected on this part.  Most candidates were able to 
calculate Eℚ[X].  Some candidates did not have the incorrect formulae for 

𝐸𝐸ℙ �𝑑𝑑ℚ
𝑑𝑑ℙ

𝑋𝑋�. 

𝐸𝐸ℚ(𝑋𝑋) = 2
3

∗ �3
5

∗ 20 + 2
5

∗ 20� + 1
3

∗ �4
7

∗ 20 + 3
7

∗ 0� = 20 ∗ 6
7

= 17.1429  

𝐸𝐸ℙ �𝑑𝑑ℚ
𝑑𝑑ℙ

𝑋𝑋� = 1
2

× 1
2

× 𝑑𝑑ℚ
𝑑𝑑ℙ

(𝑢𝑢𝑢𝑢, 𝑢𝑢𝑢𝑢;  𝜕𝜕 = 2) × 20 +  

1
2

× 1
2

× 𝑑𝑑ℚ
𝑑𝑑ℙ

(𝑢𝑢𝑢𝑢, 𝑑𝑑𝑁𝑁𝑤𝑤𝑛𝑛;  𝜕𝜕 = 2) × 20 +  

1
2

× 1
2

× 𝑑𝑑ℚ
𝑑𝑑ℙ

(𝑑𝑑𝑁𝑁𝑤𝑤𝑛𝑛, 𝑢𝑢𝑢𝑢;  𝜕𝜕 = 2) × 20 +  

1
2

× 1
2

× 𝑑𝑑ℚ
𝑑𝑑ℙ

(𝑑𝑑𝑁𝑁𝑤𝑤𝑛𝑛, 𝑑𝑑𝑁𝑁𝑤𝑤𝑛𝑛;  𝜕𝜕 = 2) × 0  

= 1
2

× 1
2

× 20 × �𝑑𝑑ℚ
𝑑𝑑ℙ

(𝑢𝑢𝑢𝑢, 𝑢𝑢𝑢𝑢;  2) + 𝑑𝑑ℚ
𝑑𝑑ℙ

(𝑢𝑢𝑢𝑢, 𝑑𝑑𝑁𝑁𝑤𝑤𝑛𝑛;  2) + 𝑑𝑑ℚ
𝑑𝑑ℙ

(𝑑𝑑𝑁𝑁𝑤𝑤𝑛𝑛, 𝑢𝑢𝑢𝑢;  2)�  

= 1
2

× 1
2

× 20 × �8
5

+ 16
15

+ 16
21

�  

= 17.1429 = 𝐸𝐸ℚ(𝑋𝑋) 

 

QFI QF Fall 2021 Question 3 
Learning Outcomes: 

c) Understand put-call parity and price bounds 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  
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e) Understand and apply the concepts of risk-neutral measure, forward measure, 
normalization, and the market price of risk 

f) Understand option pricing techniques  

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapters 
11, 14, 28, pages 255-256, 327, 675 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 186-188, 221-227 
 

Commentary on Question: 

This question tests candidates’ understanding of Ito Lemma and martingales.  Candidates 
did well overall in this question.  Several candidates were able to come up with alternative 
solutions in some parts. 

Solution: 

(a)  

(i) Determine the stochastic differential equation satisfied by the discounted 
price process  
 

(ii) Explain why 𝜋𝜋𝑇𝑇
𝑑𝑑(𝑋𝑋) =  𝜋𝜋𝑡𝑡

𝑑𝑑(𝑋𝑋) +  ∫ 𝛼𝛼𝑢𝑢𝜎𝜎𝑆𝑆𝑢𝑢
𝑑𝑑𝑑𝑑𝑊𝑊𝑢𝑢

ℚ𝑇𝑇
𝑡𝑡 . 

 
(iii) Show that the discounted derivative prices  form a ℚ -

martingale using part (a) (ii). 
 

Commentary on Question: 

Candidates did well in part (i) and (iii).  A common oversight was not using Ito 
Lemma in part (ii). 

Part (i) 

𝑆𝑆𝑡𝑡
𝑑𝑑 = 𝜕𝜕𝑡𝑡

−1𝑆𝑆𝑡𝑡 =  𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆𝑡𝑡. 

By Ito’s lemma: 

𝑑𝑑𝑆𝑆𝑡𝑡
𝑑𝑑 = −𝑁𝑁𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝜕𝜕 + 𝑁𝑁𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡

𝑄𝑄 = 𝜎𝜎𝑆𝑆𝑡𝑡
𝑑𝑑𝑑𝑑𝑊𝑊𝑡𝑡

𝑄𝑄 .  

Part (ii) 

1 .d
t t tS B S−=

( ) ,d
t X t Tπ <
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Self-financing means: 

𝜋𝜋𝑢𝑢(𝑋𝑋) = 𝛼𝛼𝑢𝑢𝑆𝑆𝑢𝑢 +  𝛽𝛽𝑢𝑢𝜕𝜕𝑢𝑢 implies 𝑑𝑑𝜋𝜋𝑢𝑢(𝑋𝑋) = 𝛼𝛼𝑢𝑢𝑑𝑑𝑆𝑆𝑢𝑢 +  𝛽𝛽𝑢𝑢𝑑𝑑𝜕𝜕𝑢𝑢. 

Using Ito’s Lemma, 

𝑑𝑑𝜋𝜋𝑢𝑢
𝑑𝑑(𝑋𝑋) = 𝑑𝑑�𝑒𝑒−𝑟𝑟𝑢𝑢𝜋𝜋𝑢𝑢(𝑋𝑋)� =  −𝑁𝑁𝑒𝑒−𝑟𝑟𝑢𝑢𝜋𝜋𝑢𝑢(𝑋𝑋)𝑑𝑑𝑢𝑢 +  𝑒𝑒−𝑟𝑟𝑢𝑢𝑑𝑑𝜋𝜋𝑢𝑢(𝑋𝑋) =  −𝑁𝑁𝑒𝑒−𝑟𝑟𝑢𝑢(𝛼𝛼𝑢𝑢𝑆𝑆𝑢𝑢 +

 𝛽𝛽𝑢𝑢𝜕𝜕𝑢𝑢)𝑑𝑑𝑢𝑢 +  𝑒𝑒−𝑟𝑟𝑢𝑢𝛼𝛼𝑢𝑢𝑑𝑑𝑆𝑆𝑢𝑢 + 𝑒𝑒−𝑟𝑟𝑢𝑢𝛽𝛽𝑢𝑢𝑑𝑑𝜕𝜕𝑢𝑢 =  𝛼𝛼𝑢𝑢 𝜎𝜎𝑆𝑆𝑢𝑢
𝑑𝑑𝑑𝑑𝑊𝑊𝑢𝑢

𝑄𝑄 =  𝛼𝛼𝑢𝑢 𝑑𝑑𝑆𝑆𝑢𝑢
𝑑𝑑   

Integrate the above equation from t to T 

𝜋𝜋𝑇𝑇
𝑑𝑑(𝑋𝑋) − 𝜋𝜋𝑡𝑡

𝑑𝑑(𝑋𝑋)  = ∫ 𝛼𝛼𝑢𝑢
𝑇𝑇

𝑡𝑡 𝑑𝑑𝑆𝑆𝑢𝑢
𝑑𝑑   

𝑋𝑋𝑑𝑑 − 𝜋𝜋𝑡𝑡
𝑑𝑑(𝑋𝑋)  = ∫ 𝛼𝛼𝑢𝑢

𝑇𝑇
𝑡𝑡 𝑑𝑑𝑆𝑆𝑢𝑢

𝑑𝑑              Replicating portfolio 

Part (iii) 

If s < t then  
Using part a(ii) 
𝜋𝜋𝑡𝑡

𝑑𝑑(𝑋𝑋) =  𝜋𝜋𝑠𝑠
𝑑𝑑(𝑋𝑋) + ∫ 𝛼𝛼𝑢𝑢𝑑𝑑𝑆𝑆𝑢𝑢

𝑑𝑑𝑡𝑡
𝑠𝑠   

Since conditional expectation of the stochastic integral = 0 
 𝐸𝐸[𝜋𝜋𝑡𝑡

𝑑𝑑(𝑋𝑋)] =  𝜋𝜋𝑠𝑠
𝑑𝑑(𝑋𝑋)  

So this is a martingale. 
 

(b) Prove that  

Commentary on Question: 

Candidates did well in this part.  Alternate solutions were accepted for full credit as 
long as they didn’t assume the Put-Call parity formula as given. 

𝐶𝐶𝑇𝑇 − 𝑃𝑃𝑇𝑇 = 𝑁𝑁𝑁𝑁𝑚𝑚(𝑆𝑆𝑇𝑇 − 𝐾𝐾, 0) − 𝑁𝑁𝑁𝑁𝑚𝑚(𝐾𝐾 − 𝑆𝑆𝑇𝑇 , 0)  
= 𝑆𝑆𝑇𝑇 − 𝐾𝐾  
𝜋𝜋𝑡𝑡(𝑋𝑋) =  𝑒𝑒−𝑡𝑡(𝑇𝑇−𝑡𝑡)𝐸𝐸𝑄𝑄[𝑋𝑋|𝐹𝐹𝑡𝑡] ------ Eq. 1 
Apply Eq. 1 
𝐶𝐶𝑡𝑡 − 𝑃𝑃𝑡𝑡 = 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)𝐸𝐸[𝑆𝑆𝑇𝑇|𝐹𝐹𝑡𝑡] − 𝐾𝐾 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)  
𝐶𝐶𝑡𝑡 − 𝑃𝑃𝑡𝑡 = 𝑆𝑆𝑡𝑡 − 𝐾𝐾 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)  
Since 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)𝐸𝐸[𝑆𝑆𝑇𝑇|𝐹𝐹𝑡𝑡] = 𝑆𝑆𝑡𝑡 using part (a) (i) 
𝐶𝐶𝑡𝑡 = 𝐶𝐶𝑡𝑡(𝐾𝐾, 𝑇𝑇) 𝑁𝑁𝑛𝑛𝑑𝑑 𝑃𝑃𝑡𝑡 = 𝑃𝑃𝑡𝑡(𝐾𝐾, 𝑇𝑇)  

(c) Show that  

Commentary on Question: 

Candidates were able to start this part successfully, but most were not able to 
connect risk-neutral expectation to earn full credit. 

( ) ( ) ( ), , , .r T t
t t tC K T P K T S Ke t T− −− = − <

( ) ( ) ( )( ), , , .cr T Td
t t t c cV P K T C Ke T t Tπ − −= + <
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Use the put-call parity from part (c), 
𝑁𝑁𝑁𝑁𝑚𝑚�𝑃𝑃𝑇𝑇𝑐𝑐 , 𝐶𝐶𝑇𝑇𝑐𝑐� =  𝑁𝑁𝑁𝑁𝑚𝑚(𝑃𝑃𝑇𝑇𝑐𝑐 , 𝑃𝑃𝑇𝑇𝑐𝑐 + 𝑆𝑆𝑇𝑇𝑐𝑐 − 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑇𝑇𝑐𝑐) )  
𝑁𝑁𝑁𝑁𝑚𝑚�𝑃𝑃𝑇𝑇𝑐𝑐 , 𝐶𝐶𝑇𝑇𝑐𝑐� =  𝑃𝑃𝑇𝑇𝑐𝑐 +  𝑁𝑁𝑁𝑁𝑚𝑚 (𝑆𝑆𝑇𝑇𝑐𝑐 − 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑇𝑇𝑐𝑐) , 0)  
 
Therefore: 
𝑒𝑒−𝑟𝑟(𝑇𝑇𝑐𝑐−𝑡𝑡) 𝐸𝐸[𝑁𝑁𝑁𝑁𝑚𝑚�𝑃𝑃𝑇𝑇𝑐𝑐 , 𝐶𝐶𝑇𝑇𝑐𝑐�|𝐹𝐹𝑡𝑡] =  𝑒𝑒−𝑟𝑟(𝑇𝑇𝑐𝑐−𝑡𝑡)𝐸𝐸[𝑃𝑃𝑇𝑇𝑐𝑐 + 𝑁𝑁𝑁𝑁𝑚𝑚�𝑆𝑆𝑇𝑇𝑐𝑐 − 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑇𝑇𝑐𝑐) , 0�|𝐹𝐹𝑡𝑡]  
 
= 𝑒𝑒−𝑟𝑟(𝑇𝑇𝑐𝑐−𝑡𝑡) 𝐸𝐸[𝑃𝑃𝑇𝑇𝑐𝑐|𝐹𝐹𝑡𝑡] + 𝑒𝑒−𝑟𝑟(𝑇𝑇𝑐𝑐−𝑡𝑡)𝐸𝐸[𝑁𝑁𝑁𝑁𝑚𝑚�𝑆𝑆𝑇𝑇𝑐𝑐 − 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑇𝑇𝑐𝑐) , 0�|𝐹𝐹𝑡𝑡]  
And 𝑒𝑒−𝑟𝑟(𝑇𝑇𝑐𝑐−𝑡𝑡)𝐸𝐸�𝑃𝑃𝑇𝑇𝑐𝑐|𝐹𝐹𝑡𝑡� = 𝑃𝑃𝑡𝑡(𝐾𝐾, 𝑇𝑇) using part (b) 
 
𝑒𝑒−𝑟𝑟(𝑇𝑇𝑐𝑐−𝑡𝑡)𝐸𝐸[𝑁𝑁𝑁𝑁𝑚𝑚�𝑆𝑆𝑇𝑇𝑐𝑐 − 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑇𝑇𝑐𝑐) , 0� |𝐹𝐹𝑡𝑡] = 𝐶𝐶𝑡𝑡( 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑇𝑇𝑐𝑐), 𝑇𝑇𝑐𝑐)  
 
𝜋𝜋𝑡𝑡

𝑑𝑑(𝑉𝑉)   
= 𝑃𝑃𝑡𝑡(𝐾𝐾, 𝑇𝑇) + 𝐶𝐶𝑡𝑡(𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑇𝑇𝑐𝑐), 𝑇𝑇𝑐𝑐). 
 

 

QFI QF Fall 2021 Question 8 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

e) Understand and apply the concepts of risk-neutral measure, forward measure, 
normalization, and the market price of risk 

i) Calibrate a model to observed prices of traded securities including fitting to a given 
yield curve 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapters 
14, 31, pages 327, 721-723 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 132-137, 221-227 

• Calibrating Interest Rate Models (Section 1.1-4.3 excl 4.1.2) 

 

Commentary on Question: 

This question generally tests candidates’ understanding of the following concepts: 
• Ito’s Lemma 
• Bond pricing 
• Yield curve 
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• Implications of a zero floor for interest rate under different scenarios 
Most candidates attempted the question and performed as expected. 

Solution: 

(a) Show that  

 

 
2 2

2 21 1 2 2
1 22 2

1 2

1 1
2 2t t

B B B Br B r B
t r t r

B B
r r

σ σ∂ ∂ ∂ ∂
− − − −
∂ ∂ ∂ ∂=
∂ ∂
∂ ∂

 

Commentary on Question: 

Most candidates were able to list out the key points in this question: 

• Condition to eliminate the interest rate risk 
• Risk free portfolio should earn risk-free rate 

Full marks were awarded to candidates who showed all the derivation. 

Using Ito’s Lemma: 

𝑑𝑑𝜕𝜕𝑖𝑖 =
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕 +

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑁𝑁
𝑑𝑑𝑁𝑁𝑡𝑡 +

1
2

𝜕𝜕2𝜕𝜕𝑖𝑖

𝜕𝜕𝑁𝑁2 (𝑑𝑑𝑁𝑁𝑡𝑡)2 

       =
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑁𝑁
(𝑁𝑁(𝑏𝑏 − 𝑁𝑁𝑡𝑡)𝑑𝑑𝜕𝜕 +  𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡) +

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕 +

1
2

𝜕𝜕2𝜕𝜕𝑖𝑖

𝜕𝜕𝑁𝑁2 (𝑁𝑁(𝑏𝑏 − 𝑁𝑁𝑡𝑡)𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡)2 

                     = �
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑁𝑁
𝑁𝑁(𝑏𝑏 − 𝑁𝑁𝑡𝑡) +

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
+

1
2

𝜕𝜕2𝜕𝜕𝑖𝑖

𝜕𝜕𝑁𝑁2 𝜎𝜎2� 𝑑𝑑𝜕𝜕 +
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑁𝑁
𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡 

 
             Plugging to 𝑑𝑑𝑃𝑃 = 𝜂𝜂𝑑𝑑𝜕𝜕1 − 𝜃𝜃𝑑𝑑𝜕𝜕2: 
 

         𝑑𝑑𝑃𝑃 = 𝜂𝜂 ��
𝜕𝜕𝜕𝜕1

𝜕𝜕𝑁𝑁
𝑁𝑁(𝑏𝑏 − 𝑁𝑁𝑡𝑡) +

𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕
+

1
2

𝜕𝜕2𝜕𝜕1

𝜕𝜕𝑁𝑁2 𝜎𝜎2� 𝑑𝑑𝜕𝜕 +
𝜕𝜕𝜕𝜕1

𝜕𝜕𝑁𝑁
𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡� 

                 −𝜃𝜃 ��
𝜕𝜕𝜕𝜕2

𝜕𝜕𝑁𝑁
𝑁𝑁(𝑏𝑏 − 𝑁𝑁𝑡𝑡) +

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕
+

1
2

𝜕𝜕2𝜕𝜕2

𝜕𝜕𝑁𝑁2 𝜎𝜎2� 𝑑𝑑𝜕𝜕 +
𝜕𝜕𝜕𝜕2

𝜕𝜕𝑁𝑁
𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡� 

 
For interest rate risk to be elimated, 

      
𝜕𝜕𝑃𝑃
𝜕𝜕𝑁𝑁

= �𝜂𝜂
𝜕𝜕𝜕𝜕1

𝜕𝜕𝑁𝑁
− 𝜃𝜃

𝜕𝜕𝜕𝜕2

𝜕𝜕𝑁𝑁
� 𝑁𝑁(𝑏𝑏 − 𝑁𝑁𝑡𝑡) = 0 
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Choose 𝜂𝜂 and 𝜃𝜃 such that 𝜂𝜂 𝜕𝜕𝜕𝜕1
𝜕𝜕𝑟𝑟

= 𝜃𝜃 𝜕𝜕𝜕𝜕2
𝜕𝜕𝑟𝑟

, 𝑖𝑖. 𝑒𝑒. , 𝜃𝜃 = 𝜂𝜂
𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕2
𝜕𝜕𝜕𝜕

  

 

𝑑𝑑𝑃𝑃 = �𝜂𝜂 �
𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕
+

1
2

𝜕𝜕2𝜕𝜕1

𝜕𝜕𝑁𝑁2 𝜎𝜎2� − 𝜃𝜃 �
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕
+

1
2

𝜕𝜕2𝜕𝜕2

𝜕𝜕𝑁𝑁2 𝜎𝜎2��  𝑑𝑑𝜕𝜕 + 𝜎𝜎(𝜂𝜂
𝜕𝜕𝜕𝜕1

𝜕𝜕𝑁𝑁
− 𝜃𝜃

𝜕𝜕𝜕𝜕2

𝜕𝜕𝑁𝑁
)𝑑𝑑𝑊𝑊𝑡𝑡 

 

Then dP is riskless, its deterministic return should equal to risk-free rate:𝑑𝑑𝑃𝑃 = 𝑁𝑁𝑃𝑃𝑑𝑑𝜕𝜕.  
 

        �𝜂𝜂 �
𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕
+

1
2

𝜕𝜕2𝜕𝜕1

𝜕𝜕𝑁𝑁2 𝜎𝜎2� − 𝜃𝜃 �
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕
+

1
2

𝜕𝜕2𝜕𝜕2

𝜕𝜕𝑁𝑁2 𝜎𝜎2�� 𝑑𝑑𝜕𝜕 = 𝑁𝑁(𝜂𝜂𝜕𝜕1 − 𝜃𝜃𝜕𝜕2)𝑑𝑑𝜕𝜕 

 

Since 𝜃𝜃 = 𝜂𝜂
𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕2
𝜕𝜕𝜕𝜕

, we have 

 

𝜂𝜂𝑁𝑁 �𝜕𝜕1 −
𝜕𝜕𝜕𝜕1 𝜕𝜕𝑁𝑁⁄
𝜕𝜕𝜕𝜕2 𝜕𝜕𝑁𝑁⁄ 𝜕𝜕2� = 𝜂𝜂 ��

𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕
+

1
2

𝜕𝜕2𝜕𝜕1

𝜕𝜕𝑁𝑁2 𝜎𝜎2� −
𝜕𝜕𝜕𝜕1 𝜕𝜕𝑁𝑁⁄
𝜕𝜕𝜕𝜕2 𝜕𝜕𝑁𝑁⁄ �

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕
+

1
2

𝜕𝜕2𝜕𝜕2

𝜕𝜕𝑁𝑁2 𝜎𝜎2�� 

 

𝑁𝑁 �𝜕𝜕1 −
𝜕𝜕𝜕𝜕1 𝜕𝜕𝑁𝑁⁄
𝜕𝜕𝜕𝜕2 𝜕𝜕𝑁𝑁⁄ 𝜕𝜕2� = �

𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕
+

1
2

𝜕𝜕2𝜕𝜕1

𝜕𝜕𝑁𝑁2 𝜎𝜎2� −
𝜕𝜕𝜕𝜕1 𝜕𝜕𝑁𝑁⁄
𝜕𝜕𝜕𝜕2 𝜕𝜕𝑁𝑁⁄ �

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕
+

1
2

𝜕𝜕2𝜕𝜕2

𝜕𝜕𝑁𝑁2 𝜎𝜎2� 

 

𝑁𝑁𝜕𝜕1 −
𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕
−

1
2

𝜕𝜕2𝜕𝜕1

𝜕𝜕𝑁𝑁2 𝜎𝜎2 =
𝜕𝜕𝜕𝜕1 𝜕𝜕𝑁𝑁⁄
𝜕𝜕𝜕𝜕2 𝜕𝜕𝑁𝑁⁄ �𝑁𝑁𝜕𝜕2 −

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕
−

1
2

𝜕𝜕2𝜕𝜕2

𝜕𝜕𝑁𝑁2 𝜎𝜎2� 

 

𝑁𝑁𝜕𝜕1 − 𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕 − 1

2
𝜕𝜕2𝜕𝜕1
𝜕𝜕𝑁𝑁2 𝜎𝜎2

𝜕𝜕𝜕𝜕1 𝜕𝜕𝑁𝑁⁄ =
𝑁𝑁𝜕𝜕2 − 𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕 − 1
2

𝜕𝜕2𝜕𝜕2
𝜕𝜕𝑁𝑁2 𝜎𝜎2

𝜕𝜕𝜕𝜕2 𝜕𝜕𝑁𝑁⁄  

 

(b) Show that the price of a default-free discount bond satisfies the following partial 
differential equation  

( )
2

2
2

1 0
2t t

B B Ba b r r B
r t r

σλ σ∂ ∂ ∂
− − + + − =  ∂ ∂ ∂

 

 

Commentary on Question: 
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Candidates did well in this question. 

From 

𝜆𝜆(𝑁𝑁𝑡𝑡, 𝜕𝜕) =
𝑁𝑁(𝑏𝑏 − 𝑁𝑁𝑡𝑡) − 𝑁𝑁(𝜕𝜕)

𝜎𝜎
 

 
We have 𝑁𝑁(𝜕𝜕) = 𝑁𝑁(𝑏𝑏 − 𝑁𝑁𝑡𝑡) − 𝜎𝜎𝜆𝜆. 

𝑁𝑁𝑡𝑡𝜕𝜕 − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 − 1

2
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑁𝑁2 𝜎𝜎2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑁𝑁

= 𝑁𝑁(𝑏𝑏 − 𝑁𝑁𝑡𝑡) − 𝜎𝜎𝜆𝜆 

 
 
Therefore, we have PDE: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑁𝑁

[𝑁𝑁(𝑏𝑏 − 𝑁𝑁𝑡𝑡) − 𝜎𝜎𝜆𝜆] +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
1
2

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑁𝑁2 𝜎𝜎2 − 𝑁𝑁𝑡𝑡𝜕𝜕 = 0 

 

(c) Describe the key features of this interest rate model. 
Commentary on Question: 

Full marks were given to candidates who identified 4 key features.  Most candidates 
were able to list at least two key features.  

• Interest rate is mean reverting, which means that if they diverge too much from a 
central value, they tend to revert back to it. 

• The model has constant volatility 
• The model implies that the statistical distribution of interest rates in the future is 

normal. 
• It gives positive probability to negative nominal interest rate. 
• The solution to the fundamental pricing equation under the Vasicek model is 

known in closed form 
 

(d) Explain how to estimate the interest rate model parameters, using the given data.  
Identify the estimated parameters that can be used in pricing interest rate 
derivative. 
Commentary on Question: 

Most candidates stated the estimation of risk-neutral parameters, not the real-world 
parameters. 

Most candidates did not identify the estimated parameters that can be used in 
pricing interest rate derivatives. 

• The volatility σ can be estimated directly from the time series of interest rate rt. 
• Compute long-run mean of spot rate over the sample period. 
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• Obtain speed of mean reversion by regressing the changes in interest rate. 
• The volatility σ can be used in the bond pricing formula. The estimated long run 

mean and speed of mean reversion are not relevant for pricing interest rate 
securities. 

(e) Calculate the default-free discount bond price with 30-year maturity with r = 0.1%, 
5%, and 10%, respectively.   
Commentary on Question: 

Most candidates did not perform well in this question.  Candidates used the formula 
from Pietro textbook, and partial marks were awarded. 

Using the formula: 

𝜕𝜕 = 𝑒𝑒
1
𝑎𝑎�1−𝑒𝑒−𝑎𝑎𝑇𝑇�(𝑅𝑅−𝑟𝑟)−𝑇𝑇𝑅𝑅− 𝜎𝜎2

4𝑎𝑎3(1−𝑒𝑒−𝑎𝑎𝑇𝑇)2
  

 

𝑅𝑅 = 𝑏𝑏 −
𝜎𝜎𝜆𝜆
𝑁𝑁

−
𝜎𝜎2

𝑁𝑁2 
 
𝑁𝑁 = 0.25 
T = 30 
𝑏𝑏 = 0.05 
σ = 0.015 
𝜆𝜆 = -0.1 
 

Spot rate 30-year zero coupon bond 
0.1% 0.254079  
5% 0.208879  
10% 0.171034  

 

(f) Generate the yield curves for the same set of spot rates in part (e) with different 
maturities,1 through 30 years.   
Commentary on Question: 

Candidates performed below expectation for this question.  About half of the 
candidates did not attempt this question.  Full marks were awarded for candidates 
who used the yield formula to solve the question. 

𝑦𝑦𝑖𝑖𝑒𝑒𝑁𝑁𝑑𝑑 =  −
ln(𝜕𝜕)

𝑇𝑇
 

 

Spot rate 1 5 10 30 years 
0.1% 0.71% 2.343% 3.383% 4.567% 
5% 5.045% 5.14% 5.182% 5.220% 
10% 9.469% 7.994% 7.018% 5.886% 
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QFI QF Fall 2022 Question 1 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapters 
14, 28, pages 327, 675 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 52, 72-73 

Solution: 

(a) List the criteria for a stochastic process to be a martingale with respect to the 
filtration {ℱ𝑡𝑡}𝑡𝑡≥0. 

Commentary on Question: 

Most candidates were able to list the three criteria. However, some candidates 
forgot the absolute value when stating the second criterion. 
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The three criteria for 0 ≤ 𝑠𝑠 ≤ 𝜕𝜕 ≤ 𝑇𝑇 are: 

𝐸𝐸ℙ(𝑉𝑉𝜕𝜕|ℱ𝑠𝑠) = 𝑉𝑉𝑠𝑠; 

The equality holds almost surely. 

𝐸𝐸ℙ[|𝑉𝑉𝜕𝜕|] < ∞; 

And the 3rd criterion is that 𝑉𝑉𝜕𝜕 is ℱ𝜕𝜕-measurable  

 

(b) Derive a stochastic differential equation for 𝑋𝑋𝑡𝑡 using Ito’s Lemma. 

Commentary on Question: 

Most candidates did this part correctly. Some candidates did not use the correct 
notation that is specific to this problem. 

 

By Ito’s Lemma, one can derive 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑊𝑊𝑡𝑡 2𝑑𝑑𝜕𝜕 +  
𝜕𝜕𝛼𝛼𝑡𝑡

𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕 +

𝜕𝜕𝛼𝛼𝑡𝑡

𝜕𝜕𝑊𝑊𝑡𝑡
𝑑𝑑𝑊𝑊𝑡𝑡 +

1
2

𝜕𝜕2𝛼𝛼𝑡𝑡

𝜕𝜕𝑊𝑊𝑡𝑡
2 𝑑𝑑𝜕𝜕 

 

(c) Identify an appropriate 𝛽𝛽𝑡𝑡, if it exists, that makes 𝑋𝑋𝑡𝑡 a martingale. 

Commentary on Question: 

Many candidates were able to derive the correct function. Most candidates were 
able to state that a martingale requires the drift to be zero. 

From part (b), it follows that 𝑊𝑊𝑡𝑡  2 + 𝜕𝜕𝛼𝛼𝑡𝑡
𝜕𝜕𝑡𝑡

+ 1
2

𝜕𝜕2𝛼𝛼𝑡𝑡
𝜕𝜕𝑊𝑊𝑡𝑡

2 = 0      (∗)  

implies that 𝑋𝑋𝑡𝑡 is a martingale.  

Since 𝛼𝛼𝑡𝑡 = −𝜕𝜕𝑊𝑊𝑡𝑡 2 + 𝛽𝛽𝑡𝑡 where 𝛽𝛽𝑡𝑡 is deterministic, we have 

𝑑𝑑𝑋𝑋𝑡𝑡 = (𝑊𝑊𝑡𝑡 2 − 𝑊𝑊𝑡𝑡  2)𝑑𝑑𝜕𝜕 + 𝜕𝜕𝛽𝛽𝑡𝑡
𝜕𝜕𝑡𝑡

𝑑𝑑𝜕𝜕 − 2t𝑊𝑊𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡 − 𝜕𝜕𝑑𝑑𝜕𝜕. 

Therefore, by letting 𝛽𝛽𝑡𝑡 = 1
2

t2 and 𝛼𝛼𝑡𝑡 = −𝜕𝜕𝑊𝑊𝑡𝑡  2 + 1
2

t2, 𝑋𝑋𝑡𝑡 becomes a martingale. 

(d) Calculate 𝐸𝐸(𝑊𝑊𝑡𝑡
4) using Ito’s Lemma. 

Commentary on Question: 
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Most candidates did this part correctly. 

We use Ito’s Lemma on 𝑓𝑓(𝑊𝑊𝑡𝑡) =  𝑊𝑊𝑡𝑡  4. 

𝑑𝑑𝑊𝑊𝑡𝑡 4 = 4𝑊𝑊𝑡𝑡  3𝑑𝑑𝑊𝑊𝑡𝑡 + 6𝑊𝑊𝑡𝑡 2𝑑𝑑𝜕𝜕 

therefore  

𝑊𝑊𝑡𝑡  4 = 4 � 𝑊𝑊𝑠𝑠 3𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡

0
+ 6 � 𝑊𝑊𝑠𝑠 2𝑑𝑑𝑠𝑠

𝑡𝑡

0
 

We then obtain 

𝐸𝐸(𝑊𝑊𝑡𝑡  4) = 6𝐸𝐸 �� 𝑊𝑊𝑠𝑠 2𝑑𝑑𝑠𝑠
𝑡𝑡

0
�         (∗∗). 

One can evaluate (∗∗) as follows (By Fubini’s theorem): 

𝐸𝐸 �� 𝑊𝑊𝑠𝑠 2𝑑𝑑𝑠𝑠
𝑡𝑡

0
� = � 𝐸𝐸(𝑊𝑊𝑠𝑠 2)𝑑𝑑𝑠𝑠

𝑡𝑡

0
= � 𝑠𝑠𝑑𝑑𝑠𝑠

𝑡𝑡

0
=

1
2

𝜕𝜕2. 

Alternatively, a candidate can use part (c) in the following manner: 

Since 𝑋𝑋𝑡𝑡 is a martingale,  

𝐸𝐸 �� 𝑊𝑊𝑠𝑠 2𝑑𝑑𝑠𝑠
𝑡𝑡

0
� + 𝐸𝐸(𝛼𝛼𝑡𝑡) = 0 ⇒ 𝐸𝐸 �� 𝑊𝑊𝑠𝑠 2𝑑𝑑𝑠𝑠

𝑡𝑡

0
� = 𝐸𝐸 �𝜕𝜕𝑊𝑊𝑡𝑡  2 −

1
2

t2� = 𝜕𝜕𝐸𝐸(𝑊𝑊𝑡𝑡  2) −
1
2

t2 =
1
2

t2. 

 

In either case, the result is: 

𝐸𝐸(𝑊𝑊𝑡𝑡 4) = 3𝜕𝜕2. 

 

 

QFI QF Fall 2022 Question 2 
Learning Outcomes: 

a) Understand the principles of no-arbitrage and replication in asset pricing 

e) Understand and apply the concepts of risk-neutral measure, forward measure, 
normalization, and the market price of risk 

f) Understand option pricing techniques  

Source References: 
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• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapter 
13, pages 296-298 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 221-227 

• Understanding the Connection Between Real-World and Risk-Neutral Generators, 
SOA Research 

Solution: 

(a) Determine the range of 𝛼𝛼 so that there is no arbitrage opportunity. 

Commentary on Question: 

Candidates did poorly on this part. Many failed to recognize the conditions needed 
to avoid arbitrage. 

If one invests 𝑆𝑆𝑡𝑡−1 in the risk-free asset at the beginning of year 𝜕𝜕, then the expected return 
is 1.05𝑆𝑆𝑡𝑡−1. 

Therefore, the following inequality should be satisfied to avoid arbitrage:𝛼𝛼𝑆𝑆𝑡𝑡−1 <
1.05𝑆𝑆𝑡𝑡−1 < 1.3𝑆𝑆𝑡𝑡−1 at 𝜕𝜕 = 1, 2, ... 

Thus, 𝛼𝛼 < 1.05. 

(b) Derive the price 𝑆𝑆4 as a function of 𝑑𝑑 and give the possible range of 𝑆𝑆4. 

Commentary on Question: 

Candidates did well on this part. 

𝑆𝑆4 = 100𝛼𝛼 𝑑𝑑1.3 4−𝑑𝑑. 

Thus, 100𝛼𝛼 4 < 𝑆𝑆4 < 285.61 

(c) Calculate the real-world probability that the double barrier option will be exercised.  

Commentary on Question: 

Candidates did poorly on this part. Many incorrectly states that 5 down movements 
were needed to exercise the barrier option. 

Since the upper barrier is 290, the barrier can be hit only if all 5 stock price movements are 
up. 

In the same manner, the lower barrier 70 can be hit only if the first 4 movements are all 
down. 
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Therefore, the real-world probability of the double barrier option being exercized is: 

(0.65)(0.6)(0.55)(0.5)2 + (0.35)(0.4)(0.45)(0.5) = 8.5125%. 

(d) Calculate the risk-neutral probability of an up-movement in the price of the asset 𝑆𝑆. 

Commentary on Question: 

Candidates did well on this part. 

Let us define the risk-neutral probability of up-movement as 𝑞𝑞. 

Then, we can solve the following equation for 𝑞𝑞: 

1.05 = 𝑞𝑞 × 1.3 + (1 − 𝑞𝑞) × 0.9. 

Thus, 𝑞𝑞 = 15
40

= 37.5%. 

(e) Calculate the price 𝑍𝑍0 of the double barrier option at 𝜕𝜕 = 0 under the risk-neutral 
measure. 

Commentary on Question: 

Candidates did well on this part. Candidates that incorrectly performed previous 
parts were not penalized for the same mistakes again.  

The risk-neutral expected payoff of the option at time 5 is 

𝐸𝐸Q[𝑍𝑍] = 100(𝑞𝑞5 + (1 − 𝑞𝑞)4) = 16. 

 

The time-0 price of the option is: 

𝑍𝑍0 =
𝐸𝐸Q[𝑍𝑍]

(1.05)5 = 12.54. 

 

 

QFI QF Fall 2022 Question 4 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

Source References: 
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• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapter 
14, page 327 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 52, 128-130 

Solution: 

(a) Show that 𝑍𝑍𝑡𝑡 = ∫ 𝑊𝑊𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡
0  is a normally distributed random variable. 

Commentary on Question: 

Most candidates were able to show that Zt was normal; a full credit response 
required the use of the mean square limit as justification. 

We can use integration by parts to show 𝑑𝑑(𝜕𝜕𝑊𝑊𝑡𝑡) = 𝜕𝜕𝑑𝑑𝑊𝑊𝑡𝑡 + 𝑊𝑊𝑡𝑡𝑑𝑑𝜕𝜕. Therefore,  

𝑍𝑍𝑡𝑡 = � 𝑊𝑊𝑢𝑢 𝑑𝑑𝑢𝑢
𝑡𝑡

0
= 𝜕𝜕𝑊𝑊𝑡𝑡 − � 𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
= � (𝜕𝜕 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
 

The last integral is the mean square limit of ∑ (𝜕𝜕 − 𝑢𝑢𝑘𝑘−1)𝑛𝑛
𝑘𝑘=1 (𝑊𝑊𝑘𝑘 − 𝑊𝑊𝑘𝑘−1)for a 

subdivision 0 = 𝑢𝑢0 < 𝑢𝑢1 < ⋯ < 𝑢𝑢𝑛𝑛 = 𝜕𝜕 and 𝑊𝑊𝑘𝑘 ≔ 𝑊𝑊𝑢𝑢𝑘𝑘. This sum represents a linear 
combination of independent normally distributed random variables, which is also 
normal in the limit. 

Alternative solution: 

𝑍𝑍𝑡𝑡 = ∫ 𝑊𝑊𝑢𝑢 𝑑𝑑𝑢𝑢𝑡𝑡
0  is the mean square limit of ∑ 𝑊𝑊𝑘𝑘(𝑢𝑢𝑘𝑘 − 𝑢𝑢𝑘𝑘−1)𝑛𝑛

𝑘𝑘=1  for a subdivision 0 =
𝑢𝑢0 < 𝑢𝑢1 < ⋯ < 𝑢𝑢𝑛𝑛 = 𝜕𝜕 and 𝑊𝑊𝑘𝑘 ≔ 𝑊𝑊𝑢𝑢𝑘𝑘. This sum represents a linear combination of 
independent normally distributed random variables, which is also normal in the 
limit. 

(b) Determine whether 𝑌𝑌𝑡𝑡 is a Wiener process with respect to the filtration {ℱ𝑡𝑡}𝑡𝑡≥0. 

Commentary on Question: 

Most candidates were able to derive the expectation and variance of 𝑌𝑌𝑡𝑡 correctly but 
were not able to identify the incremental variance as the reason it fails to be a 
Wiener process. Some candidates incorrectly deduced 𝑌𝑌𝑡𝑡 was a Wiener process 
based on the expectation and variance. 

In order to be a Wiener process with respect to filtration {ℱ𝑡𝑡}𝑡𝑡≥0, 𝑌𝑌𝑡𝑡 should satisfy: 

i. 𝑌𝑌0 = 0 and has continuous sample paths 
ii. For 𝜕𝜕 > 0, 𝑠𝑠 > 0, 𝑌𝑌𝑡𝑡+𝑠𝑠 − 𝑌𝑌𝑡𝑡  ~𝑁𝑁(0, 𝑠𝑠) [stationary increment] 

iii. For 𝜕𝜕 > 0, 𝑠𝑠 > 0, 𝑌𝑌𝑡𝑡+𝑠𝑠 − 𝑌𝑌𝑡𝑡  ⊥ 𝑌𝑌𝑡𝑡  [independent increment] 
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We start with the expectation and variance of 𝑌𝑌𝑡𝑡: 

 

𝐸𝐸[𝑌𝑌𝑡𝑡] = 𝐸𝐸 �√3
𝑡𝑡

𝑍𝑍𝑡𝑡� = 𝐸𝐸 �√3
𝑡𝑡 ∫ (𝜕𝜕 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡
0 � = √3

𝑡𝑡
𝐸𝐸 �∫ (𝜕𝜕 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡
0 � = 0, as it is an Ito 

integral. 

𝑉𝑉𝑁𝑁𝑁𝑁[𝑌𝑌𝑡𝑡] = 𝑉𝑉𝑁𝑁𝑁𝑁 �
√3
𝜕𝜕

𝑍𝑍𝑡𝑡� = 𝐸𝐸 ��
√3
𝜕𝜕

𝑍𝑍𝑡𝑡�
2

� =
3
𝜕𝜕2 𝐸𝐸�𝑍𝑍𝑡𝑡

2� =
3
𝜕𝜕2 �(𝜕𝜕 − 𝑢𝑢)2

𝑡𝑡

0

𝑑𝑑𝑢𝑢 =
1
𝜕𝜕2 𝜕𝜕3 = 𝜕𝜕 

by Ito’s isometry. 

We can use the above to determine the incremental variance: 

𝑉𝑉𝑁𝑁𝑁𝑁[𝑌𝑌𝑡𝑡+𝑠𝑠 − 𝑌𝑌𝑡𝑡] = 𝑉𝑉𝑁𝑁𝑁𝑁 �
√3

𝜕𝜕 + 𝑠𝑠
𝑍𝑍𝑡𝑡+𝑠𝑠 −  

√3
𝜕𝜕

𝑍𝑍𝑡𝑡�

= 𝑉𝑉𝑁𝑁𝑁𝑁 �
√3

𝜕𝜕 + 𝑠𝑠
𝑍𝑍𝑡𝑡+𝑠𝑠� + 𝑉𝑉𝑁𝑁𝑁𝑁 �

√3
𝜕𝜕

𝑍𝑍𝑡𝑡� − 2𝐶𝐶𝑁𝑁𝐶𝐶 �
√3

𝜕𝜕 + 𝑠𝑠
𝑍𝑍𝑡𝑡+𝑠𝑠,

√3
𝜕𝜕

𝑍𝑍𝑡𝑡�

= (𝜕𝜕 + 𝑠𝑠) + 𝜕𝜕 −
6

𝜕𝜕(𝜕𝜕 + 𝑠𝑠) 𝐸𝐸 �� (𝜕𝜕 + 𝑠𝑠 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡+𝑠𝑠

0
� (𝜕𝜕 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
�

= 2𝜕𝜕 + 𝑠𝑠

−
6

𝜕𝜕(𝜕𝜕 + 𝑠𝑠) �𝐸𝐸 �� (𝜕𝜕 + 𝑠𝑠 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡+𝑠𝑠

t
� (𝜕𝜕 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
�

+ 𝐸𝐸 �� (𝜕𝜕 + 𝑠𝑠 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
� (𝜕𝜕 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
��

= 2𝜕𝜕 + 𝑠𝑠 −
6

𝜕𝜕(𝜕𝜕 + 𝑠𝑠) � (𝜕𝜕 + 𝑠𝑠 − 𝑢𝑢)
𝑡𝑡

0
(𝜕𝜕 − 𝑢𝑢)𝑑𝑑𝑢𝑢

= 2𝜕𝜕 + 𝑠𝑠 −
6

𝜕𝜕(𝜕𝜕 + 𝑠𝑠) �
𝑠𝑠𝜕𝜕2

2
+

𝜕𝜕3

3
� =

𝑠𝑠2

𝜕𝜕 + 𝑠𝑠
≠ 𝑠𝑠 

 

So, 𝑌𝑌𝑡𝑡 fails to have the stationary increment property and is therefore not a Wiener 
process. 

Alternative solution: 

For a Wiener process, 𝑊𝑊𝑡𝑡, we expect 𝐶𝐶𝑁𝑁𝐶𝐶[𝑊𝑊𝑡𝑡+𝑠𝑠, 𝑊𝑊𝑡𝑡 ] = 𝜕𝜕. However, 
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𝑁𝑁𝐶𝐶 �
√3

𝜕𝜕 + 𝑠𝑠
𝑍𝑍𝑡𝑡+𝑠𝑠,

√3
𝜕𝜕

𝑍𝑍𝑡𝑡� =
3

𝜕𝜕(𝜕𝜕 + 𝑠𝑠) 𝐸𝐸 �� (𝜕𝜕 + 𝑠𝑠 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡+𝑠𝑠

0
� (𝜕𝜕 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
�

=
3

𝜕𝜕(𝜕𝜕 + 𝑠𝑠) �𝐸𝐸 �� (𝜕𝜕 + 𝑠𝑠 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡+𝑠𝑠

t
� (𝜕𝜕 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
�

+ 𝐸𝐸 �� (𝜕𝜕 + 𝑠𝑠 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
� (𝜕𝜕 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
��

=
3

𝜕𝜕(𝜕𝜕 + 𝑠𝑠) � (𝜕𝜕 + 𝑠𝑠 − 𝑢𝑢)
𝑡𝑡

0
(𝜕𝜕 − 𝑢𝑢)𝑑𝑑𝑢𝑢 =

3
𝜕𝜕(𝜕𝜕 + 𝑠𝑠) �

𝑠𝑠𝜕𝜕2

2
+

𝜕𝜕3

3
� =

3𝑠𝑠𝜕𝜕 + 2𝜕𝜕2

2(𝜕𝜕 + 𝑠𝑠)

= 𝜕𝜕 +
𝑠𝑠𝜕𝜕

2(𝜕𝜕 + 𝑠𝑠)
≠ 𝜕𝜕 

 

Therefore, 𝑌𝑌𝑡𝑡 is not a Wiener process. 

(c) Derive an expression for 𝑑𝑑𝐺𝐺𝑡𝑡 in terms of 𝑑𝑑𝑌𝑌𝑡𝑡. 

Commentary on Question: 

Few candidates performed well on this section. Most failed to establish any 
relationship between Gt and Yt.  

We can easily derive an expression for ln 𝑆𝑆𝑢𝑢, given the process satisfies the GBM 
model: 

𝑆𝑆𝑢𝑢 = 𝑆𝑆0𝑒𝑒�𝜇𝜇−1
2𝜎𝜎2�𝑢𝑢+𝜎𝜎𝑊𝑊𝑢𝑢 ⇔ ln 𝑆𝑆𝑢𝑢 = ln 𝑆𝑆0 + �𝜇𝜇 −

1
2

𝜎𝜎2� 𝑢𝑢 + 𝜎𝜎𝑊𝑊𝑢𝑢 

 

We can substitute the above into the expression for ln 𝐺𝐺𝑡𝑡: 

ln 𝐺𝐺𝑡𝑡 =
1
𝜕𝜕

� �ln 𝑆𝑆0 + �𝜇𝜇 −
1
2

𝜎𝜎2� 𝑢𝑢 + 𝜎𝜎𝑊𝑊𝑢𝑢�
𝑡𝑡

0
𝑑𝑑𝑢𝑢 

= ln 𝑆𝑆0 + �𝜇𝜇 −
1
2

𝜎𝜎2�
𝜕𝜕
2

+
𝜎𝜎
𝜕𝜕

� 𝑊𝑊𝑢𝑢

𝑡𝑡

0
𝑑𝑑𝑢𝑢 

= ln 𝑆𝑆0 + �𝜇𝜇 −
1
2

𝜎𝜎2�
𝜕𝜕
2

+
𝜎𝜎

√3
𝑌𝑌𝑡𝑡 

This allows us to re-write the process, 𝐺𝐺𝑡𝑡 as: 

𝐺𝐺𝑡𝑡 = 𝑆𝑆0𝑒𝑒
�𝜇𝜇−1

2𝜎𝜎2�𝑡𝑡
2+ 𝜎𝜎

√3
𝑌𝑌𝑡𝑡  
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By applying Ito’s Lemma to 𝐺𝐺𝑡𝑡, we find: 

𝑑𝑑𝐺𝐺𝑡𝑡 = 𝐺𝐺𝑡𝑡 �
1
2

�𝜇𝜇 −
1
2

𝜎𝜎2� 𝑑𝑑𝜕𝜕 +
𝜎𝜎

√3
𝑑𝑑𝑌𝑌𝑡𝑡 +

1
2

�
𝜎𝜎2

3
� 𝑑𝑑𝜕𝜕�, 

or equivalently: 

𝑑𝑑𝐺𝐺𝑡𝑡

𝐺𝐺𝑡𝑡
=

1
2

�𝜇𝜇 −
1
6

𝜎𝜎2� 𝑑𝑑𝜕𝜕 +
𝜎𝜎

√3
𝑑𝑑𝑌𝑌𝑡𝑡 

 

 

QFI QF Spring 2023 Question 2 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives 

e) Understand and apply the concepts of risk-neutral measure, forward measure, 
normalization, and the market price of risk 

f) Understand option pricing techniques  

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapters 
14, 28, pages 327, 675 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 221-227, 233-242 

• INV201-101-25: Chapter 6 of Introduction to Stochastic Finance with Market 
Examples by Privault 

 

Commentary on Question: 

In general, this part of the question was the one found most accessible for candidates. 
Most candidates derived part i) correctly. A handful found part ii) difficult. Many used their 
results in i) to justify ii), despite being asked explicitly to show “using the definition” which 
means the martingale property must be shown explicitly. Others did not adequately 
demonstrate the martingale property and mixed up when you could remove arguments 
outside of the expectation. Many failed to show that E(abs(M(t)) could be simplified to M(0) 

Solution: 
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(a) Show that 𝑀𝑀(𝜕𝜕) is a ℚ-martingale using each of the following approaches:   

 
(i) Deriving the stochastic dynamics of 𝑀𝑀(𝜕𝜕). 

 
(ii) Applying the definition of a martingale.  

 

(i) 

𝑑𝑑𝑀𝑀(𝜕𝜕) = 𝛼𝛼𝑀𝑀(𝜕𝜕)𝑑𝑑𝑊𝑊(𝜕𝜕) −
𝛼𝛼2

2
𝑀𝑀(𝜕𝜕)𝑑𝑑𝜕𝜕 +

𝛼𝛼2

2
𝑀𝑀(𝜕𝜕)𝑑𝑑𝜕𝜕 

= 𝛼𝛼𝑀𝑀(𝜕𝜕)𝑑𝑑𝑊𝑊(𝜕𝜕) 

which is driftless and hence 𝑀𝑀(𝜕𝜕) is a martingale under ℚ.  

(ii) 

By definition, 

𝐸𝐸ℚ(|𝑀𝑀(𝜕𝜕)|) =  𝐸𝐸ℚ ��𝑀𝑀(0)𝑒𝑒𝛼𝛼𝑊𝑊(𝑡𝑡)−𝛼𝛼2𝑡𝑡
2 �� 

= 𝑀𝑀(0)𝑒𝑒−𝛼𝛼2𝑡𝑡
2 𝐸𝐸ℚ�𝑒𝑒𝛼𝛼𝑊𝑊(𝑡𝑡) � = 𝑀𝑀(0) < ∞ 

Clearly 𝑀𝑀(𝜕𝜕) is ℱ𝑡𝑡-measureable 

For 0 < 𝑠𝑠 < 𝜕𝜕 

𝐸𝐸𝑠𝑠
ℚ�𝑀𝑀(𝜕𝜕)� = 𝐸𝐸𝑠𝑠

ℚ �𝑀𝑀(0)𝑒𝑒𝛼𝛼𝑊𝑊(𝑡𝑡)−𝛼𝛼2𝑡𝑡
2 � 

=𝑀𝑀(0)𝑒𝑒−𝛼𝛼2𝑡𝑡
2 𝐸𝐸𝑠𝑠

ℚ�𝑒𝑒𝛼𝛼�𝑊𝑊(𝑡𝑡)−𝑊𝑊(𝑠𝑠)+𝑊𝑊(𝑠𝑠)�� 

=𝑀𝑀(0)𝑒𝑒−𝛼𝛼2𝑡𝑡
2 𝑒𝑒𝛼𝛼𝑊𝑊(𝑠𝑠)𝐸𝐸𝑠𝑠

ℚ�𝑒𝑒𝛼𝛼�𝑊𝑊(𝑡𝑡)−𝑊𝑊(𝑠𝑠)��, since 𝑊𝑊(𝑠𝑠) is ℱ𝑠𝑠-measureable 

=𝑀𝑀(0)𝑒𝑒−𝛼𝛼2𝑡𝑡
2 𝑒𝑒𝛼𝛼𝑊𝑊(𝑠𝑠)𝑒𝑒

𝛼𝛼2

2
(𝑡𝑡−𝑠𝑠), since 𝑊𝑊(𝜕𝜕) − 𝑊𝑊(𝑠𝑠) is  normal distribution mean 0 and variance t-s. 

= 𝑀𝑀(0)𝑒𝑒𝛼𝛼𝑊𝑊(𝑠𝑠)−𝛼𝛼2𝑠𝑠
2 = 𝑀𝑀(𝑠𝑠) 

 

Hence by definition, 𝑀𝑀(𝜕𝜕) is a ℚ-martingale 

(b) Write down the Radon-Nikodym derivative of ℚ𝐴𝐴 with respect to ℚ.   
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Commentary on Question: 

Of all parts, candidates did the poorest on this section. Most left it blank and/or 
incorrect. A handful knew the standard definition of the RN derivative but very few 
successfully provided the correct expression. Another small handful knew the 
definition but incorrectly derived an expression involving the other asset/numeraire 
pair and not Q and the risk-free asset.  

Candidates could apply a number of approaches to derive the RN-derivative, but since the 
question states “write-down”, they will receive full marks for writing down the correct 
expression and simplifying to the final answer. 

Approach 1 From question a), we have shown 𝑑𝑑𝑀𝑀(𝜕𝜕) is driftless under ℚ and so is the bank 
account numeraire, trivially, since r = 0. 𝜕𝜕(𝜕𝜕) has the equivalent form of 𝜕𝜕(𝜕𝜕) and hence is also 
driftless under ℚ 

Hence, we can write the RN-derivative as a ratio of asset numeraires: 

𝑑𝑑ℚ𝐴𝐴

𝑑𝑑ℚ
=

𝜕𝜕(𝜕𝜕)/𝜕𝜕(0)
𝑒𝑒0∗𝑡𝑡/𝑒𝑒0∗0 = 𝑒𝑒𝜗𝜗𝑊𝑊(𝑡𝑡)−𝜗𝜗2𝑡𝑡

2  

 

Approach 2 The result follows directly from Girsanov’s Theorem since  𝑊𝑊(𝜕𝜕) is a ℚ-standard 
Brownian Motion and −𝜗𝜗 is constant and therefore ℱ𝑡𝑡-adapted 

𝑍𝑍𝑡𝑡 = 𝑒𝑒−(−𝜗𝜗)𝑊𝑊(𝑡𝑡)−(−𝜗𝜗)2𝑡𝑡
2 = 𝑒𝑒𝜗𝜗𝑊𝑊(𝑡𝑡)−𝜗𝜗2𝑡𝑡

2 =
𝑑𝑑ℚ𝐴𝐴

𝑑𝑑ℚ
 

 

(c) Determine, using Ito’s lemma and Girsanov Theorem, whether the normalized 

process 𝑀𝑀(𝑡𝑡)
𝐴𝐴(𝑡𝑡)  is a ℚ-martingale or a ℚ𝐴𝐴-martingale. 

Commentary on Question: 

Overall, candidates performed fairly well on this question with most recognizing it was 
not a Q-martingale but was a  ℚ𝐴𝐴-martingale. Some lost marks by not including clear 
statements that it was not a Q martingale (and instead relied upon the examiner to 
infer the candidate knew because it had a drift term in the stochastic dynamics it was 
not a martingale). Some made errors in the Q dynamics but correctly applied 
Girsanov’s theorem to find the dynamics under  ℚ𝐴𝐴 and were not penalized again for 
the mistake under Q. Some candidates missed full marks as they did not adequately 
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explain that it was Girsanov’s theorem that let them incorporate the  ℚ𝐴𝐴  Brownian 
motion, instead just applying the transformation without any justification.  

Let 𝑀𝑀�(𝜕𝜕) = 𝑀𝑀(𝜕𝜕)/𝜕𝜕(𝜕𝜕). First simplify the expression and then apply Ito’s Lemma 

𝑀𝑀�(𝜕𝜕) =
𝑀𝑀(0)𝑒𝑒𝛼𝛼𝑊𝑊(𝑡𝑡) −𝛼𝛼2𝑡𝑡

2

𝜕𝜕(0)𝑒𝑒𝜗𝜗𝑊𝑊(𝑡𝑡) −𝜗𝜗2𝑡𝑡/2 = 𝑀𝑀�(0)𝑒𝑒(𝛼𝛼−𝜗𝜗)𝑊𝑊(𝑡𝑡) −
�𝛼𝛼2−𝜗𝜗2�𝑡𝑡

2  

𝑑𝑑𝑀𝑀� (𝜕𝜕) = (𝛼𝛼 − 𝜗𝜗)𝑀𝑀�(𝜕𝜕)𝑑𝑑𝑊𝑊(𝜕𝜕) −
(𝛼𝛼2 − 𝜗𝜗2)

2
𝑀𝑀�(𝜕𝜕)𝑑𝑑𝜕𝜕 +

(𝛼𝛼 − 𝜗𝜗)2

2
𝑀𝑀�(𝜕𝜕)𝑑𝑑𝜕𝜕

= (𝜗𝜗2 −  𝛼𝛼𝜗𝜗)𝑀𝑀�(𝜕𝜕)𝑑𝑑𝜕𝜕 + (𝛼𝛼 − 𝜗𝜗)𝑀𝑀�(𝜕𝜕)𝑑𝑑𝑊𝑊(𝜕𝜕) 

 

This is not a martingale under ℚ as the dynamics are not driftless 

We have already established in parts a) and b) that  

𝑍𝑍𝜕𝜕 = 𝑑𝑑ℚ𝜕𝜕

𝑑𝑑ℚ
= 𝑒𝑒𝜗𝜗𝑊𝑊(𝜕𝜕)−𝜗𝜗2𝜕𝜕

2  is a ℚ martingale 

Using Girsanov’s theorem, we know there is a ℚ𝐴𝐴  standard Brownian Motion, say 𝑊𝑊� (𝜕𝜕)  such that 
𝑊𝑊� (𝜕𝜕) =  𝑊𝑊(𝜕𝜕) + (−𝜗𝜗)𝜕𝜕 

So, 𝑑𝑑𝑀𝑀� (𝜕𝜕) = (𝜗𝜗2 −  𝛼𝛼𝜗𝜗)𝑀𝑀�(𝜕𝜕)𝑑𝑑𝜕𝜕 + (𝛼𝛼 − 𝜗𝜗)𝑀𝑀�(𝜕𝜕)�𝑑𝑑𝑊𝑊� (𝜕𝜕) + 𝜗𝜗𝑑𝑑𝜕𝜕� 

= 𝜗𝜗2𝑀𝑀�(𝜕𝜕)𝑑𝑑𝜕𝜕 −  𝛼𝛼𝜗𝜗𝑀𝑀�(𝜕𝜕)𝑑𝑑𝜕𝜕 +  𝛼𝛼𝜗𝜗𝑀𝑀�(𝜕𝜕)𝑑𝑑𝜕𝜕−𝜗𝜗2𝑀𝑀�(𝜕𝜕)𝑑𝑑𝜕𝜕+(𝛼𝛼 − 𝜗𝜗)𝑀𝑀�(𝜕𝜕)𝑑𝑑𝑊𝑊� (𝜕𝜕) = (𝛼𝛼 − 𝜗𝜗)𝑀𝑀�(𝜕𝜕)𝑑𝑑𝑊𝑊� (𝜕𝜕) 

 

Hence 𝑀𝑀�(𝜕𝜕) is driftless and a ℚ𝐴𝐴-martingale 

 

(d) Derive an expression for today’s price of an exchange option with payoff  𝑃𝑃(𝑇𝑇) =
𝑁𝑁𝑁𝑁𝑚𝑚[0, 𝑀𝑀(𝑇𝑇) − 𝜕𝜕(𝑇𝑇)].       

Commentary on Question: 

More than half of candidates attempt this question; however, few attempts were 
successful, and overall marks were low on this part. A very small minority of 
candidates were able to achieve near full marks. There was a very similar (and harder) 
question on the Spring 2022 paper that would have prepared candidates for this one.  

The purpose of this question is to test the application of change of numeraire, either explicitly, or 
based on the equivalency of asset/numeraire pairs: 

 

𝑃𝑃(0) = 𝐸𝐸ℚ(𝑀𝑀(𝑇𝑇) − 𝜕𝜕(𝑇𝑇))+ 
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This expression cannot easily be evaluated under ℚ 

Rewriting it, 𝑃𝑃(0) = 𝐸𝐸ℚ �𝜕𝜕(𝑇𝑇) �𝑀𝑀(𝑇𝑇)−𝐴𝐴(𝑇𝑇)�
𝐴𝐴(𝑇𝑇) �

+
 

= 𝐸𝐸ℚ �𝜕𝜕(𝑇𝑇)�𝑀𝑀�(𝑇𝑇) − 1��
+

 

= 𝐸𝐸ℚ �𝜕𝜕(0)
𝜕𝜕(𝑇𝑇)
𝜕𝜕(0) �𝑀𝑀�(𝑇𝑇) − 1��

+

 

 

= 𝜕𝜕(0)𝐸𝐸ℚ �
𝑑𝑑ℚ𝐴𝐴

𝑑𝑑ℚ �𝑀𝑀�(𝑇𝑇) − 1��
+

 

= 𝜕𝜕(0)𝐸𝐸ℚ𝐴𝐴 ��𝑀𝑀�(𝑇𝑇) − 1�+� 

But 𝑀𝑀�(𝑇𝑇) is a ℚ𝐴𝐴-martingale and hence the above expression has the familiar Black-76 formula for 
a call option struck on 𝑀𝑀�(𝑇𝑇) at K=1 

 

 𝑃𝑃(0) =  𝜕𝜕(0)�𝑀𝑀�(0)𝑁𝑁(𝑑𝑑1� − 𝑁𝑁(𝑑𝑑2)) 

𝑑𝑑1 =
𝑁𝑁𝑁𝑁𝑙𝑙�𝑀𝑀�(0)� + (𝛼𝛼 − 𝜗𝜗)2𝑇𝑇

2
(𝛼𝛼 − 𝜗𝜗)√𝑇𝑇

 

𝑑𝑑2 = 𝑑𝑑1 − (𝛼𝛼 − 𝜗𝜗)√𝑇𝑇 

 

 

QFI QF Spring 2023 Question 3 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

e) Understand and apply the concepts of risk-neutral measure, forward measure, 
normalization, and the market price of risk 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapter  
28, page 675 
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• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 52, 221-227 

 

Solution: 

(a) Show that 

𝑍𝑍𝑡𝑡 =
𝜎𝜎𝜕𝜕𝑊𝑊𝑡𝑡 + 𝜎𝜎𝐸𝐸𝑉𝑉𝑡𝑡

�𝜎𝜎𝜕𝜕
2 + 𝜎𝜎𝐸𝐸

2 + 2𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸
 

 

is a ℙ-standard Brownian motion.   

 
Commentary on Question: 

Candidates generally performed well on this part. Candidates who stated Zt 
satisfied the properties solely due to Wt and Vt satisfying them only received partial 
credit as the question directed candidates to “show” the properties are satisfied 

For 𝑍𝑍𝑡𝑡  to be a ℙ-standard Brownian motion, it must satisfy: 

1. 𝑍𝑍0 = 0 and 𝑍𝑍𝑡𝑡  has continuous sample paths, 
2. 𝑍𝑍𝑡𝑡~𝑁𝑁(0, 𝜕𝜕), and 
3. 𝑍𝑍𝑡𝑡+𝑠𝑠 − 𝑍𝑍𝑡𝑡 ⊥ 𝑍𝑍𝑡𝑡  for 𝑠𝑠 > 0 

 

Given that 𝑊𝑊𝑡𝑡 and 𝑉𝑉𝑡𝑡 are standard Brownian motions, we find that: 

𝑍𝑍0 =
𝜎𝜎𝜕𝜕𝑊𝑊0 + 𝜎𝜎𝐸𝐸𝑉𝑉0

�𝜎𝜎𝜕𝜕
2 + 𝜎𝜎𝐸𝐸

2 + 2𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸
=

𝜎𝜎𝜕𝜕(0) + 𝜎𝜎𝐸𝐸(0)

�𝜎𝜎𝜕𝜕
2 + 𝜎𝜎𝐸𝐸

2 + 2𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸
= 0 

Continuous sample paths follow from being a linear combination of two standard Brownian 
motions. 

For second property, 𝑍𝑍𝑡𝑡  is normal given that it is a linear combination of two normal 
distributions. However, we must verify the expectation and variance. 

Similar to the first property,  

𝐸𝐸[𝑍𝑍𝑡𝑡] = 𝐸𝐸 �
𝜎𝜎𝜕𝜕𝑊𝑊𝑡𝑡 + 𝜎𝜎𝐸𝐸𝑉𝑉𝑡𝑡

�𝜎𝜎𝜕𝜕
2 + 𝜎𝜎𝐸𝐸

2 + 2𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸
� =

1
�𝜎𝜎𝜕𝜕

2 + 𝜎𝜎𝐸𝐸
2 + 2𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸

{𝜎𝜎𝑠𝑠𝐸𝐸[𝑊𝑊𝑡𝑡] + 𝜎𝜎𝐸𝐸𝐸𝐸[𝑉𝑉𝑡𝑡]} = 0 
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𝑉𝑉𝑁𝑁𝑁𝑁(𝑍𝑍𝑡𝑡) = 𝐸𝐸[𝑍𝑍𝑡𝑡
2] = 𝐸𝐸 ��

𝜎𝜎𝜕𝜕𝑊𝑊𝑡𝑡 + 𝜎𝜎𝐸𝐸𝑉𝑉𝑡𝑡

�𝜎𝜎𝜕𝜕
2 + 𝜎𝜎𝐸𝐸

2 + 2𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸
�

2

�

=
1

𝜎𝜎𝜕𝜕
2 + 𝜎𝜎𝐸𝐸

2 + 2𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸
𝐸𝐸[𝜎𝜎𝜕𝜕

2𝑊𝑊𝑡𝑡
2 + 𝜎𝜎𝐸𝐸

2𝑉𝑉𝑡𝑡
2 + 2𝜎𝜎𝜕𝜕𝑊𝑊𝑡𝑡𝜎𝜎𝐸𝐸𝑉𝑉𝑡𝑡]

=
1

𝜎𝜎𝜕𝜕
2 + 𝜎𝜎𝐸𝐸

2 + 2𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸
{𝜎𝜎𝜕𝜕

2𝐸𝐸[𝑊𝑊𝑡𝑡
2] + 𝜎𝜎𝐸𝐸

2𝐸𝐸[𝑉𝑉𝑡𝑡
2] + 2𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸𝐸𝐸[𝑊𝑊𝑡𝑡𝑉𝑉𝑡𝑡]}

=
1

𝜎𝜎𝜕𝜕
2 + 𝜎𝜎𝐸𝐸

2 + 2𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸
{𝜎𝜎𝜕𝜕

2𝜕𝜕 + 𝜎𝜎𝐸𝐸
2𝜕𝜕 + 2𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸𝜌𝜌𝜕𝜕} = 𝜕𝜕 

For the final property, given that 𝑍𝑍𝑡𝑡+𝑠𝑠 − 𝑍𝑍𝑡𝑡  and 𝑍𝑍𝑡𝑡  are jointly normally distributed, it suffices 
to show 𝐶𝐶𝑁𝑁𝐶𝐶(𝑍𝑍𝑡𝑡+𝑠𝑠 − 𝑍𝑍𝑡𝑡  , 𝑍𝑍𝑡𝑡) = 𝐸𝐸[(𝑍𝑍𝑡𝑡+𝑙𝑙 − 𝑍𝑍𝑡𝑡)𝑍𝑍𝑡𝑡] = 0.  

With 𝑍𝑍𝑡𝑡  being ℱ𝑡𝑡-measurable, 𝐸𝐸[(𝑍𝑍𝑡𝑡+𝑙𝑙 − 𝑍𝑍𝑡𝑡)𝑍𝑍𝑡𝑡] = 𝐸𝐸[𝑍𝑍𝑡𝑡𝐸𝐸[𝑍𝑍𝑡𝑡+𝑙𝑙 − 𝑍𝑍𝑡𝑡|ℱ𝑡𝑡]] = 0. 

 

(b) Determine whether ln (𝑆𝑆𝑡𝑡𝐸𝐸𝑡𝑡) follows an arithmetic Brownian motion under the 
measure ℙ or not.   

Commentary on Question: 

Candidate who attempted to perform Ito’s Lemma directly on ln (StEt) often left out 
a cross-term. Those who first determined the form of d(StEt) or followed the 
alternate approach were most successful. Some candidates conflated the notion of 
arithmetic Brownian motion and martingale. A clear conclusion was required for full 
credit.  

 

By the product rule, 𝑑𝑑(StEt) = EtdSt + StdEt + dStdEt. 

Substituting yields, 𝑑𝑑(StEt) = StEt �(μ + ρσSσE)dt + �𝜎𝜎𝜕𝜕
2 + 𝜎𝜎𝐸𝐸

2 + 2𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸𝑑𝑑𝑍𝑍𝑡𝑡�. 

We can apply Ito’s Lemma to the above to get the desired SDE: 

𝑑𝑑�𝑁𝑁𝑛𝑛(StEt)� = �μ − σS
2

2
− σE

2

2
� dt + �𝜎𝜎𝜕𝜕

2 + 𝜎𝜎𝐸𝐸
2 + 2𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸𝑑𝑑𝑍𝑍𝑡𝑡. 

The final result does follow an arithmetic Brownian motion under measure ℙ. 

Alternate approach: 

𝑑𝑑�𝑁𝑁𝑛𝑛(StEt)� = 𝑑𝑑(𝑁𝑁𝑛𝑛𝑆𝑆𝑡𝑡) + 𝑑𝑑(𝑁𝑁𝑛𝑛𝐸𝐸𝑡𝑡), where under Ito’s Lemma 
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𝑑𝑑(𝑁𝑁𝑛𝑛𝑆𝑆𝑡𝑡) =  �μ − σS
2

2
� dt + σSdWt and 𝑑𝑑(𝑁𝑁𝑛𝑛𝐸𝐸𝑡𝑡) = − σE

2

2
dt + σEdVt  

Thus, 𝑑𝑑�𝑁𝑁𝑛𝑛(StEt)� =  �μ − σS
2

2
− σE

2

2
� dt + σSdWt + σEdVt, which is an equivalent result. 

(c) Show that 𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆𝑡𝑡𝐸𝐸𝑡𝑡 is a martingale under the risk-neutral measure ℚ using Girsanov 
Theorem, with the numeraire being CAD risk-free assets.   

Commentary on Question: 

For full credit, candidates needed to show an understanding of Girsanov’s Theorem 
as well as the form of a martingale under risk-neutral measure ℚ. Many candidates 
only received partial credit for calculating the SDE of 𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆𝑡𝑡𝐸𝐸𝑡𝑡. 

𝑆𝑆𝑡𝑡𝐸𝐸𝑡𝑡 by definition represents the Canadian asset price in CAD, making 𝑁𝑁 the 
associated risk-free rate. 

 

𝑑𝑑(𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆𝑡𝑡𝐸𝐸𝑡𝑡) = −𝑁𝑁𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆𝑡𝑡𝐸𝐸𝑡𝑡𝑑𝑑𝜕𝜕 + 𝑒𝑒−𝑟𝑟𝑡𝑡[𝐸𝐸𝑡𝑡𝑑𝑑𝑆𝑆𝑡𝑡 + 𝑑𝑑𝐸𝐸𝑡𝑡𝑆𝑆𝑡𝑡 + 𝑑𝑑𝐸𝐸𝑡𝑡𝑑𝑑𝑆𝑆𝑡𝑡, ]

= 𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆𝑡𝑡𝐸𝐸𝑡𝑡 �(𝜇𝜇 − 𝑁𝑁 + 𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸)𝑑𝑑𝜕𝜕 + �𝜎𝜎𝜕𝜕
2 + 𝜎𝜎𝐸𝐸

2 + 2𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸𝑑𝑑𝑍𝑍𝑡𝑡� 

By applying Girsanov’s Theorem to change measure ℙ to an equivalent risk-neutral 

measure ℚ, we can utilize a process, 𝑍𝑍�𝑡𝑡
� , which is a standard Brownian motion under that 

measure. By letting,  

𝑑𝑑𝑍𝑍�𝑡𝑡
� = 𝑑𝑑𝑍𝑍𝑡𝑡 +

(𝜇𝜇 − 𝑁𝑁 + 𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸)

�𝜎𝜎𝜕𝜕
2 + 𝜎𝜎𝐸𝐸

2 + 2𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸
 

we find under ℚ,  𝑑𝑑(𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆𝑡𝑡𝐸𝐸𝑡𝑡) = 𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆𝑡𝑡𝐸𝐸𝑡𝑡 ��𝜎𝜎𝜕𝜕
2 + 𝜎𝜎𝐸𝐸

2 + 2𝜌𝜌𝜎𝜎𝜕𝜕𝜎𝜎𝐸𝐸𝑑𝑑𝑍𝑍�𝑡𝑡
� �.  

As there is no drift, 𝑒𝑒−𝑟𝑟𝑡𝑡𝑆𝑆𝑡𝑡𝐸𝐸𝑡𝑡 is a ℚ-martingale. 

 

 

QFI QF Spring 2023 Question 5 
Learning Outcomes: 

i) Calibrate a model to observed prices of traded securities including fitting to a given 
yield curve 

Source References: 
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• Calibrating Interest Rate Models (Section 1.1-4.3 excl 4.1.2) 

Commentary on Question: 

The question tested candidates on quantitative tools and techniques for modeling the term 
structure of interest rates with the Hull-White model. Candidates performed well on part (e) 
which tested their ability to calculate the price of an option. Candidates performed poorly 
on parts (a)-(d). 

Solution: 

(a) Explain whether the fitted model is a true arbitrage-free model.   
Commentary on Question: 

Most candidates answered this question incorrectly and stated that the Hull-White 
model is an arbitrage-free model. 

The fitted yield curve is obtained by fitting a third degree polynomial to 20 points. 

It may have done through least square or “lm” using R. 

It is very unlikely the fit will be perfect as least square fit just minimizes the errors, 
not making them zero. 

 

Also gamma and sigma are obtained by fitting five cap prices so those estimates 
with the 3 degree polynomial would be unlikely to produce a perfect fit to yield curve 
and cap prices, so the calibrated model is not truly arbitrage free. 

(b) Derive an expression for the instantaneous forward rate at time 0  𝑓𝑓(0, 𝜕𝜕).   
Commentary on Question: 

Candidates performed below expectation on this question. A common mistake was 
to take the derivative of r(0,t). 

𝑓𝑓(0, 𝜕𝜕) =
𝜕𝜕
𝜕𝜕𝜕𝜕 �𝜕𝜕 𝑁𝑁(0, 𝜕𝜕)�  

 
𝑓𝑓(0, 𝜕𝜕) = 0.01091858598 +   0.01251008594 ∗ 2 ∗ 𝜕𝜕 − 0.000140114635 ∗ 3 ∗ 𝜕𝜕2 +  0.005654825

∗ 4 ∗ 𝜕𝜕3 
 
𝑓𝑓(0, 𝜕𝜕) =   0.010918586 +  0.025020172𝜕𝜕 − 0.0004203439𝜕𝜕2  + 0.0226193𝜕𝜕3 
 

(c) Derive an expression for 𝜃𝜃𝑡𝑡  .   
Commentary on Question: 
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Many candidates were able to identify the correct initial formula to use. Most 
candidates struggled to convert the formula to decimal numbers. 

 

𝜃𝜃𝑇𝑇 =
𝜕𝜕𝑓𝑓(0, 𝑇𝑇)

𝜕𝜕𝑇𝑇 
+ 𝛾𝛾𝑓𝑓(0, 𝑇𝑇) +

𝜎𝜎2

2𝛾𝛾
(1 − 𝑒𝑒𝑚𝑚𝑢𝑢(−2𝛾𝛾𝑇𝑇)) 

 
As f(0,T) has been calculated as percentage points and 𝜎𝜎2 is in the equation, we need to convert f(0,T) 
and 𝜎𝜎 to deimal numbers before using the formula. 
 

𝜃𝜃𝑡𝑡 = � 𝑁𝑁𝑖𝑖𝑖𝑖(𝑖𝑖 + 1)𝜕𝜕𝑖𝑖−1 + � 𝛾𝛾𝑁𝑁𝑖𝑖(𝑖𝑖 + 1)𝜕𝜕𝑖𝑖 +
𝜎𝜎2

2𝛾𝛾
(1 − 𝑒𝑒𝑚𝑚𝑢𝑢(−2𝛾𝛾𝜕𝜕))

𝑛𝑛

𝑖𝑖=0

𝑛𝑛

𝑖𝑖=1

 

 
𝜃𝜃𝑡𝑡 =  0.02709470321 + 0.0039131448472𝜕𝜕 + 0.06777803465805𝜕𝜕2 +   0.004297667𝜕𝜕3

+ 0.001010947(1 − 𝑒𝑒𝑚𝑚𝑢𝑢 (−0.38𝜕𝜕) 
 

(d) Compute 𝐸𝐸[𝑁𝑁1.25|𝑁𝑁1 = 0.03%], given 𝑓𝑓(0,1.25) = 0.036068.   

Commentary on Question: 

Most candidates performed poorly on this question. To receive full credit, 
candidates needed to use the appropriate formula and calculate the expectation 
correctly. An alternative answer was accepted if candidates assumed r1=3%. 

 
𝐸𝐸[𝑁𝑁𝑡𝑡+𝑠𝑠|𝑁𝑁𝑡𝑡] =  𝑁𝑁𝑡𝑡𝑒𝑒𝑚𝑚𝑢𝑢(−𝛾𝛾𝑠𝑠) +  𝑓𝑓(0, 𝑠𝑠 + 𝜕𝜕) −  𝑓𝑓(0, 𝜕𝜕)𝑒𝑒𝑚𝑚𝑢𝑢(−𝛾𝛾𝑠𝑠)

+
𝜎𝜎2

2𝛾𝛾2 �1 − 𝑒𝑒𝑚𝑚𝑢𝑢(−𝛾𝛾𝑠𝑠) + 𝑒𝑒𝑚𝑚𝑢𝑢�−2𝛾𝛾(𝜕𝜕 + 𝑠𝑠)�  −  𝑒𝑒𝑚𝑚𝑢𝑢�−𝛾𝛾(2𝜕𝜕 + 𝑠𝑠)�� 

𝐸𝐸[𝑁𝑁1.25|𝑁𝑁1 = 𝑁𝑁. 𝑁𝑁3%] =  0.000286 + 0.036068 − 0.055441 +0.005321*0.016137 
𝐸𝐸[𝑁𝑁1.25|𝑁𝑁1 = 𝑁𝑁. 𝑁𝑁3%] =  −1.9% 

 

 

QFI QF Spring 2023 Question 7 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

Source References: 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 132-137 

Solution: 
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(a)  
(i) Show by using Ito’s Lemma that  

 

𝑑𝑑𝑌𝑌𝑡𝑡 = [�𝛾𝛾∗𝑁𝑁∗� − 1
2

𝛼𝛼� 𝑒𝑒−𝑌𝑌𝑡𝑡 − 𝛾𝛾∗]𝑑𝑑𝜕𝜕 + √𝛼𝛼𝑒𝑒−𝑌𝑌𝑡𝑡
2 𝑑𝑑𝑋𝑋𝑡𝑡  

 
(ii) Explain why the drift term of 𝑑𝑑𝑌𝑌𝑡𝑡 is positive if 𝑌𝑌𝑡𝑡 gets too far below from 0. 
 

Commentary on Question: 

Candidates performed well on this question part. Most candidates were able to 
correctly recall and apply Ito’s Lemma to derive the process for 𝑑𝑑𝑌𝑌𝑡𝑡. Candidates 

needed to specify that the inequality 𝛾𝛾 �̅�𝑁 > 1
2

𝛼𝛼 contributes to positive drift to receive 

full credit. 

(i) By Ito’s Lemma, 𝑑𝑑𝑌𝑌𝑡𝑡 = 1
𝑟𝑟

𝑑𝑑𝑁𝑁 − 1
2𝑟𝑟2 (𝑑𝑑𝑁𝑁)2  

 

                                           = 𝑒𝑒−𝑌𝑌𝑡𝑡�𝛾𝛾(�̅�𝑁 − 𝑁𝑁𝑡𝑡)𝑑𝑑𝜕𝜕 + �𝛼𝛼𝑁𝑁𝑡𝑡𝑑𝑑𝑋𝑋𝑡𝑡� −  

                                                1
2

1
𝑟𝑟𝑡𝑡

2  𝛼𝛼𝑁𝑁𝑡𝑡 𝑑𝑑𝜕𝜕    

Note: 𝑑𝑑𝜕𝜕2 = 𝑑𝑑𝜕𝜕 𝑑𝑑𝑋𝑋𝜕𝜕 = 0, 𝑑𝑑𝑋𝑋𝑡𝑡
2 = 𝑑𝑑𝜕𝜕, 𝑁𝑁𝑡𝑡 = 𝑒𝑒𝑌𝑌𝑡𝑡 , �𝑁𝑁𝑡𝑡 = 𝑒𝑒

𝑌𝑌𝑡𝑡
2  

                                            =𝑒𝑒−𝑌𝑌𝑡𝑡�𝛾𝛾(�̅�𝑁 − 𝑁𝑁𝑡𝑡)𝑑𝑑𝜕𝜕 + �𝛼𝛼𝑁𝑁𝑡𝑡𝑑𝑑𝑋𝑋𝑡𝑡� −  

                                                1
2

1
𝑟𝑟𝑡𝑡

 𝛼𝛼 𝑑𝑑𝜕𝜕    

                                            = 𝑒𝑒−𝑌𝑌𝑡𝑡 �𝛾𝛾(�̅�𝑁 − 𝑒𝑒𝑌𝑌𝑡𝑡)𝑑𝑑𝜕𝜕 + √𝛼𝛼𝑒𝑒
𝑌𝑌𝑡𝑡
2 𝑑𝑑𝑋𝑋𝑡𝑡� −  

                                                1
2

𝑒𝑒−𝑌𝑌𝑡𝑡 𝛼𝛼 𝑑𝑑𝜕𝜕    

                                            =�𝛾𝛾�̅�𝑁 − 1
2

𝛼𝛼� 𝑒𝑒−𝑌𝑌𝑡𝑡 − 𝛾𝛾]𝑑𝑑𝜕𝜕 + √𝛼𝛼𝑒𝑒−𝑌𝑌𝑡𝑡
2 𝑑𝑑𝑋𝑋𝑡𝑡 

(ii) As  𝛾𝛾 �̅�𝑁 > 1
2

𝛼𝛼, if 𝑌𝑌𝑡𝑡 gets too far below from 0, the drift term of 𝑑𝑑𝑌𝑌𝑡𝑡 will become 

strongly positive as 𝑒𝑒−𝑌𝑌𝑡𝑡  will be very large. 
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QFI QF Fall 2023 Question 2 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

Source References: 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 52, 72-73 

Commentary on Question: 

This question tests candidates’ understanding of the properties of Brownian motions, Ito's 
lemma, and martingales.   

Solution: 

(a) Evaluate the following expressions for 0 < 𝑠𝑠 < 𝜕𝜕 < 𝑢𝑢:  

(i) 𝐸𝐸ℚ(𝑊𝑊(𝑠𝑠) 𝑊𝑊(𝜕𝜕)𝑊𝑊(𝑢𝑢)) 
 

(ii) 𝐸𝐸ℚ(𝑊𝑊(𝜕𝜕)𝑊𝑊(𝑢𝑢) | ℱ𝑠𝑠) 
 

Commentary on Question: 

Many candidates did well on this part by applying the independence properties of 
increments of Brownian motions. 

This question is straight bookwork from Neftci and Chin. For both of these parts, use 
independent increments to simplify the expressions. 

Part (i) 

𝐸𝐸ℚ(𝑊𝑊(𝜕𝜕) × 𝑊𝑊(𝑢𝑢) × 𝑊𝑊(𝑠𝑠)) 

= 𝐸𝐸ℚ�(𝑊𝑊(𝑢𝑢) + 𝑊𝑊(𝜕𝜕) − 𝑊𝑊(𝜕𝜕)) × 𝑊𝑊(𝜕𝜕) × 𝑊𝑊(𝑠𝑠)� 

= 𝐸𝐸ℚ�(𝑊𝑊(𝑢𝑢) − 𝑊𝑊(𝜕𝜕)) × 𝑊𝑊(𝜕𝜕) × 𝑊𝑊(𝑠𝑠)� + 𝐸𝐸ℚ(𝑊𝑊2(𝜕𝜕) × 𝑊𝑊(𝑠𝑠)) = 𝑨𝑨 + 𝑩𝑩  

 

Since �𝑊𝑊(𝑢𝑢) − 𝑊𝑊(𝜕𝜕)� is independent of 𝑊𝑊(𝜕𝜕) and 𝑊𝑊(𝑠𝑠) we may go with 

𝑨𝑨 = 𝐸𝐸ℚ ��𝑊𝑊(𝑢𝑢) − 𝑊𝑊(𝜕𝜕)� × 𝑊𝑊(𝜕𝜕) × 𝑊𝑊(𝑠𝑠)� 

= 𝐸𝐸ℚ�𝑊𝑊(𝑢𝑢) − 𝑊𝑊(𝜕𝜕)�𝐸𝐸ℚ�𝑊𝑊(𝜕𝜕) × 𝑊𝑊(𝑠𝑠)� = 0 
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𝑩𝑩 = 𝐸𝐸ℚ(𝑊𝑊2(𝜕𝜕) × 𝑊𝑊(𝑠𝑠)) 

= 𝐸𝐸ℚ((𝑊𝑊(𝜕𝜕) − 𝑊𝑊(𝑠𝑠) + 𝑊𝑊(𝑠𝑠))2 × 𝑊𝑊(𝑠𝑠)) 

= 𝐸𝐸ℚ((𝑊𝑊(𝜕𝜕) − 𝑊𝑊(𝑠𝑠))2 × 𝑊𝑊(𝑠𝑠)) + 2𝐸𝐸ℚ�(𝑊𝑊(𝜕𝜕) − 𝑊𝑊(𝑠𝑠)) × 𝑊𝑊2(𝑠𝑠)� + 𝐸𝐸ℚ(𝑊𝑊3(𝑠𝑠)) 

= 𝐸𝐸ℚ((𝑊𝑊(𝜕𝜕) − 𝑊𝑊(𝑠𝑠))2) × 𝐸𝐸ℚ(𝑊𝑊(𝑠𝑠)) + 2𝐸𝐸ℚ(𝑊𝑊(𝜕𝜕) − 𝑊𝑊(𝑠𝑠)) × 𝐸𝐸ℚ(𝑊𝑊2(𝑠𝑠)) + 𝐸𝐸ℚ(𝑊𝑊3(𝑠𝑠)) 

= (𝜕𝜕 − 𝑠𝑠) × 0 + 0 × 𝑠𝑠 + 0 

 

Hence 𝐸𝐸ℚ(𝑊𝑊(𝜕𝜕) × 𝑊𝑊(𝑢𝑢) × 𝑊𝑊(𝑠𝑠)) = 0 

Part (ii) 

Use the expressions obtained in part (ii) before the split of independent increments. For 
notation, denote 𝐸𝐸ℚ(𝑋𝑋|ℱ𝑠𝑠) = 𝐸𝐸𝑠𝑠

ℚ(𝑋𝑋) 

 

We may simply go with: 

𝐸𝐸𝑠𝑠
ℚ�𝑊𝑊(𝜕𝜕) × 𝑊𝑊(𝑢𝑢)� = 𝐸𝐸𝑠𝑠

ℚ�𝑊𝑊(𝜕𝜕) × 𝑊𝑊(𝑢𝑢)� 

= 𝐸𝐸𝑠𝑠
ℚ �𝑊𝑊(𝜕𝜕) × �𝑊𝑊(𝑢𝑢) − 𝑊𝑊(𝜕𝜕) + 𝑊𝑊(𝜕𝜕)��  

= 𝐸𝐸𝑠𝑠
ℚ �𝑊𝑊(𝜕𝜕) × �𝑊𝑊(𝑢𝑢) − 𝑊𝑊(𝜕𝜕)�� + 𝐸𝐸𝑠𝑠

ℚ�𝑊𝑊2(𝜕𝜕)� 

= 0 + 𝐸𝐸𝑠𝑠
ℚ ��𝑊𝑊(𝜕𝜕) − 𝑊𝑊(𝑠𝑠)�

2
� + �𝑊𝑊(𝑠𝑠)�

2
where in the last equality we use the fact that 

𝐸𝐸𝑠𝑠
ℚ�𝑊𝑊(𝜕𝜕)� = 𝑊𝑊(𝑠𝑠) and 𝐸𝐸(𝑋𝑋2) = 𝐸𝐸[(𝑋𝑋 − 𝜇𝜇)2] + 𝜇𝜇2 

ence, 𝐸𝐸𝑠𝑠
ℚ�𝑊𝑊(𝜕𝜕) × 𝑊𝑊(𝑢𝑢)� = (𝜕𝜕 − 𝑠𝑠) + 𝑊𝑊2(𝑠𝑠) 

(b) Determine whether 𝑋𝑋(𝜕𝜕) is a martingale under ℚ using Ito’s lemma.   

 

Commentary on Question: 

Many candidates were able to derive the correct formula by applying Ito’s lemma 
and got the right answer.  

 

This question is an application of the multivariate Ito’s Lemma: 



75 
 

𝑑𝑑𝑋𝑋(𝜕𝜕) = 𝑑𝑑 �(𝑉𝑉(𝜕𝜕))2 × 𝑊𝑊(𝜕𝜕) − � 𝑊𝑊(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0

� 

Let 𝑨𝑨 ∗=  𝑑𝑑((𝑉𝑉(𝜕𝜕))2 × 𝑊𝑊(𝜕𝜕)) 

= 2𝑉𝑉(𝜕𝜕)𝑊𝑊(𝜕𝜕)𝑑𝑑𝑉𝑉(𝜕𝜕) + (𝑉𝑉(𝜕𝜕))2𝑑𝑑𝑊𝑊(𝜕𝜕) + .5 ∗ 2𝑊𝑊(𝜕𝜕)𝑑𝑑𝜕𝜕 

Let 𝑩𝑩 ∗= 𝑑𝑑 �− ∫ 𝑊𝑊(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡
0 � 

= −(𝑊𝑊(𝜕𝜕)𝑑𝑑𝜕𝜕) 

 

𝑨𝑨 ∗ +𝑩𝑩 ∗= 2𝑉𝑉(𝜕𝜕)𝑊𝑊(𝜕𝜕)𝑑𝑑𝑉𝑉(𝜕𝜕) + ((𝑉𝑉(𝜕𝜕))2)𝑑𝑑𝑊𝑊(𝜕𝜕) 

As V and W are independent and the SDE is driftless, X(t) is a martingale. 

(c) Determine whether 𝑋𝑋(𝜕𝜕) is a martingale under ℚ using the definition of a martingale.   

Commentary on Question: 

Most candidates did poorly in this part. Many candidates were able to list the three 
conditions of martingales. However, few were able to prove the second property. 

To obtain full marks, candidates need to show 𝑋𝑋(𝜕𝜕) satisfies the full definition of a 
martingale and all 3 parts. 

Criteria 1 – adaptability  

Clearly 𝑋𝑋(𝜕𝜕) is adapted to ℱ𝑡𝑡 

Criteria 2 – 𝐸𝐸ℚ(|𝑋𝑋(𝜕𝜕)|) < ∞ . Note, there is more than one way to demonstrate this.  

𝐸𝐸ℚ(|𝑋𝑋(𝜕𝜕)|) = 𝐸𝐸ℚ ��(𝑉𝑉(𝜕𝜕))2 × 𝑊𝑊(𝜕𝜕) − � 𝑊𝑊(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0

�� 

By the triangle inequality, we have: 

≤ 𝐸𝐸ℚ(|(𝑉𝑉(𝜕𝜕))2 × 𝑊𝑊(𝜕𝜕)|) + 𝐸𝐸ℚ ��� 𝑊𝑊(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0

�� 

By independence of V and W, and abs(integral) ≤ integral(abs) 

≤ 𝐸𝐸ℚ(|(𝑉𝑉(𝜕𝜕))2|) × 𝐸𝐸ℚ(|𝑊𝑊(𝜕𝜕)|) + �� 𝐸𝐸ℚ|𝑊𝑊(𝑢𝑢)|𝑑𝑑𝑢𝑢
𝑡𝑡

0

� 
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Evaluate 𝐸𝐸ℚ(|𝑊𝑊(𝜕𝜕)|) = 2√𝜕𝜕 ∫ 𝑊𝑊(1) 1
√2𝜋𝜋

𝑒𝑒−𝑊𝑊2(1)
2 𝑑𝑑𝑊𝑊(1)∞

0  

= −�2𝜕𝜕
𝜋𝜋

�
𝜕𝜕𝑒𝑒−𝑊𝑊2(1)

2

𝜕𝜕𝑊𝑊(1)
𝑑𝑑𝑊𝑊(1) = �2𝜕𝜕

𝜋𝜋

∞

0

 

 

So, 𝐸𝐸ℚ(|𝑋𝑋(𝜕𝜕)|) ≤ 𝜕𝜕�2𝑡𝑡
𝜋𝜋

+ ∫ �2𝑝𝑝
𝜋𝜋

𝑑𝑑𝑢𝑢𝑡𝑡
0 = 𝜕𝜕�2𝑡𝑡

𝜋𝜋
 +2

3
�2

𝜋𝜋
 𝜕𝜕3/2 = 5

3
�2

𝜋𝜋
𝜕𝜕3/2 < ∞ 

 

This is unnecessarily complicated.  

From 𝐸𝐸(𝑋𝑋2) = �𝐸𝐸(𝑋𝑋)�
2

+ 𝐸𝐸 ��𝑋𝑋 − 𝐸𝐸(𝑋𝑋)�
2

� we know 𝐸𝐸ℚ(|𝑊𝑊(𝜕𝜕)|) ≤ �𝐸𝐸ℚ�𝑊𝑊2(𝜕𝜕)� = √𝜕𝜕. 

Thus 

𝐸𝐸ℚ ���𝑉𝑉(𝜕𝜕)�
2

�� × 𝐸𝐸ℚ(|𝑊𝑊(𝜕𝜕)|) + �� 𝐸𝐸ℚ|𝑊𝑊(𝑢𝑢)|𝑑𝑑𝑢𝑢
𝑡𝑡

0

� 

≤ 𝜕𝜕 × √𝜕𝜕 + �� �𝑢𝑢𝑑𝑑𝑢𝑢
𝑡𝑡

0

� = �1 +
2
3

� 𝜕𝜕
3
2 < ∞ 

 

Criteria 3 – martingale property 

𝐸𝐸𝑠𝑠
ℚ(𝑋𝑋(𝜕𝜕)) = 𝐸𝐸𝑠𝑠

ℚ �(𝑉𝑉(𝜕𝜕))2 × 𝑊𝑊(𝜕𝜕) − � 𝑊𝑊(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

0

� 

By the independence of V and W, and by splitting the integral we have 

 

= 𝐸𝐸𝑠𝑠
ℚ((𝑉𝑉(𝜕𝜕))2) × 𝐸𝐸𝑠𝑠

ℚ(𝑊𝑊(𝜕𝜕)) − 𝐸𝐸𝑠𝑠
ℚ �� 𝑊𝑊(𝑢𝑢)𝑑𝑑𝑢𝑢

𝑠𝑠

0

+ � 𝑊𝑊(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

𝑠𝑠

� 

Consider the first part of the equation. 𝑊𝑊(𝜕𝜕) is a Brownian motion and a martingale. i.e., 
𝐸𝐸𝑠𝑠

ℚ�𝑊𝑊(𝜕𝜕) − 𝑊𝑊(𝑠𝑠) + 𝑊𝑊(𝑠𝑠)� = 𝑊𝑊(𝑠𝑠). 𝐸𝐸𝑠𝑠
ℚ ��𝑉𝑉(𝜕𝜕)�2� = 𝐸𝐸𝑠𝑠

ℚ ��𝑉𝑉(𝜕𝜕) − 𝑉𝑉(𝑠𝑠) + 𝑉𝑉(𝑠𝑠)�2� =
𝐸𝐸𝑠𝑠

ℚ((𝑉𝑉(𝜕𝜕) − 𝑉𝑉(𝑠𝑠))2) + 2𝐸𝐸𝑠𝑠
ℚ�𝑉𝑉(𝑠𝑠)(𝑉𝑉(𝜕𝜕) − 𝑉𝑉(𝑠𝑠))� + 𝐸𝐸𝑠𝑠

ℚ ��𝑉𝑉(𝑠𝑠)�2� = 𝜕𝜕 − 𝑠𝑠 + �𝑉𝑉(𝑠𝑠)�2 
 
So, the first part of the equation is 𝑊𝑊(𝑠𝑠) �𝜕𝜕 − 𝑠𝑠 + �𝑉𝑉(𝑠𝑠)�2� 
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Next, consider the second part of the equation and use the measurability of the first integral and indepence 
of the integrand on (s,t) of ℱ𝑠𝑠 
 

𝐸𝐸𝑠𝑠
ℚ �� 𝑊𝑊(𝑢𝑢)𝑑𝑑𝑢𝑢

𝑠𝑠

0

+ � 𝑊𝑊(𝑢𝑢)𝑑𝑑𝑢𝑢
𝑡𝑡

𝑠𝑠

� 

= ∫ 𝑊𝑊(𝑢𝑢)𝑑𝑑𝑢𝑢𝑠𝑠
0 + ∫ 𝐸𝐸𝑠𝑠

ℚ�𝑊𝑊(𝑢𝑢) − 𝑊𝑊(𝑠𝑠) + 𝑊𝑊(𝑠𝑠)�𝑑𝑑𝑢𝑢𝜕𝜕
𝑠𝑠   

  

= � 𝑊𝑊(𝑢𝑢)𝑑𝑑𝑢𝑢

𝑠𝑠

0

+ 𝑊𝑊(𝑠𝑠) � 𝑑𝑑𝑢𝑢

𝜕𝜕

𝑠𝑠

= � 𝑊𝑊(𝑢𝑢)𝑑𝑑𝑢𝑢

𝑠𝑠

0

+ (𝜕𝜕 − 𝑠𝑠)𝑊𝑊(𝑠𝑠) 

 
Putting the two parts together, we have  

𝐸𝐸𝑠𝑠
ℚ(𝑋𝑋(𝜕𝜕)) =  𝑊𝑊(𝑠𝑠) �𝜕𝜕 − 𝑠𝑠 + �𝑉𝑉(𝑠𝑠)�2� − �� 𝑊𝑊(𝑢𝑢)𝑑𝑑𝑢𝑢

𝑠𝑠

0

+ (𝜕𝜕 − 𝑠𝑠)𝑊𝑊(𝑠𝑠)� 

= 𝑊𝑊(𝑠𝑠)�𝑉𝑉(𝑠𝑠)�
2

− � 𝑊𝑊(𝑢𝑢)𝑑𝑑𝑢𝑢

𝑠𝑠

0

= 𝑋𝑋(𝑠𝑠) 

 
Hence, 𝑋𝑋(𝜕𝜕) is a martingale 

 

 

QFI QF Fall 2023 Question 5 
Learning Outcomes: 

h) Understand and apply numerical discretization methods to price options including 
Euler-Maruyama discretization and transition density methods 

Source References: 

• Calibrating Interest Rate Models (Section 1.1-4.3 excl 4.1.2) 

Commentary on Question: 

This question tests candidates’ understanding of interest rate calibrations. Most of the 
candidates earned full or partial credits from part (a) and (b), but only a few candidates 
earned partial credits from part (c). 

Solution: 

(a) Calculate the probability of simulating a negative interest rate for the next trading 
day.   
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Commentary on Question: 

Most of the candidates were able to use the correct formula for this question. 
Candidates earned partial credits if they used the correct formula but failed to 
calculate the final numbers. Full credit will be given to candidates who calculated 
the correct value.  

 

𝑃𝑃[𝑁𝑁𝑡𝑡+𝑠𝑠 < 0|𝑁𝑁𝑡𝑡] = Φ(− �̅�𝑟+(𝑟𝑟𝑡𝑡−�̅�𝑟)𝑒𝑒−𝛾𝛾𝑠𝑠

𝜎𝜎��1−𝑒𝑒−2𝛾𝛾𝑠𝑠�
2𝛾𝛾

)  

Substituting values for paramteres  

𝑧𝑧 =
�̅�𝑁 + (𝑁𝑁𝑡𝑡 − �̅�𝑁)𝑒𝑒−𝛾𝛾𝑠𝑠

𝜎𝜎�(1 − 𝑒𝑒−2𝛾𝛾𝑠𝑠)
2𝛾𝛾

= 2.66113 

 

Then the probability is Φ(−2.66113) = 0.0039 

(b) Calculate the simulated rate for the next trading day using  

(i) the Euler-Maruyama discretization method.   
 
(ii) the transition density method.   

 

Commentary on Question: 

Some of candidates earned partial credits for using the correct formulas and 
parameters but only a few candidates calculated the correct values. 

 

(i) Under Euler-Maruyama discretization 
𝑁𝑁(𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽𝑁𝑁(𝑖𝑖 − 1) + 𝜖𝜖𝑖𝑖, 𝑖𝑖 = 1,2, …  

Where 𝛼𝛼 = 𝛾𝛾�̅�𝑁Δ, 𝛽𝛽 = 1 − 𝛾𝛾Δ and 𝜖𝜖𝑖𝑖 ∼ 𝑁𝑁(0, 𝜎𝜎∗2) with 𝜎𝜎∗ = 𝜎𝜎√Δ  With given parameters 

𝛼𝛼 = 0.3 ∗ 0.05 ∗
1

252
= 5.952 ∗ 10−5  

𝛽𝛽 = 1 − 0.05 ∗
1

252
= 0.9980 
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𝜎𝜎∗ = 0.06 ∗ � 1
252

= 0.0037796 

𝑁𝑁(𝑖𝑖 − 1) = 0.01 

𝑁𝑁(𝑖𝑖) = 5.952 ∗ 10−5 + 0.9980 ∗ 0.01 − 1.96 ∗ 0.0037796 

𝑁𝑁(𝑖𝑖) = 0.002631 

(ii) With the transition density method next random number from the Vasicek is 
given by 

𝑁𝑁𝑡𝑡+𝑠𝑠 = �̅�𝑁 + (𝑁𝑁𝑡𝑡 − �̅�𝑁)𝑒𝑒−𝛾𝛾𝑠𝑠 + �
𝜎𝜎2

2𝛾𝛾
(1 − 𝑒𝑒−2𝛾𝛾𝑠𝑠)�

1
2

𝑍𝑍  

With the given parameters  

(𝑁𝑁𝑡𝑡 − �̅�𝑁)𝑒𝑒−𝛾𝛾𝑠𝑠 = (0.01 − 0.05)𝑒𝑒− 0.3
252 = −0.03995241 

�
𝜎𝜎2

2𝛾𝛾
(1 − 𝑒𝑒−2𝛾𝛾𝑠𝑠)�

1
2

= 0.03777 

𝑁𝑁𝑡𝑡+𝑠𝑠 = 0.05 − 0.03995241 + 0.03777 ∗ (−1.96) 

𝑁𝑁𝑡𝑡+𝑠𝑠 = 0.002644 

 

(c) Compare and contrast the Euler-Maruyama discretization method and the transition 
density method for simulating interest rate paths in general and in this particular 
case for Vasicek model.   

Commentary on Question: 

Not many candidates attempted this question and some of them successfully 
identified Euler-Maruyama method is an approximating method and Transition 
density method is an exact method. However, few candidates pointed out that the 
differences between those two methods are minimal when s is small in the Vasicek 
model.The Euler-Maruyama method is based on the first order discretization of a 
stochastic differential equation (or simiple discretization) 

i.e. 
𝑑𝑑𝑁𝑁𝑡𝑡 = 𝑁𝑁(𝑁𝑁𝑡𝑡)𝑑𝑑𝜕𝜕 + 𝑏𝑏(𝑁𝑁𝑡𝑡)𝑑𝑑𝑋𝑋𝑡𝑡 

is approximated using 
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𝑁𝑁𝑡𝑡+Δ − 𝑁𝑁𝑡𝑡 ≈ 𝑁𝑁(𝑁𝑁𝑡𝑡)Δ + 𝑏𝑏(𝑁𝑁𝑡𝑡)√Δ𝑍𝑍 

Where Δ is a small time step and Z is a standard normal random variable with mean 0 and 
variance 1. 

Essentially in simulation we are assuming  𝑁𝑁𝑡𝑡+Δ|𝑁𝑁𝑡𝑡  is normally distributed with mean  𝑁𝑁𝑡𝑡 +
𝑁𝑁(𝑁𝑁𝑡𝑡)Δ and variance 𝑏𝑏(𝑁𝑁𝑡𝑡)2Δ. So even if  the original process doesn’t take negative values, 
the approximation may give negative values. 

 

Transition density method relies on the exact distribution of 𝑁𝑁𝑡𝑡+Δ|𝑁𝑁𝑡𝑡. So it is an exact 
method not an approximation. The disadvantage of this method is the exact distribution 
may not be available for many cases. 

 

In the Vasicek method as we saw in part (a) and (b) the difference is minimal. That is 
because the exact distribution of  𝑁𝑁𝑡𝑡+s|𝑁𝑁𝑡𝑡   is normal and since for small values of s  

𝑒𝑒−𝛾𝛾𝑠𝑠 ≈ 1 − 𝛾𝛾𝑠𝑠  

With that 

�̅�𝑁 + (𝑁𝑁𝑡𝑡 − �̅�𝑁)𝑒𝑒−𝛾𝛾𝑠𝑠 ≈  �̅�𝑁 + (𝑁𝑁𝑡𝑡 − �̅�𝑁)(1 − γs) 

�̅�𝑁 + (𝑁𝑁𝑡𝑡 − �̅�𝑁)𝑒𝑒−𝛾𝛾𝑠𝑠 ≈ �̅�𝑁𝛾𝛾𝑠𝑠 + 𝑁𝑁𝑡𝑡(1 − 𝛾𝛾𝑠𝑠) 

and  �𝜎𝜎2

2𝛾𝛾
(1 − 𝑒𝑒−2𝛾𝛾𝑠𝑠)� ≈ 𝜎𝜎2𝑠𝑠. These are the mean and  variance in the Euler-Maruyama 

discretization method. 

 

 

QFI QF Spring 2024 Question 1 
Learning Outcomes: 

a) Understand the principles of no-arbitrage and replication in asset pricing.  

b) Understand Arrow-Debreau security and the distinction between complete and 
incomplete markets 

Source References: 
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• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapters 
13, pages 292-293 

• INV201-100-25: Chapter 5 of Financial Mathematics – A Comprehensive Treatment, 
Campolieti 

Commentary on Question: 

This question tests candidates’ understanding of arbitrage with a simple one-period model.  

Solution: 

(a) Determine the range of  𝑁𝑁 such that there are no arbitrage possibilities. 

Commentary on Question: 

Most candidates were able to derive an accurate range of the risk-free rate.  A few 
candidates treated the rate as an annual rate and obtained incorrect ranges. 

Let 𝑄𝑄𝑢𝑢 and 𝑄𝑄𝑑𝑑 be the risk-neutral probabilities that the security will go up and go down after 6 months, 
respectively.  Then by the arbitrage theorem, we have 

𝑄𝑄𝑢𝑢 + 𝑄𝑄𝑑𝑑 = 1 

𝑄𝑄𝑢𝑢
120

1 + 𝑁𝑁
+ 𝑄𝑄𝑑𝑑

60
1 + 𝑁𝑁

= 100 
 
From the above equations, we can get 

60𝑄𝑄𝑢𝑢 + 60 = 100(1 + 𝑁𝑁) 
Since 0 ≤ 𝑄𝑄𝑢𝑢 ≤ 1, we have 

60 ≤ 100(1 + 𝑁𝑁) ≤ 120 
which gives the following no-arbtrage range of 𝑁𝑁  

−0.4 ≤ 𝑁𝑁 ≤ 0.2 
Alternatively: 

0 ≤ 𝑄𝑄𝑢𝑢 =
1 + 𝑁𝑁 − 𝑑𝑑

𝑢𝑢 − 𝑑𝑑
=

0.4 + 𝑁𝑁
0.6

≤ 1 ⇒  −0.4 ≤ 𝑁𝑁 ≤ 0.2. 

 

(b) Calculate and interpret the state prices. 

 

Commentary on Question: 

Most candidates were able to obtain and interpret the state prices correctly. 

Let 𝜓𝜓𝑢𝑢 and 𝜓𝜓𝑑𝑑 denote the state prices corresponding to the up state and the down state, respectively.  
Then by the arbitrage theorem, we have 
 

1 = (1 + 0.06)𝜓𝜓𝑢𝑢 + (1 + 0.06)𝜓𝜓𝑑𝑑 
100 = 120𝜓𝜓𝑢𝑢 + 60𝜓𝜓𝑑𝑑 

Solving the above equations gives the state prices: 
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𝜓𝜓𝑢𝑢 = 0.7233 
𝜓𝜓𝑑𝑑 = 0.2201 

 
The state prices can be interpreted as follows: 

1. 𝜓𝜓𝑢𝑢 is the price investors are willing to pay for an insurance policy that pays 1 in the up state and 
nothing in the down state. 

2. 𝜓𝜓𝑑𝑑 is the price investors are willing to pay for an insurance policy that pays 1 in the down state 
and nothing in the up state. 

 

(c) Calculate the no-arbitrage price of a European call option with strike price of 100 
that expires in 6 months. 

Commentary on Question: 

Most candidates obtained the correct price.  A few candidates used a wrong risk-
free rate. 

Let 𝑄𝑄𝑢𝑢 and 𝑄𝑄𝑑𝑑 be the risk-neutral probabilities that the security will go up and go down after 6 months, 
respectively.  Let 𝐶𝐶 be the no-arbitrage price of the option. Since 𝑁𝑁 = 0.06, the arbitrage theorem gives 

𝑄𝑄𝑢𝑢 + 𝑄𝑄𝑑𝑑 = 1 

𝑄𝑄𝑢𝑢
120
1.06

+ 𝑄𝑄𝑑𝑑
60

1.06
= 100 

𝑄𝑄𝑢𝑢
(120 − 100)+

1.06
+ 𝑄𝑄𝑑𝑑

(60 − 100)+

1.06
= 𝐶𝐶 

 
Solving the first two equations gives 

𝑄𝑄𝑢𝑢 = 0.7667 
𝑄𝑄𝑑𝑑 = 0.2333 

Plugging the risk-neutral probabilities into the third equation, we get 

𝐶𝐶 = 0.7667 ×
20

1.06
= 14.46 

 
Alternatively: 

𝑄𝑄𝑢𝑢 =
1 + 𝑁𝑁 − 𝑑𝑑

𝑢𝑢 − 𝑑𝑑
=

0.46
0.6

= 0.7667 

 

(d) Describe two general situations in which arbitrage opportunities can arise. 

Commentary on Question: 

Most candidates gave correct cases when arbitrage opportunities occur.  

Arbitrage opportunities can arise in two different fashions: 
One can make a series of investments with no current net commitment, yet expect to make a positive 
profit. 
 
A portfolio can ensure a negative net commitment today, while yielding nonnegative profits in the future. 
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(e) Construct a replicating portfolio and use it to price the derivative. 

Commentary on Question: 

Many candidates did not obtain the replicating portfolio correctly.  Some candidates 
used options to replicate the derivative. 

 

Let 𝑚𝑚 be the number of shares of the security and let 𝑦𝑦 be the money deposited/borrowed.  The portfolio 
should replicate the payoffs of the derivative in both the up and the down states. 
 

120𝑚𝑚 + 1.06𝑦𝑦 = 22 
60𝑚𝑚 + 1.06𝑦𝑦 = 10 

 
Solving the equations gives 

𝑚𝑚 = 0.2 
𝑦𝑦 = −1.8868 

That is, the replicating portfolio consists of 0.2 shares of the security and 1.8868 is borrowed.  The total 
value of the replicating portfolio at time 0 is 

100 × 0.2 − 1.8868 = 18.1132 
Hence the value of the derivative at time 0 should be 18.1132. 

 

 

QFI QF Spring 2024 Question 5 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

e) Understand and apply the concepts of risk-neutral measure, forward measure, 
normalization, and the market price of risk 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapter 
28, pages 671-672 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 128-130, 221-227 

• Understanding the Connection Between Real-World and Risk-Neutral Generators, 
SOA Research, Aug 2022, Sections 1-5, and Appendices A & D 

Commentary on Question: 
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This question tests candidates’ understanding of the fundamentals of stochastic 
differential and model calibration under both risk-neutral and real-world measures.  Most 
candidates performed very well in part (a) and (b), but not many candidates earned points 
in part (c) and (d). 

Solution: 

(a) Show that 

(i) 𝐸𝐸(𝑁𝑁𝑡𝑡|𝐹𝐹𝑠𝑠) = 𝑁𝑁𝑠𝑠𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑠𝑠) + �̅�𝑁(1 − 𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑠𝑠))  
 

(ii) 𝑉𝑉𝑁𝑁𝑁𝑁(𝑁𝑁𝑡𝑡|𝐹𝐹𝑠𝑠) = 𝜎𝜎2

2𝛾𝛾
�1 − 𝑒𝑒−2𝛾𝛾(𝑡𝑡−𝑠𝑠)� 

 

Commentary on Question: 

Most Candidates successfully derived the formulas of the expectation and variance. 

𝑑𝑑𝑁𝑁𝑢𝑢 = 𝛾𝛾(�̅�𝑁 − 𝑁𝑁𝑢𝑢)𝑑𝑑𝑢𝑢 + 𝜎𝜎𝑑𝑑𝑋𝑋𝑢𝑢 

𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑢𝑢)𝑑𝑑𝑁𝑁𝑢𝑢 = 𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑢𝑢)𝛾𝛾(�̅�𝑁 − 𝑁𝑁𝑢𝑢)𝑑𝑑𝑢𝑢 + 𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑢𝑢)𝜎𝜎𝑑𝑑𝑋𝑋𝑢𝑢 

𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑢𝑢)𝑑𝑑𝑁𝑁𝑢𝑢 + 𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑢𝑢)𝛾𝛾𝑁𝑁𝑢𝑢𝑑𝑑𝑢𝑢 = 𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑢𝑢)𝛾𝛾(�̅�𝑁)𝑑𝑑𝑢𝑢 + 𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑢𝑢)𝜎𝜎𝑑𝑑𝑋𝑋𝑢𝑢 

𝑑𝑑�𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑢𝑢)𝑁𝑁𝑢𝑢� = 𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑢𝑢)𝛾𝛾(�̅�𝑁)𝑑𝑑𝑢𝑢 + 𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑢𝑢)𝜎𝜎𝑑𝑑𝑋𝑋𝑢𝑢 

Integration on both sides of the equation from s to t 

𝑁𝑁𝑡𝑡 = 𝑁𝑁𝑠𝑠𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑠𝑠) + �̅�𝑁�1 − 𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑠𝑠)� + 𝜎𝜎 � 𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑢𝑢)
𝑡𝑡

𝑠𝑠
𝑑𝑑𝑋𝑋𝑢𝑢 

𝐸𝐸(𝑁𝑁𝑡𝑡|𝐹𝐹𝑠𝑠) = 𝑁𝑁𝑠𝑠𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑠𝑠) + �̅�𝑁(1 − 𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑠𝑠)) 

𝑁𝑁𝑠𝑠 𝐸𝐸 �𝜎𝜎 � 𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑢𝑢)
𝑡𝑡

𝑠𝑠
𝑑𝑑𝑋𝑋u� = 0 

 

 

𝑉𝑉𝑁𝑁𝑁𝑁(𝑁𝑁𝑡𝑡|𝐹𝐹𝑠𝑠) = 𝐸𝐸{[(𝑁𝑁𝑡𝑡 − 𝐸𝐸(𝑁𝑁𝑡𝑡)2|𝐹𝐹𝑠𝑠} 

=𝜎𝜎2 �∫ 𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑢𝑢)𝑡𝑡
𝑠𝑠 𝑑𝑑𝑋𝑋u�

2
 

 
By Ito Isometry,  
 
=𝜎𝜎2 ∫ 𝑒𝑒−2𝛾𝛾(𝑡𝑡−𝑢𝑢)𝑡𝑡

𝑠𝑠 𝑑𝑑𝑢𝑢 
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=
𝜎𝜎2

2𝛾𝛾
�1 − 𝑒𝑒−2𝛾𝛾(𝑡𝑡−𝑠𝑠)� 

 

(b) Determine the market price of interest risk. 

Commentary on Question: 

Most candidates successfully identified the formula of market price.  

 
𝜆𝜆(𝑁𝑁, 𝜕𝜕) = 1

𝜎𝜎
(𝛾𝛾(�̅�𝑁 − 𝑁𝑁) − 𝛾𝛾∗(𝑁𝑁∗� − 𝑁𝑁)) = -0.004/0.01=−0.4 

 
(c) Compute the drift and the diffusion of 𝑑𝑑𝑍𝑍

𝑍𝑍
  for the risk-neutral process. 

Commentary on Question: 

Less than half of the candidates successfully identified the diffusion term in the risk-
neutral process and calculated correctly.  Candidates earned partial credits if they 
can identify the correct formula or claim the correct drift term.  

The drift of 𝑑𝑑𝑍𝑍
𝑍𝑍

 or the  instantaneous return of the bond, in the risk-neutral world is 4%. 
 
𝑑𝑑𝑍𝑍(𝜕𝜕, 𝑇𝑇)
𝑍𝑍(𝜕𝜕, 𝑇𝑇) = 𝑁𝑁𝑡𝑡𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑍𝑍(𝜕𝜕, 𝑇𝑇)𝑑𝑑𝑋𝑋𝑡𝑡 

 
𝜎𝜎𝑍𝑍(𝜕𝜕, 𝑇𝑇) = −𝜕𝜕(𝜕𝜕; 𝑇𝑇)𝜎𝜎 
 
The diffusion of  𝑑𝑑𝑍𝑍

𝑍𝑍
  in the risk-neutral world  

= −𝜕𝜕(0; 10)𝜎𝜎 
= − 1−𝑒𝑒−0.1 𝑥𝑥 10

0.1
 x 0.1 

=-0.063212 
 

(d) Compute the drift and the diffusion of 𝑑𝑑𝑍𝑍
𝑍𝑍

  for the real-world process. 

Commentary on Question: 

Few candidates preformed perfectly in this part by using the correct equation to 
move from risk-neutral process to real-world process.  Candidates earned partial 
credits if they can state the drift term didn’t change from part (c). 

From part (d) 
 
𝑑𝑑𝑍𝑍
𝑍𝑍

= 0.04𝑑𝑑𝜕𝜕 − 0.063212𝑍𝑍 𝑑𝑑𝑋𝑋  
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When we move to the real world, the return increases by the product of the market price of 𝑑𝑑𝑍𝑍 risk and -
0.063212. 
 
The bond price process becomes: 
𝑑𝑑𝑍𝑍
𝑍𝑍

= [0.04 + (−0.4 𝑚𝑚 − 0.063212)]𝑑𝑑𝜕𝜕 − 0.063212 𝑑𝑑𝑋𝑋 
 
𝑑𝑑𝑍𝑍
𝑍𝑍

= 0.065285 𝑑𝑑𝜕𝜕 − 0.063212 𝑑𝑑𝑋𝑋 
 
The drift  increases from 4% to 6.5285% as we move from the risk-neutral  world to the real world 
 
The diffusion in the real world  
= −𝜕𝜕(0; 10)𝜎𝜎 
= − 1−𝑒𝑒−0.1 𝑥𝑥 10

0.1
 x 0.1 

=-0.063212 
 

 

QFI QF Spring 2024 Question 6 
Learning Outcomes: 

h) Understand and apply numerical discretization methods to price options including 
Euler-Maruyama discretization and transition density methods 

i) Calibrate a model to observed prices of traded securities including fitting to a given 
yield curve 

Source References: 

• Calibrating Interest Rate Models (Section 1.1-4.3 excl 4.1.2) 

Commentary on Question: 

Overall, candidates either left the question blank or attempted only part of it.  For those that 
attempted this question, candidates performed better where there were formulas involved.  
However, when it came to the qualitative aspects of the question, there were fewer 
candidates that were able to provide appropriate explanations. 

Solution: 

(a) Describe the assumptions made in the chosen real-world parameter estimation 
method. 

Commentary on Question: 
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Full marks were given if each of the following assumptions were provided. Many 
candidates recognized the need for using the maximum likelihood function and 
regression.  Many candidates failed to identify that a major assumption is that the 
rates follow a normal distribution. 

Assumptions: 
• Daily yields of  3 months anualized rates  follow normal distribution. 

o 𝑁𝑁𝑡𝑡+𝑠𝑠|𝑁𝑁𝑡𝑡  is normally distributed with mean �̅�𝑁 + (𝑁𝑁𝑡𝑡 − 𝑁𝑁 ̅)𝑒𝑒𝑚𝑚𝑢𝑢 (−𝛾𝛾𝑠𝑠) and variance 
𝜎𝜎2

2𝛾𝛾
(1 − 𝑒𝑒𝑚𝑚𝑢𝑢(−2𝛾𝛾𝑠𝑠)) 

o The conditional pdf of   𝑁𝑁𝑖𝑖𝑖𝑖|𝑁𝑁(𝑖𝑖−)𝑖𝑖, 𝑖𝑖 = 1,2, … is normal. 
o We can write the likelihood function of the sample. 
o Minimizing likelhood function  is equivalent to regressing  

𝑦𝑦 = (𝑁𝑁𝑖𝑖, 𝑁𝑁2𝑖𝑖, … , 𝑁𝑁𝑛𝑛𝑖𝑖)𝑇𝑇 
on   𝑚𝑚 =  �𝑁𝑁0, 𝑁𝑁𝑖𝑖, … , 𝑁𝑁(𝑛𝑛−1)𝑖𝑖�𝑇𝑇. 

o Above is true if the contribution of  𝑁𝑁0 to the likelihood function is small or in another 
word sample is very large. 

 

(b) Estimate the parameters of your model. 
 

Commentary on Question: 

In order to receive full marks, the candidate needed to identify the formulas below 
and accurately use them to obtain the correct results.  Full credit was given for 
candidates that used Euler’s method to approximate gamma. 

Estimated regression parameters and Vasicek model parameters are related as follows 
 

𝛾𝛾 = −
𝑁𝑁𝑛𝑛��̂�𝛽∗�

𝛥𝛥
 

�̅�𝑁 =
𝛼𝛼�∗

1 − �̂�𝛽∗ 

𝜎𝜎 = �
2𝛾𝛾𝜎𝜎�∗2

1 − �̂�𝛽∗2 

From the given R output 
𝛼𝛼�∗ = 0.0001815, �̂�𝛽∗ = 0.9964045, 𝜎𝜎�∗ = 0.001300116 

Plugging these values in the formulas we obtain 
𝛾𝛾 = 0.90769249, �̅�𝑁 = 0.05049257, 𝜎𝜎 = 0.02067589 

 

(c) Describe the procedure employed in risk-neutral model calibration. 

Commentary on Question: 
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Many candidates identified at least one aspect of the procedure below.  Partial 
credit was given in most cases if the candidate could identify the need for non-linear 
regression, least-squares regression, and minimizing the difference between 
modeled rates vs. market rates.  Few candidates identified the initial formula below 
or the sensitivity of the initial guess. 

In the method Vasicek yield rates are calculated using the formula 

𝑁𝑁(𝜕𝜕) =
�𝑁𝑁(0)𝜕𝜕(0; 𝜕𝜕) − 𝜕𝜕(0; 𝜕𝜕)�

𝜕𝜕
 

In the A(0;t) and B(0;t) are as given in the formula. 
Then use the non-linear least square regression method to minimize the distance between obsereved 
values of r(t) with the expected values of r(t) with respect to parameters. 
 
In studies this method performs better than fitting observed bond prices to its theoretical prices under 
Vasicek model. 
 
Also, the non-linear leastsquare estimation method is quite sensitive to initial guesses, many different 
initial guesses  
 

(d) Estimate the parameters of your new model. 
 

Commentary on Question: 

Full marks were given if the formula below was identified and used appropriately. 
Many candidates used the formula directly without commentary for why the formula 
was appropriate. 

The output does not contain estimated model parameters but it contains standard error and t-value; 
multiplying these items together we obtain estimates. 
 

𝛾𝛾∗ = 0.031458 ∗ 15.49 = 0.487311 
�̅�𝑁∗ = 0.001385 ∗ 50.90 = 0.070482 

 

(e) Determine whether the fitted models are adequate. 

Commentary on Question: 

Full credit was given if the candidate could appropriately identify that both the real-
world and risk-neutral world models are appropriate.  Many candidates commented 
on the p-values, however not very many candidates commented on R-squared. 

From the diagnostic statistics for realworld estimate we see that p-value for the test 𝐻𝐻0:  𝛽𝛽∗ = 0 is almost 
zero so that test is rejected with certainty. 
 
Also R-squared is close to 1 so model describes the data almost perfectly. 
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For the risk neutral parameter estimation both p-values are close to zero so model is 
perfect. 

 

QFI QF Fall 2024 Question 1 
Learning Outcomes: 

d) Understand Stochastic Calculus theory and technique used in pricing derivatives  

Source References: 

• Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, 
Nel, Dian and Olafsson, Sverrir, 2014, pages 52, 132-137 

Commentary on Question: 

This question tests candidates’ knowledge of Ito’s isometry, martingales, and Jensen’s 
inequality. Most candidates were able to answer part of the question. However, few 
candidates scored high. 

Solution: 

(a) Calculate 𝐸𝐸[𝑋𝑋𝑡𝑡
2] for 𝜕𝜕 < 𝑇𝑇. 

Commentary on Question: 

Most candidates did well on this part. 

 

By Ito’s isometry, we have 

𝐸𝐸[𝑋𝑋𝑡𝑡
2] = 𝐸𝐸 ��� 1{𝜕𝜕𝑢𝑢>0}𝑑𝑑𝜕𝜕𝑢𝑢

𝑡𝑡

0
�

2

� = 𝐸𝐸 �� 1{𝜕𝜕𝑢𝑢>0}
2

𝑡𝑡

0
𝑑𝑑𝑢𝑢� = 𝐸𝐸 �� 1{𝜕𝜕𝑢𝑢>0}

𝑡𝑡

0
𝑑𝑑𝑢𝑢� = � 𝐸𝐸�1{𝜕𝜕𝑢𝑢>0}�

𝑡𝑡

0
𝑑𝑑𝑢𝑢 

Note that 

𝐸𝐸�1{𝜕𝜕𝑢𝑢>0}� = 𝑃𝑃(𝜕𝜕𝑢𝑢 > 0) =
1
2

 

Combining the above results, we get 

𝐸𝐸[𝑋𝑋𝑡𝑡
2] = �

1
2

𝑡𝑡

0
𝑑𝑑𝑢𝑢 =

1
2

𝜕𝜕 

(b) Calculate 𝐸𝐸[𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡] for 𝜕𝜕 < 𝑇𝑇. 
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Commentary on Question: 

Most candidates were able to apply the correlation property of Ito integral and get 
the correct answer. 

Note that 1{𝜕𝜕𝑢𝑢>0}1{𝜕𝜕𝑢𝑢<0} = 0 for 𝑢𝑢 ∈ (0, 𝑇𝑇).  

By the correlation property of Ito integral,  we have 

 

𝐸𝐸[𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡] = 𝐸𝐸 �� 1{𝜕𝜕𝑢𝑢>0}𝑑𝑑𝜕𝜕𝑢𝑢

𝑡𝑡

0
� 1{𝜕𝜕𝑢𝑢<0}𝑑𝑑𝜕𝜕𝑢𝑢

𝑡𝑡

0
� = 𝐸𝐸 �� 1{𝜕𝜕𝑢𝑢>0}1{𝜕𝜕𝑢𝑢<0}𝑑𝑑𝑢𝑢

𝑡𝑡

0
� = 𝐸𝐸 �� 0𝑑𝑑𝑢𝑢

𝑡𝑡

0
�

= 0 

(c)  

(i) List the three properties of a martingale.  
 

(ii) Determine whether {𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡: 0 ≤ 𝜕𝜕 ≤ 𝑇𝑇} is a martingale with respect to the 
filtration {𝐼𝐼𝑡𝑡: 0 ≤ 𝜕𝜕 ≤ 𝑇𝑇} by verifying whether all the three properties listed in 
part (c)(i) hold. 

 

Commentary on Question: 

Most candidates were able to list the conditions of martingales. However, few 
candidates were able to prove the second and the third properties of martingales. 

 

(i) 

The three properties of a martingale {𝑆𝑆𝑡𝑡: 0 ≤ 𝜕𝜕 ≤ 𝑇𝑇} are: 

1. 𝑆𝑆𝑡𝑡 is adapted to a filtration {𝐼𝐼𝑡𝑡: 0 ≤ 𝜕𝜕 ≤ 𝑇𝑇} 
2. Unconditional forecast is finite, i.e., 𝐸𝐸[|𝑆𝑆𝑡𝑡|] < ∞ 
3. 𝐸𝐸[𝑆𝑆𝑢𝑢|𝐼𝐼𝑡𝑡] = 𝑆𝑆𝑡𝑡 for 𝜕𝜕 < 𝑢𝑢 

 

(ii) 

We show that {𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡: 0 ≤ 𝜕𝜕 ≤ 𝑇𝑇} is a martingale. 

By the definition of 𝑋𝑋𝑡𝑡 and 𝑌𝑌𝑡𝑡, we know that the process 𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡 is adapted to the filtration {𝐼𝐼𝑡𝑡: 0 ≤ 𝜕𝜕 ≤ 𝑇𝑇}. 

Second, we show that 𝐸𝐸[|𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡|] is finite. This can be done as follows. 
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𝐸𝐸[|𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡|] ≤ 𝐸𝐸 �
𝑋𝑋𝑡𝑡

2 + 𝑌𝑌𝑡𝑡
2

2
� =

1
2

𝜕𝜕 < ∞ 

 

Finally, we show that for 0 ≤ 𝑠𝑠 < 𝜕𝜕 ≤ 𝑇𝑇, 𝐸𝐸[𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡|𝐼𝐼𝑠𝑠] = 𝑋𝑋𝑠𝑠𝑌𝑌𝑠𝑠. 

Note that 

𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡 = 𝑋𝑋𝑠𝑠𝑌𝑌𝑠𝑠 + 𝑋𝑋𝑠𝑠(𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑠𝑠) + (𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠)𝑌𝑌𝑠𝑠 + (𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠)(𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑠𝑠) 

Hence 

𝐸𝐸[𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡|𝐼𝐼𝑠𝑠] = 𝐸𝐸[𝑋𝑋𝑠𝑠𝑌𝑌𝑠𝑠 + 𝑋𝑋𝑠𝑠(𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑠𝑠) + (𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠)𝑌𝑌𝑠𝑠 + (𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠)(𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑠𝑠)|𝐼𝐼𝑠𝑠]
= 𝐸𝐸[𝑋𝑋𝑠𝑠𝑌𝑌𝑠𝑠|𝐼𝐼𝑠𝑠] + 𝐸𝐸[𝑋𝑋𝑠𝑠(𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑠𝑠)|𝐼𝐼𝑠𝑠] + 𝐸𝐸[(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠)𝑌𝑌𝑠𝑠|𝐼𝐼𝑠𝑠] + 𝐸𝐸[(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠)(𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑠𝑠)|𝐼𝐼𝑠𝑠] 

 

Since 𝑋𝑋𝑠𝑠𝑌𝑌𝑠𝑠, 𝑋𝑋𝑠𝑠, and 𝑌𝑌𝑠𝑠 are known at time 𝑠𝑠, we have 𝐸𝐸[𝑋𝑋𝑠𝑠𝑌𝑌𝑠𝑠|𝐼𝐼𝑠𝑠] = 𝑋𝑋𝑠𝑠𝑌𝑌𝑠𝑠. In addition, 𝑋𝑋𝑡𝑡 and 𝑌𝑌𝑡𝑡 are 
martingales as they are Ito integrals. We have 

𝐸𝐸[𝑋𝑋𝑠𝑠(𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑠𝑠)|𝐼𝐼𝑠𝑠] = 𝑋𝑋𝑠𝑠𝐸𝐸[𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑠𝑠|𝐼𝐼𝑠𝑠] = 𝑋𝑋𝑠𝑠𝐸𝐸[𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑠𝑠] = 0 

𝐸𝐸[(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠)𝑌𝑌𝑠𝑠|𝐼𝐼𝑠𝑠] = 𝑌𝑌𝑠𝑠𝐸𝐸[𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠|𝐼𝐼𝑠𝑠] = 0 

By the correlation property of Ito integrals, we have 

𝐸𝐸[(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠)(𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑠𝑠)|𝐼𝐼𝑠𝑠] = 𝐸𝐸[(𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠)(𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑠𝑠)] = 𝐸𝐸 �� 1{𝜕𝜕𝑢𝑢>0}𝑑𝑑𝜕𝜕𝑢𝑢

𝑡𝑡

𝑠𝑠
� 1{𝜕𝜕𝑢𝑢<0}𝑑𝑑𝜕𝜕𝑢𝑢

𝑡𝑡

𝑠𝑠
�

= 𝐸𝐸 �� 1{𝜕𝜕𝑢𝑢>0}1{𝜕𝜕𝑢𝑢<0}𝑑𝑑𝑢𝑢
𝑡𝑡

𝑠𝑠
� = 𝐸𝐸 �� 0𝑑𝑑𝑢𝑢

𝑡𝑡

𝑠𝑠
� = 0 

Combining the above results, we just proved that 𝐸𝐸[𝑋𝑋𝑡𝑡𝑌𝑌𝑡𝑡|𝐼𝐼𝑠𝑠] = 𝑋𝑋𝑠𝑠𝑌𝑌𝑠𝑠.  

 

 

QFI QF Fall 2024 Question 2 
Learning Outcomes: 

b) Understand Arrow-Debreau security and the distinction between complete and 
incomplete markets 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapter 
13, pages 294-298 
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• INV201-100-25: Chapter 5 of Financial Mathematics – A Comprehensive Treatment, 
2nd Edition, Campolieti 

Commentary on Question: 

Candidates did relatively well on this problem. Part (a)(ii) was the one which was missed by 
the majority of candidates.  

Solution: 

(a)  

(i) Determine the range of 𝑁𝑁 for which this model is arbitrage-free. 
 

(ii) Assess whether this model is complete for the range of 𝑁𝑁 in part (a)(i). 
 

(i) 

The model is arbitrage free if the following equations are satisfied simultaneously: 

At S0=10: 10 x (1 + r) = 12 x q1 + 8 x (1 - q1) 

At S1 = 12: 12 x (1+ r) = 15 x q2 + 10 x (1 – q2) 

At S1 =8: 8 x (1 + r) = 9 x q3 +5 x (1 – q3) 

Solving them for q1, q2 and q3 we get: 

𝑞𝑞1 =
1 + 𝑁𝑁 − 8

10
12
10 − 8

10
=

2 + 10𝑁𝑁
4

 

𝑞𝑞2 =
1 + 𝑁𝑁 − 10/12

15/12 − 10/12 =
2 + 12𝑁𝑁

5  

𝑞𝑞3 =
1 + 𝑁𝑁 − 5/8
9/8 − 5/8 =

3 + 8𝑁𝑁
4  

Since each qi must be in the (0,1) interval, replacing qi with 0 and 1 in the above 
yields: 

-1/5 < r < 1/5 

-1/6 < r < 1/4 

- 3/8 < r < 1/8 
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The intersection of the 3 intervals ( -1/6, 1/8) gives the values of r for which the 
model is arbitrage free. 

Some candidates did not substitute 0 and 1 for the qs, others did not intersect the 3 
intervals for r, these candidates receive partial credits 

(ii)  The model is complete when r  ∈ �− 1
6

, 1
8
�, since each r in this interval produces 

equivalent risk-neutral measure 

This part was missed by the majority of candidates. 

 

(b) Calculate the fair price of this option when 𝑁𝑁 = 1/9 using the risk-neutral measure.  

Fair Price of this option   

= 1
(1+𝑁𝑁)2 𝐸𝐸𝑄𝑄[(max(𝑆𝑆1, 𝑆𝑆2) − 𝐾𝐾)+]  

=� 9
10�

2
((max(12, 15) − 11)+𝑞𝑞1𝑞𝑞2 + (max(12, 10) − 11)+𝑞𝑞1(1 − 𝑞𝑞2)) 

 + � 9
10

�
2

((max(8, 9) − 11)+(1 − 𝑞𝑞1 )𝑞𝑞3 +  (max(8, 5) − 11)+(1 − 𝑞𝑞1)(1 − 𝑞𝑞3)) 

= � 9
10�

2
�4𝑞𝑞1𝑞𝑞2 + 1𝑞𝑞1�1 − 𝑞𝑞2��  

In the case that r = 1/9, we have from part (b) that 

𝑞𝑞1 =
2
4 +

10
4 �

1
9� =

7
9             𝑞𝑞2 =

2
5 +

12
5 �

1
9� =

2
3 

Therefore, fair price of this option =  

�
9

10�
2

�4 �
7
9� �

2
3� + 1 �

7
9� �

1
3�� =

189
100 

 

Almost all candidates worked on this part. Common mistake here was using continuous 
compounding rather than discrete one. Some candidates did not calculate the option payoff 
correctly. In both cases, partial credit was given if the rest of the calculations were correct. 
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QFI QF Fall 2024 Question 7 
Learning Outcomes: 

h) Understand and apply numerical discretization methods to price options including 
Euler-Maruyama discretization and transition density methods 

i) Calibrate a model to observed prices of traded securities including fitting to a given 
yield curve 

Source References: 

• Calibrating Interest Rate Models (Section 1.1-4.3 excl 4.1.2) 

Commentary on Question: 

This question tests candidates’ knowledge on the model calibration techniques.     

Solution: 

(a) You have one-month daily treasury bill yields (annualized) over 500 consecutive 
trading days in the daily_data table. There are 252 trading days per year. You would like 
to fit the CIR model, 

𝑑𝑑𝑁𝑁 = 𝛾𝛾(�̅�𝑁 − 𝑁𝑁)𝑑𝑑𝜕𝜕 +  √𝛼𝛼𝑁𝑁 𝑑𝑑𝑋𝑋 

 for the data set.  

For this model you are considering the method based on Euler discretization and the 
method based on the transition density function. 

 

Compare and contrast these two methods.  

 

Commentary on Question: 

Candidates performed below expectation on this part.  Partial credits were awarded 
to candidates who have identified each component in the model solution.  

Euler discretiztion involves discretizing the CIR SDE  

 𝑑𝑑𝑁𝑁𝑡𝑡   = 𝛾𝛾(�̅�𝑁  −  𝑁𝑁𝑡𝑡) 𝑑𝑑𝜕𝜕 +  �𝛼𝛼 𝑁𝑁𝑡𝑡  𝑑𝑑𝑋𝑋𝑡𝑡 

as  

𝑁𝑁𝑡𝑡+𝑖𝑖 −  𝑁𝑁𝑡𝑡  = 𝛾𝛾(�̅�𝑁 − 𝑁𝑁𝑡𝑡)𝛥𝛥 +  √𝑁𝑁_𝜕𝜕𝜖𝜖𝑡𝑡+𝑖𝑖  
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𝜖𝜖𝑡𝑡+𝑖𝑖 ∼ 𝑁𝑁(0, √𝛼𝛼𝛥𝛥) 

By writing 𝑁𝑁(𝑖𝑖) = 𝑁𝑁𝑖𝑖𝑖𝑖, 𝑖𝑖 = 0,1, … , 𝑛𝑛 and 

𝛼𝛼1 = 𝛾𝛾�̅�𝑁𝛥𝛥 

 𝛽𝛽1 = 1 − 𝛾𝛾𝛥𝛥 

𝜎𝜎 = √𝛼𝛼𝛥𝛥 

We can write 

𝑁𝑁(𝑖𝑖) =  𝛼𝛼1 + 𝛽𝛽1𝑁𝑁(𝑖𝑖 − 1) +  �𝑁𝑁(𝑖𝑖 − 1)𝜖𝜖𝑖𝑖 

𝑁𝑁(𝑖𝑖)

�𝑁𝑁(𝑖𝑖 − 1)
=

𝛼𝛼1

�𝑁𝑁(𝑖𝑖 − 1)
+  𝛽𝛽1�𝑁𝑁(𝑖𝑖 − 1) + 𝜖𝜖𝑖𝑖, 𝑖𝑖 = 1,2, … 𝑛𝑛 

Therefore by writing  

𝑦𝑦𝑖𝑖 =  
𝑁𝑁(𝑖𝑖)

�𝑁𝑁(𝑖𝑖 − 1)
, 𝑚𝑚1𝑖𝑖 =

1

�𝑁𝑁(𝑖𝑖 − 1)
, 𝑚𝑚2𝑖𝑖 = �𝑁𝑁(𝑖𝑖 − 1) 

The model becomes a multiple linear regression model with no intercept 

𝑦𝑦𝑖𝑖 = 𝛼𝛼1𝑚𝑚1𝑖𝑖 + 𝛽𝛽1𝑚𝑚2𝑖𝑖 +  𝜖𝜖𝑖𝑖 

Maximum Likelihood Method based on Transition density 

This method relies on the fact that probability density function of  𝑁𝑁𝑡𝑡+𝑠𝑠|𝑁𝑁𝑡𝑡 is a constant 
multiplier of non-central chisquared distribution. Normally we ignore the contribution from 
the pdf of  𝑁𝑁0 to the likelihood function as the sample is large. 

MLE is exact and should be more accurate than Euler method. 

However, maximizing  log likelihood function requires numerical optimization method. 
These are very sensitive to initial guess. The calculation of non-central chi-square in R 
appears to be not very stable. 

(b) Calculate the estimates of 𝛾𝛾, �̅�𝑁 and 𝛼𝛼 based on Euler discretization. 

Commentary on Question: 

Candidates performed as expected on this part.  

From R output 

𝛼𝛼1 = 0.0003346 

𝛽𝛽1 = 0.9968652  

𝜎𝜎 = 0.01455 
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Using 𝛾𝛾 = 1−𝛽𝛽1
𝑖𝑖

      
𝛾𝛾 = 0.7899795 

Using  �̅�𝑁 = 𝛼𝛼1
1−𝛽𝛽1

 

�̅�𝑁 =  0.1067507 

Using 𝛼𝛼 = 𝜎𝜎2

𝑖𝑖
 

𝛼𝛼 = 0.0533412 

(c) Write estimates of  𝛾𝛾, �̅�𝑁 and 𝛼𝛼  based on the transition density method. 

Commentary on Question: 

Candidates performed as expected on this part.  

From the output                    

𝛾𝛾 = 7.86976,  

�̅�𝑁 = 0.053306,  

𝛼𝛼 = 0.26746 

(d) Recommend an estimate method between Euler discretization method and the 
transition density method. 

Commentary on Question: 

Candidates performed below expectation on this part. Partial credit was given for 
each component answered correctly. 

From the second output even though MLE method converges, there are some warnings; 
warnings could be problamtics.  

 

Two estimates are vastly different.  

The diagnostics statistics for  the Euler method indicates it’s a good �it. However no 
diagnostics statistics are provided for the MLE method other than the warnings. 

Based on all these considerations, the Euler estimate is recommended. 
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Learning Objective 3: The candidate will understand 
various applications and risks of derivatives 
 

QFI QF Fall 2020 Question 6 
Learning Outcomes: 

a) Understand the Greeks of derivatives 

b) Understand static and dynamic hedging 

c) Understand delta hedging, and the interplay between hedging assumptions and 
hedging outcomes 

e) Understand how hedge strategies may fail 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., Pearson, 2021, Chapters 19, 
26, pages 421-422, 632-634 

• The Volatility Smile, Derman, Emanuel and Miller, Michael, 2016, Chapters 3, 5 

• INV201-104-25: Which Free Lunch Would You Like Today, Sir? 

Solution: 

(a)  

(i) Sketch the payoff graph for the portfolio B. 
 

(ii) Construct a static hedging strategy for option A, with plain vanilla options 
and the underlying asset S. 

 

Commentary on Question: 

Overall, candidates did well on this part of the question.  Most candidates were able 
to graph the option payoffs successfully for portfolio B and construct the hedging 
strategy for A. 
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(i)  
(ii)  

B can be replicated by Long 2 Puts at K, Long 1 Call at K, and Short One Call at 2K.  Since B is A – S, 
we also need to Long 1 Share of S. 

(b) Construct a dynamic delta-hedging strategy for this exotic option A. 

Commentary on Question: 

Most candidates knew how to take the derivative of the result in part (a) but were 
unable to proceed from there to correct the hedging strategy. 

From (i), A= C(K) – C(2K) + 2P(K) + S 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

=
𝜕𝜕𝐶𝐶(𝐾𝐾)

𝜕𝜕𝑆𝑆
−

𝜕𝜕𝐶𝐶(2𝐾𝐾)
𝜕𝜕𝑆𝑆

+
𝜕𝜕𝑃𝑃(𝐾𝐾)

𝜕𝜕𝑆𝑆
+

𝜕𝜕𝑆𝑆
𝜕𝜕𝑆𝑆

 

𝜕𝜕𝐶𝐶(𝐾𝐾)
𝜕𝜕𝑆𝑆

−
𝜕𝜕𝐶𝐶(2𝐾𝐾)

𝜕𝜕𝑆𝑆
+

2 ∗ 𝜕𝜕[𝐶𝐶(𝐾𝐾) − 𝑆𝑆]
𝜕𝜕𝑆𝑆

+
𝜕𝜕𝑆𝑆
𝜕𝜕𝑆𝑆

, (𝑃𝑃𝑢𝑢𝜕𝜕 − 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 𝑢𝑢𝑁𝑁𝑁𝑁𝑖𝑖𝜕𝜕𝑦𝑦) 

(2 + 1)
𝜕𝜕𝐶𝐶(𝐾𝐾)

𝜕𝜕𝑆𝑆
−

𝜕𝜕𝐶𝐶(2𝐾𝐾)
𝜕𝜕𝑆𝑆

− 2 + 1 

(3)
𝜕𝜕𝐶𝐶(𝐾𝐾)

𝜕𝜕𝑆𝑆
−

𝜕𝜕𝐶𝐶(2𝐾𝐾)
𝜕𝜕𝑆𝑆

− (1) 

 

Delta hedging this option by  

- shorting (3) 𝜕𝜕𝜕𝜕(𝐾𝐾)
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝜕𝜕(2𝐾𝐾)
𝜕𝜕𝜕𝜕

− (1) unit of underlying asset S 

- cash balance �(3) 𝜕𝜕𝜕𝜕(𝐾𝐾)
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝜕𝜕(2𝐾𝐾)
𝜕𝜕𝜕𝜕

− (1)� 𝑆𝑆 − 𝜕𝜕 
 

(c) List pros and cons of static hedging strategies and dynamic hedging strategies. 

Commentary on Question: 
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Most candidates did well on this question.  Some candidates did not comment on 
the availability of assets or list both pros and cons. 

 

Static Hedging Strategy: 

Pro:  

1. No need to be rebalanced.   

2. Do no rely on theoretical models: No assumption for the future behavior of underlying 
assets, is required. 

Con:  

1. The options required for hedging strategy might not be available in market.   

Dynamic Hedging Strategy: 

Pro: 

1. More practical in reality, as the strategy can be built with securities available in market. 

Con: 

1. Require constant rebalancing. 

2. Hedging error if the assumptions made for the future behavior of underlying assets 
deviate from reality. 

(d) Show that 

2
2 2

2

1
2 S

V V VrV S rS
t S S

σ∂ ∂ ∂
= + +
∂ ∂ ∂  using the law of one price and Ito’s 

Lemma, where r denotes the constant risk-free rate. 

Commentary on Question: 

Many candidates did not recognize that the rebalancing factor was also a function of 
stock price and treated it as a constant in solving this question.  Candidates who 
received full points recognized this fact. 

Solve dΣ through Ito lemma  

 𝑑𝑑𝑑𝑑 = 𝑑𝑑 �𝛼𝛼 �𝑉𝑉 − 𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

𝑆𝑆�� = 𝑉𝑉𝑑𝑑𝛼𝛼 + 𝛼𝛼𝑑𝑑𝑉𝑉 − �𝛼𝛼𝑆𝑆𝑑𝑑 �𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

� + 𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

𝑆𝑆𝑑𝑑𝛼𝛼 + 𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

𝛼𝛼𝑑𝑑𝑆𝑆� 

𝛼𝛼 �𝑑𝑑𝑉𝑉 −
𝜕𝜕𝑉𝑉
𝜕𝜕𝑆𝑆

𝑑𝑑𝑆𝑆� + 𝑉𝑉𝑑𝑑𝛼𝛼 −
𝜕𝜕𝑉𝑉
𝜕𝜕𝑆𝑆

𝑆𝑆𝑑𝑑𝛼𝛼 − 𝛼𝛼𝑆𝑆𝑑𝑑 �
𝜕𝜕𝑉𝑉
𝜕𝜕𝑆𝑆

� 

𝛼𝛼 �𝑑𝑑𝑉𝑉 − 𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

𝑑𝑑𝑆𝑆� �𝑉𝑉 − 𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

𝑆𝑆� 𝑑𝑑𝛼𝛼 = 𝛼𝛼𝑆𝑆𝑑𝑑 �𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

�) 
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𝛼𝛼 �
𝜕𝜕𝑉𝑉
𝜕𝜕𝑆𝑆

𝑑𝑑𝑆𝑆 +
1
2

𝜎𝜎𝑠𝑠
2 𝜕𝜕2𝑉𝑉

𝜕𝜕𝑆𝑆2 𝑑𝑑𝜕𝜕 +
𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕 −
𝜕𝜕𝑉𝑉
𝜕𝜕𝑆𝑆

𝑑𝑑𝑆𝑆� 

𝛼𝛼 �
1
2

𝜎𝜎𝑠𝑠
2 𝜕𝜕2𝑉𝑉

𝜕𝜕𝑆𝑆2 𝑑𝑑𝜕𝜕 +
𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕� 

 

The portfolio 𝑑𝑑has no risk, as the random facor has been fully hedged.  Based on the rule of one 
price, the return of the portfolio Σ should be equal to risk free rate of  𝑁𝑁. 

  𝑑𝑑𝑑𝑑 = 𝛼𝛼 �1
2

𝜎𝜎𝑠𝑠
2 𝜕𝜕2𝑉𝑉

𝜕𝜕𝜕𝜕2 + 𝜕𝜕𝑉𝑉
𝜕𝜕𝑡𝑡

� 𝑑𝑑𝜕𝜕 = 𝑁𝑁𝑑𝑑𝑑𝑑𝜕𝜕 = 𝑁𝑁𝛼𝛼 �𝑉𝑉 − 𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

𝑆𝑆� 𝑑𝑑𝜕𝜕 

→ �
1
2

𝜎𝜎𝑠𝑠
2 𝜕𝜕2𝑉𝑉

𝜕𝜕𝑆𝑆2 +
𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

� = 𝑁𝑁 �𝑉𝑉 −
𝜕𝜕𝑉𝑉
𝜕𝜕𝑆𝑆

𝑆𝑆� 

→ 𝑁𝑁𝑉𝑉 = 𝜕𝜕𝑉𝑉
𝜕𝜕𝑡𝑡

+ 1
2

𝜎𝜎𝑠𝑠
2𝑆𝑆2 𝜕𝜕2𝑉𝑉

𝜕𝜕𝜕𝜕2 + 𝑁𝑁𝑆𝑆 𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

    

(e)  

(i) Show that the profit and loss function P&L of the hedged portfolio satisfies 
the following when the hedge is constructed with realized volatility 𝜎𝜎𝑠𝑠,𝑅𝑅:  
 

2 2 2
, , ,

1( & ) ( ) ( )
2 I s R s I I R s s Rd P L S dt r Sdt SdZσ σ µ σ   = Γ − + ∆ −∆ − +  

 
 
(ii) Determine 𝑑𝑑(𝑃𝑃&𝐿𝐿), if V is hedged with implied volatility 𝜎𝜎𝑠𝑠,𝐼𝐼 instead. 

 
(iii) Describe key P&L characteristics, when hedging with realized volatility vs. 

implied volatility, using the results in parts (i) and (ii) to support your answer. 
 

Commentary on Question: 

Many candidates were unsure how to complete the first proof or use the result in 
part (i) to determine the value in part (ii).  Most candidates successfully listed 
several drivers of the P&L using realized and implied volatility. 

(i) From (d) 𝑁𝑁𝑉𝑉 = 𝜕𝜕𝑉𝑉
𝜕𝜕𝑡𝑡

+ 1
2

𝜎𝜎𝑠𝑠
2𝑆𝑆2 𝜕𝜕2𝑉𝑉

𝜕𝜕𝜕𝜕2 + 𝑁𝑁𝑆𝑆 𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

 

 𝑁𝑁𝑉𝑉 = 𝜕𝜕𝑉𝑉
𝜕𝜕𝑡𝑡

+ 1
2

𝜎𝜎𝑠𝑠,𝐼𝐼
2𝑆𝑆2𝛤𝛤𝐼𝐼 + 𝑁𝑁𝑆𝑆∆𝐼𝐼 

  𝜕𝜕𝑉𝑉
𝜕𝜕𝑡𝑡

= 𝑁𝑁𝑉𝑉 − 1
2

𝜎𝜎𝑠𝑠,𝐼𝐼
2𝑆𝑆2𝛤𝛤𝐼𝐼 − 𝑁𝑁𝑆𝑆∆𝐼𝐼     ---  (1) 

Hedged portfolio: 𝑉𝑉 (long option)  −∆𝑅𝑅S (short ∆𝑅𝑅unit of S) + [∆𝑅𝑅𝑆𝑆 − 𝑉𝑉] (cash balance) 
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 𝑑𝑑𝑃𝑃 ∧ 𝐿𝐿 = 𝑑𝑑[𝑉𝑉 − ∆𝑅𝑅𝑆𝑆] − [𝑉𝑉 − ∆𝑅𝑅𝑆𝑆]𝑁𝑁𝑑𝑑𝜕𝜕   ----  (2) 

𝑑𝑑𝑉𝑉 = ∆𝐼𝐼�𝑑𝑑𝑆𝑆�𝜎𝜎𝑠𝑠,𝑅𝑅� +
𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕 +
1
2

𝜎𝜎𝑠𝑠,𝑅𝑅
2𝑆𝑆2𝛤𝛤𝐼𝐼𝑑𝑑𝜕𝜕 

 ∆𝐼𝐼�𝜇𝜇𝑠𝑠𝑆𝑆𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑠𝑠,𝑅𝑅𝑆𝑆𝑑𝑑𝑧𝑧� + 𝜕𝜕𝑉𝑉
𝜕𝜕𝑡𝑡

𝑑𝑑𝜕𝜕 + 1
2

𝜎𝜎𝑠𝑠,𝑅𝑅
2𝑆𝑆2𝛤𝛤𝐼𝐼𝑑𝑑𝜕𝜕   ----  (3) 

 𝑑𝑑∆𝑅𝑅𝑆𝑆 = ∆𝑅𝑅�𝑑𝑑𝑆𝑆�𝜎𝜎𝑠𝑠,𝑅𝑅� = ∆𝑅𝑅 ��𝜇𝜇𝑠𝑠𝑆𝑆𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑠𝑠,𝑅𝑅𝑆𝑆𝑑𝑑𝑧𝑧��   ----  (4) 

 (1), (3), (4)  (2) 

 𝑑𝑑𝑃𝑃 ∧ 𝐿𝐿 = ∆𝐼𝐼�𝜇𝜇𝑠𝑠𝑆𝑆𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑠𝑠,𝑅𝑅𝑆𝑆𝑑𝑑𝑧𝑧� + �𝑁𝑁𝑉𝑉 − 1
2

𝜎𝜎𝑠𝑠,𝐼𝐼
2𝑆𝑆2𝛤𝛤𝐼𝐼 − 𝑁𝑁𝑆𝑆∆𝐼𝐼� 𝑑𝑑𝜕𝜕  

 +1
2

𝜎𝜎𝑠𝑠,𝑅𝑅
2𝑆𝑆2𝛤𝛤𝐼𝐼𝑑𝑑𝜕𝜕 − ∆𝑅𝑅 ��𝜇𝜇𝑠𝑠𝑆𝑆𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑠𝑠,𝑅𝑅𝑆𝑆𝑑𝑑𝑧𝑧�� 

 −[𝑉𝑉 − ∆𝑅𝑅𝑆𝑆]𝑁𝑁𝑑𝑑𝜕𝜕    

 This can be simpli�ied and rearranged to 

2 2 2
, , ,

1( & ) ( ) ( )
2 I s R s I I R s s Rd P L S dt r Sdt SdZσ σ µ σ   = Γ − + ∆ −∆ − +  

 

(ii) From i), if hedged with implied volatility, ∆𝐼𝐼= ∆𝑅𝑅 so the last term cancels leaving 

             1
2

�𝜎𝜎𝑠𝑠,𝑅𝑅
2 − 𝜎𝜎𝑠𝑠,𝐼𝐼

2�𝑆𝑆2𝛤𝛤𝐼𝐼𝑑𝑑𝜕𝜕 

(iii) 

Realized volatility: 

o Know exactly what pro�it to get at expiration. 
Hedged portfolio  

= 𝑉𝑉 (long option)  −∆𝑅𝑅S (short ∆𝑅𝑅unit of S) + [∆𝑅𝑅𝑆𝑆 − 𝑉𝑉] (cash balance) 

= 𝑉𝑉𝐼𝐼 (priced with 𝜎𝜎𝑠𝑠,𝐼𝐼) -  𝑉𝑉𝑅𝑅 (replicated with 𝜎𝜎𝑠𝑠,𝑅𝑅) + Cash Balance 

 

o The P&L could �luctuate during the life of option. 
𝑑𝑑𝑃𝑃&𝐿𝐿 contains a stochastic term (∆𝐼𝐼 − ∆𝑅𝑅)  𝜎𝜎𝑠𝑠,𝑅𝑅𝑆𝑆𝑑𝑑𝑧𝑧 

 

Implied volatility: 

o No �luctuation in P&L during the life of option. 
       d𝑃𝑃&𝐿𝐿 = 1

2
�𝜎𝜎𝑠𝑠,𝑅𝑅

2 − 𝜎𝜎𝑠𝑠,𝐼𝐼
2�𝑆𝑆2𝛤𝛤𝐼𝐼𝑑𝑑𝜕𝜕, which has no stochastic term. 

o Make pro�it as long as on the right side of trade. (i.e. long option if  𝜎𝜎𝑠𝑠,𝑅𝑅
2 > 𝜎𝜎𝑠𝑠,𝐼𝐼

2) 
d𝑃𝑃&𝐿𝐿 = 1

2
�𝜎𝜎𝑠𝑠,𝑅𝑅

2 − 𝜎𝜎𝑠𝑠,𝐼𝐼
2�𝑆𝑆2𝛤𝛤𝐼𝐼𝑑𝑑𝜕𝜕 > 0, given the gamma of option (𝛤𝛤𝐼𝐼> 0)  
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o Unable to predict how much money you will make. 
 

 

QFI QF Fall 2020 Question 10 
Learning Outcomes: 

f) Identify and evaluate embedded options in liabilities (e.g., indexed annuity, 
structured product based variable annuity, and variable annuity guarantee riders 
including GMxB, etc.) 

g)  Demonstrate an understanding of hedging for embedded option in liabilities 

Source References: 

• INV201-108-25: Mitigating Interest Rate Risk in Variable Annuities: An Analysis of 
Hedging Effectiveness under Model Risk 

Commentary on Question: 

This question is to test candidates’ understanding on the features of guaranteed riders of a 
VA contract and hedging strategies against equity, interest rate and volatility risk. 

Solution: 

(a) Calculate the position in each of the three assets at time 0. 

Commentary on Question: 

A few candidates answered this question and very few of them successfully identify 
the position.  Most candidates left this part as blank. 

With L0 = 0, ∏0 (for a perfect hedge) should be 0: 

 

0 = ∆𝑡𝑡* 200 + 𝑛𝑛𝑡𝑡* 100 - 500M(1) 

The self-financing hedge portfolio should satisfy the following:

 

4.5M = (0 - ∆𝑡𝑡* 200 – 𝑛𝑛𝑡𝑡* 100) * 1.005 + ∆𝑡𝑡* 203 + 𝑛𝑛𝑡𝑡  * 101 

And  

507M = ∆𝑡𝑡* 203 + 𝑛𝑛𝑡𝑡  * 101  (2) 
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By solving the two equations, we can get ∆𝑡𝑡 = 2M and 𝑛𝑛𝑡𝑡= 1M 

So, 

• A position of 2M in stock 
• A position in 1M in zero-coupon bond 
• A position in bank account with total borrowing of $500M such that the hedging 

portfolio is self-financing 
 

(b) Define the objective of the hedging strategy in terms of the insurer’s hedged loss at 
maturity. 

Commentary on Question: 

More than half of candidates performed well in this question.  The remaining 
candidates failed to correctly describe that the objective of a hedging strategy is to 
offset the insurer’s unhedged loss at maturity with the terminal value of the hedging 
portfolio.  

The insurer’s hedged loss at maturity is:  𝐻𝐻𝐿𝐿𝑡𝑡 =  𝐿𝐿𝑡𝑡 − Π𝑡𝑡 

The objective of the hedging portfolio is to offset 𝐿𝐿𝑡𝑡, and therefore to result in a 
hedged loss of approximately zero at maturity 

(c) State one problem with using the forward-looking approach to calibrate the stock 
volatility. 
Commentary on Question: 

Only a few candidates successfully identified relevant problems that describe the 
difficulties of using the forward-looking approach to calibrate the stock volatility.  
Candidates should compare the differences in features between VA contracts and 
traded derivatives in market (outlined in the solution below). 

The problems of the approach include: 

• VAs have long-term maturities, while forward-looking measures are extracted 
from shorter-term traded options (which may involve unsound extrapolation) 

• Two models that are well calibrated to the implied volatility vanilla option 
surface may lead to very different prices and hedge ratios for exotic option 

• Therefore, there is no guarantee that implied volatilities from traded vanilla 
options will consist in appropriate volatility inputs when hedging VAs with non-
vanilla features, such as GMWBs 

(d)  
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(i) Identify the sources of model risk in your hedging strategy under each of 
Models A, B, and C. 
 

(ii) Identify the corresponding market model by matching Model X, Y, and Z to 
Model A, B, or C.  Justify your answer. 
 

Commentary on Question: 

For candidates who answered this question, candidates performed well in part (i).  
They successfully identified the features of those three models.  They also 
performed fairly in part (ii) but some of them didn’t provide any justification on the 
matches, and some of them didn’t correctly understand the relationship between 
the impact of model risk on the effectiveness of hedging strategies and the level of 
resulting CTE. 

(i) 

Model A: difference in interest rate model (CIR vs Vasicek) 

Model B: changes in the slope and curvature of term structure are not accounted for 
in the hedging strategy, but are reflected in the model 

Model C: stochastic volatility and change in the slope and curvature of term 
structure are not accounted for in the hedging strategy, but are reflected in the 
model 

(ii)  

Model X: CTE 95% of 1.8 is for Model B. 

Model Y: CTE 95% of 0.5 is for Model A. 

Model Z: CTE 95% of 4 is for Model C. 

Justification: 

Since the insurer always uses the BSV model to establish its hedging, the three 
data-generating models give rise to varying degrees of model risk.  Market model 
with higher level of deviation from the BSV model will get the less effective hedging 
results. 

(e) Explain whether you agree with the student’s result. 

 

Commentary on Question: 
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Only a few candidates successfully identified the student is wrong.  For some of 
those who disagreed with the students, they failed to provide appropriate 
justifications.  Successful candidates noticed the hedge strategy didn’t hedge 
market volatility and considered its impact on hedged loss. 

Do not agree with the result.  

Because this hedge does not protect against Vega risk, the hedged loss should not 
be mostly centered around zero for varying degrees of stock market volatility.  The 
hedged loss should be centered at zero around the unconditional volatility with a 
trend line for varying degrees of stock market volatility. 

(f)  

(i) Explain how a delta-only hedging strategy would affect the insurer’s hedged 
loss if your expectation becomes a reality. 
 

(ii) Explain how a wrong expectation would affect the insurer’s hedged loss after 
modifying the hedge strategy. 

Commentary on Question: 

About a half of candidates performed well in this question.  The remaining 
candidates failed to understand the impact of interest rate on the VA guaranteed 
riders  

(i) If the interest rates rise steadily throughout the term of the VA contracts, the value 
of the guarantees offered by the insurer will decrease, resulting in a net gain for the 
insurer if rho risk is not hedged (i.e., delta-only strategy). 

(ii) If interest rates turn out to be low and stable, a delta-rho hedge strategy can 
reduce the insurer’s exposure to large hedging losses, as compared to delta-only 
hedge. 

 

 

QFI QF Spring 2021 Question 12 
Learning Outcomes: 

a) Understand the Greeks of derivatives 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., 11th Edition, 2021, Chapter 19 
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Commentary on Question: 

This question tests candidates’ understanding of option Greeks. 

Solution: 

(a) Determine which Greek (Delta, Gamma, Vega, Rho, or Theta) Exhibit I represents.  
Justify your answer.  (Here Theta is defined as the derivative of the option value with 
respect to the passage of time.) 

Commentary on Question: 

Candidates performed as expected.     

Exhibit I shows Rho because: 

 i. Delta is bounded by 1; 

 ii. Gamma and Vega exhibit bell-shape around at-the-money stock price of $100; 

 iii. Theta is negative; 

Since none of the above pattern fits Exhibit I, it is Rho. 

(b) Draw “Line A” in Exhibit I to show the same Greek of a European put option that has 
the same parameters as the one in Exhibit I.  Indicate the Greek value in “Line A” at 
stock price = 100.  You need not show other values in “Line A” but comment on the 
slope of this line. 

 

Commentary on Question: 

Candidates performed below expectations on this part.  Partial credit was given 
when a candidate’s answer to part (b) is consistent with the answer to part (a), even 
though the answer to part (a) is incorrect. 

Line A (blue line) 

𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 𝑅𝑅ℎ𝑁𝑁 = 𝐾𝐾(𝑇𝑇 − 𝜕𝜕)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝑑𝑑2)  

𝑃𝑃𝑢𝑢𝜕𝜕 𝑅𝑅ℎ𝑁𝑁 = 𝐾𝐾(𝑇𝑇 − 𝜕𝜕)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)𝑁𝑁(−𝑑𝑑2) = 𝐾𝐾(𝑇𝑇 − 𝜕𝜕)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) −  𝐾𝐾(𝑇𝑇𝑁𝑁𝑒𝑒 − 𝜕𝜕)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝑑𝑑2) 

𝑃𝑃𝑢𝑢𝜕𝜕 𝑅𝑅ℎ𝑁𝑁 = 𝐾𝐾(𝑇𝑇 − 𝜕𝜕)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) − 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 𝑅𝑅ℎ𝑁𝑁  

Since 𝐾𝐾(𝑇𝑇 − 𝜕𝜕)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) is a constant, the shape of the Put Rho is same as the Call Rho, but with an 
oppisite (negative) slope. 

At stock price = 100 = strike price    
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𝑑𝑑2 =
𝑁𝑁𝑛𝑛 𝑆𝑆

𝐾𝐾 + (𝑁𝑁 − 𝜎𝜎2

2 )(𝑇𝑇 − 𝜕𝜕)

𝜎𝜎√𝑇𝑇 − 𝜕𝜕
=  

(2% − 20%2

2 )
20%

= 0 

𝑁𝑁(𝑑𝑑2) = 𝑁𝑁(−𝑑𝑑2) = 0.5 

𝑃𝑃𝑢𝑢𝜕𝜕 𝑅𝑅ℎ𝑁𝑁 = 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 𝑅𝑅ℎ𝑁𝑁 = 49.0  

Line A intersects with “Call Rho” at stock price = 100  

 

 

(c) Draw “Line B” in Exhibit I to show the same Greek of a European put option that has 
the same parameters as in Exhibit I, except that the time-to-maturity is 1 month.  
Indicate the Greek value in “Line B” at stock price = 85.  You need not show other 
values in “Line B” but comment on the slope of this line. 

Commentary on Question: 

Candidates performed below expectations on this part.  Partial credit was given 
when a candidate’s answer to part (b) is consistent with the answer to part (a), even 
though the answer to part (a) is incorrect.  

Line B (red line) 

For 1 month maturity, at stock price =85: 

𝑑𝑑2 =
𝑁𝑁𝑛𝑛 85

100 + �2% − 20%2

2 � (1/12)

20%�1/12
=  −0.8126 

𝑁𝑁(−𝑑𝑑2) = 0.7918 

1 month Put Rho = 100 ∗ � 1
12

� ∗ 𝑒𝑒−2% 1
12 ∗ 0.7918 = 8.30 
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“Line B” starts at below the “Call Rho” line with a negative slope.  For ease of reference, “Line B” is 
shown in part (b).  

(d) Exhibit II below shows Vega and Gamma for a European option on a non-dividend-
paying stock.  These Greek values are derived from the BSM model with the same 
strike price, volatility, interest rate, and time-to-maturity as in Exhibit I.  

Exhibit II:  Vega and Gamma with respect to the underlying stock price 

Stock price 60 X 
Vega (shown as the change in the option value to 1 
percentage point change of the volatility, e.g., from 25% to 
26%) 

0.2401 0.2548 

Gamma   0.0267  0.0159 
 

Determine the stock price X in Exhibit II. 
Commentary on Question: 

Candidates performed below expectations on this part. 

Note: The Vega and Gamma values in Exhibit II are derived in the same manner as 
the Rho in Exhibit I, but they are not based on the option parameters in Exhibit I.  
Nevertheless, credit was given if X was solved correctly by using the option 
parameters in Exhibit I. 

𝑉𝑉𝑒𝑒𝑙𝑙𝑁𝑁 = 0.01 ∗ 𝑆𝑆√𝑇𝑇 − 𝜕𝜕𝑁𝑁′(𝑑𝑑1) 

𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑁𝑁′(𝑑𝑑1)

𝑆𝑆𝜎𝜎√𝑇𝑇 − 𝜕𝜕
 

𝑉𝑉𝑒𝑒𝑙𝑙𝑁𝑁
𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0.01 ∗ 𝑆𝑆2𝜎𝜎(𝑇𝑇 − 𝜕𝜕)         (1) 

0.2401
0.0267 = 0.01 ∗ 602𝜎𝜎(𝑇𝑇 − 𝜕𝜕)         (2) 

0.2548
0.0159 =  0.01 ∗ 𝑋𝑋2𝜎𝜎(𝑇𝑇 − 𝜕𝜕)           (3) 

𝑈𝑈𝑠𝑠𝑒𝑒 𝑒𝑒𝑞𝑞𝑢𝑢𝑁𝑁𝜕𝜕𝑖𝑖𝑁𝑁𝑛𝑛𝑠𝑠 (2) 𝑁𝑁𝑛𝑛𝑑𝑑 (3) 𝜕𝜕𝑁𝑁 𝑙𝑙𝑒𝑒𝜕𝜕 𝑋𝑋 =  60 ∗ �0.2548
0.0159

∗
0.0267
0.2401

= 80 
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QFI QF Spring 2021 Question 13 
Learning Outcomes: 

c) Understand delta hedging, and the interplay between hedging assumptions and 
hedging outcomes 

d) Understand the concepts of realized versus implied volatility 

e) Understand derivatives mishaps 

Source References: 

• The Volatility Smile, Derman, Emanuel and Miller, Michael, 2016, Chapters 3, 5, 6 

Solution: 

(a) Derive the replicating portfolio using options for the interest credited above the 
guaranteed rate, i.e. .tInterest Credited g−   Specify each option, including position, 

option type, term, and strike ratio 1/ tK S − . 

Commentary on Question: 

Points are awarded for both deriving the formula and correct description of the 
replication portfolio.  Detailed description of the portfolio is required, including, 
strike ratio, option term, option type. 

 
𝐼𝐼𝑛𝑛𝜕𝜕𝑒𝑒𝑁𝑁𝑒𝑒𝑠𝑠𝜕𝜕 𝐶𝐶𝑁𝑁𝑒𝑒𝑑𝑑𝑖𝑖𝜕𝜕𝑒𝑒𝑑𝑑𝑡𝑡 − 𝐺𝐺𝑢𝑢𝑁𝑁𝑁𝑁 

= 𝑁𝑁𝑁𝑁𝑚𝑚 �𝑁𝑁𝑖𝑖𝑛𝑛 � � 𝜕𝜕𝑡𝑡
𝜕𝜕𝑡𝑡−1

− 1� ∗ 𝑃𝑃𝑁𝑁𝑁𝑁, 𝐶𝐶𝑁𝑁𝑢𝑢� , 𝐺𝐺𝑢𝑢𝑁𝑁𝑁𝑁� − 𝐺𝐺𝑢𝑢𝑁𝑁𝑁𝑁, 

= 𝑢𝑢𝑁𝑁𝑁𝑁 ∗ 𝑁𝑁𝑁𝑁𝑚𝑚 �𝑁𝑁𝑖𝑖𝑛𝑛 � �� 𝜕𝜕𝑡𝑡
𝜕𝜕𝑡𝑡−1

− 1� − 𝐺𝐺𝑢𝑢𝑎𝑎𝑟𝑟
𝑝𝑝𝑎𝑎𝑟𝑟

� , 𝜕𝜕𝑎𝑎𝑝𝑝
𝑝𝑝𝑎𝑎𝑟𝑟

− 𝐺𝐺𝑢𝑢𝑎𝑎𝑟𝑟
𝑝𝑝𝑎𝑎𝑟𝑟

� , 0�, 

 = 𝑢𝑢𝑁𝑁𝑁𝑁 ∗ 𝑁𝑁𝑁𝑁𝑚𝑚

⎩
⎪
⎨

⎪
⎧

𝑁𝑁𝑖𝑖𝑛𝑛

⎣
⎢
⎢
⎢
⎡  �� 𝜕𝜕𝑡𝑡

𝜕𝜕𝑡𝑡−1
− 1� − 𝐺𝐺𝑢𝑢𝑎𝑎𝑟𝑟

𝑝𝑝𝑎𝑎𝑟𝑟
� ,

�� 𝜕𝜕𝑡𝑡
𝜕𝜕𝑡𝑡−1

− 1� − 𝐺𝐺𝑢𝑢𝑎𝑎𝑟𝑟
𝑝𝑝𝑎𝑎𝑟𝑟

� − �� 𝜕𝜕𝑡𝑡
𝜕𝜕𝑡𝑡−1

− 1� − 𝜕𝜕𝑎𝑎𝑝𝑝
𝑝𝑝𝑎𝑎𝑟𝑟

�
⎦
⎥
⎥
⎥
⎤

, 0

⎭
⎪
⎬

⎪
⎫
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Denote 𝐺𝐺 =  �� 𝜕𝜕𝑡𝑡
𝜕𝜕𝑡𝑡−1

− 1� − 𝐺𝐺𝑢𝑢𝑎𝑎𝑟𝑟
𝑝𝑝𝑎𝑎𝑟𝑟

�, 𝐶𝐶 =  �� 𝜕𝜕𝑡𝑡
𝜕𝜕𝑡𝑡−1

− 1� − 𝜕𝜕𝑎𝑎𝑝𝑝
𝑝𝑝𝑎𝑎𝑟𝑟

�,  

as 𝐶𝐶𝑁𝑁𝑢𝑢 > 𝐺𝐺𝑢𝑢𝑁𝑁𝑁𝑁, 𝐺𝐺 > 𝐶𝐶. 

Thus, 𝐼𝐼𝑛𝑛𝜕𝜕𝑒𝑒𝑁𝑁𝑒𝑒𝑠𝑠𝜕𝜕 𝐶𝐶𝑁𝑁𝑒𝑒𝑑𝑑𝑖𝑖𝜕𝜕𝑒𝑒𝑑𝑑𝑡𝑡 − 𝐺𝐺𝑢𝑢𝑁𝑁𝑁𝑁 

= 𝑢𝑢𝑁𝑁𝑁𝑁 ∗ 𝑁𝑁𝑁𝑁𝑚𝑚[𝑁𝑁𝑖𝑖𝑛𝑛(𝐺𝐺, 𝐺𝐺 − 𝐶𝐶), 0] 

= 𝑢𝑢𝑁𝑁𝑁𝑁 ∗ {𝑁𝑁𝑁𝑁𝑚𝑚[0, −𝑁𝑁𝑖𝑖𝑛𝑛(𝐺𝐺, 𝐺𝐺 − 𝐶𝐶)] + 𝑁𝑁𝑖𝑖𝑛𝑛(𝐺𝐺, 𝐺𝐺 − 𝐶𝐶)} 

= 𝑢𝑢𝑁𝑁𝑁𝑁 ∗ {𝑁𝑁𝑁𝑁𝑚𝑚[0, 𝑁𝑁𝑁𝑁𝑚𝑚(−𝐺𝐺, 𝐶𝐶 − 𝐺𝐺)] − 𝑁𝑁𝑁𝑁𝑚𝑚(−𝐺𝐺, 𝐶𝐶 − 𝐺𝐺)} 

= 𝑢𝑢𝑁𝑁𝑁𝑁 ∗ {𝑁𝑁𝑁𝑁𝑚𝑚[𝐺𝐺, 𝑁𝑁𝑁𝑁𝑚𝑚(0, 𝐶𝐶)] − 𝑁𝑁𝑁𝑁𝑚𝑚(0, 𝐶𝐶)} 

= 𝑢𝑢𝑁𝑁𝑁𝑁 ∗ {𝑁𝑁𝑁𝑁𝑚𝑚[0, 𝑁𝑁𝑁𝑁𝑚𝑚(𝐺𝐺, 𝐶𝐶)] − 𝑁𝑁𝑁𝑁𝑚𝑚(0, 𝐶𝐶)}  

= 𝑢𝑢𝑁𝑁𝑁𝑁 ∗ {𝑁𝑁𝑁𝑁𝑚𝑚(0, 𝐺𝐺) − 𝑁𝑁𝑁𝑁𝑚𝑚(0, 𝐶𝐶)}, as 𝐺𝐺 > 𝐶𝐶 

= 𝑢𝑢𝑁𝑁𝑁𝑁 ∗ �𝑁𝑁𝑁𝑁𝑚𝑚 � 𝜕𝜕𝑡𝑡
𝜕𝜕𝑡𝑡−1

− �1 + 𝐺𝐺𝑢𝑢𝑎𝑎𝑟𝑟
𝑝𝑝𝑎𝑎𝑟𝑟

� , 0� − 𝑁𝑁𝑁𝑁𝑚𝑚 � 𝜕𝜕𝑡𝑡
𝜕𝜕𝑡𝑡−1

− �1 + 𝜕𝜕𝑎𝑎𝑝𝑝
𝑝𝑝𝑎𝑎𝑟𝑟

� , 0��. 

Therefore, the interest credited above the guaranteed rate can be replicated by 𝑢𝑢 units of 
call spread, with the following options: 

• Long position of a 1-year term European call option, with strike ratio 𝐾𝐾𝐿𝐿
𝜕𝜕𝑡𝑡−1

= 1 + 𝐺𝐺𝑢𝑢𝑎𝑎𝑟𝑟
𝑝𝑝𝑎𝑎𝑟𝑟

= 1 +
0.01
0.9

= 1.0111 

• Short position of a 1-year term European call option, with strike ratio 𝐾𝐾𝑆𝑆
𝜕𝜕𝑡𝑡−1

= 1 + 𝜕𝜕𝑎𝑎𝑝𝑝
𝑝𝑝𝑎𝑎𝑟𝑟

= 1 +
0.05
0.9

= 1.0556  
 

(b) Sketch the payoff of the replicating portfolio against the index growth rate 
1

1t

t

S
S −

 
− 

 
. 

Commentary on Question: 

Correct shape of the curve as well as identification of both the turning points are 
required for full credit. 
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Turning point:  

 �𝐺𝐺𝑢𝑢𝑎𝑎𝑟𝑟
𝑃𝑃𝑎𝑎𝑟𝑟

, 𝐺𝐺𝑢𝑢𝑁𝑁𝑁𝑁� = (0.0111, 0.01)  

and 

 �𝜕𝜕𝑎𝑎𝑝𝑝
𝑃𝑃𝑎𝑎𝑟𝑟

, 𝐶𝐶𝑁𝑁𝑢𝑢� = (0.0556, 0.05). 

 

(c)  

(i) Calculate the interest credited on Dec 31, 2019. 
 

(ii) Calculate the cost of the replicating portfolio for the interest credited above 
the guaranteed rate on Dec 31, 2018.  
 

Commentary on Question: 

For part (i), interest percentage as well as dollar amount need to be specified. 

 For part (ii), each step needs to be shown clearly and demonstrate how each 
parameter is calculated. 

 
(i)  

𝐼𝐼𝑛𝑛𝜕𝜕𝑒𝑒𝑁𝑁𝑒𝑒𝑠𝑠𝜕𝜕 𝐶𝐶𝑁𝑁𝑒𝑒𝑑𝑑𝑖𝑖𝜕𝜕𝑒𝑒𝑑𝑑𝑡𝑡 

= 𝑁𝑁𝑁𝑁𝑚𝑚 �𝑁𝑁𝑖𝑖𝑛𝑛 � � 𝜕𝜕𝑡𝑡
𝜕𝜕𝑡𝑡−1

− 1� ∗ 𝑃𝑃𝑁𝑁𝑁𝑁, 𝐶𝐶𝑁𝑁𝑢𝑢� , 𝐺𝐺𝑢𝑢𝑁𝑁𝑁𝑁�, 
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= 𝑁𝑁𝑁𝑁𝑚𝑚 �𝑁𝑁𝑖𝑖𝑛𝑛 ��1080
1000

− 1� ∗ 90%, 5%� , 1%�, 

= 𝑁𝑁𝑁𝑁𝑚𝑚{𝑁𝑁𝑖𝑖𝑛𝑛[(7.2%, 5%)], 1%} 

= 5%. 

Therefore, interest credited per $1000 of investment = 5% ∗ 1000 = $50. 

(ii) 

From (a), the interest crediting strategy can be replicated by the following call spread: 

 𝑢𝑢𝑁𝑁𝑁𝑁 ∗ �𝑁𝑁𝑁𝑁𝑚𝑚 � 𝜕𝜕𝑡𝑡
𝜕𝜕𝑡𝑡−1

− �1 + 𝐺𝐺𝑢𝑢𝑎𝑎𝑟𝑟
𝑝𝑝𝑎𝑎𝑟𝑟

� , 0� − 𝑁𝑁𝑁𝑁𝑚𝑚 � 𝜕𝜕𝑡𝑡
𝜕𝜕𝑡𝑡−1

− �1 + 𝜕𝜕𝑎𝑎𝑝𝑝
𝑝𝑝𝑎𝑎𝑟𝑟

� , 0��. 

The cost of the replicating portfolio is the option value of this call spread at 𝜕𝜕 − 1. 

Using Black-Scholes model to calculate the option value, 

𝐶𝐶(𝑆𝑆𝑡𝑡, 𝜕𝜕) = 𝑆𝑆𝑡𝑡𝑁𝑁(𝑑𝑑1) − 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝑑𝑑2),  

where 

𝑑𝑑1 = 1
𝜎𝜎√𝑇𝑇−𝑡𝑡

�ln �𝜕𝜕𝑡𝑡
𝐾𝐾

� + �𝑁𝑁 + 𝜎𝜎2

2
� (𝑇𝑇 − 𝜕𝜕)�, 

𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎√𝑇𝑇 − 𝜕𝜕. 

Option value of the long position of a 1-year term European call option with strike ratio 
𝐾𝐾𝐿𝐿 𝑆𝑆𝑡𝑡−1⁄ = 1.0111 is: 

𝐶𝐶𝐿𝐿(𝑆𝑆𝑡𝑡−1, 𝜕𝜕 − 1) = 𝑆𝑆𝑡𝑡−1𝑁𝑁(𝑑𝑑1) − 𝐾𝐾𝐿𝐿𝑒𝑒−𝑟𝑟𝑁𝑁(𝑑𝑑2),  

where 

𝐾𝐾𝐿𝐿 = 𝑆𝑆𝑡𝑡−1 �1 +
𝐺𝐺𝑢𝑢𝑁𝑁𝑁𝑁
𝑢𝑢𝑁𝑁𝑁𝑁

� = 1000 ∗ 1.0111 = 1011.11 

𝑑𝑑1 = 1
𝜎𝜎

�ln � 1

1+𝐺𝐺𝑢𝑢𝑎𝑎𝜕𝜕
𝑝𝑝𝑎𝑎𝜕𝜕

� + �𝑁𝑁 + 𝜎𝜎2

2
�� = 1

0.2
�ln � 1

1+0.01
0.9

� + �0.05 + 0.22

2
�� = 0.2948  

𝑁𝑁(𝑑𝑑1) = 0.6141. 

 𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎 = 0.2948 − 0.2 = 0.0948, 𝑁𝑁(𝑑𝑑2) = 0.5359. 

 𝐶𝐶𝐿𝐿(𝑆𝑆𝑡𝑡−1, 𝜕𝜕 − 1) = 1000 ∗ 0.6141 − 1011.11 ∗ 𝑒𝑒−0.05 ∗ 0.5359 = $98.7. 

Option value of the short position of a 1-year term European call option with strike ratio 
𝐾𝐾𝜕𝜕 𝑆𝑆𝑡𝑡−1⁄ = 1.0556 is: 
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𝐶𝐶𝜕𝜕(𝑆𝑆𝑡𝑡−1, 𝜕𝜕 − 1) = 𝑆𝑆𝑡𝑡−1𝑁𝑁(𝑑𝑑1) − 𝐾𝐾𝜕𝜕𝑒𝑒−𝑟𝑟𝑁𝑁(𝑑𝑑2),  

where 

𝐾𝐾𝜕𝜕 = 𝑆𝑆𝑡𝑡−1 �1 + 𝜕𝜕𝑎𝑎𝑝𝑝
𝑝𝑝𝑎𝑎𝑟𝑟

� = 1000 ∗ 1.0556 = 1055.56. 

𝑑𝑑1 = 1
𝜎𝜎

�ln � 1

1+𝐶𝐶𝑎𝑎𝑝𝑝
𝑝𝑝𝑎𝑎𝜕𝜕

� + �𝑁𝑁 + 𝜎𝜎2

2
�� = 1

0.2
�ln � 1

1+0.05
0.9

� + �0.05 + 0.22

2
�� = 0.0797,  

𝑁𝑁(𝑑𝑑1) = 0.5319.  

𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎 = 0.0797 − 0.2 = −0.1203,  

𝑁𝑁(𝑑𝑑2) = 1 − 𝑁𝑁(−𝑑𝑑2) = 1 − 0.5478 = 0.4522. 

𝐶𝐶𝜕𝜕(𝑆𝑆𝑡𝑡−1, 𝜕𝜕 − 1) = 1000 ∗ 0.5319 − 1055.56 ∗ 𝑒𝑒−0.05 ∗ 0.4522 = $77.8. 

Therefore, the total cost = 𝑢𝑢𝑁𝑁𝑁𝑁 ∗ [𝐶𝐶𝐿𝐿(𝑆𝑆𝑡𝑡−1, 𝜕𝜕 − 1) − 𝐶𝐶𝜕𝜕(𝑆𝑆𝑡𝑡−1, 𝜕𝜕 − 1)] = 0.9 ∗ ($98.7 −
$77.8) = $18.8. 

(d)  

(i) Calculate the effective volatility 𝜎𝜎� that covers the transaction costs for long 
and short option positions, respectively.  Assume 52 weeks per year and 

3.14π = . 
 

(ii) Justify the calculation of effective volatility regarding to each option position. 
Commentary on Question: 

For part (i), solutions using the variance formula 𝜎𝜎2 ± 2𝜎𝜎𝑘𝑘� 2
𝜋𝜋𝑑𝑑𝑡𝑡

 are awarded full 

credit as well. 

(i) The effective volatility 𝜎𝜎� for long call position = 𝜎𝜎 − 𝑘𝑘� 2
𝜋𝜋𝑑𝑑𝑡𝑡

= 20% −

0.52% × � 2
3.14

× 52
1

= 17.00%. 

(ii) The effective volatility 𝜎𝜎� for short call position = 𝜎𝜎 + 𝑘𝑘� 2
𝜋𝜋𝑑𝑑𝑡𝑡

= 20% +

0.52% × � 2
3.14

× 52
1

= 23.00%. 

 

(ii)  
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When you long an option, you should pay less than the fair BSM value, since the 
hedging cost will diminish your P&L.  Fora long position, the effective volatility is 
reduced. 
 
When you short an option, you must ask for more money to cover your hedging 
costs, and therefore you should have sold it for a greater price than the BSM value.  
For a short position, the effective volatility should be enhanced. 

(e)  

(i) Describe the relationship between hedging frequency and the profit. 
 

(ii) Describe strategies that can be used for rebalancing. 
 

Commentary on Question: 

For part (i), the candidate needs to mention smaller hedging error leads to more 
certainty regarding the profit.  “Frequent rebalancing reduces hedging error” does 
not answer the question. 

For part (ii), reasonable description of benchmarks that trigger rebalancing are 
accepted. 

(i) 

The more you rebalance: 

• the smaller the hedging error, the more certain about the profit, 
 

• but the greater the cost and the smaller the expected profit as the more of profit is 
given away in transaction costs. 

 

(ii) 

Rebalancing strategies: 

• Rebalancing at regular intervals: set a time interval and rebalance at the end of every time 
step, no matter how little or how much additional options must be traded. 
 

• Rebalancing Triggered by changes in the hedge ratio: set a trigger rate and rebalance only 
after a substantial change in the hedge ratio has occurred, where the trigger rate is hit. 
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QFI QF Fall 2021 Question 11 
Learning Outcomes: 

b) Understand static and dynamic hedging 

Source References: 

• The Volatility Smile, Derman, Emanuel and Miller, Michael, 2016, Chapter 7 

Commentary on Question: 

This question tests candidates’ understanding of delta hedging and volatility smile.   

Solution: 

(a) Calculate your cumulative total profit or loss on Day 4 under the following 
circumstances, respectively: 

(i) You rebalanced your hedge position daily. 

(ii) You never rebalanced your hedge position. 

Commentary on Question: 

Candidates performed below expectations in this part.  Some were able to achieve 
full credit when they set up the Excel sheet correctly.  Partial credit was awarded if 
the candidate’s answer was correct for hedging of 1 option (rather than 1,000 
options as asked by the question).   

The hedge is to buy stocks when the call option is sold.  Total hedge position 
consists of short calls and long stocks 

I. With daily rebalancing: total gain = 459, as shown below:  

Day = t 1 2 3 4 Total 
Stock price = 𝑆𝑆𝑡𝑡  80 70 75 82  
Option price = 𝑂𝑂𝑡𝑡  12.25 12.25 12.22 12.30  
Option delta = 𝐷𝐷𝑡𝑡 0.610 0.535 0.562 0.638  
# of short options = 𝑁𝑁𝑂𝑂𝑡𝑡 -1000 -1000 -1000 0  
# of long stocks = 𝑁𝑁𝑆𝑆𝑡𝑡 = −𝑁𝑁𝑂𝑂𝑡𝑡 ∗ 𝐷𝐷𝑡𝑡  610 535 562 0  
Gain from stocks = 𝐺𝐺𝑆𝑆𝑡𝑡 = 𝑁𝑁𝑆𝑆𝑡𝑡−1 ∗ (𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑡𝑡−1)  -6100 2675 3934 509 
Gain from options = 𝐺𝐺𝑂𝑂𝑡𝑡 = 𝑁𝑁𝑂𝑂𝑡𝑡−1 ∗ (𝑂𝑂𝑡𝑡 − 𝑂𝑂𝑡𝑡−1)  0 30 -80 -50 
Total gain = 𝐺𝐺𝑆𝑆𝑡𝑡 + 𝐺𝐺𝑂𝑂𝑡𝑡     459 

 

II. Without daily rebalancing:  

      Total gain = 600 * (82 – 80) – 1000 * (12.30 – 12.25) = 1170 
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(b) Determine whether each of the three explanations provided is valid or not.  Explain 
why.  
Commentary on Question: 

Candidates performed below expectations on this part.  Only a small portion of 
candidates were able to justify why each of the analyst’s three explanations is valid 
or not.  

Overall: 

Because there is no change of interest rate and the effect of the time decay over 1 day is 
small (in light of the option maturity of 3 years), the answer below ignores the effect of 
interest rate and time decay.  

Observation 1 

For a given strike, the “sticky strike rule” says that the implied vol does not change with the 
stock price.  If this were true, the option price on Day 2 should have decreased due to 
decrease of the stock price.  Since this is not the case, the sticky strike rule cannot explain 
Observation 1. 

Observation 2 

For a given strike, the “sticky delta rule” says that the implied vol increases when the stock 
price rises.  If this were true, the option price on Day 3 should have increased due to 
increase of the stock price and the implied vol from Day 2 to Day 3.  Since this is not the 
case, the sticky delta rule cannot explain Observation 2. 

Observation 3 

For a given strike, the local volatility model says that the implied vol falls when the stock 
price rises.  This has two effects on the call option price:  (i) when stock price rises, it 
increases the call option value; (ii) when the implied vol falls, it decreases the call option 
value.  When these two effects happen simultaneously as in the local volatility model, it’s 
possible for the option price to increase due to (i) outweighing (ii).  So “local volatility 
model” can explain Observation 3. 

(c) Provide your explanation for observation 4.   
Commentary on Question: 

Candidates performed as expected on this part. 

Because there is no change in the stock price, interest rate and delta between Day 1 and 
Day 30, the decrease of the option price can be explained by option theta, or time decay. 
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QFI QF Fall 2021 Question 12 
Learning Outcomes: 

a) Understand the Greeks of derivatives 

b) Understand static and dynamic hedging 

c) Understand delta hedging, and the interplay between hedging assumptions and 
hedging outcomes 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., Pearson, 2021, Chapters 19, 
26 

• The Volatility Smile, Derman, Emanuel and Miller, Michael, 2016, Chapters 3, 5, 6 

Solution: 

(a)  

(i) Sketch the payoff graph for option E using 2m = . 
 

(ii) Build a static hedging strategy with vanilla options to hedge the equity risk. 
 

Commentary on Question: 

Candidates did okay for this question.  Most candidates were able to sketch the 
payoff and identify the embedded vanilla options.  However, some candidates failed 
to recognize that the long position in call was subjected to equity risk.  Some 
candidates were also confused about static hedging strategy with option vs. 
dynamic hedging with underlying assets, or failed to use the opposite position to 
hedge the portfolio. 
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ii) 
m *(S – 150)+50, if  150 < S ;  
 0              , otherwise 
= m* Max [ S – 150, 0 ] + [50 | 150 < S] 
 Long m unit of call option with strike at $150 + [50 | 150 < S]  - (1) 
 
2 *(S – 100)+ 50, if  S < 100;  
0                            , otherwise 
= - 2* Max [100 - S, 0 ] + [50 | S < 100] 
 Short 2 unit of put option with strike at $100 + [50 | S < 100]  - (2) 
 
(1) + (2) + [50 | otherwise] 
 m * C(150) –  2 * P(100) + 50 
 
Static Hedging Strategy: hold opposite postion to offset the equity exposure. 
 
m=2 
Short 2 unit of C(150) and long 2 unit of P(100)  
Cash has no equity exposure 

 

(b)  

(i) Define the following Greeks:  Delta, Gamma, Vega, and Theta. 
 

(ii) Sketch Delta graph for option E using 2m =  and justify your answers.   
(Hint:  Build from vanilla options.) 
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(iii) Determine which figure corresponds to Gamma, Vega, and Theta, 
respectively.  Justify your answers. 

 

 
 

 
 
 

  
 

Commentary on Question: 
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Candidates did well for the part b(i). 

For b(ii), most candidates knew that delta has to be positive (/ negative) for long 
position in call (/put).  However, some didn’t demonstrate their knowledge on how 
delta would behave when approaching the strike price, or got confused with the 
sign.  In addition, some candidates didn’t provide justification to support their 
answer, in that case, only partial credit is given. 

For b(iii), most candidates were able to identify the chart for theta and knew the sign 
for theta to be opposite from gamma and Vega.  However, most candidates failed to 
recognize that gamma spikes up at ATM and Vega diminishes as time approaches 
the maturity date, and use it to differentiate the chart or use these as support for the 
graphs they identified as either gamma or Vega. 

 

(i)  
Delta change in option price 

with relatively small 
changes in 

price of underlying asset 
Vega volatility 
Theta passage of time. 
Gamma change in Delta with 

relatively small changes 
in 

price of underlying asset 

 
 
(ii)  

 
• Delta >0 
• Delta grades from 0 (out of the money) to +1 (in the money) 
• Delta is getting closer to 1 around $150. 
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• Delta <0 
• Delta grades from 0 (out of the money) to -1 (in the money) 
• Delta is getting closer to -1 around $100. 

 
 
Cash has no delta,  so the delta for option E  is the delta for  
2 Call (150) – 2 Put (100)    

 
• Delta >0  
• Delta <1, when stock price is around the range of (100, 150) 
• Delta grades to 1 beyond 150, and beneth 100 

 
(iii) 
Figure 1 Vega 
Figure 2 Gamma 
Figure 3 Theta 
 
Theta is negaive for a long positon of vallina option. Option E consists of a long call with strike price at 
150 and a short put with strike price at 100. 
 negtive around $150, and positive around $100. 
 Only Figure 3 fits the profile. 
 
 
Both Vega and Gamma are positive for a long position of vallina option. 
 positive around $150, and negative around $100. 
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 Figure 1 and 2 fit the profile. 
 
To differetiate Figure 1 vs. Figure 2: 
Vega diminishes progressively with the reduction of time-to maturity regardless of the stock price level, 
which is not the case for Gamma.  

• When the stock price is close to the strike price near the option expiry, a small change in stock 
price could quickly result in call option delta flipping between 0 and 1, that is, Gamma is highly 
unstable in this sitution.  

• When the stock price is away from the strike price, Gamma dimishes with the reduction of the 
time-to maturity, similar to Vega.  

 
 Figure 1 is Vega, and Figure 2 is Gamma. 
(c)  

(i) Explain what the volatility skew is.  
 

(ii) List three reasons why the volatility skew exists.   
 

(iii) Explain why option E is not the suitable vehicle to trade on convexity of 
volatility skew. 

Commentary on Question: 

Most candidates could explain what volatility skew is and identify the high demand 
for OTM put against downside risks is one of the key drivers for volatility skew.  
However, most candidates failed to identify the other drivers. 

For part ii), only some of candidates were able to identify that option E was 
equivalent to risk reversal with cash position, and was unsuitable to trade on 
convexity of volatility skew. 

(i) 
Volatility skew  is a form of volatility smile, describing the relationship between implied volatilities 
(BSM) and strikes, where that downside strikes have greater implied volatility than upside strikes. The 
graph of implied volatility vs. strike price is thus showing a skew type of shape 
 
Reason to have volatility skew: 

• Demand component. Investors who own equities may want to hedge against large losses, and 
willing to pay extra (/risk premium) for the protections/ insurance against the risks of extrem 
events. 

• Risk premium to comensate option sellers for the negative vega convexity that they take on from 
selling the out of the money options. ie. When the levels of volaitlity increases, the trader’s 
negative vega position also increases. Seller than need to buy at higher volatility to rebalance, 
which cost more. 

• Out of the money options are likely less liquid than at/in the money options, and thus harder to 
hedge. 

• The risk of the price of the underlying asset having sudden/immediate jump is much larger for a 
deeply out of the money option than what a seller would take with an at the money options. 
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(ii) 
Option E takes long vega position at strike price of $150, and short vega position at $100, which is 
equivalent to a risk reversal strategy. With all others being equal, traders can benefit from any increase in 
the implied volatility at the strike price of $150 relative to the strike price of $100.  
 
To trade on volatiltiy convexity, traders need to long vega at OTM strikes on both sides, and short vega 
near the ATM strike (butterfly strategy), to benefit from the change in implied volatility becoming more 
(less) at OTM strike than ATM strike.  
 
Option E is a vehicle to trade on the steepness/flateness of volatility skew, but not convexity. 
 

(d)  

(i) Determine K ∗  for option E∗ . 
 

(ii) Solve for m  so that option E∗  is Vega-neutral. 
Commentary on Question: 

Many candidates didn’t attempt the question, but for those who attempted the 
question, most knew to set k* = 50 to build a butterfly strategy, and tried to find m to 
achieve Vega-neutral.  

Most candidates assumed that m= 2 for part d), which is incorrect, but majority of 
the credit was still given if candidates performed the rest of the calculations 
correctly.  

For candidates who didn’t provide proper justification to support their answer, 
partial credit was given. 

To trade on  the convexity of volatility skew and benefit from increase in convexity,  option E* needs to 
long Vega at the OTM strike and short/neutralize Vega near the ATM strike. 
       
Option E* consists of  

• 2 units of short call at strike = $100 (negative Vega) 
• m units of short(/or long) put at strike = $k*  
• Option E:  

m units of long call at strike = $150  (positive Vega)  
+ 2 units of short put at strike = $100 (negative Vega) 
 
 
The strike price $k* needs to be OTM.  
 
To have option E* with symmetric payoff centered at the current stock price, we need to have k* = $50 in 
long position, and have the same number of call at strike = $150 in long position. 

• 2 unit of short call at $100 + 2 unit of short put at $100  
 already have symmetric payoff centered at the current stock price 
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• m units of long call at $150  +m units of short(/or long) put at $50 
 to be symmetric 

 
To achieve Vega neutral, 

{𝑉𝑉𝑒𝑒𝑙𝑙𝑁𝑁;  2(𝑆𝑆ℎ𝑁𝑁𝑁𝑁𝜕𝜕 𝑃𝑃𝑢𝑢𝜕𝜕 (100) + 𝑆𝑆ℎ𝑁𝑁𝑁𝑁𝜕𝜕 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 (100))}
{𝑉𝑉𝑒𝑒𝑙𝑙𝑁𝑁;  𝑁𝑁(𝐿𝐿𝑁𝑁𝑛𝑛𝑙𝑙 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 (150) + 𝐿𝐿𝑁𝑁𝑛𝑛𝑙𝑙 𝑃𝑃𝑢𝑢𝜕𝜕 (50))}

= −1 

 
 
Calculate Vega = 𝑆𝑆𝑁𝑁′(𝑑𝑑1)√𝑇𝑇 − 𝜕𝜕 
 
Vega on Put (100)= Vega on Call (100) 
= 100* 0.36014 * sqrt (5) = 80.53 
 
Vega on Call (150) 
= 100 * 0.36718 *sqrt(5) = 82.1 
 
 
Vega on Put (50) 
= 100 *0.11236 * sqrt(5) = 25.12 
 
  
�𝑉𝑉𝑒𝑒𝑙𝑙𝑁𝑁;  2�𝑆𝑆ℎ𝑁𝑁𝑁𝑁𝜕𝜕 𝑃𝑃𝑢𝑢𝜕𝜕 (100) + 𝑆𝑆ℎ𝑁𝑁𝑁𝑁𝜕𝜕 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 (100)��

�𝑉𝑉𝑒𝑒𝑙𝑙𝑁𝑁; 𝑁𝑁�𝐿𝐿𝑁𝑁𝑛𝑛𝑙𝑙 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 (150) + 𝐿𝐿𝑁𝑁𝑛𝑛𝑙𝑙 𝑃𝑃𝑢𝑢𝜕𝜕 (50)��
 

=
−2 ∗ (80.53 + 80.53)

𝑁𝑁 ∗ (82.1 + 25.12)
=  

−322.12
107.22 𝑁𝑁

 

 

 𝑆𝑆𝑒𝑒𝜕𝜕 
−322.12
107.22 𝑁𝑁

  = −1 => 𝑁𝑁 = 3          

(e)  

(i) Calculate the gain or loss of option E∗ .  
 

(ii) Demonstrate how option E∗  is an effective vehicle to take position on 
volatility convexity, given the result in part (e)(i). 
 

Commentary on Question: 

Most candidates didn’t attempt the question, but for those who did, most knew that 
the gain for option E* should be calculated by reflecting the stock price change, and 
comment on the effectiveness of the option taking position on volatility convexity. 

 (i)  

Option E*= 3 * C(150) +3 * P (50) –  2 * P(100) – 2 * C(100) 
 
The inital price of Option E*: 
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C(150) =S * N(d1)150 –150 exp (-2%* 5) * N(d2)150 

               =100 * 0.3419– 150 exp (-2%* 5) * 0.1891  
               =8.5242  
 
C(100) =S * N(d1)100 –100 exp (-2%* 5) * N(d2)100 

               =100 * 0.6745– 100 exp (-2%* 5) * 0.4728 
               =24.6693 
 
P(100) =100 exp (-2%* 5) * N(-d2)100 – S * N(-d1)100 

               =100 exp (-2%* 5) * 0.5272– 100 * 0.3255 
               =15.1530 
 
P(50) =50 exp (-2%* 5) * N(-d2)100 – S * N(-d1)50 

               =50 exp (-2%* 5) * N(-0.97)– 100 * N(-1.59) 
               =50 exp (-2%* 5) * 0.1651– 100 * 0.0557 
               =1.8994 
 
 3 * 8.5242 + 3 * 1.8994 – 2 * 15.1530– 2 * 24.6693 =– 48.3735 
 
The price of Option E’ after stock price decreases from 100 to 80: 
 
C(150)* =S * N(d1)*150 –150 exp (-2%* 5) * N(d2)*150 

               =80 * 0.4315– 150 exp (-2%* 5) * 0.1486  
               = 14.3512 
 
C(100)* =S * N(d1)*100 –100 exp (-2%* 5) * N(d2)*100 

               =80 * 0.5603– 100 exp (-2%* 5) * 0.3019 
               = 17.5070 
 
P(100)* =100 exp (-2%* 5) * N(-d2)*100 – S * N(-d1)*100 

               =100 exp (-2%* 5) * 0.6981– 80 * 0.4397 
               =27.9907 
 
P(50)* =50 exp (-2%* 5) * N(-d2)*100 – S * N(-d1)*50 

               =50 exp (-2%* 5) * 0.3850– 100 * 0.1341 
               =6.6901 
 
 3 * 14.3512 + 3*6.6901 – 2 * 17.5070– 2 * 27.9907 =– 27.8715 
 
 
Gain on Option E*  
= The price of option E* after S: 100 ->80  – The price of option E* Initial  

= 20.502 
 
(ii)  
Following the decrease in stock price from 100 to 80, we have increase in implied volatility where the 
increase is more significant at out of the money strike than at the money strike.  
 
Option E* long Vega at out of the money strike and short at at the money strike, and thus generates gains 
benefiting from the increase in volatility convexity  
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QFI QF Spring 2022 Question 2 
Learning Outcomes: 

a) Understand the Greeks of derivatives 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., Pearson, 2021, Chapter 19 

 
Commentary on Question: 

This question attempts to test candidates’ understanding of martingales and the valuation 
of non-standard options. Candidates’ performance was uneven.   

Solution: 

(a) Show that: 

(i)  𝑉𝑉5 = 𝑆𝑆5𝕀𝕀{𝜕𝜕3≥ 𝜕𝜕5} + 𝑆𝑆3𝕀𝕀{𝜕𝜕3< 𝜕𝜕5} where 𝕀𝕀{𝐴𝐴} =  �1 if 𝜕𝜕 is true
0 if 𝜕𝜕 is false. 

 
(ii) 𝑃𝑃[𝑆𝑆3 <  𝑆𝑆5] = 0.583 under ℚ measure. 

 
Commentary on Question: 

Most candidates did not receive full credit for part (i).  Many simply re-stated the 
premise of the problem.  Some mistakenly stated the indicator function was 
equivalent to a probability.  To receive full credit, the indicator function needed to be 
explicitly incorporated within the proof. 

Candidates who attempted part (ii) generally performed as expected.  To receive full 
credit, candidates needed to demonstrate an understanding of the distribution of 𝑆𝑆𝑡𝑡.  
Credit was not given for correct final answers provided without justification. 

(i) A straightforward calculation: 

𝑉𝑉5 = 𝑁𝑁𝑖𝑖𝑛𝑛{𝑆𝑆3, 𝑆𝑆5} 

 

=  � 𝑆𝑆5 if 𝑆𝑆3 ≥  𝑆𝑆5
𝑆𝑆3 if 𝑆𝑆3 <  𝑆𝑆5
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= �  𝑆𝑆5 if 𝑆𝑆3 ≥  𝑆𝑆5
   0    if 𝑆𝑆3 <  𝑆𝑆5

+ �     0    if 𝑆𝑆3 ≥  𝑆𝑆5
𝑆𝑆3 if 𝑆𝑆3 <  𝑆𝑆5

 

 
=  𝑆𝑆5𝕀𝕀{𝜕𝜕3≥ 𝜕𝜕5} + 𝑆𝑆3𝕀𝕀{𝜕𝜕3< 𝜕𝜕5}. 

(ii) Under the risk-neutral measure ℚ, 𝑆𝑆𝑡𝑡follows a GBM with a drift equal to the risk-
free rate. This is expressed in terms of the SDE 𝑑𝑑𝑆𝑆𝑡𝑡 = 𝑁𝑁𝑆𝑆𝑡𝑡𝑑𝑑𝜕𝜕 +  𝜎𝜎𝑆𝑆𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡, which has 
the solution: 

𝑆𝑆𝑡𝑡 = 𝑆𝑆0𝑒𝑒�𝑟𝑟−1
2𝜎𝜎2�𝑡𝑡+𝜎𝜎𝑊𝑊𝑡𝑡 . 

Therefore, 

𝑆𝑆3 <  𝑆𝑆5  ⇔ 𝑆𝑆5
𝑆𝑆3

� > 1 

⇔  𝑒𝑒�0.02−1
2(0.1)2�(5−3)+0.1(𝑊𝑊5−𝑊𝑊3) > 1 

⇔ (0.015)(2) + 0.1(𝑊𝑊5 − 𝑊𝑊3 ) > 0      
⇔ 𝑊𝑊5 − 𝑊𝑊3 > −0.3 

Given that 𝑊𝑊5 − 𝑊𝑊3~𝑁𝑁(0,2), we obtain: 

ℚ[𝑆𝑆3 <  𝑆𝑆5 ] = 1 − 𝛷𝛷(−0.3/√2) = 𝛷𝛷(0.21) = 0.583. 
 

(b) Show that: 

(i) 𝐸𝐸𝑡𝑡�𝑆𝑆3𝕀𝕀{𝜕𝜕3< 𝜕𝜕5}� = 0.619 𝑒𝑒−0.02𝑡𝑡𝑆𝑆𝑡𝑡.  
 

(ii) 𝐸𝐸𝑡𝑡�𝑆𝑆5𝕀𝕀{𝜕𝜕3≥ 𝜕𝜕5}� = 1.03 𝐸𝐸𝑡𝑡[𝑆𝑆3]𝐸𝐸�𝑒𝑒√0.02𝑍𝑍𝕀𝕀{𝑍𝑍≤ −0.21}� with Z a standard normal 
random variable. 

 

Commentary on Question: 

Candidates who attempted part (i) did well.  A key element of the solution is 
recognizing that the expectation of the indicator function is the probability of the 
indicated event. 

Candidates performed poorly on part (ii).  Most did not attempt a solution or wrote 
very minimal work that earned no credit.  As implied by the statement candidates 
were asked to show, candidates needed to relate 𝑆𝑆3 and 𝑆𝑆5, similarly to the work 
expected in (b)(ii).  In fact, much of the elements of a full credit response parallel 
that of the prior question. 
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(i) 

𝐸𝐸𝑡𝑡�𝑆𝑆3𝕀𝕀{𝜕𝜕3< 𝜕𝜕5}� = 𝐸𝐸𝑡𝑡[𝑆𝑆3] 𝐸𝐸𝑡𝑡�𝕀𝕀{𝜕𝜕3< 𝜕𝜕5}� 
= 𝑒𝑒0.02(3−𝑡𝑡)𝑆𝑆𝑡𝑡𝐸𝐸𝑡𝑡�𝕀𝕀{𝜕𝜕3< 𝜕𝜕5}� 
= 𝑒𝑒0.06−0.02𝑡𝑡(0.583) 
= 0.619𝑒𝑒−0.02𝑡𝑡𝑆𝑆𝑡𝑡 

since the expectation of an indicator function over a probability distribution is 
simply the probability of the indicated event, which was found in part (b)(ii). 

(ii)  

𝐸𝐸𝑡𝑡�𝑆𝑆5𝕀𝕀{𝜕𝜕3≥ 𝜕𝜕5}� =  𝐸𝐸𝑡𝑡 �𝑆𝑆3𝑒𝑒�𝑟𝑟−1
2𝜎𝜎2�(5−3)+𝜎𝜎(𝑊𝑊5−𝑊𝑊3)𝕀𝕀{𝜕𝜕3≥ 𝜕𝜕5}�

= 𝑒𝑒�0.02−1
2(0.1)2�(2)𝐸𝐸𝑡𝑡�𝑆𝑆3𝑒𝑒0.1(𝑊𝑊5−𝑊𝑊3)𝕀𝕀{𝜕𝜕3≥ 𝜕𝜕5}� 

 

Using the fact that 𝑆𝑆3 <  𝑆𝑆5 ⟺ 𝑍𝑍 > −0.21 ⟹  𝑆𝑆3 ≥  𝑆𝑆5  ⟺ 𝑍𝑍 ≤  −0.21, the above is 
equivalent to 

=  1.03𝐸𝐸𝑡𝑡[𝑆𝑆3]𝐸𝐸[𝑒𝑒√0.02𝑍𝑍𝕀𝕀{𝑍𝑍≤ −0.21}] 

 

since 0.1(𝑊𝑊5 − 𝑊𝑊3)~𝑁𝑁�0, (0.1)2(5 − 3)�, i.e. 𝑁𝑁(0, 0.02), and period from 3 to 5 
years is independent from period t to 3 years. 

 

(c) Calculate 𝑉𝑉𝑡𝑡 and its Delta. 

Commentary on Question: 

Candidates performed reasonably well.  A common mistake was not to include an 
appropriate discount factor in calculating 𝑉𝑉𝑡𝑡, thereby providing the expected payoff 
rather than the price.  Candidates still received credit for their delta response if it 
was consistent with their answer for 𝑉𝑉𝑡𝑡. 

𝑉𝑉𝑡𝑡 follows from part (c) and the statement, after discounting to time 𝜕𝜕.  More 
specifically, 

𝑉𝑉𝑡𝑡 =  𝑒𝑒−0.02(5−𝑡𝑡)[0.619 𝑒𝑒−0.02𝑡𝑡𝑆𝑆𝑡𝑡 + 0.401 𝑒𝑒−0.02𝑡𝑡𝑆𝑆𝑡𝑡] 
= 𝑒𝑒−0.1𝑆𝑆𝑡𝑡(0.619 + 0.401) 
= 0.92𝑆𝑆𝑡𝑡 
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The delta of an option is the first partial derivative of the price with respect to the 

underlying stock price, i.e. 𝜕𝜕𝑉𝑉𝑡𝑡
𝜕𝜕𝜕𝜕

. 

Thus, 𝜕𝜕𝑉𝑉𝑡𝑡
𝜕𝜕𝜕𝜕

=  𝜕𝜕
𝜕𝜕𝜕𝜕

(0.92𝑆𝑆𝑡𝑡) = 0.92, 

which remains static over the period 𝜕𝜕 < 3. 

(d) Your coworker claims that the special European-style option considered above can 
be Delta- and Gamma-hedged till its expiration by using a suitable short position in 
the underlying asset only. 

 
Critique your coworker’s claim. 
Commentary on Question: 

Candidates performed poorly on this part.  To receive full credit, responses needed 
to highlight that the nature of the Greeks of this option changes once 𝑆𝑆3 is known 
and fixed.  Candidates needed to understand that the responses in parts (c) and (d) 
assumed 𝜕𝜕 < 3. 

My coworker is wrong.  During the period t < 3, the delta of the option is constant 
and therefore, gamma is 0.  After t =  3, S3 is fixed, the delta of the option will 
depend on St, and the gamma will be non-zero.  Since the underlying has a gamma 
of 0, a position in the underlying asset only will not allow for gamma-hedging until 
expiration. 

 

QFI QF Spring 2022 Question 11 
Learning Outcomes: 

c) Understand delta hedging, and the interplay between hedging assumptions and 
hedging outcomes 

e) Understand derivatives mishaps 

Source References: 

• The Volatility Smile, Derman, Emanuel and Miller, Michael, 2016, Chapters 6, 7 

 
Solution: 
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(a) Explain which Strategy is associated with Figure 1 and Figure 2, respectively. 
 

Commentary on Question: 

Candidates did well on this part of the question. Most candidates were able to 
identify the correct strategies. 

Hedging discretely rather than continuously at the correct realized volatility introduces 
uncertainty in the hedging outcome but does not bias the final P&L — the expected value is 
zero.  The hedging error decreases as we increase the number of times that we re-hedge 
the portfolio (i.e., as we measure the volatility more accurately), but only with the square 
root of n.  In order to halve the hedging error, we need to quadruple the number of re-
hedgings. 

 

Since Strategy 1 and Strategy 3 are based on realized volatility, and Strategy 1 has higher 
rebalancing frequency than Strategy 3, we have: 

Figure 1 = Strategy 1  (Relative P&L is narrowly around 0) 

Figure 2 = Strategy 3  (Relative P&L is widely around 0) 

 

(b) Explain why Figure 3 looks similar to Figure 4. 
Commentary on Question: 

Candidates did well on this part of the question. Most candidates were able to 
explain the common point between both figures. 

Unless we rebalance an option at the realized volatility, increasing the frequency of 
replication will not significantly diminish the replication error in the P&L.  The reason is 
evident from Chapter 5: If the option is not hedged at the realized volatility, the incremental 
P&L dP&L(I, R) in Equation 5.35 of Chapter 5 contains a term proportional to (ΔI − ΔR) dS.  
This dependence on dS introduces a random noise into the P&L whose standard deviation 
does not diminish with more frequent hedging. 

We now know that Figure 3 and Figure 4 are associated with Strategy 2 and 4 because none 
of the two strategies is based on realized volatility.  Therefore, the standard deviation of 
daily hedging histogram could be similar to that of weekly hedging histogram, thus Figure 3 
and Figure 4 look similar to each other. 

(c)  



131 
 

(i) Sketch the histograms of relative P&L for Strategy 1 and Strategy 3, 
respectively.  Note: You need not mark any values on your x-axis and y-axis.  
The key is to show the shape or contour of the histogram.  
 

(ii) Explain the key drivers for the differences in the histogram. 
 

Commentary on Question: 

Many candidates were able to identify key drivers for the differences between the 
strategies 

 

 

When introducing transaction costs, increasing the hedging frequency can lower the 
variance of relative P&L, but will also increase the hedging cost at the same time.  
Transaction costs will shift the mean of both distributions below 0. 

(d) Compare 𝑁𝑁1 vs. 𝑁𝑁3 vs. 0.  Justify your ranking. 
Commentary on Question: 

Candidates performed fairly well on this question.  Most candidates got the correct 
ranking. 

The more you rebalance, the more of your profit you give away in transaction costs, so that 
the mean of the P&L distribution decreases.  Hence: 

 m1 < m3 < 0 (Strategy 1 has higher expected loss than Strategy 3) 

(e) Compare 𝑠𝑠1 vs. 𝑠𝑠3.  Justify your ranking. 

Commentary on Question: 

Most candidates identified the less volatile strategy. 
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The more frequently you rebalance, the more accurately you replicate the option and the 
smaller the standard deviation (SD) of the profit and loss (P&L) histogram.  The less you 
rebalance, the less profit you relinquish, but the less certain that profit is. Hence: 

s1 < s3 (Strategy 1 has lower standard deviation than Strategy 3) 
 

 

QFI QF Spring 2022 Question 12 
Learning Outcomes: 

a) Understand the Greeks of derivatives 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., Pearson, 2021, Chapter 19 

Commentary on Question: 

Overall, candidates performed well on this question.  For part a, to receive full credit, 
candidates must also show the derivation of the first derivative.  For part e, to receive full 
credit, candidates must provide appropriate critique that is consistent with the source 
material.  

Solution: 

(a) Show that the Gamma of the European call is: 

Gamma = 𝑁𝑁′(𝑑𝑑1)
1

𝑆𝑆𝜎𝜎√𝑇𝑇
 

(b) Prove that the Gamma of a European call is equal to the Gamma of an otherwise 
equivalent European put. 

Apply the put-call parity equation: 

𝐶𝐶 − 𝑃𝑃 = 𝑆𝑆 − 𝐾𝐾𝑒𝑒−𝑟𝑟𝑇𝑇  

𝜕𝜕𝐶𝐶
𝜕𝜕𝑆𝑆

−
𝜕𝜕𝑃𝑃
𝜕𝜕𝑆𝑆

= 1 

Show that the second partial derivative for call is equal to that for put: 

𝜕𝜕2𝐶𝐶
𝜕𝜕𝑆𝑆2 −

𝜕𝜕2𝑃𝑃
𝜕𝜕𝑆𝑆2 = 0 
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𝜕𝜕2𝐶𝐶
𝜕𝜕𝑆𝑆2 =

𝜕𝜕2𝑃𝑃
𝜕𝜕𝑆𝑆2 ⇒ Γ𝜕𝜕𝑎𝑎𝑙𝑙𝑙𝑙 = Γ𝑃𝑃𝑢𝑢𝑡𝑡 

(c) Identify whether each of the following statements is true or false.  Briefly justify your 
answer. 

 
(i) Gamma approaches 0 for deep-in-the money calls. 

 
(ii) Gamma approaches 1 for deep-out-of-the-money puts. 

 
(iii) For an out-of-the-money option with an underlying asset price that is 

exhibiting low volatility, Gamma is expected to be relatively low. 
 

(iv) For an option that happens to be right at-the-money very near to the expiry 
date, a stable Gamma is likely to be observed.  

(i) True. For deep-in-the-money calls, the delta has to stay close to +1. The delta 
will not change much irrespective of the change in the price of the 
underlying, and thus the rate of change (i.e., gamma) must be close to 0.  

(ii) False. For deep out-of-the-money puts, the delta has to stay close to 0. 
Changes in delta will be strictly limited and so gamma must be close to 0. 

(iii) True. Due to low volatility, the probability that the price of the underlying will 
cross the strike price before the expiry date is relatively low, so we should not 
expect a strong sensitivity of the delta of the option to changes in the price of 
the underlying asset. 

(iv) False. For small increases or decreases in the price of the underlying, the 
option delta will quickly converge to 1 or 0 for call or to -1 to 0 for put, so 
gamma is very unstable. 

 

 

QFI QF Spring 2022 Question 14 
Learning Outcomes: 

f) Identify and evaluate embedded options in liabilities (e.g., indexed annuity, 
structured product based variable annuity, and variable annuity guarantee riders 
including GMxB, etc.) 

g) Demonstrate and understand target volatility funds and hedging for embedded 
options 

Source References: 
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• INV201-106-25: Variable Annuity Volatility Management: An Era of Risk-Control 

Solution: 

(a) Calculate the resulting target volatility fund prices X and Y in Table 2, assuming a 
continuously compounded risk-free rate of 3%, a target volatility of 15% and a 
maximum equity % of 200%. 
Commentary on Question: 

Most candidates received at least partial credit.  Some candidates did not use the 
correct formula to calculate X and Y and thus did not get the correct answers. 

 

 t=0 t=1 t=2 t=3 T=4 

Equity % 0.75 0.375 1.5 0.5 0.75 

Bond % 0.25 0.625 -0.5 0.5 0.25 

Equity Price 100 88 105 110 93 

Bond Index 
Price 100 103.0455 

106.183
7 

109.417
4 112.7497 

Target Vol 
Fund Price 100 91.7614 

100.155
4 

105.784
3 99.2209 

(See formula in QFI 132-21, page 1520.) 

X = 91.76 

Y = 105.78 

 

(b) Compare the relative performance of the target volatility fund, capped volatility 
fund, and underlying asset under the scenarios in Table 3, where the target volatility 
= σT and cap volatility = σC and σT < σC. 
Commentary on Question: 

Most candidates did well on this part.  Candidates need to justify their answers to 
receive full credit.  Some candidates only compare the performance of two out of 
the three returns and thus received partial credit.  

Scenario 1: 
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Since the volatility level is above the cap (and thus above the target volatility), the 
equity allocation for both the target and capped volatility fund will be less than 1.  
Because the target volatility is below the cap, the target fund will have a lower equity 
allocation than the capped fund.  Since the market returns are negative, this will 
result in: 

Target fund return > capped fund return > underlying stock return 

Scenario 2:  

When the market volatility equals the target volatility, all 3 funds will have an equity 
allocation = 1, thus: 

Target fund return = capped fund return = underlying stock return 

(Note: There was a typo in the Excel spreadsheet provided at the exam. Candidates 
who answered correctly based on Scenario 2 in the Excel spreadsheet received full 
credit.) 

Scenario 3:  

Since the volatility level is below target volatility (and thus below the cap volatility), 
the capped fund will have an equity allocation of 100% while the target volatility 
fund will have an allocation >100%, so: 

Underlying stock return = capped fund return > target fund return 

(c) Explain whether the following statements are True or False: 

 
(i) Call options on a target volatility fund should be cheaper than or equal to the 

equivalent call options on the underlying risky-asset. 
 

(ii) Call options on a capped volatility fund should be cheaper than or equal to 
the equivalent call options on the underlying risky-asset. 
 

Commentary on Question: 

Candidates need to justify their answers to receive full credit. 

(i) False.  While call option prices increase with volatility, prices of call options 
on target volatility funds are only cheaper if the target vol is less than the 
market vol. 
 

(ii) True.  Call option prices increase with volatility, and the volatility on a capped 
vol fund is always equal to or less than the vol of the underlying asset. 
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QFI QF Fall 2022 Question 13 
Learning Outcomes: 

a) Understand the Greeks of derivatives 

c) Understand delta hedging, and the interplay between hedging assumptions and 
hedging outcomes 

d) Understand the concepts of realized versus implied volatility. 

Source References: 

• Options, Futures, and Other Derivatives, Hull, John C., Pearson, 2021, Chapter 19 

• The Volatility Smile, Derman, Emanuel and Miller, Michael, 2016, Chapters 5, 6 

 
Solution: 

(a) Construct a strategy to replicate the payoff of the contingent claim with only 
European options on Stock XYZ. 

Commentary on Question: 

Most candidates were able to identify the correct European call positions to 
replicate the contingent claim. Partial credit is granted for a correct but incomplete 
specification of parameters (long/short, strike, maturity) strategy. 

The strategy required to replicate the payoff of the contingent claim consists of the 
following positions: 

• A long position in a 100-strike one-year European call 
• A short position in a 120-strike one-year European call 

 

(b) Compare and contrast realized volatility and implied volatility.  

Commentary on Question: 

Most candidates answered this question correctly and were able to provide the 
clear definition for the two types of volatilities.  

Implied volatility is a parameter that matches the model option price to the market price 
using the Black-Scholes Model equation. Implied volatility is derived from the present and 
expected future data. 
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Realized volatility is a statistic that measures the standard deviation of returns for a past 
period. Realized volatility is derived from the past/historical data.  

(c)  

(i) Calculate the Delta of this contingent claim. 
(ii) Explain why the Delta is positive. 
Commentary on Question: 

Most candidates understood that the Delta of the contingent claim was the sum of 
the Deltas of the long and short European call positions from part (a). Some 
candidates did not calculate the correct values of the delta for the long and short 
European call positions.  

For the overall Delta of the contingent claim, it was important to understand the 
relationship of the Delta of the two European call positions and how that impacts 
the overall Delta of the contingent claim. Most candidates only noted one or the 
other.  

The Delta of the contingent claim is calculated as the sum of the delta of the replicating 
strategy in which 

ΔCall(K=100) = N(d1) = N �
ln 110

100 + �0 + 0.32

2 � (1)

0.3√1
� = N(0.46770) = 0.68 

ΔCall(K=120) = N(d1) = N �
ln 110

120 + �0 + 0.32

2 � (1)

0.3√1
� = N(−0.14004) = 0.44432 

Therefore, the Delta of the contingent claim is: 

ΔClaim =  +ΔCall(K=100) − ΔCall(K=120) 
= +0.68 − 0.44432 
= 0.23568 ≈ 0.24  

The overall Delta of the contingent claim is positive because: 

• A call option with a lower strike will always have a Delta that is equal to or 
higher than a call with a higher strike. 

• Since the call option that is long has a higher Delta than the call option that is 
short, the resulting net Delta of the contingent claim is positive. 
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(d) Regarding a long position in the contingent claims, your colleague made the 
following comments: 

• Comment 1:  As the price of the underlying stock moves away from the price 
range within the two strike prices, we expect the Delta of the contingent claim to 
converge to zero. 

• Comment 2:  The net Gamma exposure of the contingent claim is always 
positive. 

 
Assess each of your colleague’s comments above.  

Commentary on Question: 

For Comment 1, it could be successfully approached by either describing the Delta 
for the two European call options and the net impact of those two Deltas or 
describing the Delta of the contingent claim. Most candidates took the first 
approach.  

For Comment 2, it is important to state when Gamma for the contingent claim goes 
from negative to positive and vice versa. Some candidates stated the Gamma could 
be negative without providing additional details.  

Comment 1 is correct.  

This is because any further movement of the price of the underlying asset above the 
higher strike of 120 or below the low strike of 100 will not have any meaningful effect 
on the contingent claim payoff.  

Comment 2 is incorrect.  

The net Gamma exposure of the contingent claim will switch from positive to 
negative when the underlying price moves from the lower strike of 100 to the higher 
strike of 120. Conversely, the net Gamma exposure of the contingent claim will 
switch from negative to positive when the underlying price moves from the higher 
strike of 120 to the lower strike of 100.  

(e)  

(i) Calculate the profit or loss at the end of the next day from Delta hedging.  
 
(ii) Explain why the profit or loss is not zero from Delta hedging. 

Commentary on Question: 
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The Delta for hedging the contingent claim is the same as from part (c). Most 
candidates calculated the payoff of the contingent claim correctly. Some 
candidates did not calculate the final loss due to either not scaling the number of 
shares needed for delta hedging or not using the correct Delta.  

Regarding why the loss is not zero from Delta hedging. Most candidates identified 
that the other Greeks were not hedged. Not many candidates identified that the 
large movement in the underlying contributes to the non-zero loss.    

To Delta hedge the 100 contingent claims, the firm needs to short 24 shares.  The answer of 
24 shares is derived from 100 contingent claims x 0.24 (delta of the contingent claim).  

The profit or loss from Delta hedging is then calculated as: 

Pro�it = 100[(33.56 − 20.40) − (18.14 − 9.28)] − 24(130 − 110) 
= −50  

The loss is not zero from Delta hedging in that: 

• There is a large movement in the price of the underlying. 
• The firm has only Delta hedged and did not hedge the other Greeks. 

 
 

QFI QF Spring 2023 Question 10 
Learning Outcomes: 

f) Identify and evaluate embedded options in liabilities (e.g., indexed annuity, 
structured product based variable annuity, and variable annuity guarantee riders 
including GMxB, etc.) 

g) Demonstrate and understand target volatility funds and hedging for embedded 
options 

Source References: 

• INV201-105-25: An Introduction to Computational Risk Management of Equity-
Linked Insurance, Feng, 2018 (sections 1.2-1.3, 4.7 & 6.2-6.3) 

• INV201-106-25: Variable Annuity Volatility Management: An Era of Risk-Control 

Commentary on Question: 
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The question is mainly trying to test the candidates understanding of the principles of 
volatility management strategies and ability to apply them when designing and managing a 
product with equity guarantee. 

Solution: 

(a) Describe the principal objectives for an insurer in designing an equity-based 
guarantee.   

Commentary on Question: 

Most candidates could list out the principal objectives for an insurer in designing an 
equity-based guarantee, but failed to demonstrate their understanding of these 
objectives with descriptions, especially for stabilizing ALM and hedging 
performance.  

• Write profitable business:  
Do the volatility management strategies reduce the hedge cost (risk-neutral value) of 
the guaranteed? 

 
• Stabilize ALM and hedging performance 

Do the volatility management strategies improve the key hedge ratio, in particular 
Vega? 
How well do volatility management strategies minimize hedge P&L losses during 
crisis? 
Can our risk management and hedge program effectively mirror the changing fund 
position? (i.e. less basis risk) 
 

• Optimize capital requirement 
Do the volatility management strategies reduce Statutory reserve requirement (and 
volatility of reserve)? 

 

(b) Calculate the guarantee cost at the end of year 1 (t=1) for the GMMB rider under 
each of the 3 volatility management strategies.  (Initial deposit = $100) 

Commentary on Question: 

For Asset Transfer Program, some candidates were able to determine the 
percentage of portfolio that needed to be allocated in cash, given the volatility level. 
However, many failed to rebalance the portfolio based on the portfolio value at t=1. 

For Capped volatility fund, many candidates knew that the portfolio remained 100% 
in equity as the level of volatility was still within the threshold at 60%. 
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For VIX-Indexed Fee, some candidates calculated the rider fee in bps correctly, but 
were unable to get to the correct dollar amount. These candidates failed to realize 
that the rider fee was charged at the beginning of the year (as stated in the question), 
and thus fee only incurred at t=1. 

Very few candidates attempted to calculate the guaranteed cost by taking weighted 
averaged of the guaranteed payoff under the risk neutral probabilities and 
calculating the present value at t=1.  

Asset Transfer Program  

Rebalance at t = 1: 

Guaranteed Ratio (G%) = 1- 81.87/100 = 18.13%  

Allocation in equity (S) = 1 – G% = 81.87% 

Allocation in cash = 18.13% 

Equity: 0.8187 unit of Equity S ($67.03 =0.8187 * $81.87) 

Cash: $14.84 (sold 0.1813 unit of Equity S = 0.1813 * $81.87) 

Payoff at t = 2: 

Node 2, u:  

The investment value 

= 0.8187 unit of equity S + cash = $149.18 * 81.87% + $14.87= $136.98 

GMMB payoff = Max (100-136.98, 0) = 0 

Node 2, d:  

The investment value  

= 0.8187 unit of equity S + cash = $44.93 * 81.87% + $14.87 = $51.62 

GMMB payoff = Max (100-51.62, 0) = $48.37 

Guaranteed cost at the end of year 1 (t=1)  

= NPV (Guaranteed Payoff) - Rider Fee 

= (0 * 37.02% + 48.37 * 62.98%) * exp(-2%) - 0 = $29.86 
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• Capped Volatility Fund  (σcapped = 60%) 
• Rebalance at t = 1: 
• Allocation in equity (S) = σcapped/ σs1 = 60%/60% = 100% 
• Allocation in cash = 0 % 
• Equity: 1 unit of Equity S ($81.87 =1 * $81.87) 
 

Payoff at t = 2: 

Node 2, u:  

The investment value  

= 1 unit of equity S + 0 cash = $149.18 

GMMB payoff = Max (100-149.18, 0) = 0 

Node 2, d:  

The investment value  

= 1 unit of equity S + cash = $44.93 

GMMB payoff = Max (100-44.93, 0) = $55.07 

Guaranteed cost at the end of year 1 (t=1)  

= NPV (Guaranteed Payoff) - Rider Fee 

= (0 * 37.02% + 55.07 * 62.98%) * exp(-2%) - 0 = $33.99 

VIX- Index Fee 

Fee charged at t = 1: 

Rider Fee = Max [0 bps, 200bps *(60% - 20%)] = 80 bps 

Investment value *80bps = $81.87 * 80bps = 0.655 

  

Rebalance at t = 1: 

Sold 0.008 unit of equity S for the charged rider fee.  

1- [(81.87 – 0.655)/ 81.87] = 1- 0.992 = 0.008 
 

Payoff at t = 2: 
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Node 2, u:  

The investment value  

= 0.992 unit of equity S = $149.18 * 0.992 = 147.99 

GMMB payoff = Max (100-147.99, 0) = 0 

Node 2, d:  

The investment value  

= 0.992 unit of equity S = $44.93 * 0.992 

GMMB payoff = Max (100-44.57, 0) = $55.43 

Guaranteed cost at the end of year 1 (t=1)  

= (0 * 37.02% + 55.43 * 62.98%) * exp(-2%) – 0.655 

= 34.22 - 0.655 = $33.56 

(c) Identify the 4 volatility management strategies from the table above including no 
volatility management strategy.   

Commentary on Question: 

Many candidates were able to identify strategy C and strategy B to be no volatility 
strategy and Asset Transfer Program respectively, but failed to provide justifications.  

Lots of candidates failed to differentiate between D and E by recognizing that 
Capped Volatility could create protection against “tail spike” in volatility, and thus 
more effectively reducing the hedge P&L than VIX- Index Fee.  

Strategy C: no volatility management strategy (or leverage on volatility).  

o Higher guaranteed cost and hedge loss than the strategy of 100% static 
allocation in equity,  

 

Strategy B: Asset Transfer Program.  

o Highest reduction on guaranteed cost and hedge loss than the other 
strategies  
 Actively reallocate the fund (from equity to cash) when the portfolio 

becomes in-the-money at the defined trigger level.  
 More active risk-control than capped volatility and VIX-Indexed fee 

strategies. 
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 As volatility spikes and equity value falls, the strategy is heavily invested 
in cash, leading the volatility level to be near expectation and stabilizing 
cash flow despite market fluctuation 

 

Strategy D: Capped Volatility Fund Strategy  

o Mild reduction on guaranteed cost (vs. 100% static allocation in equity) 
 Only activate when the equity volatility exceeds the cap level. 
 Given the cap at 60% (vs. the current at 20%), the strategy is expected 

to eliminate only a small portion of volatility cost. 
o Lower hedge loss between D and E. 
 The volatility cap creates a protection against the “tail spike” in 

volatility, which can reduce the frequency and severity of the ultra-
large returns, mitigating the hedge breakage 

 

Strategy E: VIX-Indexed Fee Strategy 

o Mild reduction on guaranteed cost and hedge loss (vs. 100% static allocation 
in equity) 
 The allocation in equity remains at 100% 
 The rider fee increases with the level of volatility, providing some 

offsets to guaranteed cost and hedge loss; however, given the fee 
level, the magnitude is expected to be small. 

 No protection against the “tail spike” in volatility and thus less 
effective than Asset Transfer Program or Capped Volatility in reducing 
the hedge loss. 

 

(d)  

(i) Calculate the Vega under each of the 3 volatility management strategies 
(Hint: use finite difference approximation).   
 

(ii) Explain how low Vega can benefit the hedge program.   
 

(iii) Propose a volatility management strategy from the insurer’s perspective 
based on the results in part (c) and (d) (i).   

 

Commentary on Question: 

For part i), many candidates could correctly calculate the Vega given the provided 
data. 
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For part ii), most candidates knew that Vega was the sensitivity to the change in 
volatility, but failed to demonstrate their understanding on how low Vega could 
benefit the hedge program. 

For part iii), only some candidates recognized that Asset Transfer Program is the 
strategy that best addresses the insurer’s principal objectives in manufacturing an 
equity-based guarantee.  

(i)  

Asset Transfer Program: 

Guarantee Cost (S0=100, σs,0= 10%) = 4.38 

Guarantee Cost (S0=100, σs,0= 40%) = 10.35 

Vega = (10.35 – 4.38)/(40%-10%) = 20.23 

Capped Volatility Fund: 

Guarantee Cost (S0=100, σs,0= 10%) = 7.55 

Guarantee Cost (S0=100, σs,0= 40%) = 20.91 

Vega = (20.91 – 7.55)/(40%-10%) = 44.53 

 

VIX-Indexed Fee: 

Guarantee Cost (S0=100, σs,0= 10%) = 7.35 

Guarantee Cost (S0=100, σs,0= 40%) = 21.5 

Vega = (21.5 – 7.35)/(40%-10%) = 47.17 

(ii) 

Vega is the rate of change in value of the portfolio with respect to the volatility of the 
underlying asset. Low Vega can stabilize the performance of hedge program. 

(iii) 

Given the result in d) -i) and c), Asset Transfer Program has the lowest guaranteed 
cost, the lowest hedge loss, and the smallest Vega when the volatility increases 
from 10% to 40%. 
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 Best fit the objective of writing profitable business, as well as stabilizing ALM and 
hedging performance. 

(e) Critique whether Joe’s proposal meets the needs of the clients in the target market.   

Commentary on Question: 

Most candidates could recognize that Asset Transfer Program had the lowest equity 
allocation over time but failed to assess Joe’s proposal based on the other two 
metrics. 

The target clients value the upside investment potential and are willing to pay extra 
fees for it. 

The three metrics used to measure the upside investment potential are: 

i) Return and volatility profile  
 Higher return relative to realized volatility is preferred 
 Volatility management strategies do not alter the overall investment 

proposition much from a static 100% equity allocation strategy 
ii) Equity allocation over time 

 Higher allocation in equity has better “upside investment potential”   
iii) Cumulative fee paid 

 Additional fee paid for the volatility management strategy could reduce 
account value accumulation or decrease the guaranteed value. 

 

Asset Transfer Program is the most active risk-control strategy among the three, 
rebalancing with cash based on the in-the-moneyness of the fund. 

For   i):   

o Asset Transfer Program is expected to have the return and volatility profile 
changed the most from a static 100% equity allocation fund.  

o VIX-Indexed Fee and Capped volatility fund likely offer a more similar return 
and volatility profile as a static 100% equity allocation fund. 
(The former has 100% allocation in equity, and for the later, rebalancing is 
only activated when equity volatility exceeds the cap at 60%.) 

For   ii):  

o Asset Transfer Program is expected to have the lowest equity allocation over 
time, due to the active risk control.  

o VIX-Indexed Fee is expected to have the highest equity allocation over time. 
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For iii):  

o VIX-Indexed Fee is the only strategy that would incur extra rider fee. 
o Given the result in b) (volatility spikes up to 60%), the extra rider fee doesn’t 

have material impact to the account value accumulation over the rider term 
(2 years). 

o The target clients are willing to pay extra fees for the upside potential. 
Therefore, the fee saving of Asset Transfer Program over VIX-Indexed Fee may 
not add much value to the target clients.  
 

 Asset Transfer Program doesn’t meet the client’s need. VIX-Indexed Fee better 
fits the need of target clients. 

 
 

QFI QF Spring 2023 Question 11 
Learning Outcomes: 

f) Identify and evaluate embedded options in liabilities (e.g., indexed annuity, 
structured product based variable annuity, and variable annuity guarantee riders 
including GMxB, etc.) 

g) Demonstrate and understand target volatility funds and hedging for embedded 
options 

Source References: 

• INV201-106-25: Variable Annuity Volatility Management: An Era of Risk-Control 

• INV201-108-25: Mitigating Interest Rate Risk in Variable Annuities: An Analysis of 
Hedging Effectiveness under Model Risk 

 

Commentary on Question: 

The majority of candidates performed poorly on this question. Many candidates either did 
not attempt the question, or only attempted a limited part of the question.  

 

Solution: 

(a) Explain the considerations when using each of the approaches above.   

Commentary on Question: 
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Most candidates answered this part adequately. Candidates were generally able to 
explain the differences and considerations between the three different approaches 
for calibrating the instantaneous variance process. No credit was awarded for only 
providing definitions. 

(i) Since VAs have long term maturities, extracting appropriate implied 
volatilities will often involve unsound extrapolation. 
Using implied volatilities relates to the fact that two models that are well 
calibrated to the implied volatility vanilla option surface may lead to very 
different prices and hedge ratios for exotic options. 

(ii) The VIX index is constructed in a model free way, i.e. does not rely on the B-S 
model, therefore does not suffer from model risk. However, VIX is generally 
an upward biased forecast. 

 

(iii) Historical volatility yields stable estimates over time. However would not 
reflect any forward-looking market expectations. 

 

(b) Show that the insurer’s expected present value of prospective rider fees becomes:   

𝑌𝑌𝑡𝑡 = 𝛼𝛼𝐺𝐺 �
1 − 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

𝑁𝑁
� 𝑢𝑢𝑇𝑇−𝑡𝑡 𝑥𝑥+𝑡𝑡 

 
Commentary on Question: 

Candidates’ performances on this part varied greatly. Candidates needed to show 
steps to their derivation to receive credit. Candidates that did attempt the question 
performed well, but many candidates either did not attempt or did not show steps to 
their derivation. 

Derive the value of prospective fees from first-principles: 

 

𝐿𝐿𝑡𝑡 = �� 𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝛼𝛼𝐺𝐺𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
� 𝑢𝑢𝑇𝑇−𝑡𝑡 𝑥𝑥+𝑡𝑡 

= 𝛼𝛼𝐺𝐺 �
1 − 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

𝑁𝑁 � 𝑢𝑢𝑇𝑇−𝑡𝑡 𝑥𝑥+𝑡𝑡 

(c) Explain whether the following has increased, decreased, or remained the same after 
this change, from the insurer’s perspective.   
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(i) Delta of the liability net of rider fees.   
 

(ii) Vega of the liability net of rider fees.   
 

Commentary on Question: 

Candidates performed poorly on this part. Many candidates did not correctly 
understand the impact of the change in rider fee to the delta and vega of the VA net 
liability. Credit was not awarded for just providing the answer without any rationale. 

(i) Net liability delta has increased. Previous rider fee delta was positive and so 
it contributes to the negative delta from the GMMB put option. New rider fee 
no longer a function of the account value, so its delta is 0. 

(ii) Net liability vega has not changed. Previous rider fee was 0. New rider fee is 
also not a function of volatility, so its vega is 0. 

(d) Show that the fair value of prospective fees at time 𝜕𝜕, as defined as the risk-neutral 
expected present value of fees that will be collected by the insurer before the 
contract’s maturity at time 𝑇𝑇, is:   

 

𝐿𝐿𝑡𝑡 = 𝐺𝐺 �(𝑁𝑁 + 𝜆𝜆𝜃𝜃) �
1 − 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

𝑁𝑁
� + 𝜆𝜆(𝐶𝐶𝑡𝑡 − 𝜃𝜃) �

1 − 𝑒𝑒−(𝑟𝑟+𝜅𝜅)(𝑇𝑇−𝑡𝑡)

𝑁𝑁 + 𝜅𝜅
�� 𝑢𝑢𝑇𝑇−𝑡𝑡 𝑥𝑥+𝑡𝑡 

 

Commentary on Question: 

Candidates performed very poorly on this part, with many candidates skipping this 
question. Candidates needed to show steps to their derivation to receive credit. For 
those that did attempt the question, many either did not correctly integrate the 
stochastic variance term or did not provide any steps in their derivation. 

Derive the value of prospective fees from first-principles: 

𝐿𝐿𝑡𝑡 = � 𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)(𝑁𝑁 + 𝜆𝜆𝐸𝐸ℚ[𝐶𝐶𝑠𝑠])𝐺𝐺𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
𝑢𝑢𝑇𝑇−𝑡𝑡 𝑥𝑥+𝑡𝑡 

= �� 𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑁𝑁𝐺𝐺𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
+ � 𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝜆𝜆𝐺𝐺𝐸𝐸ℚ[𝐶𝐶𝑠𝑠]𝑑𝑑𝑠𝑠

𝑇𝑇

𝑡𝑡
� 𝑢𝑢𝑇𝑇−𝑡𝑡 𝑥𝑥+𝑡𝑡 

= �� 𝐺𝐺(𝑁𝑁 + 𝜆𝜆𝜃𝜃)𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
+ � 𝜆𝜆𝐺𝐺(𝐶𝐶𝑡𝑡 − 𝜃𝜃)𝑒𝑒−(𝑟𝑟+𝜅𝜅)(𝑠𝑠−𝑡𝑡)𝑑𝑑𝑠𝑠

𝑇𝑇

𝑡𝑡
� 𝑢𝑢𝑇𝑇−𝑡𝑡 𝑥𝑥+𝑡𝑡 

= 𝐺𝐺 �(𝑁𝑁 + 𝜆𝜆𝜃𝜃) �
1 − 𝑒𝑒−𝑁𝑁(𝑇𝑇−𝜕𝜕)

𝑁𝑁 � + 𝜆𝜆(𝐶𝐶𝑡𝑡 − 𝜃𝜃) �
1 − 𝑒𝑒−(𝑁𝑁+𝜅𝜅)(𝑇𝑇−𝜕𝜕)

𝑁𝑁 + 𝜅𝜅 �� 𝑢𝑢𝑇𝑇−𝑡𝑡 𝑥𝑥+𝑡𝑡 
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(e) Explain whether you agree or disagree with the following statements made by your 
analyst.   

 

(i) “The new rider fee is not a function of 𝜕𝜕𝑡𝑡, therefore it is not sensitive to 
changes in the account value.”   
 

(ii) “The new rider fee has a positive Vega.”   
 

Commentary on Question: 

Candidates performed poorly in this part. For those that attempted the question, 
most candidates did not recognize that the account value and the rider fee are 
correlated. 

(i) Disagree. As account value decreases, 𝐶𝐶𝑡𝑡  will tend to increase due to 𝜌𝜌 < 0, 
and therefore rider fee will increase. 

 
(ii) Agree. The vega of the expected PV of the new rider fee is positive. As �𝐶𝐶𝑡𝑡  

increases, the rider fee increases. 
 
 

QFI QF Fall 2023 Question 7 
Learning Outcomes: 

e) Understand how hedge strategies may fail   

Source References: 

• INV201-104-25: Which Free Lunch Would You Like Today, Sir? 

Solution: 

(a) List the pros and the cons of hedging with implied volatility and actual volatility.   

Commentary on Question: 

Candidates generally did well on this part of the question.  

Pros of hedging with implied volatility: 

- No local fluctuations in profit and loss (continually making a profit) 
- Only need to be on the right side of the trade to profit (buy when actual is going to be 

higher than implied and sell if lower) 
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- The number that goes into the delta is implied volatility, which is easy to observe 
- The profit each day is deterministic 

Cons of hedging with implied volatility: 

- You don’t know how much money you will make, only that it is positive.  The present 
value of the total profit at expiration is path dependent 

Pros of hedging with actual/realized volatility: 

- Profit at expiration is known when hedging with actual volatility 
 
Cons of hedging with actual/realized volatility: 

- Subject to profit and loss fluctuations during the life of the option, which can be less 
appealing from a local risk management perspective 

- Unlikely to be totally confident in your volatility forecast (the number put into the 
delta formula) 

 

(b) Choose the most appropriate volatility for hedging under each of the following two 
constraints.   

 
(i) Mark to model 

 
(ii) Mark to market  

 

Commentary on Question: 

Candidates generally did well on this question.   

Under the constraint of “Mark to  model” where you are not concerned about the 
day-to-day fluctuations in the mark-to-market profit and loss, it is better to hedge 
with actual volatility if you are confident about estimating the actual volatilities. Its 
expected total profit is not far from the optimal payoff under hedging with implied 
vol and its standard deviation of final profit is zero. 

Under the constraint of “Mark to Market” where you must worry about the short-
term fluctuations of profit and loss, it is more appropriate to hedge with implied 
volatility under which you continuously make profit without much short-term 
fluctuation and annoyance from risk management despite the final profit is path 
dependent. 
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(c) Design a volatility arbitrage to make money assuming that your prediction is correct 
and that you hedge with actual volatility.   

Commentary on Question: 

Most candidates noted why you should buy the call option, but not all did (i.e., the 
call was undervalued since actual volatility is higher than implied).  Most candidates 
correctly wrote to buy the call option and sell the stock, although not all mentioned 
that the number of shares is determined by delta (N(d1)). Many candidates missed 
the last piece of the volatility arbitrage strategy – to invest the cash earning the risk-
free rate or borrow paying the risk-free rate – and many candidates missed the fact 
that the volatility arbitrage needs to be rebalanced frequently. 

Because the predicted actual volatility is higher than the implied volatility, the call 
option is under-valued. 

Thus, the volatility arbitrage strategy is to:  

(a) Buy the call option 
(b) Sell the stock XYZ by shares determined by the Delta N(d1) where d1 is 

calculated using actual volatility 
(c) Invest the cash earning the risk-free rate or borrow paying the risk-free rate 
The strategy needs to be executed and the delta hedge to be rebalanced as 
frequently as possible (e.g., daily) 

(d) Calculate the final profit from the arbitrage executed in part (c).   

Commentary on Question: 

Many candidates did well here.   

 S=100, K=100, r=0%, T=1 

σ(actual) = 30%; σ(implied) = 20% 

 

 

Plug in all the values, the Black-Scholes formula for the call option can be simplified 
because of r=0, d=0, T=1, and S/K=1 
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c = 2*100*[Norm(0.15) – Norm(0.1)] = 3.958

 

 
 

QFI QF Fall 2023 Question 9 
Learning Outcomes: 

c) Understand delta hedging, and the interplay between hedging assumptions and 
hedging outcomes 

e) Understand how hedge strategies may fail 

Source References: 

• The Volatility Smile, Derman, Emanuel and Miller, Michael, 2016, Chapter 3 

 
Commentary on Question: 

The majority of candidates performed poorly on this question. Particularly for parts (b) and 
(c), many candidates either performed poorly on or entirely skipped those questions. For 
those that did attempt the question, the most common mistakes were not being able to 
derive the Greeks for the Asian call option. 

Solution: 
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(a)  

(i) Identify the type of options which should be purchased.   
 
(ii) Calculate the values in the table below, (assuming a Black-Scholes 

framework):   
Commentary on Question: 

Candidates performed adequately for this part. Most were able to identify that a 
geometric mean Asian option needed to be purchased. 

RB = 1,000,000*(1- exp(-0.03)) = 29,554.4664515 

Amount of ZCBs to buy = (1,000,000 – RB)/1000 = 970.4455335 (assuming each bond has a 
notional of $1,000) 

 

The risk budget should be invested in long ATM geometric mean Asian call options with 
maturity of 1 year. 

Using the BS framework, the value of a vanilla European call option is: 

𝐶𝐶0
𝐸𝐸  = N(d1) 𝑆𝑆0𝑒𝑒−𝑞𝑞𝑡𝑡 – N(d2)*K*𝑒𝑒−𝑟𝑟𝑡𝑡 where q= continuous dividend rate and d1 = 

ln�𝑆𝑆𝑡𝑡
𝑘𝑘 �+�𝑟𝑟−𝑞𝑞+𝜎𝜎2

2 �𝑡𝑡

𝜎𝜎√𝑡𝑡
  

Substituting in q = − 1
2

�𝑁𝑁 − 𝜎𝜎𝑎𝑎
2

2
� + 𝑁𝑁 and 𝜎𝜎𝑎𝑎= 𝜎𝜎

√3
  gives: 

𝐶𝐶0
𝑎𝑎  = N(d1) 𝑆𝑆0𝑒𝑒�1

2�𝑟𝑟−𝜎𝜎𝑎𝑎
2

2 �−𝑟𝑟�𝑡𝑡 – N(d2)*K*𝑒𝑒−𝑟𝑟𝑡𝑡 and  

d1 = 
ln�𝑆𝑆𝑡𝑡

𝑘𝑘 �+�𝑟𝑟 −�−1
2 �𝑟𝑟−𝜎𝜎𝑎𝑎

2

2 �+𝑟𝑟�+𝜎𝜎𝑎𝑎
2

2 �𝑡𝑡

𝜎𝜎𝑎𝑎√𝑡𝑡
 =  

ln�𝑆𝑆𝑡𝑡
𝑘𝑘 �+�1

2�𝑟𝑟−𝜎𝜎𝑎𝑎
2

2 �+𝜎𝜎𝑎𝑎
2

2 �𝑡𝑡

𝜎𝜎𝑎𝑎√𝑡𝑡
= 

ln(1)+�1
2�0.03−

0.22
3
2 �+

0.22
3
2 �

0.2
√3

 = 0.158771324 

d2 = d1 - 𝜎𝜎𝑎𝑎√𝜕𝜕 = 0. 0.158771324 –  0.2
√3

 = 0.04330127 

𝐶𝐶0
𝑎𝑎  = N(0.158771324) ∗ 100𝑒𝑒

�1
2�0.03−

0.22
3
2 �−0.03�

 – N(0.04330127)*100*𝑒𝑒−0.03 

= 0.563075 ∗ 100𝑒𝑒
�1

2�0.03−
0.22

3
2 �−0.03�

– 0.517269*100𝑒𝑒−0.03 

= 5.086478857 
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# of call options to purchase = RB/C = 29554.4664515/5.086478857 = 5810.398 

𝑢𝑢𝑑𝑑𝑝𝑝𝑎𝑎= 𝑅𝑅𝜕𝜕
1,000,000𝐶𝐶0

𝑎𝑎

100

 = 29554.4664515/(10^4*5.086478857) = 0.581039798 

(b)  

(i) Determine the Vega of the Asian call options above.   
 

(ii) Explain the value of the above Vega in relation to the Vega of a European call 
option and why this relation intuitively makes sense.   

Commentary on Question: 

Candidates performed poorly in this part. A large majority of candidates did not 
correctly derive the expression for the Vega of an Asian call option necessary for part 
(i). In part (ii), most candidates were able to correctly explain that the Vega of an 
Asian call is less than that of a European call. 

𝐶𝐶0
𝑎𝑎  = N(d1) 𝑆𝑆0𝑒𝑒�1

2�𝑟𝑟−𝜎𝜎𝑎𝑎
2

2 �−𝑟𝑟�𝑡𝑡 – N(d2)*K*𝑒𝑒−𝑟𝑟𝑡𝑡 = 𝑆𝑆0𝑒𝑒−𝑟𝑟𝑡𝑡[N(d1)𝑒𝑒
1
2�𝑟𝑟−𝜎𝜎2

6 � − 𝑁𝑁(𝑑𝑑2)]  

 

By the product rule and chain rule: 

𝜕𝜕𝜕𝜕0
𝑎𝑎

𝜕𝜕𝜎𝜎
 = 𝑆𝑆0𝑒𝑒−𝑟𝑟𝑡𝑡[−2𝜎𝜎

12
𝑁𝑁(𝑑𝑑1)𝑒𝑒

1
2�𝑟𝑟−𝜎𝜎2

6 � +  𝑒𝑒
1
2�𝑟𝑟−𝜎𝜎2

6 �𝑛𝑛(𝑑𝑑1) ∗ 𝜕𝜕
𝜕𝜕𝜎𝜎

𝑑𝑑1 −  𝑛𝑛(𝑑𝑑2) ∗ 𝜕𝜕
𝜕𝜕𝜎𝜎

𝑑𝑑2] 

 

𝜕𝜕
𝜕𝜕𝜎𝜎

𝑑𝑑1 = 𝜕𝜕
𝜕𝜕𝜎𝜎

�1
2�0.03−

𝜎𝜎2
3
2 �+

𝜎𝜎2
3
2 �

𝜎𝜎
√3

= 𝜕𝜕
𝜕𝜕𝜎𝜎

�0.015+𝜎𝜎2

12�
𝜎𝜎

√3
= −0.015∗√3

𝜎𝜎2 +  √3
12

= −0.50518 

Note: d2 = d1 - 𝜎𝜎
√3

 -> 𝜕𝜕
𝜕𝜕𝜎𝜎

𝑑𝑑2 =  𝜕𝜕
𝜕𝜕𝜎𝜎

𝑑𝑑1 − 1
√3

=  −1.08253 

 

From Part A, N(d1) = N(0.158771324) = 0.563075 

 

𝜕𝜕𝜕𝜕0
𝑎𝑎

𝜕𝜕𝜎𝜎
  = 100𝑒𝑒−0.03(−0.2

6
 *1.011735* 0.563075 + (𝑒𝑒

1
2�𝑟𝑟−𝜎𝜎2

6 �𝑛𝑛(𝑑𝑑1) ∗ −0.50518) − (𝑛𝑛(𝑑𝑑2) ∗
−1.08253)) 
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n(d1) = 𝑒𝑒
−(0.1587713242)

2

√2𝜋𝜋
= 0.393946, n(d2) = 𝑒𝑒

−(0.043301272)
2

√2𝜋𝜋
= 0.398568 

𝜕𝜕𝜕𝜕0
𝑎𝑎

𝜕𝜕𝜎𝜎
  = 100𝑒𝑒−0.03( -0.018899 + 1.011735 * 0.393946 * -0.50518 - 0.398568*-1.08253) = 

20.48845 

 Total Option Vega = 20.48845* 1,000,000/100 = 204,884.5 

European call option Vega = 𝑆𝑆0𝑛𝑛(𝑑𝑑1), d1 = 
(𝑟𝑟+𝜎𝜎2

2 )

𝜎𝜎
=

(0.03+0.04
2 )

0.2
 = 0.25 

Vega = 100*𝑒𝑒
−0.252

2

√2𝜋𝜋
=38.66681168 

The Vega of the European call option is greater than the Vega of the Asian option. 

This relation makes sense since Asian options sample the underlying asset price across the 
entire option period rather than simply the final price, resulting in a shorter average duration 
for the impact of the volatility. Since volatility and its impact on option prices scales with 
time this results in a lower Vega. 

Note: award ½ point for recognizing the European option Vega is larger if appropriate value 
or logic is given. Award second half point as long as the candidate references stock prices 
being sampled across the period rather than just the final price, and this resulting in a lower 
sensitivity to volatility. 

(c) Determine an initial Delta-Vega hedge position using an ATM 1-year European call 
option and the underlying stocks.   

Commentary on Question: 

Candidates performed very poorly in this part. Many candidates skipped this 
question. For those that attempted the question, they were not able to correctly 
calculate the Greeks for the Asian call option.  

 

Need to solve for position such that delta and Vega = 0 

Vega of European Call Option = S0 *N’(d1) * Sqrt(T-t) 

d1 = 
ln�𝑆𝑆𝑡𝑡

𝑘𝑘 �+�𝑟𝑟−𝑞𝑞+𝜎𝜎2

2 �𝑡𝑡

𝜎𝜎√𝑡𝑡
=  

0+�0.03+0.22

2 �

0.2
 = 0.25 

N’(d1) =  0.386668 
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Vega = 100 * 0.386668 =38.6668 

 Need Vega of option to equal 204,884.5 
 Need to buy 204,884.5/38.6668 = 5,298.718798 ATM 1 year euro call options 

Delta of European Call Option = N(d1) = 0.598706 

Delta of Asian option: 

𝐶𝐶0
𝑎𝑎  = N(d1) 𝑆𝑆𝑒𝑒�1

2�𝑟𝑟−𝜎𝜎𝑎𝑎
2

2 �−𝑟𝑟�𝑡𝑡 – N(d2)*K*𝑒𝑒−𝑟𝑟𝑡𝑡  

= 𝑒𝑒−𝑟𝑟𝑡𝑡[𝑆𝑆N(d1)𝑒𝑒
1
2�𝑟𝑟−𝜎𝜎2

6 � − 𝐾𝐾𝑁𝑁(𝑑𝑑2)]  

By the product rule and chain rule: 

𝜕𝜕𝐶𝐶0
𝑎𝑎

𝜕𝜕𝑆𝑆
 = 𝑒𝑒−𝑟𝑟𝑡𝑡[N(d1)𝑒𝑒

1
2�𝑟𝑟−𝜎𝜎2

6 � +  𝑆𝑆𝑒𝑒
1
2�𝑟𝑟−𝜎𝜎2

6 �𝑛𝑛(𝑑𝑑1) ∗
𝜕𝜕

𝜕𝜕𝑆𝑆
𝑑𝑑1 −  𝐾𝐾 𝑛𝑛(𝑑𝑑2) ∗

𝜕𝜕
𝜕𝜕𝑆𝑆

𝑑𝑑2] 

 

𝜕𝜕
𝜕𝜕𝑆𝑆

𝑑𝑑1 =
ln(𝑆𝑆) − ln(𝑘𝑘) − 𝑓𝑓(r, 𝜎𝜎)

𝜎𝜎𝑎𝑎
=

1
𝜎𝜎𝑎𝑎𝑆𝑆

 

𝜕𝜕
𝜕𝜕𝑆𝑆

𝑑𝑑2 =  
𝜕𝜕

𝜕𝜕𝑆𝑆
(𝑑𝑑1 −  𝜎𝜎) =  

1
𝜎𝜎𝑎𝑎𝑆𝑆

 

Note: since k =𝑆𝑆0 

𝜕𝜕0
𝑎𝑎

𝜕𝜕
= 𝑒𝑒−𝑟𝑟𝑡𝑡[N(d1)𝑒𝑒

1
2�𝑟𝑟−𝜎𝜎2

6 � + S𝑒𝑒
1
2�𝜕𝜕−𝜎𝜎2

6 �
𝑛𝑛(𝑑𝑑1)−𝜕𝜕0𝑛𝑛(𝑑𝑑2)
𝜎𝜎𝑎𝑎𝜕𝜕

] 

 

𝜕𝜕𝜕𝜕0
𝑎𝑎

𝜕𝜕𝜕𝜕
 =  𝑒𝑒−0.03 �0.563075 ∗ 1.011735 + 1.011735∗𝑛𝑛(𝑑𝑑1)−𝑛𝑛(𝑑𝑑2)

0.2
� 

= 𝑒𝑒−0.03 �0.563075 ∗ 1.011735 +
1.011735 ∗ 0.393946 − 0.398568

0.2
� 

= 0.970446*[0.569683163 + 0] = 0.552846 

Portfolio Delta = Asían Option # *Asían Option Delta – European Option Delta 

=0.552846 *1,000,000/100 - 5,298.718798 *0.598706= 2356.09007 

Delta of Stock = 1 

Need to sell 2356.09007 shares of stock. 
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QFI QF Fall 2023 Question 10 
Learning Outcomes: 

f) Identify and evaluate embedded options in liabilities (e.g., indexed annuity, 
structured product based variable annuity, and variable annuity guarantee riders 
including GMxB, etc.) 

g)  Demonstrate an understanding of hedging for embedded option in liabilities 

Source References: 

• INV201-105-25: An Introduction to Computational Risk Management of Equity-
Linked Insurance, Feng, 2018 (sections 1.2-1.3, 4.7 & 6.2-6.3) 

• INV201-108-25: Mitigating Interest Rate Risk in Variable Annuities: An Analysis of 
Hedging Effectiveness under Model Risk 

Commentary on Question: 

This question is testing the candidates’ ability to recognize embedded option in a variable 
annuity contract with a GMDB rider and derive a delta-rho hedge for it. In addition, it tests 
the candidates’ knowledge of how the difference between the model and actual outcomes 
affect the hedging results for this product. Overall, the attempt rate for this question was 
low, especially for parts a) and b) which involve calculations.   

Solution: 

(a) Derive the no-arbitrage value of the net liability 𝐿𝐿𝑡𝑡 at time t.   

Commentary on Question: 

Most candidates did not attempt this part of the question. To earn points for this 
question, candidates needed to manipulate the given equation for Lt and derive the 
equation for the expected value. Partial points were awarded to the candidates who 
successfully took the calculation further than copying down the given equation, 
mostly for recognizing that 𝐸𝐸�𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡) max(𝐺𝐺 − 𝐹𝐹𝑠𝑠, 0)� is a put option and writing 
down the value.  

Net Liability = Expected PV of benefits – Expected PV of fee income, which is given: 
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𝐿𝐿𝑡𝑡 = 𝑢𝑢𝑡𝑡 𝑥𝑥(Ω𝑡𝑡 − Υ𝑡𝑡) − 𝑢𝑢𝑡𝑡 𝑥𝑥𝐸𝐸ℚ �� 𝑁𝑁𝐹𝐹𝑠𝑠𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡) 𝑢𝑢𝑠𝑠−𝑡𝑡 𝑥𝑥+𝑡𝑡𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
�

= 𝑢𝑢𝑡𝑡 𝑥𝑥𝐸𝐸ℚ �� 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)max (𝐺𝐺 − 𝐹𝐹𝑠𝑠, 0) 𝑢𝑢𝑠𝑠−𝑡𝑡 𝑥𝑥+𝑡𝑡𝜇𝜇𝑥𝑥+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
�

− 𝑢𝑢𝑡𝑡 𝑥𝑥𝐸𝐸ℚ �� 𝑁𝑁𝐹𝐹𝑠𝑠𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡) 𝑢𝑢𝑠𝑠−𝑡𝑡 𝑥𝑥+𝑡𝑡𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
� 

 

The no-arbitrage value of the net liability is the expected value with respect to the risk 
neutral measure. Due to independence of mortality and equity return, the first term can be 
written as 

𝑢𝑢𝑡𝑡 𝑥𝑥𝐸𝐸ℚ �� 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)max (𝐺𝐺 − 𝐹𝐹𝑠𝑠, 0) 𝑢𝑢𝑠𝑠−𝑡𝑡 𝑥𝑥+𝑡𝑡𝜇𝜇𝑥𝑥+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
�

= � 𝐸𝐸ℚ[𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) max(𝐺𝐺 − 𝐹𝐹𝑠𝑠, 0)] 𝑢𝑢𝑡𝑡 𝑥𝑥 𝑢𝑢𝑠𝑠−𝑡𝑡 𝑥𝑥+𝑡𝑡𝜇𝜇𝑥𝑥+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡

= � 𝐸𝐸ℚ[𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) max(𝐺𝐺 − 𝐹𝐹𝑠𝑠, 0)] 𝑢𝑢𝑠𝑠 𝑥𝑥𝜇𝜇𝑥𝑥+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
 

Since 𝐹𝐹𝑡𝑡 = 𝑆𝑆𝑡𝑡𝑒𝑒−𝑚𝑚𝑡𝑡 

𝑑𝑑𝐹𝐹𝑡𝑡 = −𝑁𝑁𝑒𝑒−𝑚𝑚𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝜕𝜕 + 𝑒𝑒−𝑚𝑚𝑡𝑡𝑑𝑑𝑆𝑆𝑡𝑡 = −𝑁𝑁𝑒𝑒−𝑚𝑚𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝜕𝜕 + 𝑁𝑁𝑒𝑒−𝑚𝑚𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑒𝑒−𝑚𝑚𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡
= 𝑒𝑒−𝑚𝑚𝑡𝑡𝑆𝑆𝑡𝑡(𝑁𝑁 − 𝑁𝑁)𝑑𝑑𝜕𝜕 + 𝜎𝜎𝑒𝑒−𝑚𝑚𝑡𝑡𝑆𝑆𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡 = 𝐹𝐹𝑡𝑡(𝑁𝑁 − 𝑁𝑁)𝑑𝑑𝜕𝜕 + 𝜎𝜎𝐹𝐹𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡 

 

𝐸𝐸�𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡) max(𝐺𝐺 − 𝐹𝐹𝑠𝑠, 0)� is the no-arbitrage price of a put option, thus 

𝑉𝑉𝑁𝑁𝑁𝑁𝑢𝑢𝑒𝑒 𝑁𝑁𝑓𝑓 𝑏𝑏𝑒𝑒𝑛𝑛𝑒𝑒𝑓𝑓𝑖𝑖𝜕𝜕𝑠𝑠 = � �𝐺𝐺𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑁𝑁(−𝑑𝑑2) − 𝑆𝑆𝑡𝑡𝑒𝑒−𝑚𝑚(𝑠𝑠−𝑡𝑡)𝑁𝑁(−𝑑𝑑1)� 𝑢𝑢𝑠𝑠 𝑥𝑥𝜇𝜇𝑥𝑥+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
 

where 𝑑𝑑1 =
𝑙𝑙𝑛𝑛𝑆𝑆𝑡𝑡

𝐺𝐺 +(𝑠𝑠−𝑡𝑡)(𝑟𝑟−𝑚𝑚+𝜎𝜎2

2 )

𝜎𝜎√𝑠𝑠−𝑡𝑡
 and 𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎√𝑠𝑠 − 𝜕𝜕.  

 

The second term is the PV of fees:  

𝑢𝑢𝑡𝑡 𝑥𝑥𝐸𝐸ℚ �∫ 𝑁𝑁𝐹𝐹𝑠𝑠𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡) 𝑢𝑢𝑠𝑠−𝑡𝑡 𝑥𝑥+𝑡𝑡𝑑𝑑𝑠𝑠𝑇𝑇
𝑡𝑡 � = 𝐸𝐸 �∫ 𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑁𝑁𝐹𝐹𝑠𝑠 𝑢𝑢𝑠𝑠 𝑥𝑥𝑑𝑑𝑠𝑠𝑇𝑇

𝑡𝑡 � =

∫ 𝐸𝐸�𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑁𝑁𝐹𝐹𝑠𝑠 𝑢𝑢𝑠𝑠 𝑥𝑥�𝑑𝑑𝑠𝑠𝑇𝑇
𝑡𝑡 = ∫ 𝐸𝐸�𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑆𝑆𝑠𝑠�𝑒𝑒−𝑚𝑚𝑠𝑠𝑁𝑁 𝑢𝑢𝑠𝑠 𝑥𝑥𝑑𝑑𝑠𝑠𝑇𝑇

𝑡𝑡 =

∫ 𝑆𝑆𝑡𝑡𝑒𝑒−𝑚𝑚𝑠𝑠𝑁𝑁 𝑢𝑢𝑠𝑠 𝑥𝑥𝑑𝑑𝑠𝑠𝑇𝑇
𝑡𝑡 = 𝑁𝑁𝐹𝐹𝑡𝑡 ∫ 𝑒𝑒−𝑚𝑚(𝑠𝑠−𝑡𝑡) 𝑢𝑢𝑠𝑠 𝑥𝑥𝑑𝑑𝑠𝑠𝑇𝑇

𝑡𝑡  
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(b) Derive the positions of stock, zero-coupon bond and money market account for a 
portfolio Π𝑡𝑡  that hedges the Delta and Rho of the net liability in  part (a).   

Commentary on Question: 

A lot of candidates did not attempt this part of the question. To earn points for this 
part, candidates needed to correctly describe the positions in underlying, bond, and 
money market account to set up the hedge, and derive the equation for the 
positions, especially for 𝜌𝜌t and Bt. Partial points were awarded for describing the 
hedge, although most candidates did not finish the derivation of the positions. 

 

To hedge delta and rho of 𝐿𝐿𝑡𝑡, invest in  

- ∆𝑡𝑡 share of the underlying 𝑆𝑆𝑡𝑡 and ∆𝑡𝑡= 𝜕𝜕𝐿𝐿𝑡𝑡
𝜕𝜕𝜕𝜕𝑡𝑡

, which is given 

- 𝜌𝜌𝑡𝑡  unit in the zero-coupon bond and 𝜌𝜌𝑡𝑡 =
𝜕𝜕𝐿𝐿𝑡𝑡

𝜕𝜕𝑟𝑟�
𝜕𝜕𝑃𝑃𝑡𝑡

𝜕𝜕𝑟𝑟�
 

- 𝜕𝜕𝑡𝑡 in the money market account 
- Π𝑡𝑡 = ∆𝑡𝑡𝑆𝑆𝑡𝑡 + 𝜌𝜌𝑡𝑡𝑃𝑃𝑡𝑡 + 𝜕𝜕𝑡𝑡 = 𝐿𝐿𝑡𝑡  

 

𝜌𝜌𝑡𝑡 =
𝜕𝜕𝐿𝐿𝑡𝑡

𝜕𝜕𝑁𝑁�
𝜕𝜕𝑃𝑃𝑡𝑡

𝜕𝜕𝑁𝑁�
=

− ∫ 𝐺𝐺(𝑠𝑠 − 𝜕𝜕)𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑁𝑁(−𝑑𝑑2) 𝑢𝑢𝑠𝑠 𝑥𝑥𝜇𝜇𝑥𝑥+𝑠𝑠𝑑𝑑𝑠𝑠𝑇𝑇
𝑡𝑡

−(𝑇𝑇 − 𝜕𝜕)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) =

=
∫ 𝐺𝐺(𝑠𝑠 − 𝜕𝜕)𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑁𝑁(−𝑑𝑑2) 𝑢𝑢𝑠𝑠 𝑥𝑥𝜇𝜇𝑥𝑥+𝑠𝑠𝑑𝑑𝑠𝑠𝑇𝑇

𝑡𝑡
(𝑇𝑇 − 𝜕𝜕)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)  

And 

𝜕𝜕𝑡𝑡 = 𝐿𝐿𝑡𝑡 − ∆𝑡𝑡𝑆𝑆𝑡𝑡 − 𝜌𝜌𝑡𝑡𝑃𝑃𝑡𝑡

= � �𝐺𝐺𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑁𝑁(−𝑑𝑑2) − 𝑆𝑆𝑡𝑡𝑒𝑒−𝑚𝑚(𝑠𝑠−𝑡𝑡)𝑁𝑁(−𝑑𝑑1)� 𝑢𝑢𝑠𝑠 𝑥𝑥𝜇𝜇𝑥𝑥+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡

− 𝑁𝑁𝐹𝐹𝑡𝑡 � 𝑒𝑒−𝑚𝑚(𝑠𝑠−𝑡𝑡) 𝑢𝑢𝑠𝑠 𝑥𝑥𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
− 𝑆𝑆𝑡𝑡 � 𝐺𝐺𝑒𝑒−𝑚𝑚(𝑠𝑠−𝑡𝑡)[𝑁𝑁(𝑑𝑑1) − 1] 𝑢𝑢𝑠𝑠 𝑥𝑥𝜇𝜇𝑥𝑥+𝑠𝑠𝑑𝑑𝑠𝑠

𝑇𝑇

𝑡𝑡

+ 𝑁𝑁𝑆𝑆𝑡𝑡 � 𝑒𝑒−𝑚𝑚𝑠𝑠 𝑢𝑢𝑠𝑠 𝑥𝑥𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
−

∫ 𝐺𝐺(𝑠𝑠 − 𝜕𝜕)𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑁𝑁(−𝑑𝑑2) 𝑢𝑢𝑠𝑠 𝑥𝑥𝜇𝜇𝑥𝑥+𝑠𝑠𝑑𝑑𝑠𝑠𝑇𝑇
𝑡𝑡

(𝑇𝑇 − 𝜕𝜕)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) 

𝑁𝑁𝑆𝑆𝑡𝑡 � 𝑒𝑒−𝑚𝑚𝑠𝑠 𝑢𝑢𝑠𝑠 𝑥𝑥𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
= 𝑁𝑁𝐹𝐹𝑡𝑡𝑒𝑒𝑚𝑚𝑡𝑡 � 𝑒𝑒−𝑚𝑚𝑠𝑠 𝑢𝑢𝑠𝑠 𝑥𝑥𝑑𝑑𝑠𝑠

𝑇𝑇

𝑡𝑡
= 𝑁𝑁𝐹𝐹𝑡𝑡 � 𝑒𝑒−𝑚𝑚(𝑠𝑠−𝑡𝑡) 𝑢𝑢𝑠𝑠 𝑥𝑥𝑑𝑑𝑠𝑠

𝑇𝑇

𝑡𝑡
 

Thus 
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𝜕𝜕𝑡𝑡 = � �𝐺𝐺𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑁𝑁(−𝑑𝑑2) − 𝑆𝑆𝑡𝑡𝑒𝑒−𝑚𝑚(𝑠𝑠−𝑡𝑡)𝑁𝑁(−𝑑𝑑1) − 𝑆𝑆𝑡𝑡𝐺𝐺𝑒𝑒−𝑚𝑚(𝑠𝑠−𝑡𝑡)[𝑁𝑁(𝑑𝑑1) − 1]
𝑇𝑇

𝑡𝑡

−
𝑠𝑠 − 𝜕𝜕
𝑇𝑇 − 𝜕𝜕

𝐺𝐺𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑁𝑁(−𝑑𝑑2)� 𝑢𝑢𝑠𝑠 𝑥𝑥𝜇𝜇𝑥𝑥+𝑠𝑠𝑑𝑑𝑠𝑠 

𝜕𝜕𝑡𝑡 = � �
𝑇𝑇 − 𝑠𝑠
𝑇𝑇 − 𝜕𝜕

𝐺𝐺𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑁𝑁(−𝑑𝑑2) − 𝑆𝑆𝑡𝑡𝑒𝑒−𝑚𝑚(𝑠𝑠−𝑡𝑡)𝑁𝑁(−𝑑𝑑1)(1 − 𝐺𝐺)� 𝑢𝑢𝑠𝑠 𝑥𝑥𝜇𝜇𝑥𝑥+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝑡𝑡
 

 

(c) Describe the hedging effectiveness you expect to observe under each of the 3 
models of simulating interest rates (specified in the table above).  Explain your 
reasoning.   

Commentary on Question: 

Many of the candidates who attempted this question did relatively well, as they were 
able to correctly order the three models for their hedging effectiveness and describe 
reasoning for their response. But some candidates did not properly understand the 
question and directly compared the pros and cons of the three models for interest 
rate hedging, which did not earn points. 

For the control where interest rate is not simulated stochastically, and follows the 
deterministic path 𝑁𝑁𝑡𝑡, the hedging is expected to be effective, since the hedging 
model is the same as the simulation model used for the assessment. Hedging 
gain/loss at time 𝑇𝑇 should be small. 

For interest rate model option 1, interest rates are simulated stochastically, instead 
of the deterministic interest 𝑁𝑁𝑡𝑡 which is used to develop the hedge. Higher hedging 
errors are expected at maturity 𝑇𝑇 due the model risk that deterministic assumption 
𝑁𝑁𝑡𝑡 does not capture all the variabilities in the simulated interest scenarios.  

For interest rate model option 2, additional difference between the simulation 
model and the hedging model is introduced due to the additional factors in the 
simulating model, which allows yield curve to take on different shapes. Thus, the 
hedging error is expected to be higher than option 1. 

(d) Describe changes in hedging effectiveness in comparison to part (c) for the Interest 
rate model 1 and the Interest rate model 2.   

Commentary on Question: 
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Some candidates did well on this part, though many did not properly understand the 
question and made general comparison of the two models for interest rate hedging, 
which did not earn points.  

For interest rate model option 1, using the one-factor Vasicek model to develop the 
hedge should improve the hedging effectiveness when compared to using 
deterministic 𝑁𝑁𝑡𝑡. GMDB is more impacted by the long-term trend in the interest rate, 
which is relatively well captured by the one-factor Vasicek model compared to the 
simulation model of CIR. Thus, using a stochatic model for developing the hedge 
reduces the model risk vs. the simulation model and improves the hedging results. 

For interest rate model option 2, using the one-factor Vasicek model to develop the 
hedge may not have significant improvement on the hedging results. As the 
simulation model has a lot more flexibility with three factors and can produce 
simulations with more variability in the shape of the term structure, using a one-
factor stochastic model to develop the hedge does not significantly reduce the 
model risk vs. the simulation model, when compared to a deterministic 𝑁𝑁𝑡𝑡. 

 
 

QFI QF Fall 2024 Question 8 
Learning Outcomes: 

c) Understand delta hedging, and the interplay between hedging assumptions and 
hedging outcomes 

d) Understand the concepts of realized versus implied volatility.   

e) Understand derivatives mishaps 

Source References: 

• The Volatility Smile, Derman, Emanuel and Miller, Michael, 2016, Chapters 3, 5-7 

Commentary on Question: 

This question tests the candidates’ understanding of the various kinds of volatilities and the 
interplay between the hedging assumptions vs. outcomes under a theoretical delta hedge 
construct. To do well on this question, the candidates need to demonstrate understanding 
of both the mathematical derivations of the hedging results with realized and implied 
volatilities, as well as the conclusions and implications under different paths of the 
underlying asset that could materialize. 
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Solution: 

(a) Calculate the gain or loss of the hedged portfolio 𝑑𝑑𝑉𝑉𝑡𝑡 over an infinitesimal period 𝑑𝑑𝜕𝜕. 

Commentary on Question: 

Many candidates showed partial understanding of how to derive 𝑑𝑑𝑉𝑉𝑡𝑡 leveraging 
Taylor’s expansion and Black-Schole Equation, though only some are able to 
complete all the steps. Partial marks are given in these cases. 

The delta hedged portfolio has value 𝑉𝑉𝑡𝑡 = 𝐶𝐶𝑡𝑡 − ∆𝑆𝑆𝑡𝑡 at time 𝜕𝜕, where ∆= 𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕𝑡𝑡

, thus 

𝑑𝑑𝑉𝑉𝑡𝑡 = 𝑑𝑑𝐶𝐶𝑡𝑡 − ∆𝑑𝑑𝑆𝑆𝑡𝑡 − 𝑁𝑁𝑉𝑉𝑡𝑡𝑑𝑑𝜕𝜕 

 

where the last term represents the borrowing cost of the hedge. Using Taylor’s expansion of the 
call price: 

𝑑𝑑𝐶𝐶𝑡𝑡 =
𝜕𝜕𝐶𝐶𝑡𝑡

𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕 +

𝜕𝜕𝐶𝐶𝑡𝑡

𝜕𝜕𝑆𝑆𝑡𝑡
𝑑𝑑𝑆𝑆𝑡𝑡 +

1
2

𝜕𝜕2𝐶𝐶𝑡𝑡

𝜕𝜕𝑆𝑆𝑡𝑡
2 𝑑𝑑𝑆𝑆𝑡𝑡

2 

Thus, 

𝑑𝑑𝑉𝑉𝑡𝑡 = 𝑑𝑑𝐶𝐶𝑡𝑡 −
𝜕𝜕𝐶𝐶𝑡𝑡

𝜕𝜕𝑆𝑆𝑡𝑡
𝑑𝑑𝑆𝑆𝑡𝑡 − 𝑁𝑁𝑉𝑉𝑡𝑡𝑑𝑑𝜕𝜕 =

𝜕𝜕𝐶𝐶𝑡𝑡

𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕 +

1
2

𝜕𝜕2𝐶𝐶𝑡𝑡

𝜕𝜕𝑆𝑆𝑡𝑡
2 𝑑𝑑𝑆𝑆𝑡𝑡

2 − 𝑁𝑁𝑉𝑉𝑡𝑡𝑑𝑑𝜕𝜕

=
𝜕𝜕𝐶𝐶𝑡𝑡

𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕 +

1
2

𝜕𝜕2𝐶𝐶𝑡𝑡

𝜕𝜕𝑆𝑆𝑡𝑡
2 𝜎𝜎𝑅𝑅

2𝑆𝑆𝑡𝑡
2𝑑𝑑𝜕𝜕 − 𝑁𝑁𝑉𝑉𝑡𝑡𝑑𝑑𝜕𝜕 

Based on the Black-Schole Equation, value of the call 𝐶𝐶𝑡𝑡 should satisfy the following equation 
with the implied volatility Σ:  

𝜕𝜕𝐶𝐶𝑡𝑡

𝜕𝜕𝜕𝜕
+ 𝑁𝑁𝑆𝑆𝑡𝑡

𝜕𝜕𝐶𝐶𝑡𝑡

𝜕𝜕𝑆𝑆𝑡𝑡
+

1
2

𝜕𝜕2𝐶𝐶𝑡𝑡

𝜕𝜕𝑆𝑆𝑡𝑡
2 Σ2𝑆𝑆𝑡𝑡

2 = 𝑁𝑁𝐶𝐶𝑡𝑡 

Thus  

𝑑𝑑𝑉𝑉𝑡𝑡 = �𝑁𝑁𝐶𝐶𝑡𝑡 − 𝑁𝑁𝑆𝑆𝑡𝑡
𝜕𝜕𝐶𝐶𝑡𝑡

𝜕𝜕𝑆𝑆𝑡𝑡
−

1
2

𝜕𝜕2𝐶𝐶𝑡𝑡

𝜕𝜕𝑆𝑆𝑡𝑡
2 Σ2𝑆𝑆𝑡𝑡

2� 𝑑𝑑𝜕𝜕 +
1
2

𝜕𝜕2𝐶𝐶𝑡𝑡

𝜕𝜕𝑆𝑆𝑡𝑡
2 𝜎𝜎𝑅𝑅

2𝑆𝑆𝑡𝑡
2𝑑𝑑𝜕𝜕 − 𝑁𝑁𝑉𝑉𝑡𝑡𝑑𝑑𝜕𝜕

=
1
2

𝜕𝜕2𝐶𝐶𝑡𝑡

𝜕𝜕𝑆𝑆𝑡𝑡
2 (𝜎𝜎𝑅𝑅

2 − Σ2)𝑆𝑆𝑡𝑡
2𝑑𝑑𝜕𝜕 + �𝐶𝐶𝑡𝑡 − 𝑆𝑆𝑡𝑡

𝜕𝜕𝐶𝐶𝑡𝑡

𝜕𝜕𝑆𝑆𝑡𝑡
� 𝑁𝑁𝑑𝑑𝜕𝜕 − 𝑁𝑁𝑉𝑉𝑡𝑡𝑑𝑑𝜕𝜕

=
1
2

𝜕𝜕2𝐶𝐶𝑡𝑡

𝜕𝜕𝑆𝑆𝑡𝑡
2 (𝜎𝜎𝑅𝑅

2 − Σ2)𝑆𝑆𝑡𝑡
2𝑑𝑑𝜕𝜕 

(b)  
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(i) Prove that the gain or loss of the hedged portfolio 𝑑𝑑𝑉𝑉𝑡𝑡 over an infinitesimal 
period 𝑑𝑑𝜕𝜕 is 𝑑𝑑𝑉𝑉𝑡𝑡 = 𝑒𝑒𝑟𝑟𝑡𝑡𝑑𝑑[𝑒𝑒−𝑟𝑟𝑡𝑡(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡

𝑅𝑅)] 
 

(ii) Derive the present value of the total gain or loss to maturity ∫ 𝑒𝑒𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑑𝑑𝑉𝑉𝑠𝑠
𝑇𝑇

𝑡𝑡 . 
 

Commentary on Question: 

Many candidates are able to partially solve the question with partial marks awarded. 
For part b), a minus sign is missing in the exponent (i.e. present value of total gain or 

loss should be∫ 𝑒𝑒−𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑑𝑑𝑉𝑉𝑠𝑠
𝑇𝑇

𝑡𝑡 ). Points are awarded if the candidates either followed 
the equation given or used the correct sign in their solutions themselves. 

i) The delta hedged portfolio has value 𝑉𝑉𝑡𝑡 = 𝐶𝐶𝑡𝑡 − ∆𝑅𝑅𝑆𝑆𝑡𝑡 at time 𝜕𝜕, where ∆𝑅𝑅 is computed using 
realized volatility. 

𝑑𝑑𝑉𝑉𝑡𝑡 = 𝑑𝑑𝐶𝐶𝑡𝑡 − ∆𝑅𝑅𝑑𝑑𝑆𝑆𝑡𝑡 − 𝑁𝑁𝑉𝑉𝑡𝑡𝑑𝑑𝜕𝜕 = 𝑑𝑑𝐶𝐶𝑡𝑡 − ∆𝑅𝑅𝑑𝑑𝑆𝑆𝑡𝑡 − 𝑁𝑁(𝐶𝐶𝑡𝑡 − ∆𝑅𝑅𝑆𝑆𝑡𝑡)𝑑𝑑𝜕𝜕
= 𝑑𝑑𝐶𝐶𝑡𝑡 − 𝑁𝑁𝐶𝐶𝑡𝑡𝑑𝑑𝜕𝜕 − ∆𝑅𝑅(𝑑𝑑𝑆𝑆𝑡𝑡 − 𝑁𝑁𝑆𝑆𝑡𝑡𝑑𝑑𝜕𝜕) 

 

If 𝐶𝐶𝑡𝑡 is replaced by 𝐶𝐶𝑡𝑡
𝑅𝑅 in the above equation, then the hedged portfolio becomes risk-less, and  

𝑑𝑑𝐶𝐶𝑡𝑡
𝑅𝑅 − 𝑁𝑁𝐶𝐶𝑡𝑡

𝑅𝑅𝑑𝑑𝜕𝜕 − ∆𝑅𝑅(𝑑𝑑𝑆𝑆𝑡𝑡 − 𝑁𝑁𝑆𝑆𝑡𝑡𝑑𝑑𝜕𝜕) = 0 

𝑑𝑑𝐶𝐶𝑡𝑡
𝑅𝑅 − 𝑁𝑁𝐶𝐶𝑡𝑡

𝑅𝑅𝑑𝑑𝜕𝜕 = ∆𝑅𝑅(𝑑𝑑𝑆𝑆𝑡𝑡 − 𝑁𝑁𝑆𝑆𝑡𝑡𝑑𝑑𝜕𝜕) 

Substituting back into the equation for 𝑑𝑑𝑃𝑃𝑡𝑡, then 

𝑑𝑑𝑉𝑉𝑡𝑡 = 𝑑𝑑𝐶𝐶𝑡𝑡 − 𝑁𝑁𝐶𝐶𝑡𝑡𝑑𝑑𝜕𝜕 − 𝑑𝑑𝐶𝐶𝑡𝑡
𝑅𝑅 + 𝑁𝑁𝐶𝐶𝑡𝑡

𝑅𝑅𝑑𝑑𝜕𝜕 

Apply product rule on the right hand side of the given equation 

𝑒𝑒𝑟𝑟𝑡𝑡𝑑𝑑[𝑒𝑒−𝑟𝑟𝑡𝑡(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡
𝑅𝑅)] = 𝑒𝑒𝑟𝑟𝑡𝑡[−𝑁𝑁𝑒𝑒−𝑟𝑟𝑡𝑡𝑑𝑑𝜕𝜕(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡

𝑅𝑅) + 𝑒𝑒−𝑟𝑟𝑡𝑡𝑑𝑑(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡
𝑅𝑅)]

= −𝑁𝑁(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡
𝑅𝑅)𝑑𝑑𝜕𝜕 + 𝑑𝑑(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡

𝑅𝑅) =] = 𝑑𝑑𝐶𝐶𝑡𝑡 − 𝑁𝑁𝐶𝐶𝑡𝑡𝑑𝑑𝜕𝜕 − 𝑑𝑑𝐶𝐶𝑡𝑡
𝑅𝑅 + 𝑁𝑁𝐶𝐶𝑡𝑡

𝑅𝑅𝑑𝑑𝜕𝜕 

Thus 𝑑𝑑𝑉𝑉𝑡𝑡 = 𝑒𝑒𝑟𝑟𝑡𝑡𝑑𝑑[𝑒𝑒−𝑟𝑟𝑡𝑡(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡
𝑅𝑅)]. 

 

ii) 

� 𝑒𝑒−(𝑠𝑠−𝑡𝑡)𝑟𝑟𝑑𝑑𝑉𝑉𝑠𝑠

𝑇𝑇

𝑡𝑡
= � 𝑒𝑒−(𝑠𝑠−𝑡𝑡)𝑟𝑟𝑒𝑒𝑟𝑟𝑠𝑠𝑑𝑑[𝑒𝑒−𝑟𝑟𝑠𝑠(𝐶𝐶𝑠𝑠 − 𝐶𝐶𝑠𝑠

𝑅𝑅)]
𝑇𝑇

𝑡𝑡
= � 𝑒𝑒𝑟𝑟𝑡𝑡𝑑𝑑[𝑒𝑒−𝑟𝑟𝑠𝑠(𝐶𝐶𝑠𝑠 − 𝐶𝐶𝑠𝑠

𝑅𝑅)]
𝑇𝑇

𝑡𝑡
= 𝑒𝑒𝑟𝑟𝑡𝑡[𝑒𝑒−𝑟𝑟𝑇𝑇(𝐶𝐶𝑇𝑇 − 𝐶𝐶𝑇𝑇

𝑅𝑅) − 𝑒𝑒−𝑟𝑟𝑡𝑡(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡
𝑅𝑅)] 

At maturity, value of the option is equal to the instrinsic value, i.e. 𝐶𝐶𝑇𝑇 = 𝐶𝐶𝑇𝑇
𝑅𝑅 = max [𝑆𝑆𝑇𝑇 − 𝐾𝐾, 0], 

thus 
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� 𝑒𝑒−(𝑠𝑠−𝑡𝑡)𝑟𝑟𝑑𝑑𝑉𝑉𝑠𝑠

𝑇𝑇

𝑡𝑡
= 𝐶𝐶𝑡𝑡

𝑅𝑅 − 𝐶𝐶𝑡𝑡  

(c) Compare ∫ 𝑒𝑒𝑟𝑟(𝑠𝑠−𝑡𝑡)𝑑𝑑𝑉𝑉𝑠𝑠
100

0  between the two paths if they materialize respectively, 
assuming 

 
(i) The portfolio is delta-hedged based on 𝜎𝜎𝑅𝑅. 

 
(ii) The portfolio is delta-hedged based on Σ. 

 

Commentary on Question: 

Many candidates remembered the conclusions of how the hedged portfolios would 
behave if delta-hedged based on 𝜎𝜎𝑅𝑅  vs. Σ. However, many could not apply the 
textbook knowledge to the given construct, and misunderstood the question as that 
the graphs given are paths of the hedged portfolios instead of the underlying asset. 
Partial marks are still given for the correct knowledge from the textbook. 

From part b), if the portfolio is delta-hedged based on 𝜎𝜎𝑅𝑅,  ∫ 𝑒𝑒−(𝑠𝑠−𝑡𝑡)𝑟𝑟𝑑𝑑𝑉𝑉𝑠𝑠
100

0 = 𝐶𝐶0
𝑅𝑅 − 𝐶𝐶0. Values 

of 𝐶𝐶0
𝑅𝑅 and 𝐶𝐶0 are independent of the path of 𝑆𝑆𝑡𝑡 that materializes, and thus the value is the same  

between the two paths. 

From part a), if the portfolio is delta-hedged based on Σ,  

𝑑𝑑𝑉𝑉𝑡𝑡 =
1
2

𝜕𝜕2𝐶𝐶𝑡𝑡

𝜕𝜕𝑆𝑆𝑡𝑡
2 (𝜎𝜎𝑅𝑅

2 − Σ2)𝑆𝑆𝑡𝑡
2𝑑𝑑𝜕𝜕 

The infinitesimal gain or loss on the hedged portfolio is proportional to (𝜎𝜎𝑅𝑅
2 − Σ2) by 

the ratio of 1
2

𝜕𝜕2𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕𝑡𝑡

2 𝑆𝑆𝑡𝑡
2, which is dependent on the level of 𝑆𝑆𝑡𝑡, thus in this case, 

∫ 𝑒𝑒−(𝑠𝑠−𝑡𝑡)𝑟𝑟𝑑𝑑𝑉𝑉𝑠𝑠
100

0  would be different between the two paths. Gamma of call options is 
the highest when 𝑆𝑆𝑡𝑡 is close to the strick price, and decrease as 𝑆𝑆𝑡𝑡 moves further 

into or out of money. The level of 𝑆𝑆𝑡𝑡 is also lower for path 1. Thus ∫ 𝑒𝑒−(𝑠𝑠−𝑡𝑡)𝑟𝑟𝑑𝑑𝑉𝑉𝑠𝑠
100

0  
should be lower for path 1 than path 2 in this case. 

 

 

QFI QF Fall 2024 Question 12 
Learning Outcomes: 
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f) Identify and evaluate embedded options in liabilities (e.g., indexed annuity, 
structured product based variable annuity, and variable annuity guarantee riders 
including GMxB, etc.) 

g)  Demonstrate an understanding of hedging for embedded option in liabilities 

Source References: 

• INV201-105-25: An Introduction to Computational Risk Management of Equity-
Linked Insurance, Feng, 2018 (sections 1.2-1.3, 4.7 & 6.2-6.3) 

 
Commentary on Question: 

This question tests the candidates’ ability to apply theories in quantitative finance to the 
valuation and risk management of a variable annuity with GMAB option. Specifically, a 
candidate needs to apply the properties of an equity return process following a Geometric 
Brownian Motion to derive the guarantee and cap rate under given contexts, price a GMAB 
option with cliquet feature, and critique on probabilistic statements based on differences in 
the risk neutral and real-world measures. Many candidates did not make an attempt for this 
question. 

Solution: 

(a) Show that the guarantee rate is 1.25%. 

Commentary on Question: 

The candidates performed below average on this section. While many candidates 
were able to derive the return process under the participation feature, few 
candidates correctly derived the expression of the price expectation.   

From the given stock price process, 𝑆𝑆(𝑇𝑇)𝛼𝛼  also follows a Geometric Brownian Motion with 
the drift and volatility terms scaled by a factor of 𝛼𝛼. Therefore, we have 

𝔼𝔼[𝑆𝑆(𝑇𝑇)𝛼𝛼] = 𝔼𝔼 �𝑒𝑒𝛼𝛼�𝑟𝑟−𝜎𝜎2

2 �𝑇𝑇+𝛼𝛼𝜎𝜎𝑊𝑊𝑇𝑇� 

= 𝑒𝑒𝛼𝛼�𝑟𝑟−𝜎𝜎2

2 �𝑇𝑇𝔼𝔼[𝑒𝑒𝛼𝛼𝜎𝜎𝑊𝑊𝑇𝑇 ] 

= 𝑒𝑒𝛼𝛼�𝑟𝑟−𝜎𝜎2

2 �𝑇𝑇𝑒𝑒
𝛼𝛼2𝜎𝜎2

2 𝑇𝑇 

= 𝑒𝑒𝛼𝛼�𝑟𝑟+1
2(𝛼𝛼−1)𝜎𝜎2�𝑇𝑇 

Substituting in the parameters, we get 
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𝔼𝔼[𝑆𝑆(𝑇𝑇)𝛼𝛼] = 𝑒𝑒0.5�.04+1
2(0.5−1)(0.2)2�𝑇𝑇 = 𝑒𝑒 .015𝑇𝑇 

Since the guaranteed rate is 25 bps lower than the expected return under the participation 
factor, we have: 

Guaranteed rate = 1.5%-0.25%=1.25% 

(b) Derive the ℚ-probability that the EIA credits the guaranteed rate in a single year. 

Commentary on Question: 

The candidates did poorly on this section. Among the few reasonable attempts 
made on this question, common mistakes include having the inequality reversed 
and misinterpreting the definition of the guarantee rate. 

 

Using the results from part (a), we have: 

Pr(𝑆𝑆(𝑇𝑇)𝛼𝛼 ≤ 𝑒𝑒 .0125𝑇𝑇) = Pr �𝑒𝑒𝛼𝛼�𝑟𝑟−𝜎𝜎2

2 �𝑇𝑇+𝛼𝛼𝜎𝜎𝑊𝑊𝑇𝑇 ≤ 𝑒𝑒 .0125𝑇𝑇�

= Pr �𝛼𝛼 �𝑁𝑁 −
𝜎𝜎2

2 � 𝑇𝑇 + 𝛼𝛼𝜎𝜎𝑊𝑊𝑇𝑇 ≤ .0125𝑇𝑇�

= Pr �𝑊𝑊𝑇𝑇 ≤
. 0125𝑇𝑇 − 𝛼𝛼 �𝑁𝑁 − 𝜎𝜎2

2 � 𝑇𝑇

𝛼𝛼𝜎𝜎 � = Φ �
. 0125𝑇𝑇 − 𝛼𝛼 �𝑁𝑁 − 𝜎𝜎2

2 � 𝑇𝑇

𝛼𝛼𝜎𝜎√𝑇𝑇
�

= Φ �
. 0125 − 0.5 �. 04 − 0.22

2 �

0.5(0.2) � = Φ(0.025) ≈ 51% 

(c) Derive the appropriate cap rate. 

Commentary on Question: 

The candidates performed poorly on this section. Few candidates correctly 
established the required probability expression.   

The question asks for the value of cap rate c such that 

 

Pr(𝑆𝑆(𝑇𝑇)𝛼𝛼 > 𝑒𝑒𝑐𝑐𝑇𝑇) = 1 − Pr(𝑆𝑆(𝑇𝑇)𝛼𝛼 ≤ 𝑒𝑒𝑐𝑐𝑇𝑇) =  0.10 

 

Similar to the steps in the solution to part (b), we have 
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Pr(𝑆𝑆(𝑇𝑇)𝛼𝛼 ≤ 𝑒𝑒𝑐𝑐𝑇𝑇) =  0.90 ⟹ Φ �
𝑐𝑐 − 0.5 �. 04 − 0.22

2 �

0.5(0.2) � = 0.9 

⟹ 10𝑐𝑐 − 0.1 = 1.28 
⟹ 𝑐𝑐 = 13.8% 

 

(d) Calculate the risk-neutral price for a 5-year cliquet EIA. 

Commentary on Question: 

The candidates performed poorly on this section. Most of the candidates left it 
unanswered.    

Let g denote the guarantee rate, we have 

𝑃𝑃𝑁𝑁𝑖𝑖𝑐𝑐𝑒𝑒1−𝑦𝑦𝑟𝑟 𝐸𝐸𝐼𝐼𝐴𝐴 = 𝑒𝑒−𝑟𝑟 �𝔼𝔼 �𝑒𝑒𝑔𝑔 𝕀𝕀�ln 𝜕𝜕(1)≤ 𝑔𝑔𝛼𝛼� +  𝑆𝑆(1)𝛼𝛼𝕀𝕀�𝑔𝑔
𝛼𝛼<ln 𝜕𝜕(1)≤ 𝑐𝑐𝛼𝛼� + 𝑒𝑒𝑐𝑐𝕀𝕀�ln 𝜕𝜕(1)> 𝑐𝑐𝛼𝛼��� 

 

From part (c) we know that: 

Pr(𝑆𝑆(𝑇𝑇)𝛼𝛼 ≤ 𝑒𝑒𝑐𝑐𝑇𝑇) = Φ(10𝑐𝑐 − 0.1) = Φ(1.4 − 0.1) = Φ(1.3) = 0.9032 

⟹ Pr(𝑆𝑆(𝑇𝑇)𝛼𝛼 > 𝑒𝑒𝑐𝑐𝑇𝑇) = 0.0968 

From part (b) we know that: 

Pr(𝑆𝑆(𝑇𝑇)𝛼𝛼 ≤ 𝑒𝑒𝑔𝑔𝑇𝑇) = 0.51 

In addition, from the given stock price process, we know that: 

𝑆𝑆(1)𝛼𝛼~𝐿𝐿𝑁𝑁 �𝛼𝛼 �𝑁𝑁 −
𝜎𝜎2

2
� , 𝛼𝛼𝜎𝜎� 

Hence: 

𝔼𝔼�𝑆𝑆(1)0.5𝕀𝕀{.025<ln 𝜕𝜕(1)≤ .280}� 

=  𝑒𝑒𝛼𝛼�𝑟𝑟−𝜎𝜎2

2 �+𝛼𝛼2𝜎𝜎2

2 �Φ �
0.14 − 0.5 �0.04 − 0.22

2 �

0.5(0.2)
− (0.5)(0.2)�

− Φ �
0.0125 − 0.5 �0.04 − 0.22

2 �

0.5(0.2)
− (0.5)(0.2)�� 
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Combining all these results together, we have: 

𝑃𝑃𝑁𝑁𝑖𝑖𝑐𝑐𝑒𝑒1−𝑦𝑦𝑟𝑟 𝐸𝐸𝐼𝐼𝐴𝐴 = 1.007728 

The price of a 5-year cliquet is thus given by: 

𝑃𝑃𝑁𝑁𝑖𝑖𝑐𝑐𝑒𝑒5−𝑦𝑦𝑟𝑟 𝑐𝑐𝑙𝑙𝑖𝑖𝑞𝑞𝑢𝑢𝑒𝑒𝑡𝑡 𝐸𝐸𝐼𝐼𝐴𝐴 = �𝑃𝑃𝑁𝑁𝑖𝑖𝑐𝑐𝑒𝑒1−𝑦𝑦𝑟𝑟 𝐸𝐸𝐼𝐼𝐴𝐴�5 = (1.007728)5 = 1.039242506 

 

(e) Critique the following statement made by your analyst: 

“By setting the cap rate such that the probability that 𝑆𝑆(𝑇𝑇)𝛼𝛼 exceeds cap rate is no 
more than 10% in a single year, we should expect to pay the cap rate approximately 
once every ten years.” 

Commentary on Question: 

The candidates performed poorly on this section. While many candidates pointed 
out that the statement is incorrect, very few were able to give the proper rationale 
based on the different nature of real-world vs. risk neutral measures.   

Disagree with the statement. The cap rate was set such that the risk-neutral 
probability of the single year return hitting the cap is 10%. Actual observation will 
abide by the real-world measure, which should be higher than 10% given an 
appropriate risk premium. 
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